
OS Virtualization and Containers

1 / 20



Hardware vs. OS Virtualization

Hypervisor

Virtual H/W

Guest OS

Libraries

Application

Virtual Machine-1

Virtual H/W

Guest OS

Libraries

Application

Virtual Machine-2

Hardware

Operating System Kernel

Libraries

Application

Container-1

Libraries

Application

Container-2

Hardware

2 / 20



OS Virtualization

Virtualize the OS for each application
Not the hardware
Allow applications to run in isolation from each other
If this seems similar to the process abstraction, that’s because it is

Resource sharing is a core OS primitive anyway.
However, some services are shared:

1 File system, libraries, config files
2 Users, uids
3 Pid tree (pid’s are unique)
4 Network interfaces, rules (iptables), ports
5 Time
6 Procfs, sysfs

3 / 20



Dual View of Containers

Containers can be viewed as either:
1 Lightweight virtual machines
2 Process groups with better isolation

Containers as OS virtualization analogue of VMs:
Applications/processes run inside containers

Isolated from each other using sandboxing techniques
Applications should not affect or monitor apps in other containers

Containers run on a “virtualized OS interface”
Need no additional interposition
No/negligible performance degradation

4 / 20



Essence of OS Virtualization

Virtualize the shared OS services
Ideally: applications not affected by others in any way
Implemented through namespaces
Resource isolation. Fine-grained control of CPU, memory, I/O resources
consumed
OS must try to provide isolation anyway
OS virt is thus the natural progression:

Early UNIX: File system isolation with chroot
FreeBSD: Jails [2000] (chroot+containing the omnipotent root)
Solaris: Zones [2005] (refined, more isolated Jails)
Linux: [Virtuzzo-2000, LXC-2008, . . . ]

5 / 20



OS Virtualization Desiderata

Security
Isolation
Virtualization

HW devices, network IP, hostname, . . .

Granularity
Containers can be arbitrarily sized
No dedicated CPUs required

Transparency. No porting required. Exact same ABI/API as running on
bare-metal.

6 / 20



OS Virtualization Challenges

Lots of OS → App interfaces to isolate
Security challenges abound
Needs careful understanding of the OS
Replace process-id with (process-id, container-id) throughout the kernel
Update virtualization and isolation with each new OS feature
In contrast, HW, and HW virt, are relatively stable
What should be the limitations on the “root” user in a container?

7 / 20



Namespaces

Split global kernel resource structures into separate instances.
Pid (Each namespace has its own pid tree)
Network : nic, iptables, routing tables
UTS: hostname
Mount : Private mount-points with different file-system trees
User: User-ids
IPC: POSIX shmem, etc

8 / 20



Namespace usage and implementation

Containers are created with these new namespaces.
unshare: run program with some namespaces unshared from parent
unshare –map-root-user –user sh -c whoami # outputs root
setns
nsenter

9 / 20



Control groups

CPU, memory, blkio
cgcreate and cgexec for creating and running programs
Control via sysfs (/sys/fs/cgroup/)
Resource limiting, prioritization, accounting
CPU : cpu.shares (1024 max)
cpuset: Set which CPUs (cores) a cgroup can use
Memory: max_usage_in_bytes for setting max allocation
Control (freeze, checkpoint processes)

10 / 20



Linux Containers (LXC)

Create “containers” using namespaces, cgroups, seccomp (security
policies)
Similar control abstraction as VMs:
Containers have names, “FS images”, resource allocation (CPU, mem,..)
Operations: create, start, shutdown, pause, migrate

11 / 20



Docker

LXC + layered file system + image repository
Copy-on-write file system allows images to be composed layer-wise:

1 Base layer: Debian
2 Layer 2: Essentials (Emacs)
3 Layer 3: Apache web server

Common use-case: CICD
Continuous Integration and Deployment
Create docker container in dev environment, “push” into production

12 / 20



Docker Commands

docker inspect image-name to see image layer storage
docker save to tar file
commit to create a new image

13 / 20



Dockerfiles

FROM ubuntu:18.04
COPY . /app
RUN make /app
CMD python /app/app.py

docker build

14 / 20



Container Ecosystem

15 / 20



OS Virtualization Benefits

“Lightweight” virtualization. No performance overhead
Negligible resource overhead (mem, cpu)
VMs need resources to run guest OS
Near-instant startup

Guest OS boot can take tens of seconds
Hypervisor optimizations can reduce it to ∼ 100 ms [ClearContainers]

Dynamic resource management
Change cpu, mem, IO resources at run-time
Less wasted resources
Free resources inside a VM are considered “allocated”

16 / 20



OS Virtualization Drawbacks

Linux containers not secure due to large surface area
Resource isolation may be weak
Leads to performance interference
Two CPU intensive containers
One container runs fork-bomb
Isolation is hard
Many common, shared resources
/procfs . Useful for system monitoring
Exposed to container or not?

17 / 20



Lightweight Virtual Machines

Can we provide isolation of HW VMs and low footprint of containers?
New trend: Stripped-down hypervisors. Reduces startup-time
Intel ClearContainers (now Kata), Amazon Firecracker, . . .
Target: 100ms boot time
Most features of QEMU not needed
Need to support only newer versions of Linux: paravirt drivers sufficient,
legacy hardware (BIOS) can be removed from the VM
Disk image transparency tackled through Plan9FS. VM can access host
FS directly!
Bypass page cache through DAX (Direct Access)
Mmap kernel image directly from host file system and boot
Can boot Docker images as VMs!

18 / 20



gVisor

OS presents a large attack surface: generally dangerous to run in cloud
environments
Common to heavily sandbox containers via apparmor, seccomp...
gVisor: OS system calls implemented in Go
Intercept application syscalls and either reject, filter, proxy, or safely
implement

19 / 20



Other Virtualization Options

Library virtualization
Implement glibc on Windows (Cygwin, mingw)
Implement windows APIs on Linux (Wine)

System-call virtualization
Run applications from different OS
Intercept syscalls made by application and reimplement them
Linux apps on FreeBSD, SmartOS (Solaris)
Linux apps on Windows

20 / 20


