
Fixing things that can never be broken:
So�ware maintenance as heterogeneous engineering

Nathan Ensmenger

University of Pennsylvania

SHOT Conference, October 2008

In the very last published article of his long and distinguished career, the emi-

nent historian of computing Michael Mahoney asked a simple but profound ques-

tion: “What makes the history of so�ware hard?’1’ In his characteristically playful

style, Mike was engaging both with an issue of central importance to historians –

namely, how can we begin to come to grips with the formidable challenges of writ-

ing the history of so�ware – but also one of great interest to practitioners. Since the

earliest days of electronic computing, the problem of so�ware has loomed large in

the industry literature. �e history of so�ware is hard, Mike argued, because so�-

ware itself is hard: hard to design, hard to develop, hard to use, hard to understand,

and hard to maintain.

�is paper focuses on the problem of maintenance in the history of so�ware.

As all of the papers in this session argue, the problem of maintenance is a ubiqui-

tous but neglected element of the history of technology. All complex technological

systems eventually break down and require repair (somemore so than others), and,

in fact, as David Edgerton has suggested, maintenance is probably the central ac-

tivity of most technological societies.2 But maintenance is also low-status, di�cult,

and risky. Engineers and inventors don’t like maintenance, and generally don’t do

maintenance, and therefore historians of technology have largely ignored it.

�e problem ofmaintenance is particularly challenging for the both practition-

ers and historians of computing. To begin with, in theory so�ware should never

need maintenance. So�ware does not break down or wear out, at least in the con-

ventional sense. Once a so�ware-based system is working, it will work forever (or

at least until the underlying hardware breaks down – but that is someone else’s

problem). Occasionally a stray cosmic ray might �ip an unexpected bit in a so�-

ware system, causing an error, but generally speaking, so�ware can never be bro-

ken.

1Michael S. Mahoney. “What Makes the History of So�ware Hard”. In: Annals of the History of
Computing, IEEE 30.3 (2008). Pp. 8–18. ISSN: 1058-6180.

2David Edgerton.�e shock of the old: technology and global history since 1900. Oxford: Oxford
University Press, 2007.

1



Except that so�ware does get broken. All the time. At great expense and in-

convenience to its users. In fact, from the early 1960s on, so�ware maintenance

has represented between 50% and 70% of all total expenditures on so�ware.3 By

the end of the 1960s, many observers were talking openly about a looming so�ware

crisis facing the computer industry.�e historical literature as thus interpreted this

in terms of the problem of so�ware development. �ere is a strong argument to be

made that the so�ware crisis was equally a problem of so�ware maintenance. �e

rising cost of so�waremaintenance, argued Richard Canning, an in�uential indus-

try observer, in a 1972 article, which already devoured as much as half or two-third

of programming resources, was just the “tip of the maintenance iceberg”.4

�e crisis of so�ware maintenance, like all of the various iterations of the per-

petual so�ware crisis, has been framed and reframed many times in order to serve

di�erent agendas. At times it has been framed in terms of an ongoing programming

problem; at others a lack of professionalism on the part of programmers; increas-

ingly frequently, as a problem of programmer management. One of my favorites

is a 1981 study by the National Science Foundation, which argued that so�ware

maintenance represented a crisis of national security:

If so�ware practices continue to dri�, in 20 years the U.S. will have

a national inventory of unstructured, hard-to-maintain, impossible-

to-replace programs written in Fortran and Cobol as the basis of its

industrial and government activities. Conversely, the Soviets may very

well have a set of well-structured, easily maintained and modi�able

programs.5

But whatever its causes, the reality of the crisis has always beenwidely accepted.

From the 1960s to the present, so�ware maintenance has absorbed between one-

half and two-thirds of all so�ware-related resources.6 �is is an extraordinary �g-

ure.

3B. P. Lientz, E. B. Swanson, and G. E. Tompkins. “Characteristics of application so�ware main-

tenance”. In: Commun. ACM 21.6 (1978). Pp. 466–471. ISSN: 0001-0782; Girish Parikh. “So�ware

maintenance: penny wise, program foolish”. In: SIGSOFT So�w. Eng. Notes 10.5 (1985). Pp. 89–98.
ISSN: 0163-5948; Ruchi Shukla and Arun Kumar Misra. “Estimating so�ware maintenance e�ort: a

neural network approach”. In: ISEC ’08: Proceedings of the 1st conference on India so�ware engineer-
ing conference. Hyderabad, India: ACM, 2008. Pp. 107–112.

4Richard Canning. “�e Maintenance ’Iceberg’”. In: EDP Analyzer (Oct. 1972).
5Parikh, “So�ware maintenance: penny wise, program foolish”.
6Gerardo Canfora and Aniello Cimitile. So�ware Maintenance. Tech. rep. University of Sannio,

2000.

2



�e problem of so�ware maintenance has a long history. Even before there

was a word for so�ware, there was perceived problem with so�ware maintenance.

MauriceWilkes, one of the �rst people ever to program amodern, stored-program

computer, famously recalled the moment, in June 1949, when he suddenly realized

that “a good part of the remainder of my life was going to be spent in �nding errors

in my own programs.”7 Technically, what Wilkes was describing was not so much

the process of maintaining computer programs but of debugging them (meaning

the elimination of �aws in the original design or implementation, rather than the

repair of accumulated errors), but the larger implication for the computing com-

munity is obvious: the delivery of a working application was only the beginning

of the life-cycle of a so�ware application. A programmer could – and many did –

spend the majority of their career chasing down the bugs that gradually revealed

themselves in the operation of a complex so�ware-based system. In this respect,

runs the well-worn joke, programming a computer was a little bit like sex: “One

mistake and you have to support it for the rest of your life.”

But even if we exclude the ongoing process of debugging so�ware (which most

of the estimates of so�ware maintenance costs indeed do), maintenance still ac-

counts for more than half of the overall cost of so�ware development. �is is true

even of so�ware that is considered e�ectively bug-free. What, then, does mainte-

nance mean in this context?

In order to properly understand so�ware maintenance, we must �rst come to

grips with so�ware itself.

So�ware as Heterogeneous Technology
Most of us today tend to think of so�ware as a consumer good, a product, a pre-

packaged application. You purchase a copy of Microso� Word, or Call of Duty 4,

you install it, and you make do with the functionality provided, whether or not it

does exactly what you want or works entirely well as you might have hoped. You

might lose the installationCD, or themanual, but you don’t take your so�ware back

to the shop for regular repair.

But historically speaking, so�ware is not something you purchase o�-the-shelf,

nor is it a single application or products. Rather, it is a bundle of systems, services,

and support. (Even today this is true of the vast majority of so�ware)

It was not until more than a decade a�er the development of the �rst electronic

computers that the statistician JohnTukey �rst applied the word “so�ware” to those

7Maurice V. Wilkes.Memoirs of a Computer Pioneer (History of Computing). 1985.

3



elements of a typical computer installation that were not obviously “tubes, tran-

sistors, wires, tapes and the like.”8 But although the term itself might have been

novel, the constitutive elements of Tukey’s so�ware – libraries, compilers, and sys-

tems utilities – were not. �e �rst commercial electronic computers had only been

available for a few years when the availability of useful and reliable “so�ware” was

identi�ed as one of the critical bottlenecks hindering the expansion of the entire

computing industry.9

It is important to note, however, that Tukey’s so�ware was not an end-user ap-

plication, such as an accounting package or an engineering simulation program,

but rather the collection of low-level tools used to construct and manage such ap-

plications. Today we would consider such tools to be part of an operating system

or development platform. And although so�ware code was generally provided for

free by computer manufacturers – it was not until the very late 1960s that so�ware

became a product that could be purchased separately from a computer – by itself

it represented only a small component of a larger system of programmer services

and support. Outside of this larger context of services, provided largely by expert

consultants and specialist programmers, so�ware as it was understood in the late

1950s was e�ectively useless.

It did not take long for industry observers and computing service providers to

recognize the signi�cance of this larger context. Just a few years a�er John Tukey

introduced his preliminary de�nition of so�ware, Bernard Galler, then head of

the University of Michigan Computing Center (and later president of the ACM)

broadened the term with an insightful emendation: for the user of a computer,

“the total computing facility provided for his use, other than the hardware, is the

so�ware.”10 �e implication was that most users could not or did not distinguish

between the elements of the so�ware system: tools, applications, personnel, and

procedures were all considered essential elements of the so�ware experience. By

the end of the decade the term had been expanded even further to include doc-

umentation, development methodologies, user training, and consulting services.

So�ware was an ever-expanding category that grew not only in size and scale but

also in scope. As the nuts-and-bolts of computer hardware became faster, more

reliable, and less-expensive – and therefore increasingly invisible to the end-user –

the relative importance of so�ware became even more pronounced. In e�ect, for

8John Tukey. “�e Teaching of Concrete Mathematics”. In: American Mathematical Monthly
65.1 (1958). Pp. 1–9.

9Peter B. Laubach and Lawrence E.�ompson. “Electronic Computers: A Progress Report”. In:

Harvard Business Review Issue 233 (1955). P. 120.
10Bernard Galler. “De�nition of So�ware”. In: Communications of the ACM 5.1 (1961). P. 6.

4



most organizations, by the end of the 1960s, so�ware had become the computer:

so�ware, rather than the computer, had become the focus of all discussion, debate,

and dissension within the computing community.

It is the expansiveness of so�ware that is the key to understanding the nature

and causes of the so�ware maintenance crisis that emerged in the late 1960s. Un-

like hardware, which is almost by de�nition a tangible “thing” which can read-

ily be isolated, identi�ed, and evaluated, so�ware is inextricably linked to a larger

socio-technical system that includes machines (computers and their associated pe-

ripherals), people (users, designers, and developers), and processes (the corporate

payroll system, for example). �e sociologist John Law calls the development of

such complex systems “heterogeneous engineering”; historically speaking, the de-

velopment of heterogeneous systems is fraught with con�ict, negotiation, disputes

over professional authority, and the con�ation of social, political, and technological

agendas.11

So�ware Evolution
If we consider so�ware not as an end-product, or a �nished good, but as a heteroge-

neous system, with both technological and social components, we can understand

why the problem of so�ware maintenance was (is) so complex. It raises a funda-

mentally question – one that has plagued so�ware developers since the earliest days

of electronic computing – namely, what does it mean for so�ware to work prop-

erly? �e most obvious answer is that it performs as expected, that the behavior

of the system conforms to its original design or speci�cation. Donald MacKen-

zie has written extensively about the so�ware veri�cation movement, which at-

tempted to establish, either mathematically or using empirical testing regime, to

“prove” that so�ware was reliable. But such techniques were always problematic,

and never widely adopted. In any case only a small percentage of so�ware main-

tenance is devoted to �xing such bugs in implementation.12 One exhaustive study

from the early 1980s estimates such emergency �xes to occupy at most one-��h of

all so�ware maintenance workers.

�e majority of so�ware maintenance involve what are vaguely referred to in

the literature as “enhancements.” �ese enhancements sometimes involved strictly

11John Law. “Notes on the�eory of Actor-Network: Ordering, Strategy, andHeterogeneity”. In:

Systems Practice (1992). Pp. 379–393.
12David C. Rine. “A short overview of a history of so�ware maintenance: as it pertains to reuse”.

In: SIGSOFT So�w. Eng. Notes 16.4 (1991). Pp. 60–63. ISSN: 0163-5948.

5



technical measures – such as implementing performance optimizations – but most

o�en what Richard Canning, one of the computer industry’s most in�uential in-

dustry analysts, termed “responses to changes in the business environment.”13 �is

included the introduction of new functionality, as dictated by market, organiza-

tional, or legislative develops, but also changes in the larger technological or orga-

nizational system in which the so�ware was inextricably bound. So�ware main-

tenance also incorporated such apparently non-technical tasks as “understanding

and documenting existing systems; extending existing functions; adding new func-

tions; �nding and correcting bugs; answering questions for users and operations

sta�; training new systems sta�; rewriting, restructuring, converting and purging

so�ware; managing the so�ware of an operational system; and many other activi-

ties that go into running a successful so�ware system.”14

By the early 1980s, the industry and technical literature had settled on a shared

taxonomy for talking about so�ware maintenance: �ere was corrective mainte-

nance (bug �xes), perfectivemaintenance (performance improvements), and adap-

tive maintenance (adaptions to the larger environment). Adaptive maintenance so

dominated real-worldmaintenance thatmany observers pushed for an entirely new

nomenclature: so�ware maintenance was a misnomer, they argued: the process of

adapting so�ware to change would better be described as “so�ware support”, “so�-

ware evolution”, or (my personal favorite) “continuation engineering.”15 But so�-

ware maintenance was the term that stuck..

�e Challenge of Maintenance
Like all forms of maintenance, so�ware maintenance is di�cult, unpopular, and

largely unrewarding. To begin with, maintenance required programmers to work

on live systems, wheremistakes and failures had real and immediate consequences.

Because maintenance does not generally involve design, it is considered boring

and low-status. And because of the unique nature of so�ware – its intangibility –

so�ware systems are o�en coded before they are completely speci�ed. Many pro-

grammers �nd it easy to “just start coding” than to develop design documents.

13Canning, op. cit.
14E. Burton Swanson. “�e dimensions of maintenance”. In: ICSE ’76: Proceedings of the 2nd in-

ternational conference on So�ware engineering. San Francisco, California, United States: IEEE Com-

puter Society Press, 1976. Pp. 492–497.
15Girish Parikh. “What is so�ware maintenance really?: what is in a name?”. In: SIGSOFT So�w.

Eng. Notes 9.2 (1984). Pp. 114–116. ISSN: 0163-5948.

6



In so�ware more than any other engineering discipline, the “not-invented-here”

syndrome prevails. It is generally considered much simpler to redevelop systems

from scratch than to untangle someone else’s “spaghetti code.” Most programs are

poorly documented (if at all), and so most maintenance works involves intensive

on-the-job learning.

But in working so�ware systems, it is o�en impossible to isolate the artifact

from its context. Despite the fact that the material costs associated with building

so�ware are low (in comparison with traditional, physical systems), the degree to

which so�ware is embedded in larger, heterogeneous systems makes starting from

scratch almost impossible. In his highly regarded book�e Mythical Man-Month,
the computer scientist (and IBM program manager) Frederick Brooks famously

likened programming to poetry, suggesting that “�e programmer, like the poet,

works only slightly removed from pure-thought stu�. He builds his castles in the

air, from air, creating by exertion of the imagination.”16 To a degree, this is true –

at least when the programmer is working on constructing a new system. But when

charged with maintaining so-called “legacy” system, the programmer is working

not with a blank slate, but a palimpsest. Computer code is indeed a kind of writ-

ing, and so�ware development a form of literary production. But the ease with

which computer code can be written, modi�ed, and deleted belies the durability of

the underlying document . Because so�ware is a tangible record, not only of the

intentions of the original designer, but of the social, technological, and organiza-

tion context in which it was developed, it cannot be easily modi�ed. “We never

have a clean slate,” argued Barjne Stroudstroup, the creator of the widely used C++

programming language, “Whatever new we do must make it possible for people

to make a transition from old tools and ideas to new.”17 In this sense, so�ware is

less like a poem and more like a contract, a constitution, or a covenant. So�ware is

history, organization, and social relationships made tangible.

One of the remarkable implications of all of this is that the so�ware industry,

which many consider to be one of the fastest-moving and most innovative indus-

tries in the world, is perhaps the industry most constrained by its own history. As

one observer recently noted, today there are still more than 240 million lines of

computer code written in the programming language COBOL, which was �rst in-

troduced in 1959 – and which was derided, even at its origins, as being backward

looking and technically inferior. And yet 90% of the world’s �nancial transactions

16Frederick P. Brooks.�eMythicalMan-Month: Essays on So�ware Engineering. Addison-Wesley

New York, 1975.
17Bjarne Stroustrup. “A History of C++”. In: History of Programming Languages. Ed. by T.M.

Bergin and R.G. Gibson. ACM Press, 1996.

7



are processed by applications written in COBOL, as is 75% of all business data pro-

cessing. Five out of eight large corporations rely on COBOL code, many of them

substantially. 70% of Merrill Lynch applications are coded in COBOL. �e total

value of active COBOL applications – many of them developed prior to the 1980s

– is as high as $2 trillion.18 All of this COBOL code needs to actively maintained,

modi�ed, and expanded. Maintenance is a central issue in the history of so�ware,

the history of computing, and the history of technology. We need to know more

about it, and we need to take it more seriously.

�e good news, of course, is that, at least in the case of so�ware, the problem

of ongoing maintenance necessitates the understanding and untangling of social

structures, historical contingencies, and the accretion of change over time, then

we as historians should be well-prepared to engage with it.

18Michael Swaine. “Is Your Next Language COBOL?”. In: Dr. Dobbs Journal (2008).

8


	Software as Heterogeneous Technology
	Software Evolution
	The Challenge of Maintenance

