
IEEE Annals of the History of Computing 1058-6180/01/$10.00 © 2001 IEEE 1

In one inquiry it was found that a successful
team of computer specialists included an ex-
farmer, a former tabulating machine operator, an
ex-key punch operator, a girl who had done sec-
retarial work, a musician and a graduate in math-
ematics. The last was considered the least
competent.1

H.A. Rhee,
Office Automation in Social Perspective (1968)

The first computer programmers came from a
variety of occupational and educational back-
grounds. Some were former clerical workers or
tabulating machine operators. Others were
recruited from the ranks of the female “human
computers” who had participated in wartime
manual computation projects. Most, however,
were erstwhile engineers and scientists recruited
from military and scientific hardware develop-
ment projects. For these well-educated computer
“converts,” it was not always clear where com-
puter programming stood in relation to more tra-
ditional disciplines. In the early 1950s, the
disciplines that we know today as computer sci-
ence and software engineering existed only as a
loose association of institutions, individuals, and
techniques. Although computers were increas-
ingly used in this period as instruments of scien-
tific production, their status as legitimate objects
of scientific and professional scrutiny had not yet
been established. Those scientists who left
“respectable” disciplines for the uncharted
waters of computing faced self-doubt, profes-
sional uncertainty, and even ridicule. The physi-
cist-turned-computer-scientist Edsgar Dijkstra
recalled this difficult process of self-transforma-
tion in his 1972 Turing Award Lecture (reveal-
ingly titled “The Humble Programmer”):

I had to make up my mind, either to stop pro-
gramming and become a real, respectable theo-
retical physicist, or to carry my study of physics
to formal completion only, with a minimum of
effort, and to become … what? A programmer?
But was that a respectable profession? After all
what was programming? Where was the sound
body of knowledge that could support it as an
intellectually respectable discipline? I remember
quite vividly how I envied my hardware col-
leagues, who, when asked about their profession-
al competence, could at least point out that they
knew everything about vacuum tubes, amplifiers
and the rest, whereas I felt that, when faced with
that question, I would stand empty-handed.2

Dijkstra was by no means alone in his assess-
ment of the ambiguous professional status of
computing personnel. Over the previous
decade, computing had managed to acquire
many trappings of a profession: research labo-
ratories and institutes, professional confer-
ences, professional societies, and technical
journals. Indeed, as William Aspray has sug-
gested, many of the structural elements of a
computing profession were in place by the end
of the 1950s.3 But the existence of professional
institutions did not necessarily translate readi-
ly into widely recognized professional status.
Throughout the 1960s, computer specialists
continued to wonder at the “almost universal
contempt” (or at least “cautious bewilderment
and misinterpretation”) with which program-
mers were regarded by the general public.4 In
1967, the US Civil Service Commission
declared data-processing personnel to be
nonexempt employees, officially categorizing
programmers and other computer specialists as

The ‘Question of Professionalism’ in
the Computer Fields
Nathan L. Ensmenger
University of Pennsylvania

In the late 1950s and early 1960s, the “question of professionalism”
became a pressing issue for the emerging commercial computer
industry. Just who was qualified to be a programmer? Competing
visions as to the answers to these questions contributed to an
ongoing debate that caused turf wars, labor shortages, and varied
approaches to professional development. The author explores the
many diverse attitudes and opinions on what professionalism meant
in the 1950s and 1960s.

technicians rather than professionals. In a
series of articles discussing the “question of
professionalism,” the influential computer
industry analyst Richard Canning declared that
“true professional status for systems analysts
and/or programmers” was “no closer today [in
1975] than it was ten years ago. It is not clear
just what body of practitioners should rightly
classify as professionals.”5

The question of who was qualified to be a
computer professional was of interest to more
than just practitioners. In their role as media-
tors between the computer and the larger soci-
ety, computer professionals have always played
a crucial role in defining what the computer
was and what it could be used for. As the elec-
tronic computer became an increasingly valu-
able source of institutional and economic power
and authority, programmers and other com-
puter personnel emerged as influential organi-
zational “change-agents” (to use the
management terminology of the era).6 This was
particularly true of business programmers. The
systems they developed often replaced, or at
least substantially altered, the work of tradi-
tional white-collar employees. Traditional cor-
porate managers, not unsurprisingly, often
resented the perceived impositions of the “com-
puter boys,” regarding them as threats to their
position and status.7 They attempted to reassert
control over operational decision making by
defining programmers as narrow specialists or
“mere technicians.”8 The result was a highly
contested struggle over the proper place of the
programmer in traditional academic, occupa-
tional, and professional hierarchies.

This article explores the “question of profes-
sionalism” as it applied to the computing disci-
plines in the 1950s and 1960s. This was a period
of particularly intense professional activity by
computer specialists, particularly those involved
with software development. The rapid expan-
sion of the commercial computer industry, the
rising cost of software relative to hardware, and
the widespread perception that a software crisis
was imminent lent urgency to the debate about
the character and future of the computing pro-
fessions. Would programmers and other com-
puter specialists survive as skilled, autonomous
professionals, or would they be supplanted by
“automatic programming” languages or mass-
produced software components? Was computer
science a legitimate, independent discipline, or
simply a “momentary aberration in the fields of
mathematics and electrical engineering”?9

Should the profession model itself along the
lines of the research scientist, industrial engi-
neer, or certified public accountant? Were the

ideal computer professionals college-educated or
merely vocational school graduates? Were they
professionally certified or licensed by the state?
The debate about the nature and character of
computer professionals that took shape in this
period was part of an ongoing debate about
information technology workers that spans the
decades from the 1950s to the present. Many of
this debate’s most persistent themes—the con-
tested relationship between computer science
curricula and the skills required of business pro-
grammers, for example—cannot be fully under-
stood outside the context of this defining period
in the history of the computing professions.

The persistent personnel problem
The debate about professionalism in the

computer field originated in the programmer
labor shortages of the early 1950s. The supply
of programmers had been a problem for the
commercial computing industry from the
beginning. As early as 1954, the organizers of
the first Conference on Training Personnel for
the Computing Machine Field warned that
“estimates of manpower needs for computer
applications … [are] astounding compared to
the facilities for training people for this work.”10

With the annual demand for programmers
expected to double, there was among partici-
pants “a universal feeling that there is a definite
shortage of technically trained people in the
computer .”11 The largest employer (and train-
er) of programmers in this period, the System
Development Corporation (SDC), could hardly
train enough programmers to meet its own
internal demand.12

As the market for commercial computers
changed and expanded in the early 1960s, the
demand for computer specialists increased
accordingly. The rapidly growing “gap in pro-
gramming support” threatened to explode into
a full-blown crisis, and it appeared that the situ-
ation would “get worse in the next several years
before it gets better.”13 In 1962, the editors of the
data-processing trade journal Datamation
declared that “first on anyone’s checklist of pro-
fessional problems is the manpower shortage of
both trained and even untrained programmers,
operators, logical designers and engineers in a
variety of flavors.”14 Five years later, “one of the
prime areas of concern” to electronic data-pro-
cessing (EDP) managers was still “the shortage
of capable programmers,” a shortage that had
“profound implications, not only for the com-
puter industry as it is now, but for how it can be
in the future.”15 In 1967, an influential report on
“The State of the Information Processing
Industry” noted that although there were

2 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

already 100,000 programmers working in the
United States, there was an immediate need for
at least 50,000 more.16 “Competition for pro-
grammers has driven salaries up so fast,” warned
a contemporary article in Fortune magazine,
“that programming has become probably the
country’s highest paid technological occupation
…. Even so, some companies can’t find experi-
enced programmers at any price.”17

Faced with a growing shortage of skilled pro-
grammers, employers were forced to pursue
increasingly desperate measures to staff their
software development projects. Many were
forced to develop expensive internal training
programs, “not because they want to do it, but
because they have found it to be an absolute
necessary adjunct to the operation of their
business.”18 In 1966, IBM provided program-
ming training for 100,000 people at a cost of
$90 to $100 million.19 New sources of man-
power production (some legitimate, others less
so) emerged to meet the demand for trained
programmers. Private data-processing schools
sprang up all over the country promising high
salaries and dazzling career opportunities.20 A
1968 article in Cosmopolitan magazine urged
Helen Gurley Brown’s “Cosmo Girls” to go out
and become “computer girls” making “$15,000
a year” as programmers.21 At one point, the so-
called “population problem” in software
became so severe that service bureaus in New
York farmed out programming work to inmates
at the nearby Sing-Sing prison, promising them
permanent positions pending their release.22

The influx of new programmer trainees and
vocational school graduates into the software
labor market failed to alleviate the acute short-
age of programmers plaguing the industry, how-
ever. In fact, one 1968 study by the Association
for Computing Machinery’s Special Interest
Group on Computer Personnel Research
(SIGCPR) warned of a growing oversupply of a
certain undesirable species of software specialist:

The ranks of the computer world are being
swelled by growing hordes of programmers, sys-
tems analysts, and related personnel.
Educational, performance, and professional
standards are virtually nonexistent and confu-
sion grows rampant in selecting, training, and
assigning people to do jobs.23

The openness of the computing field, which
was seen by many early entrants as its most
attractive quality—“In what other field are you
likely to find a Ph.D. and a person whose edu-
cation stopped at the high school level working
as equals on the same difficult technical prob-

lem?”24—was disconcerting to conventional per-
sonnel directors. “It is not unusual to find col-
lege graduates as well as high school drop-outs
programming computers,” warned the editors
of the Personnel Journal, “and making technical
decisions within their programs, which may
affect company operations.”25 It quickly became
apparent that the labor shortage in computing
was not so much a lack of computer specialists
per se; what the industry was really worried
about was a shortage of experienced, profes-
sional practitioners. That there was little agree-
ment within the computing community about
who exactly qualified as an experienced, profes-
sional practitioner only served to emphasize
their real or perceived rarity.

The lack of established standards for who
qualified deterred many of the aspiring pro-
grammer trainees who might otherwise have
helped alleviate the growing labor shortage.
The lack of a clear point of entry into the disci-
pline discouraged many potential candidates.
“I have heard about this ‘extreme shortage of
programmers,’” wrote one Datamation reader,
but “no one wants trainees. How does a person
… get into programming?”26 Pleaded another,
“Could you answer for me the question as to
what in the eyes of industry constitutes a ‘qual-
ified’ programmer? What education, experi-
ence, etc. are considered to satisfy the
‘qualified’ status?”27 The frequent scandals that
plagued the private vocational training pro-
grams prompted some companies to adopt “no
data-processing school graduate” policies, effec-
tively excluding large pools of would-be
employees.28 Employers and programmers alike
were anxious to produce better standards for
training and curriculum, but it was unclear to
whom they should turn for guidance.

The obvious candidates for establishing
standards for programming competency were
the universities. Although computer science in
the late 1950s and early 1960s was not yet an
established discipline, many of the larger
research universities were beginning to offer
graduate training in computer-related special-
ties. Because academic computer scientists were
struggling in this period to define a unique
intellectual identity for their discipline, they
focused on developing a theoretical basis for
their discipline, rather than providing training
in practical techniques.

As computing became more business ori-
ented, the mismatch between university train-
ing and the needs of employers became
increasingly apparent. Many corporations saw
these university programs—most of which
focused on formal logic and numerical analy-

October–December 2001 3

sis—as being increasingly out-of-touch with the
needs of their business. As the computer scien-
tist Richard Hamming pointed out in his 1968
Turing Award Lecture:

Their experience is that graduates in our programs
seem to be mainly interested in playing games,
making fancy programs that really do not work,
writing trick programs, etc., and are unable to dis-
cipline their own efforts so that what they say they
will do gets done on time and in practical form.29

If the discipline were going to turn out
“responsible, effective people who meet the
real needs of our society,” Hamming suggested,
computer science departments must abandon
their love affair with pure mathematics and
embrace a hands-on engineering approach to
computer science education.

Hamming was hardly the only member of
the computing community to find fault with
the increasingly theoretical focus of contempo-
rary computer science. As early as 1958, a US
Bureau of Labor report on The Effects of Electronic
Computers on the Employment of Clerical Workers
had noted a growing sense of corporate disillu-
sionment with academic computer science:

Many employers no longer stress a strong back-
ground in mathematics for programming of busi-
ness or other mass data if candidates can
demonstrate an aptitude for the work. Compa-
nies have been filling most positions in this new
occupation by selecting employees familiar with
the subject matter and giving them training in
programming work.30

Academic computer scientists sought to
reinvent the programmer in the model of the
research scientist; corporate employers resisted
what they saw as “a sort of holier than thou
academic intellectual sort of enterprise.”31 The
tension between these competing visions of
what a programmer should be only served to
further exacerbate the shortage of qualified pro-
grammers.32

In any case, the relatively small number of
colleges and universities that did offer some form
of practical computer experience were unable to
provide trained programmers in anywhere near
the quantities required by industry. As a result,
aspiring software personnel often pursued alter-
native forms of vocational training. Some were
recruited for in-house instruction programs pro-
vided by employers or computer manufacturers.
Others enrolled in the numerous private EDP
training schools that began to appear in the mid-
1960s. Unfortunately, many of these schools

were profit-oriented enterprises more interested
in quantity than quality, whose “only meaning-
ful entrance requirements are a high school
diploma, 18 years of age … and the ability to
pay.”33 The more legitimate programs suffered
from many of the same problems that plagued
the universities: a shortage of experienced
instructors, the lack of established standards and
curricula, and general uncertainty about what
skills and aptitudes made for a qualified pro-
grammer. The problem was not only that the
universities and vocational schools could not
provide the type of educational experience that
interested corporate employers; the real issue was
that most employers were simply not at all sure
what they were looking for.

The drive toward professionalism
Employers were not the only ones con-

cerned with the labor problem in program-
ming. Experienced computer personnel were
keenly aware of the labor crisis and the tension
it was producing in their industry and profes-
sion, as well as in their individual careers.
Although computer specialists in general were
appreciative of the short-term benefits of the
labor shortage (above-average salaries and plen-
tiful opportunities for occupational mobility),
many believed that a continued crisis threat-
ened the long-term stability and reputation of
their industry and profession. As a Datamation
editorial put it,

With a mounting tide of inexperienced pro-
grammers, new-born consultants, and the untu-
tored outer circle of controllers and accountants
all assuming greater technical responsibility, a
need for qualification of competence is clearly
apparent.34

The software community’s inability to pro-
vide its own solution to the certification prob-
lem within EDP, warned some observers, “will
result in a solution imposed from without. In
several fields, the lack of professional and
industrial standards has prompted the govern-
ment to establish standards.”35

Computer programmers in particular were
concerned that an influx of the kind of “narrow,
semi-literate technicians” being ground out by
trade schools and junior colleges would damage
the reputation of their profession.36 “As long as
anyone with ten dollars can join the ACM and
proclaim himself a professional computer
expert,” it would be impossible to “guarantee
the public a minimum level of competence in
anyone who is permitted to claim membership
in the profession.”37 Some industry leaders felt

4 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

that the “low status” of computer programming
would deter promising candidates from enter-
ing the discipline.38 Others worried about incur-
sions by other, more established professions
into what software workers regarded as their
own proprietary, occupational territory:

We can wait for the CPA types to find out the
tricks of our trade, train a substantial number of
their younger sub-alterns in machines and pro-
gramming languages, and take over the task. Or
we can establish a parallel license, team up with
the CPA’s for accounting and auditing tasks, and
work in other directions independently.39

In the sociological literature of the era, juris-
dictional control over training and certification
was presented as the sine qua non of profes-
sionalism. Without the ability to decide “who
was qualified,” computer specialists had no
right to consider themselves true professionals.

Concerns about the long-term future of
their occupation also weighed heavily on the
minds of many computer specialists, particu-
larly programmers. What was the appropriate
career path for a software worker? “There is a
tendency,” suggested the ACM SIGCPR,

for programming to be a ‘dead-end’ profession for
many individuals, who, no matter how good they
are as programmers, will never make the transi-
tion into a supervisory slot. And, in too many
instances this is the only road to advancement.40

Whereas traditional engineers were often able
(and, in fact, expected) to climb the corporate
ladder into management positions, programmers
were often denied this opportunity.41 It was not
clear to many corporate employers how the skills
possessed by programmers would map onto the
skills required for management. Although some
companies offered alternative career ladders for
programmers, “in actual practice, technical
careers [were] not comparable to managerial
careers, in pay, prestige or responsibility.”42

Many of the job advertisements from this
period reflected the concerns that programmers
had regarding their occupational future and
longevity. SDC, for example, emphasized “the
large number of supervisory positions open to
programmers [at SDC] and the fact that most
programming supervisors have programming
backgrounds.”43 Other companies offered sim-
ilar appeals to the long-term career aspirations
of programmers:

At Xerox, we look at programmers … and see
managers.44

Working your way towards obsolescence? At
MITRE professional growth is limited only by
your ability.45

Is your programming career in a closed loop?
Create a loop exit for yourself at [the Bendix
Corporation].46

Although starting salaries were high and indi-
vidual programmers were able to move with rel-
ative ease horizontally throughout the industry,
there were precious few opportunities for verti-
cal advancement.47 Many programmers worried
about becoming obsolete and felt pressure to
constantly upgrade their technical skills.48 The
result was a curious tension between a general
sense of optimism and unlimited opportunity on
the one hand, and fear and uncertainty about
long-term career prospects on the other.

Programmers and other computer specialists
were also concerned about what many saw as
disturbing new trends in corporate attitudes
toward computer personnel. By the end of the
1960s, the debate over programmer training and
recruitment had been elevated to the level of a
national crisis. Faced with rising software costs,
and threatened by the unprecedented degree of
autonomy that high-level executives seemed to
grant to “computer people,” many corporate
managers began to reevaluate their largely
hands-off policies toward programmer manage-
ment. Whereas in the 1950s computer pro-
gramming was widely considered to be a
uniquely creative activity—and therefore almost
impossible to manage using conventional meth-
ods—by the end of the 1960s, new perspectives
on these problems began to appear in the indus-
try literature.49 The same qualities that had pre-
viously been thought essential indicators of
programming ability, such as creativity and a
mild degree of personal eccentricity, now began
to be perceived as being merely unprofessional.
Traditional managers began to accuse program-
mers and other computer personnel of lacking
professional standards and loyalties: “too fre-
quently these people, while exhibiting excellent
technical skills, are non-professional in every
other aspect of their work.”50

In an attempt to free themselves from what
an increasing number saw as a dangerous
dependency on programmer labor, managers
attempted to develop alternative solutions to
the “persistent personnel problem.” Many of
these solutions were technical in nature, such
as the so-called automatic-programming sys-
tems that promised to enable users to program
their computers directly, thereby “eliminating
the middleman.”51 Others represented attempts

October–December 2001 5

to “rationalize” the process of software devel-
opment by applying to it the lessons learned
from traditional manufacturing: replaceable
parts, simple and repetitive tasks, and a strict
division of labor. In one widely quoted paper
on “mass-produced software components,” for
example, Douglas McIlroy articulated his plan
for industrializing software production:

We undoubtedly produce software by backward
techniques. We undoubtedly get the short end of
the stick in confrontations with hardware people
because they are the industrialists and we are the
crofters. Software production today appears in
the scale of industrialization somewhere below
the more backward construction agencies. I
think that its proper place is considerably high-
er, and would like to investigate the prospects for
mass-production techniques in software.52

Although McIlroy does not explicitly
address issues of professional concern to com-
puter specialists—such as status, autonomy,
and job satisfaction—his vision of a software
“components factory” invoked familiar images
of industrialization and proletariatization.
Programmers in these factories need only be
trained to perform a limited and specialized
function, and could effectively be looked upon
as interchangeable units.53 They would be
encouraged to be professionals only to the
extent that being a professional meant self-dis-
cipline, a willingness to work long hours with
no overtime pay, and loyalty to the corporation
and obedience to supervisors.54 As the noted
computer scientist Andrei Ershov warned in his
1972 keynote address to the Spring Joint
Computer Conference, programmers were in
danger of losing their professional identity and
becoming “what is simply a highly paid sub-
group of the working class.”55 He continued,

Even the claim of programmers to be a special
breed of professional employee has come to be
disputed. Still more significant, authority over the
freewheeling brotherhood of programmers is slip-
ping into the paws of administrators and man-
agers who try to make the work of programmers
planned, measurable, uniform, and faceless.56

Although it is possible to overemphasize the
degree to which computer personnel in this
period were in danger of becoming an
“oppressed and degraded workforce,” clearly
the fear of having their occupation “rou-
tinized” motivated many computer specialists
to give thought to their professional identity.57

Faced with these unsettling challenges to

their professional identity, many computer spe-
cialists began to take renewed interest in issues
of professional development. In the mid-1960s,
articles on various aspects of professionalism—
the establishment of a standard curriculum for
computer science education, support for indus-
try-based certification and licensing programs,
and the introduction of professional codes of
ethics—appeared with increasing frequency in
industry journals such as the Communications of
the ACM and Datamation. Transcripts from the
annual Rand-sponsored computing symposia
from this period indicate that professional con-
cerns weighed heavily on the minds of many of
the most influential leaders of the computing
community.58 Explicit comparisons were made
to established professions such as law and med-
icine.59 In 1962, the Data Processing
Management Association (DPMA) announced
its ambitious “Six Measures of Professionalism
Program,” which included provisions for certi-
fication standards, continuing education, public
service, and the development of a professional
code of ethics.60 In 1966, the ACM announced a
$45,000 professional development program
that included “skill upgrade” seminars offered
at the national computer conferences, a travel-
ing course series, and self-study materials.61

Both efforts appear to have been responses to a
larger groundswell of support for increased pro-
fessionalism in the computer fields.

The professionalization of programming and
other computer specialties was appealing to
practitioners because professionalism offered
increased social status, greater autonomy,
improved opportunities for advancement, and
better pay.62 It provided individuals with a
“monopoly of competence”—the control over a
valuable skill that was readily transferable from
organization to organization—that provided
leverage in the labor market.63 Professionalism
provided a means of excluding undesirables and
competitors, it assured basic standards of quali-
ty and reliability, it provided a certain degree of
protection from labor market fluctuations, and
it was seen by many workers as a means of
advancement into the middle class.64 The 1960s
were a period when many white-collar occupa-
tions were pursuing professional agendas, and
the sociological literature of the period seemed
to provide a clear road map to the benefits of
professionalism. It appeared to many that these
benefits were available to almost any occupa-
tion, assuming only that they followed the
appropriate road map.65

The professionalization efforts of computer
specialists were also encouraged, to a certain
extent, by their corporate employers. Profes-

6 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

sionalism, or at least a specific form of corporate-
friendly professionalism, provided a familiar
solution to the increasingly complex problems
of programmer management. Argued one per-
sonnel research journal from the early 1970s,

The concept of professionalism affords a business-
like answer to the existing and future computer
skills market … The professional’s rewards are full
utilization of his talents, the continuing chal-
lenge and stimulus of new EDP situations, and an
invaluable broadening of his experience base.66

Insofar as it encouraged good corporate cit-
izenship, professionalism had the potential to
solve a number of pressing management prob-
lems. It might motivate staff members to
improve their capabilities; it could bring about
more commonality of approaches; it could be
used for hiring, promotions, and raises; and it
could help solve the perennial question of
“who is qualified.”67 At the very least, allowing
programmers to think that they were profes-
sionals would go a long way toward reducing
turnover and maintaining the stability of the
data-processing staff.68

The widespread adoption of the rhetoric of
professionalism conceals, however, deep intel-
lectual and ideological schisms that existed with-
in the programming community. Although
many practitioners agreed on the need for a pro-
gramming profession, they disagreed sharply
about what such a profession should look like.
What was the purpose of the profession? Who
should be allowed to participate? Who would
control entry into the profession, and how?
What body of abstract knowledge would be used
to support its claims to legitimacy? By the begin-
ning of the 1960s, clearly discernible factions
had emerged within the nascent programming
discipline, each pursuing very different models
of professional development.

Next, I focus on the professionalization efforts
of two of the most prominent professional asso-
ciations for computer personnel in this period,
the Association for Computing Machinery
(ACM) and the DPMA. The differences between
the professional agendas advocated by each of
these associations—the former based on the
model of the research scientist, the latter on the
certified public accountant—reveals the limits of
professionalism as a solution to the “persistent
personnel problem” of the late 1960s.

Computer science as the key to
professionalism

By the late 1950s, numerous computer-relat-
ed studies were ongoing in a variety of academ-

ic departments at various research universities,
including departments of mathematics, busi-
ness and economics, library science, physics,
and electrical engineering. In a 1959 article,
“The Role of the University in Computers, Data
Processing, and Related Fields,” Louis Fein
argued that all these activities should be con-
solidated into a single organizational entity. He
experimented with several names for this new
entity, including information sciences, intel-
litronics, synnoetics, and computer science.69

Other names for this new discipline (or its prac-
titioners) had been suggested elsewhere in the
contemporary literature: Comptology,
Hypology (derived from the Greek root hypologi,
meaning to compute), Applied Epistemologist,
and Turingineer, among others. Computer sci-
ence was the name that stuck.70

The academically oriented agenda outlined
by Fein and other supporters of computer science
provided a familiar model of professional
advancement. The sociological literature of the
era suggested that the key to professionalism
was the control of abstract knowledge: The
more theoretical the discipline, the greater its
professional status and autonomy. “As a pro-
fession becomes mature it realizes that the sci-
ence (not technology) needed by the profession
must continually be extended to more basic
content rather than restricted only to the obvi-
ous applied science,” argued C.M. Sidlo in a
1961 essay, “The Making of a Profession.”71 The
primary distinction between professionals and
technicians, another observer suggested, “is
based on whether one has undergone a ‘pro-
longed course of specialized, intellectual
instruction and study.’”72 Without a “cohesive
and consistent body of theory or theories” on
which to base their discipline, computer sci-
ence could “hardly be classified as a discipline
demanding a separate curriculum and an iso-
lated program.”73 By the end of the 1960s,
some degree of formal education was seen by
an increasing number of contemporary data-
processing personnel as a necessary prerequi-
site to professional status. Exactly how
much—and what kind—of formal education
remained a point of considerable contention.

The move toward a more scientific approach
to computing was greatly assisted by the support
from the ACM’s leadership. From its inception,
the ACM styled itself as an academically orient-
ed organization. Many of the original members
either were or had been associated with a major
university computation project, and most were
university educated, a number at the graduate
level. The association had been founded at an
academic conference (the 1947 Symposium on

October–December 2001 7

Large-Scale Digital Calculating Machinery at the
Harvard Computation Laboratory), and the
organization’s early activities focused on a series
of national conferences that retained a distinct-
ly academic flavor. Many were low-budget affairs
held at universities or research institutions and
frequently made use of dormitory facilities
(much to the dismay of industry participants on
expense accounts). The papers presented were
usually technical, and the proceedings were
published. The ACM conferences never acquired
the trade-show atmosphere that characterized
other national meetings. In fact, deliberate
efforts were made to distance the ACM from the
influence of “all commercial considerations
[including] the sale of publications and the solic-
itation of advertising.”74 Until 1953, when it
began publishing the Journal of the ACM, the
association’s preferred forum for publications
was the National Research Council’s highly tech-
nical journal Mathematical Tables and Other Aids
to Computation. Even then, the primary contents
of the Journal were theoretical papers, and the
emphasis was on disseminating “information
about computing machinery in the best scien-
tific tradition.”75 Articles were peer reviewed,
and every attempt was made to maintain rigor-
ous academic standards. As early as 1959, it had
been proposed that the ACM impose stringent
academic standards on its members, and in 1965
a four-year degree became a prerequisite for
receiving full membership.

Throughout the 1950s and early 1960s, the
ACM continued to cultivate its relationship
with the academic community. It accepted an
invitation in 1954 to apply for membership in
the American Association for the Advancement
of Science. Since 1958, the ACM has been rep-
resented in the Mathematical Sciences Division
of the National Academy of Sciences’ National
Research Council. In 1962, it affiliated with the
Conference Board of the Mathematical
Sciences, which also consisted of the American
Mathematical Society, the Mathematical
Association of America, the Society for
Industrial and Applied Mathematics, and the
Institute of Mathematical Statistics. In 1966, the
ACM established the prestigious Turing Award,
the highest honor awarded in computer sci-
ence. Almost half of the ACM’s institutional
members were educational organizations, and
by 1962, a thriving student membership pro-
gram had been developed.76

The close association that the ACM main-
tained with the academic community proved a
mixed blessing, however. Although it provided
the ACM a certain degree of authority in its
claims for professional recognition, it also

pulled the association in a direction that did
not always appeal to more business-oriented
computer personnel. A 1963 Datamation arti-
cle, “The Cost of Professionalism,” warned that

They’ve [the members of the ACM] got to decide
whether it’s worth that much to belong to an
organization which many feel has been domi-
nated by—and catered pretty much to—Ph.D.
mathematicians … the Association tends to look
down its nose at business data processing types
while claiming to represent the whole, wide
wonderful world of computing.77

A 1966 Diebold Group publication charac-
terized the ACM as a group “whose interests are
primarily academic and which is helpful to
those with scholastic backgrounds, theoreti-
cians of methodology, scientific programmers
and software people.”78 Although the ACM
president immediately denied this characteri-
zation, calling it too narrow, the popular per-
ception that the ACM catered solely to
academics was difficult to counter.79 Even
among its supporters,

the notion that ACM is a sort of holier than thou
academic intellectual sort of enterprise—not
inclined to be messing around with the garbage
that comptrollers worry about—has been and
still is, to a sufficiently large percentage of the
members, an attitude that one can feel consider-
ably paranoid about.80

The perception that academic computer sci-
entists were too academic to be much use to
professional programmers was in part an unfor-
tunate consequence of contemporary academ-
ic politics. As William Aspray has suggested,
computer science crossed virtually every aca-
demic boundary then established within the
university, drawing content and people from
mathematics, electrical engineering, psycholo-
gy, and business.81 As computer-related sub-
fields began drawing resources and students
from traditional disciplines, heated battles
erupted over faculty slots, graduate admissions,
and courses. Conflict between computer sci-
ence and these older departments was almost
inevitable. Its early success at attracting stu-
dents and resources notwithstanding, comput-
er science was repeatedly forced to defend its
academic legitimacy.

Critics of computer science accused it of
being little more than a grab bag of techniques,
heuristics, and equipment. The discipline’s
close association with computer hardware was
evoked to disparage its intellectual legitimacy:

8 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

The creation of computer science departments is
analogous to creating new departments for the
railroad, automobile, radio, airplane or television
technologies. These industrial developments
were all tremendous innovations embodied in
machinery, as is the development of computers,
but this is not enough for a discipline or a major
academic field.82

As Atsushi Akera has suggested, as personnel
from university computing centers moved into
newly founded computer science departments,
they had difficulty shedding their image as
service providers rather than legitimate
researchers.83 Computer science “is viewed by
other disciplines as a rather easily mastered
tool,” computer theorist David Parnas warned
an ACM curriculum committee in 1966.

It is easy, in any field, to confuse the work of a
technician with the work of a professional, but
this is easier in computer science because a work-
er in another discipline will consider himself an
‘expert’ after learning to use a computer to
process his data.84

The response of the academic computer sci-
ence community to accusations of insufficient
theoretical rigor was understandable: They
focused increasingly on those aspects of their
discipline that most resembled traditional sci-
ence and mathematics. In his 1959 manifesto
announcing the new discipline, for example,
Louis Fein had been careful to distance the sci-
ence of computing from its hardware-oriented
origins:

Too much emphasis has been placed on the com-
puter equipment in university programs that
include fields in the ‘computer sciences’ …
Indeed an excellent integrated program in some
selected fields of the computer sciences should
be possible without any computing equipment
at all, just as a first rate program in certain areas
of physics can exist without a cyclotron.85

A 1964 report from the ACM Curriculum
Committee on Computer Science echoed this
notion that computer science involved more
than just the design and operation of comput-
ing equipment: “Computer science is con-
cerned with information in much the same
sense that physics is concerned with energy.”86

As Paul Ceruzzi has suggested, by the end of
the 1960s most computing theorists had adopt-
ed the definition of their discipline that empha-
sized its theoretical aspects: computer science as
the study of algorithms.87 Implied in this defi-

nition is the notion that the algorithm is as fun-
damental to computing as Newton’s laws of
motion are to physics. By founding their disci-
pline on the algorithm rather than on engi-
neering practices, computer scientists could
claim fellowship with the sciences: Computer
science was science because it was concerned
with discovering natural laws about algorithms.

This commitment to an abstract and theo-
retical approach to computing research and
education was further reinforced the following
year when the ACM Committee on Curriculum
for Computer Science announced their
Curriculum ’68 guidelines for university com-
puter science programs, which encouraged uni-
versity computer science departments to drop
electronics and hardware courses in favor of
mathematics and algorithms offerings.88 The
Curriculum ’68 report included little of inter-
est to employers and business practitioners,
particularly when compared to alternative pro-
grams advanced by the IEEE or the DPMA.89

Even when the ACM did recognize the growing
importance of business data processing to the
future of its discipline, the emphasis was always
placed on research and education:

All of us, I am sure, have read non-ACM articles on
business data processing and found them lacking.
They suffer, I believe, from one basic fault: They
fail to report fundamental research in the data pro-
cessing field. The question of ‘fundamentalness’ is
all-important … In summary, this letter is intend-
ed to urge new emphasis on FUNDAMENTALISM
in business data processing. This objective seems
not only feasible but essential to me. It provides
not only a technique for getting ACM into the
business data processing business, but a technique
(the same one) for getting the field of business data
processing on a firm theoretical footing.90

The ACM leadership was not entirely
unaware of or unsympathetic to the needs of
the business programmers, who often held dif-
ferent ideas about what constituted a comput-
ing professional. In his unsuccessful 1959 bid
for the ACM presidency, Paul Armer urged the
ACM membership to “THINK BIG,” to “visual-
ize ACM as the professional society unifying all
computer users.”91 That same year, Herbert
Grosch, an outspoken proponent of a strong,
American Medical Association–style profes-
sional society, roundly criticized the ACM for
its academic parochialism:

Information processing is as broad as our culture
and as deep as interplanetary space. To allow nar-
row interests, pioneering though they might

October–December 2001 9

have been, to preempt the name, to relegate
ninety percent of the field to ‘an exercise left to
the reader,’ would be disastrous to the underly-
ing unity of the new information sciences.92

Several attempts were made during the next
decade to make the ACM more relevant to the
business community. In response to widespread
criticism of the Journal of the ACM’s theoretical
orientation, a new publication—the Communi-
cations of the ACM—was introduced in 1958.
The main contents of the Communications were
short articles, mostly unrefereed, on technical
subjects such as applications, techniques, and
standards.93 In 1966, the Executive Committee
announced a $45,000 professional develop-
ment program aimed at business data-process-
ing personnel. The program includes short skill
upgrade seminars offered at the national com-
puter conferences, a traveling course series, and
self-study materials.94 There was even talk, in
the mid-1960s, of a potential merger with the
DPMA. In 1969, ACM president Bernard Galler
announced a move toward “less formality, less
science, and less academia.”95

Although the majority of ACM members
were from industry by the end of the 1960s, the
conservative ACM leadership continued to pur-
sue a largely academic agenda. Most of the ACM
presidents from this period came from universi-
ties or other research institutions: Bernard Galler
from the University of Michigan, Anthony
Oettinger from Harvard, and Paul Armer from
Rand. Many of the SIGs, which controlled a
great deal of the money and power within the
ACM, had an academic thrust. Given that lead-
ership was so highly concentrated and central-
ized (particularly in contrast with competing
associations like DPMA, which encouraged the
development of strong local chapters), it was
often difficult for the ACM to respond quickly
to changes in the social and technical environ-
ment of computing. For example, frequent bat-
tles arose over repeated attempts to change the
name of the association to something more
broadly relevant. In 1965, a proposal to change
it to the Association for Computing and
Information Science was rejected; a decade later,
the same issue was still being debated.96 When
Louis Fein suggested in a 1967 letter to the edi-
tors of the Communications that the ACM faced a
“crisis of identity,” ACM President Anthony
Oettinger insisted vehemently that the “ACM
has no crisis of identity.” In doing so, he reaf-
firmed the association’s commitment to a theo-
retical approach to computing: “Our science
must, indeed, ‘maintain its sole abstract purpose
of advancing truth and knowledge.’”97

There is little question that throughout the
1960s the ACM pursued a professionalization
strategy that was heavily dependent on the
authority and legitimacy of its academic accom-
plishments. The model of professionalism advo-
cated by academic computer scientists, however,
did not always correspond with interests of their
industry colleagues. The skills and abilities
rewarded in the academy were not necessarily
valued within the corporate environment:

These four year computer science wonders are infi-
nitely better equipped to design a new compiler
than they are to manage a software development
project. We don’t need new compilers. We need
on-time, on-budget, software development.98

Alternative models began to emerge for pursu-
ing professional development in computing,
models that focused more on the immediate
needs of corporate employers and business data
processing.

The certified public programmer
In 1962, the editors of Datamation issued a

call for the creation of a new technical profes-
sion: the certified public programmer. The
establishment of a rigorous certification pro-
gram for computer personnel, they argued,
would help resolve some of the “many prob-
lems” that were “embarrassingly prominent” in
the contemporary software industry.99 By defin-
ing clear standards of professional competen-
cy, an industry-wide certification program
would serve several important purposes for the
nascent programming profession. First, it
would establish a shared body of abstract occu-
pational knowledge—a “hard core of mutual
understanding”—common across the entire
professional community. Second, it would help
raise the public’s view of computing profes-
sionals “several impressive levels from its cur-
rent stature of cautious bewilderment and
misinterpretation to, at least, confused
respect.”100 Finally, and perhaps most signifi-
cantly, it would enable computer professionals
to erect barriers to entry to their increasingly
contested occupational territory:

With a mounting tide of inexperienced pro-
grammers, new-born consultants, and the untu-
tored outer circle of controllers and accountants
all assuming greater technical responsibility, a
need for qualification of competence is clearly
apparent.101

The Datamation editorial on the need for pro-
fessionalism within the computer industry coin-

10 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

cided neatly with the announcement by the
National Machine Accountants Association
(NMAA) of their new Certificate in Data
Processing (CDP) examination. The NMAA,
which would later that year rename itself the
DPMA, represented almost 16,000 data-process-
ing workers in the US and Canada. The NMAA
had been working since 1960 to develop the
CDP exam, which represented the first attempt
by a professional association to establish rigor-
ous standards of professional accomplishment in
the data-processing field. According to the asso-
ciation’s 1962 press release, the exam was intend-
ed to “emphasize a broad educational
background as well as knowledge of the field of
data processing,” and to represent “a standard of
knowledge for organizing, analyzing and solving
problems for which data processing equipment
is especially suitable.” It was open to anyone,
NMAA member or not, who

• completed a prescribed course of academic
study,

• had at least three years direct work experi-
ence in punched card and/or computer
installations, and

• had “high character qualifications.”102

The educational requirements were waived
through the 1965 examinations, however. The
first year it was offered, 1,048 applications took
the CDP examination, and 687 passed.103

Although the CDP program was criticized by
some as being overly broad and superficial, by
the end of 1965 almost 7,000 programmers had
sat for the exam, and the CDP appeared to be
well on its way toward becoming a widely
accepted industry certification standard. Large
firms such as State Farm Insurance, the
Prudential Insurance Company of America,
and the US Army Corps of Engineers extended
official recognition to the CDP program, and in
1964, the city of Milwaukee began using the
CDP as a means to assign pay grades to data-
processing personnel.104 In 1966, the DPMA
mounted a major promotional campaign for
the CDP program that included press releases,
radio advertisements, and television infomer-
cials.105 The striking early success of the pro-
gram, which more than quintupled in size in
its first three years, suggests that many pro-
grammers saw certification as an attractive pro-
fessional strategy. This corresponds well with
evidence from industry journals and other
documentary sources. A survey of the 1963
candidates reveals a remarkable range of back-
ground, experience, and education.106

The DPMA’s professionalization agenda was

clearly derived from the model of the CPA.
Deriving as it did from an association of
accountants (the NMAA), many of its original
members and leaders had backgrounds in
accounting. The CDP program was only one of
the DPMA’s ambitious “Six Measures of
Professionalism” program, which included
additional provisions for programs in continu-
ing education, public service, and the develop-
ment of a professional code of ethics. Of the
proposed measures, only the CDP program
achieved even moderate industry acceptance;
nevertheless, simply by articulating a clear pro-
fessional agenda, the DPMA claimed for itself a
leadership role in the computing community.
From the beginning, the DPMA made efforts to
reach a broad spectrum of computer specialists,
including business programmers. The structure
of the organization, which included strong
regional chapters, allowed for diversity and
local control (in marked contrast to the ACM).
Its official publication, the Data Management
Journal, encouraged submissions on a much
wider range of subjects—including product
reviews, practical tips and techniques, and even
computer humor—than did the ACM’s Journal
or Communications. The DPMA also maintained
a close association with the editors of
Datamation, which focused on issues of timely
concern and practical relevance.

The DPMA was not alone in its interest in
establishing certification standards for data-
processing personnel. Given the general lack of
agreement on what skills and educational back-
ground were appropriate for data-processing
personnel, certification programs promised the
guarantee of at least a basic level of compe-
tence. Employers viewed certification as a
means of screening potential employees, eval-
uating performance and awarding promotions,
and assuring uniform product and quality.107

Programmers saw it as an indication of profes-
sional status, as a means of assuring job securi-
ty and achieving promotions, and as an aid to
finding and obtaining a new position.108

Furthermore, the certification of practitioners
was considered one of the characteristic func-
tions of any legitimate profession.109 The estab-
lishment of a successful certification program
was thought by many to be a precondition for
professional recognition.

Although certification programs were
appealing to many practitioners in theory, in
actual practice they often proved unwieldy or
even burdensome. Set the standards too low
and the certification becomes meaningless; set
them too high and risk excluding most of your
primary constituency. For example, when the

October–December 2001 11

DPMA first began to enforce the educational
requirements included in the original 1962 CDP
announcement, applications dropped by more
than 85 percent, never to fully recover. The
requirements were not terribly stringent—col-
lege-level courses in math, English, managerial
accounting, statistics, and data-processing sys-
tems, as well as eight out of 17 possible elec-
tives—but many of the practicing EDP
specialists who formed the core of the DPMA
membership saw such requirements as being
irrelevant, unattainable, or both.110 A major
controversy erupted within the pages of the
industry journals, particularly the DPMA-ori-
ented Datamation and Computerworld.

Advocates of the academic requirements
argued that such requirements not only elevat-
ed the status and legitimacy of the CDP but
were standard for most other professions,
including law, medicine, and engineering.
Opponents claimed that the specific course
requirements were ambiguous, meaningless,
and irrelevant. The DPMA Committee for
Certification, which administered the CDP pro-
gram, was flooded with letters from disgruntled
applicants either complaining or requesting
special dispensation. Faced with the imminent
collapse of its membership support, the DPMA
admitted that “the established eligibility
requirements had unintentionally excluded
some of the people for whom the CDP program
was originally designed.”111 The Committee
dropped the specific course requirements, pro-
viding a grandfather clause for those with three
years’ experience prior to 1965, and requiring
others to have only two years of post-second-
ary education. Applications for the 1968 exam
session jumped back to almost 3,000.

Over the next several years, the CDP pro-
gram struggled to regain its initial momentum.
Annual enrollments dropped again briefly in
1969, then leveled off for the next several years
at about 2,700. In an industry characterized by
rapid expansion, this noticeable lack of growth
represented a clear failure of the CDP program.
With each year, CDP holders came to represent
a smaller and smaller percentage of the pro-
gramming community.

In 1970, the program faced yet another cri-
sis: the announcement that a baccalaureate
degree would be required of all CDP candi-
dates, beginning with the 1972 examination.
Once again, a firestorm of debate broke out.
The DPMA claimed that this new requirement
merely reflected the changing reality of the
labor market: Since a college degree had already
become a de facto requirement within the
industry, requiring anything less for the CDP

would severely undermine its legitimacy.
Nevertheless, the resulting controversy high-
lighted already existing tensions within the
data-processing community, and it further
divided the already fragmented DPMA
Certification Council (many of whom could
not themselves satisfy the new degree require-
ment). The head of the West Tennessee chapter
of the DPMA wrote to complain that he, along
with about one third of his chapter’s member-
ship, had suddenly become ineligible to receive
the CDP. A 1970 Computerworld survey indicat-
ed that many practitioners felt the new require-
ment “unduly harsh” and “ludicrous,”
believing that it would decimate the data-pro-
cessing staffs of many smaller departments. The
always outspoken Herbert R. Grosch (himself a
PhD astronomer and future ACM president)
was quoted to the effect that “This policy is
very ill-advised. What the hell is so hot about
college—it turns out a bunch of knuckle-
heads—and a knucklehead PhD is no better
than a knucklehead CDP.”112

Despite the strong negative reaction gener-
ated by these educational requirements, the
DPMA leadership continued to insist on their
necessity. Such requirements had always been
considered an essential component of the
DPMA’s professionalization program: Only by
defining a “standard of knowledge for organiz-
ing, analyzing, and solving problems for which
data processing equipment is especially suit-
able” could programmers ever hope to distin-
guish themselves from mere technicians or
other “subprofessionals.”113 Like the academic
computer scientists, business programmers rec-
ognized the need for a foundational body of
abstract knowledge on which to construct their
profession; they differed only on what that rel-
evant foundation of knowledge should include.
In insisting on strong educational standards,
the DPMA was in complete accord with the
conventional wisdom of the contemporary
professionalization literature.114

The DPMA program also suffered greatly
from a lack of support from other professional
associations. A 1968 article on certification and
accreditation in the Communications of the ACM
entirely failed to mention the CDP. This con-
spicuous neglect of the most successful certifi-
cation program then available reflected a larger
pattern of hostility toward the DPMA on the
part of the ACM leadership. In 1966, the
Executive Council of the ACM considered a res-
olution, clearly aimed at the CDP, to “warn
employers against relying on examinations
designed for subprofessionals or professionals
as providing an index of professional compe-

12 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

tence.”115 Later that year, they established the
Committee to Investigate the Implications of
the CDP, whose first order of business was draft-
ing a strongly worded objection to the use of
the word professional in association with the
DPMA exam. The wording of subsequent exam
and program literature eliminated all references
to such language: CDP therefore came to stand
for Certified Data Processor, rather than
Certified Data Professional.116 Even this more
modest acronym was offensive to many critical
observers.117 Pressure from competing associa-
tions forced the DPMA to abandon many of its
more ambitious claims for the CDP program.118

A 1966 statement conceded that

it would be presumptuous at this early stage in
the program to suggest that CDP represents the
assurance of competence, or that the Certificate
should be considered as a requirement for
employment or promotion in the field.119

It is no wonder that so many employers and
practitioners lost confidence in the ability of
the DPMA to successfully administer an indus-
try-wide certification program.

It was this lack of confidence on the part of
employers and practitioners that ultimately
doomed the CDP program. The DPMA was
unable to sustain widespread or lasting support
from either group for their proposed educa-
tional standards or, for that matter, their certi-
fication exams. Neither was convinced that a
CDP meant much as a measure of ability or
future performance. The DPMA Certification
Council was unable even to pass a resolution
requiring its own officials to possess the CDP.120

One of the major criticisms leveled against the
CDP examination by employers and data-pro-
cessing managers was that it tested “familiari-
ty” rather than competence.121 It was not clear
to many observers what skills and abilities the
CDP was actually intended to certify:

The present DPMA examination measures breadth
of data processing experience but does not meas-
ure depth … It certainly does not measure or qual-
ify programming ability. It makes no pretense of
being any measure of management skills.122

The problem was a familiar one for the indus-
try: Although most employers in this period
believed that only “competent” programmers
could develop quality software, no one agreed on
what knowledge and abilities constituted com-
petence.123 As Fred Gruenberger suggested at a
1975 Rand symposium on certification issues, “I
have the fear that someone who has passed the

certifying exams has either been certified in the
wrong things (wrong to me, to be sure) or he has
been tuned to pass the diagnostics, and in either
case I distrust the whole affair.”124 His attitude
reflected the ambivalence that many observers
in this period felt about contemporary data-pro-
cessing training and educational practices. If data
processing was simply a “miscellaneous collec-
tion of techniques applied to business, technol-
ogy and science,” rather than a unique discipline
requiring special knowledge and experience,
then no certification exam could possibly test for
the broad range of skills associated with “gener-
al business knowledge.” “Given the choice
between two people from the same school, one
of whom has the CDP, but the other appears
brighter,” Gruenberger argued, “I’ll take the
brighter guy.”125

In the absence of a strong commitment to the
CDP on the part of employers, many program-
mers saw little benefit in participating in the pro-
gram. Those who did were increasingly
self-selected from the lowest ranks of the labor
pool, individuals for whom the CDP was a per-
ceived substitute for experience and education.
By the mid-1970s, it became increasingly clear
that the CDP program as it then existed faced
imminent dissolution. In an attempt to restore
momentum to their flagging certification initia-
tive, the DPMA joined forces with seven other
computing societies to form the Institute for
Certification of Computer Professionals (ICCP).
The ICCP never managed to revive the CDP or
to institute a meaningful certification program
of its own, however. Because it represented such
a wide variety of constituents, the ICCP was hin-
dered by the same internal divisions that plagued
the larger programming community. Rivalries
among the constituent member societies, many
of whom were only superficially committed to
the concept of certification, doomed the organi-
zation to internal conflict and inactivity.126

The limits of professionalism
The persistent conflict between the ACM and

the DPMA reflected a much larger tension that
existed within the computing community. As
early as 1959, the outlines of a battle between
business programmers and academically orient-
ed computer scientists had taken shape around
the issue of professionalism.127 Although both
groups agreed on the desirability of establishing
institutional and occupational boundaries
around the nascent computer-related profes-
sions, they disagreed sharply about what form
these professional structures should take.
Observers noted a deepening “programming
schism” developing in the industry, a “growing

October–December 2001 13

breach between the scientific and engineering
computation boys who talk Algol and Fortran …
and the business data processing boys who talk
English and write programs in Cobol.”128

Individuals who believed that the key to profes-
sional status was the development of formal
theories of computer science resisted “subpro-
fessional” certification programs and tended to
join the ACM; business data processors who saw
the ACM leadership “as a bunch of guys with
their heads in the clouds worrying about
Tchebysheff polynomials and things like that”
either supported the DPMA or ignored the pro-
fessional societies altogether.129

The inability of programmers and other data-
processing personnel to successfully profession-
alize raises some perplexing questions for the
historian: Given the apparent advantages of pro-
fessionalization to both employers and practi-
tioners, why were these efforts so ineffective? As
was described earlier, industrial employers in the
1960s complained not as much about technical
incompetence as a general lack of professional-
ism among programmers. The computer scien-
tist Malcolm Gotterer, speaking of the “typical
EDP specialists,” suggested that

It was his distressing lack of professional attrib-
utes that most often undermines his work and
destroys his management’s confidence. Too fre-
quently these people, while exhibiting excellent
technical skills, are nonprofessional in every
other aspect of their work.130

Increased professionalism would presum-
ably address the most frequent complaints lev-
eled against data-processing personnel: an
overreliance on idiosyncratic craft techniques,
an arrogant disregard for proper lines of author-
ity, shoddy workmanship, and a lack of com-
mitment to the best interests of the
organization. On the surface, the professional-
ization of programming appeared to be an ideal
solution to many of the most deleterious symp-
toms of the burgeoning software crisis.

It is clear that the turf battles that raged
between the ACM and the DPMA during the
1950s and 1960s helped undermine popular
support for both organizations. In response to
extensive Datamation coverage of a 1959 Rand
symposium on “the perennial professional
society question,” one reader commented that
he “hadn’t laughed so hard in a decade. Are
these guys kidding? You won’t solve this prob-
lem by self-interested conversation about it,
nor is it solved by founding another organiza-
tion.”131 Many observers were dismayed by the
pettiness of the ACM–DPMA debates, which

they believed detracted from the overall goal of
establishing a legitimate professional identity:

I couldn’t care less who publishes some abstract
scientific paper! What I want to know is how do
we pull together a hundred thousand warm bod-
ies that are working on the outskirts of the com-
puter business, give them a high priced executive
director, lots of advertising, a whole series of tech-
nical journals; in other words, organize a real rip-
snorting profession? Whenever somebody starts
worrying about which journal what paper should
be published in, we get bogged down in an aca-
demic cross-fire we’ve been in for ten years.132

As the programming community broke down
into competing factions—theoretical versus
practical, certified versus uncertified, ACM ver-
sus DPMA—its members lost the leverage nec-
essary to push through any particular
professionalization agenda.

In addition to interassociational rivalries,
the aspiring computing professions also faced
external opposition. For many corporate man-
agers, professionalism was a potentially dan-
gerous double-edged weapon. On the one
hand, “Professionalism might motivate staff
members to improve their capabilities, it could
bring about more commonality of approaches,
it could be used for hiring, promotions and
raises, and it could help determine ‘who is
qualified.’”133 On the other hand, “profession-
alism might well increase staff mobility and
hence turnover, and it probably would lead to
higher salaries for the ‘professionals.’”134

Computer personnel were often seen as dan-
gerously disruptive to the traditional corporate
establishment. The last thing most traditional
managers wanted was to provide data-process-
ing personnel with additional occupational
authority.135 Professionalism was therefore
encouraged only to the extent that it provided
a standardized, tractable workforce; profes-
sionalization efforts that encouraged elitism,
protectionism, or anything that smacked of
unionism were seen as counterproductive.

Perhaps the most important reason that pro-
grammers and other data-processing personnel
failed to professionalize, however, was that the
professional institutions that were set up in the
1950s and 1960s failed to convince employers
of their relevance to the needs of business.
Employers looked to professional institutions
as a means of supplying their demand for com-
petent, trustworthy employees. As we have
seen, although computer science programs in
the 1960s thrived in the universities, in the
business world they were often seen as overly

14 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

theoretical and irrelevant. Likewise, the DPMA’s
CDP program failed to establish itself as a reli-
able mechanism for predicting programmer
performance or ability. Neither the ACM nor
the DPMA offered much to employers in terms
of improving the supply or quality of the pro-
gramming workforce.

Given this lack of active support from
employers, the professional associations had lit-
tle to offer most data-processing practitioners.
Neither a computer science education nor pro-
fessional certification could ensure employment
or advancement. As a result, many computer
personnel saw little value in belonging to either
the ACM or the DPMA, and support for both
organizations, as well as for professional institu-
tions in general, languished during the late
1960s and early 1970s. A 1967 Datamation arti-
cle indicated that “Less than 40% [of program-
mers] belong to any professional association.
Probably less than 1% do anything in connec-
tion with an association that requires an extra
effort on the individual’s part.”136 Even these
low figures were probably inflated: A Wall Street
Journal report from the next year revealed only
that 13 percent of the data-processing personnel
surveyed belonged to any professional society.137

Conclusions
In the decades following the 1960s, the

“question of professionalism” has remained
one of the dominant themes in the computer
industry literature. The May 2000 issue of the
IEEE magazine Computer was almost entirely
devoted to the subject, for example.138 The
ongoing debate about the nature and causes of
the so-called software crisis, which is now in its
fourth decade, has always been intimately tied
up with the discussion about professionalism
in the computing disciplines.139 A recent book
on software professionals noted a list of barri-
ers to professionalism in the computer fields
surprisingly similar to those identified in the
early 1960s: an influx of untrained personnel,
the lack of established educational and certifi-
cation standards, and the absence of abstract
“foundational disciplinary principles.”140

The purpose of this article has not been to
address the question of whether computing is
a real profession. Indeed, the current literature
on the sociology of the professions suggests
that this question is largely irrelevant: Even the
paradigmatic professions of law and medicine
are difficult to categorize using the simplistic
structural criteria developed in the 1960s.141 My
intention has simply been to demonstrate the
rich complexities hidden behind seemingly
straightforward debates about professionalism.

Like the “worldwide shortage of information
technology workers” of the current era, the
“acute shortage of programmers” of the 1960s
was about more than a mere disparity between
supply and demand.142 The problem was not so
much a lack of computer specialists per se but
rather the lack of a certain kind of computer
specialist. Teasing apart just what that certain
kind of specialist was supposed to be goes a
long way toward understanding the larger
social and political context of these debates.

The approach to the institutional and orga-
nizational history of the computing professions
outlined here suggests new interpretations of a
number of important episodes in the history of
computing. For example, one of the most
intriguing and influential developments in the
history of software has been the widespread
adoption of the rhetoric and ideology of soft-
ware engineering. When Presper Eckert first
introduced the concept in 1965, it received lit-
tle attention from industry pundits.143 Just sev-
eral years later, however, the 1968 NATO
Conference on Software Engineering firmly
entrenched the language of software engineer-
ing in the vernacular of the computing com-
munity, thereby setting an agenda that
influenced many of the technological, manage-
rial, and professional developments in commer-
cial computing for the next several decades.
Why did software engineering suddenly emerge
as such a compelling model for professional
development? What did being a software engi-
neer offer aspiring computer professionals that
being a computer scientist or certified public
programmer did not? Why did the software
engineering model appeal to employers? How
did other corporate employees—and traditional
engineers—respond to this new professional
self-definition? The full history of software engi-
neering as a profession is obviously beyond the
scope of this article. The issues and approaches
identified here should, however, provide a con-
text for understanding this and other crucial
developments in the history of the computing
professions. The debate that took shape in the
1950s and 1960s about who qualified to be a
computer professional was about more than just
the structures of professionalism: It represented
a series of highly contested social negotiations
about the role of electronic computing—and of
computing professionals—in modern corporate
and academic organizations.

References and notes
1. H.A. Rhee, Office Automation in Social Perspective:

The Progress and Social Implications of Electronic Data

Processing, Basil Blackwell, Oxford, 1968, p. 118.

October–December 2001 15

2. E. Dijkstra, “The Humble Programmer,” in ACM

Turing Award Lectures: The First Twenty Years,

1966–1985 ACM Press, New York, 1987. When
Dijkstra applied for a marriage license in his
native Holland, some years earlier, he had been
rejected on the grounds that he had listed his
occupation as programmer, which was not a rec-
ognized, legitimate profession. Dijkstra
swallowed his pride, as he tells the story, and
resubmitted his application with his “second
choice”—theoretical physicist.

3. W. Aspray, “The History of Computer Profession-
alization in America,” (unpublished manuscript).

4. C.J.A., “In Defense of Programmers,”
Datamation, vol. 13, no. 9, 1967; “Editor’s Read-
out: The Certified Public Programmer,” Datama-

tion, vol. 8, no. 3, Mar. 1962, p. 15.
5. R. Canning, “Professionalism: Coming or Not?,”

EDP Analyzer, vol. 14, no. 3, Mar. 1976, p. 8.
Canning wrote a series of articles on professional-
ism in the late 1960s and early 1970s. For exam-
ples, see also “The Question of Professionalism,”
EDP Analyzer, vol. 6, no. 12, Dec. 1968, pp. 1-13;
“The Persistent Personnel Problem,” EDP Analyzer

vol. 5, no. 5, May 1967, pp. 1-14; “Career Pro-
grams in Data Processing,” EDP Analyzer, vol. 9,
no. 8, Aug. 1971.

6. J. Golda, “The Effects of Computer Technology
on the Traditional Role of Management,”
master’s thesis, Wharton School, Univ. of Pennsyl-
vania, 1965, p. 34.

7. For example, see T. Alexander, “Computers Can’t
Solve Everything,” Fortune, Oct. 1969, p. 169,
and T. Whisler, “The Impact of Information Tech-
nology on Organizational Control,” The Impact of

Computers on Management, Charles Myers, ed.,
MIT Press, Cambridge, Mass., 1967, p. 44.

8. W.R. Walker, “MIS Mysticism,” (letter to editor),
Business Automation, vol. 16, no. 7, July 1969, p. 8.

9. R. Rosin, “Relative to the President’s December
Remarks,” Comm. ACM, vol. 10, no. 6, June 1967.

10. A.W. Jacobson, ed., Proc. First Conf. Training Per-

sonnel for the Computing Machine Field held at
Wayne Univ., Detroit, Mich., 22-23 June 1954,
Wayne Univ. Press, Detroit, 1955. Quotation is
from p. 79.

11. W.H. Wilson of the General Motors Corporation,
quoted in Jacobson, p. 21.

12. T.C. Rowan, “The Recruiting and Training of Pro-
grammers,” Datamation, vol. 4, no. 3, Mar.
1958. SDC was the Rand Corporation spin-off
company responsible for developing the software
for the SAGE air-defense system. In the late
1950s, the personnel management department
at SDC trained more than 2,000 programmers,
effectively doubling the number of trained pro-
grammers in the US.

13. R. Patrick, “The Gap in Programming Support,”

Datamation, vol. 7, no. 5, May 1961.
14. “Editor’s Readout: A Long View of a Myopic Prob-

lem,” Datamation, vol. 8, no. 5, May 1962, p. 21.
15. R. Tanaka, “Fee or Free Software,” Datamation,

vol. 13, no. 10, Oct. 1967, pp. 205-206.
16. American Federation of Information Processing

Societies, “The State of the Information Processing
Industry,” a report commissioned for the Council
for Economic and Industrial Research and present-
ed at the 1966 Spring Joint Computer Conf.

17. G. Bylinsky, “Help Wanted: 50,000
Programmers,” Fortune, Mar. 1967, p. 141.

18. J. Saxon, “Programming Training: A Workable
Approach,” Datamation, vol. 9, no. 12, Dec.
1963, p. 48.

19. R. Canning, “The Persistent Personnel Problem.”
20. E. Markham, “Selecting a Private EDP School,”

Datamation, vol. 14, no. 5, May 1968.
21. L. Mandel, “The Computer Girls,” Cosmopolitan,

Apr. 1967.
22. News Brief, “First Programmer Class at Sing Sing

Graduates,” Datamation, vol. 14, no. 6, June 1968.
23. H. Sackman, “Conference on Personnel

Research,” Datamation, vol. 14, no. 7, July 1968.
24. A. Orden, “The Emergence of a Profession,”

Comm. ACM, vol. 10, no. 3, Mar. 1967, p. 146.
25. “Professionalism Termed Key to Computer Per-

sonnel Situation,” p. 156.
26. P. Randall, “Need for Warm Bodies,” Datamation,

vol. 9, no. 10, Oct. 1963, p. 14.
27. J. Callahan, “To the editor ... ,” Datamation, vol.

7, no. 3, Mar. 1961, p. 7.
28. E. Menkhaus, “EDP: Nice Work If You Can Get It,”

Business Automation, Mar. 1969, pp. 41-45, 74.
29. R. Hamming, “One Man’s View of Computer Sci-

ence,” ACM Turing Award Lectures: The First Twenty

Years, 1966–1985, ACM Press, New York, 1987.
30. W. Paschell, Automation and Employment Oppor-

tunities for Office Workers; A Report on the Effect of

Electronic Computers on Employment of Clerical

Workers, Bureau of Labor Statistics, Washington,
D.C., 1958, p. 11.

31. Proc. Rand Symp., 1969, Charles Babbage Inst.
Archives, CBI 78, Box 3, Fld. 4, Univ. of Minneso-
ta, Minneapolis.

32. This seems to be as true in the 1990s as it was in
the 1960s. See, for example, W. Gibbs,
“Software’s Chronic Crisis,” Scientific American,
Sept. 1994, p. 86.

33. E. Markham, “EDP Schools—An Inside View,”
Datamation, vol. 14, no. 4, Apr. 1968, p. 22.

34. Editorial, “Editor’s Readout: The Certified Public
Programmer,” Datamation, vol. 8, no. 3, Mar.
1962.

35. D. Ross, “Certification and Accreditation,” Data-

mation, vol. 14, no. 9, Sept. 1968.
36. L. Fulkerson, “Should There Be a CS Undergradu-

ate Program?,” (letter to editor), Comm. ACM,

16 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

vol. 10, no. 3, Mar. 1967.
37. D. McCracken, “The Human Side of Computing,”

Datamation, vol. 7, no. 1, Jan. 1961, p. 10.
38. C.J.A., “In Defense of Programmers,” p. 15.
39. H. Grosch, “Computer People and their Culture,”

Datamation, vol. 7, no. 10 Oct. 1961, p. 51.
40. ———, “The Computer Personnel Research

Group,” Datamation, vol. 9, no. 1 Jan. 1963, p. 38.
41. L. Kaufman and R. Smith, “Let’s Get Computer

Personnel on the Management Team,” Training

and Development J., Dec. 1966, pp. 25-29.
42. Canning, “Career Programs in Data Processing.”
43. System Development Corp. (advertisement),

Comm. ACM, vol. 3, no. 5, May 1960, p. A10.
44. Xerox Corp. (advertisement), Datamation, vol.

14, no. 4, Apr. 1968.
45. Mitre Corp. (advertisement), Datamation, vol.

12, no. 6, June 1966.
46. Bendix Computer Corp. (advertisement), Data-

mation, vol. 8, no. 9, Sept. 1962.
47. J. Jenks, “Starting Salaries of Engineers are Decep-

tively High,” Datamation, vol. 13, no. 1, Jan. 1967.
48. Editorial, “Learning a Trade,” Datamation, vol.

12, no. 10, Oct. 1966, p. 21.
49. For example, see C.I. Keelan, “Controlling Com-

puter Programming,” J. Systems Management,
Jan. 1969; D. Herz, New Power for Management,
McGraw-Hill, New York, 1969; R. Canning, “Man-
aging the Programming Effort,” EDP Analyzer, vol.
6, no. 6, June 1968, pp. 1-15; C. Lecht, The Man-

agement of Computer Programming Projects, Amer-
ican Management Assoc., New York, 1967.

50. M. Gotterer, “The Impact of Professionalization
Efforts on the Computer Manager,” Proc. 1971 ACM

Ann. Conf., ACM Press, New York, 1971, p. 368.
51. Fred Gruenberger noted this tendency as early as

1962: “You know, I’ve never seen a hot dog lan-
guage come out yet in the last 14 years … that
didn’t have tied to it the claim in its brochure
that this one will eliminate all programmers.” His
quote appeared in the Rand Symp., “On
Programming Languages, Part II,” Datamation,
vol. 8, no. 11, Nov. 1962.

52. P. Naur, B. Randall, and J.N. Buxton, eds.,
Software Engineering: Proc. NATO Conf., Petrocel-
li/Carter, New York, 1976, p. 89.

53. R. Canning, “Issues in Programming Manage-
ment,” EDP Analyzer, vol. 12, no. 4, Apr. 1974.

54. B. Rothery, Installing and Managing a Computer,
Business Books, London, 1968, p. 80.

55. A.P. Ershov, “Aesthetics and the Human Factor in
Programming,” Comm. ACM, vol. 15, no. 7, July
1972, p. 502.

56. Ibid., p. 502.
57. In the early 1970s, several books expressing con-

cerns about the “industrialization” of program-
ming appeared, the most notable of which is P.
Kraft, Programmers and Managers: The Routiniza-

tion of Computer Programming in the United

States, Springer-Verlag, New York, 1977.
58. Although the specific composition of the group

changed from year to year, the attendees always
represented the highest levels of leadership in the
discipline: award-winning computer scientists,
successful business entrepreneurs, association
presidents, and prolific authors.

59. Proc. Rand Symp., “Defining the Problem, Part II,”
Datamation, vol. 11, no. 9, Sept. 1965, pp. 23-35.

60. DPMA report, Six Measures of Professionalism,
Charles Babbage Inst. Archives, CBI 88, Box 21,
Fld. 40., Univ. of Minnesota, Minneapolis.

61. A. Oettinger, “ACM Sponsors Professional Devel-
opment Program (President’s Letter to ACM
Membership),” Comm. ACM, vol. 9, no. 10, Oct.
1966, pp. 712-713.

62. H. Wilensky, “The Professionalization of
Everyone?” American J. Sociology, vol. 70, no. 2,
Feb. 1964, pp. 137-158.

63. M.S. Larson, The Rise of Professionalism: A Socio-

logical Analysis, Univ. of California Press, Berkeley,
1977.

64. R. Zussman, Mechanics of the Middle Class: Work

and Politics Among American Engineers, Univ. of
California Press, Berkeley, 1985.

65. The sociologist Harold Wilensky describes numer-
ous case studies of occupations attempting to
professionalize in this period, among them librar-
ians, druggists, funeral directors, and high school
teachers. See Wilensky, “The Professionalization
of Everyone?” (1964).

66. “Professionalism Termed Key to Computer Per-
sonnel Situation,” pp. 156-157.

67. R. Canning, “Professionalism: Coming or Not?,”
p. 2.

68. R. Gordon, “Personnel Selection,” Data Process-

ing—Practically Speaking, F. Gruenberger and S.
Naftaly, eds., Data Processing Digest, Los Ange-
les, 1967, pp. 85, 87.

69. L. Fein, “The Role of the University in Computers,
Data Processing, and Related Fields,” Comm.

ACM, vol. 2, no. 10, Oct. 1959.
70. Q. Correll, “Letters to the Editor,” Comm. ACM,

vol. 1, no. 7, July 1958, p. 2; P.A. Zaphyr, “The
Science of Hypology,” (letter to editor), Comm.

ACM, vol. 2, no. 1, Jan. 1959, p. 4; Editors of
DATA-LINK, “What’s in a Name?,” (letter to edi-
tor), Comm. ACM, vol. 1, no. 4, Apr. 1958, p. 6. A
more complete treatment of this history can be
found in Paul Ceruzzi, “Electronics Technology
and Computer Science, 1940–1975: A Coevolu-
tion,” Annals of the History of Computing, vol. 10,
no. 4, Apr. 1989, pp. 257-275.

71. C.M. Sidlo, “The Making of a Profession,” (letter
to editor), Comm. ACM, vol. 4, no. 8, Aug. 1961.

72. M. Gotterer, “The Impact of Professionalization
Efforts on the Computer Manager,” Proc. 1971

October–December 2001 17

ACM Ann. Conf., ACM Press, New York, 1971, pp.
371, 372.

73. J. Carlson, “On Determining CS Education
Programs,” (letter to editor), Comm. ACM, vol. 9,
no. 3, Mar. 1966.

74. E. Weiss, “Publications in Computing: An Informal
Review,” Comm. ACM, vol. 15, no. 7, July 1972.

75. S. Gass, “ACM Class Structure,” (letter to editor),
Comm. ACM, vol. 2, no. 5, May 1959, p. 4.

76. Charles Babbage Inst. Archives, CBI 88, Box 22,
Fld. 1; Charles Babbage Inst. Archives, CBI 23,
Box 1, Fld. 15; Univ. of Minnesota, Minneapolis.

77. Editorial, “The Cost of Professionalism,” Datama-

tion, vol. 9, no. 10, Oct. 1963.
78. A. Oettinger, “On ACM’s Responsibility

(President’s Letter to ACM Membership),” Comm.

ACM, vol. 9, no. 8, Aug. 1966.
79. Ibid., p. 546.
80. Proc. Rand Symp., 1969. Charles Babbage Inst.

Archives, CBI 78, Box 3, Fld. 4; Univ. of Minneso-
ta, Minneapolis.

81. W. Aspray, “Was Early Entry a Competitive Advan-
tage?,” Annals of the History of Computing, vol.
22, no. 3, July-Sept. 2000, p. 65.

82. J. Carlson, “On Determining CS Education
Programs,” (letter to editor), Comm. ACM, vol. 9,
no. 3, Mar. 1966, p. 135.

83. The best available source on this material is A.
Akera, Calculating a Natural World: Scientists, Engi-

neers and Computers in the United States, 1937–

1968, doctoral dissertation, History & Sociology of
Science Dept., Univ. of Pennsylvania, 1998.

84. D. Parnas, “On the Preliminary Report of C3S,”
(letter to editor), Comm. ACM, vol. 9, no. 4, Apr.
1966, pp. 242-243.

85. T. White, “The 70’s: People,” Datamation, vol.
16, no. 7, July 1973, p. 11.

86. ACM Curriculum Committee, “An Undergradu-
ate Program in Computer Science—Preliminary
Recommendations,” Comm. ACM, vol. 8, no. 9,
Sept. 1965, p. 544.

87. For example, in his 1968 classic, Fundamental

Algorithms, computer scientist Donald Knuth
attempted to situate “the art of programming”
on a firm foundation of mathematical principles
and theorems. See also Paul Ceruzzi, “Electronics
Technology and Computer Science.”

88. ACM Curriculum Committee, “Curriculum 68:
Recommendations for Academic Programs in
Computer Science,” Comm. ACM, vol. 11, no. 3,
Mar. 1968, pp. 151-157.

89. R. Wishner, “Comment on Curriculum 68,”
Comm. ACM, vol. 11, no. 10, Oct. 1968; Datama-
tion Report, “Curriculum 68,” Datamation, vol.
14, no. 5, May 1968; Hamming, “One Man’s
view of Computer Science.”

90. J. Postley, “Letter to Editor,” Comm. ACM, vol. 3,
no. 1, Jan. 1960.

91. P. Armer, “Thinking Big,” (letter to editor), Comm.

ACM, vol. 2, no. 1, Jan. 1959. Emphasis mine.
92. H. Grosch, “Plus and Minus,” Datamation, vol. 5,

no. 6, June 1959.
93. R. Payne, “Reaction to Publication Proposal,” (let-

ter to editor), Comm. ACM, vol. 8, no. 1, Jan.
1965.

94. A. Oettinger, “ACM Sponsors Professional Devel-
opment Program (President’s Letter to ACM
Membership),” Comm. ACM, vol. 9, no. 10, Oct.
1966.

95. B. Galler, “The Journal (President’s Letter to ACM
Membership),” Comm. ACM, vol. 12, no. 2, Feb.
1969.

96. ——-, “Will You Vote for an Association Name
Change to ACIS?,” Comm. ACM, vol. 8, no. 7, July
1965; “Vote on ACM Name Change,” (1978),
Charles Babbage Inst. Archives, CBI 43, Box 3,
Fld. 10, Univ. of Minnesota, Minneapolis.

97. A. Oettinger, “President’s Reply to Louis Fein,”
Comm. ACM, vol. 10, no. 1, Jan. 1967.

98. G. DiNardo, “Software Management and the
Impact of Improved Programming Technology,”
Proc. 1975 ACM Ann. Conf., ACM Press, New
York, 1975, pp. 288-289.

99. “Editor’s Readout: The Certified Public Program-
mer,” p. 23.

100. Ibid., p. 23.
101. Ibid., p. 23.
102. In response to criticism from the many otherwise

qualified programmers who did not have formal
mathematical training or college-level degrees,
the educational requirements were suspended
until 1965. The other prerequisites—three years’
experience and “high character qualifications”—
were so vague as to be almost meaningless and
seem to have been only selectively enforced.

103. “Certificate in Data Processing,” Datamation, vol.
9, no. 8, Aug. 1963.

104. DPMA Certificate Panel (1964), Charles Babbage
Inst. Archives, CBI 46, Box 1, Fld. 17, Univ. of
Minnesota, Minneapolis.

105. Charles Babbage Inst. Archives, CBI 116, Box 1,
Fld. 10, Univ. of Minnesota, Minneapolis.

106. CDP Advisory Council, “Minutes of the Third
Annual Meeting,” 17–18 Jan. 1964, Charles Bab-
bage Inst. Archives, CBI 88, Box 2, Fld. 3, Univ. of
Minnesota, Minneapolis.

107. R, Canning, “The Question of Professionalism,” p. 1.
108. R. Canning, “The DPMA Certificate in Data Pro-

cessing,” EDP Analyzer, vol. 3, no. 7, July 1965.
109. Sidlo, “The Making of a Profession,” p. 366.
110. Datamation Report, “Certificate in Data Process-

ing,” Datamation, vol. 9, no. 8, Aug. 1963.
111. “DPMA Revises CDP Test Requirements,” Data

Management, Aug. 1967, pp. 34-35.
112. Computerworld, 19 Aug. 1970, Charles Babbage

Inst. Archives, CBI 116, Box 1, Fld. 27, Univ. of

18 IEEE Annals of the History of Computing

Professionalism in the Computer Fields

Minnesota, Minneapolis.
113. A. Orden, “The Emergence of a Profession.”
114. C.M. Sidlo, “The Making of a Profession,” p. 366.
115. From the DPMA file, “Notes on ACM (1966).”

Charles Babbage Inst. Archives, CBI 46, Box 1,
Fld. 3, Univ. of Minnesota, Minneapolis. An early
draft of this document referred specifically
throughout to the “DPMA certification
program.” Although the final version referred
only to certification programs in the abstract, the
target of its attacks was obviously the CDP.

116. DPMA Board of Directors, “Minutes of 10th meet-
ing,” 1966; Charles Babbage Inst. Archives, CBI 88,
Box 2, Fld. 7, Univ. of Minnesota, Minneapolis.

117. Letter from Jack Yarbrough, Charles Babbage
Inst. Archives, CBI 46, Box 1, Fld. 17, Univ. of
Minnesota, Minneapolis.

118. L. Johnson, “Letter to Richard Kornblum,”
Charles Babbage Inst. Archives, CBI 46, Box 1,
Fld. 16, Univ. of Minnesota, Minneapolis.

119. R. Calvin Elliot, “Editor’s Page,” Data

Management, Feb. 1966, Charles Babbage Insti-
tute Archives, CBI 46, Box 1, Fld. 3, Univ. of Min-
nesota, Minneapolis.

120. “Executive Meeting Summary,” 1966; Charles
Babbage Inst. Archives, CBI 46, Box 1, Fld. 3 ,
Univ. of Minnesota, Minneapolis.

121. R. Canning, “The DPMA Certificate in Data Pro-
cessing.”

122. R. Canning, “The DPMA Certificate in Data Pro-
cessing.” Similar comments were made by Jack
Yarbrough, Charles Babbage Inst. Archives, CBI
46, Box 1, Fld. 17, Univ. of Minnesota,
Minneapolis.

123. M. Stone, “In Search of an Identity,” Datamation,
vol. 18, no. 3, Mar. 1972, p. 53.

124. Proc. Rand Symp., “Problems of the AFIPS
Societies Revisited,” 1975, Charles Babbage Inst.
Archives, CBI 78, Box 3, Fld. 7. , Univ. of
Minnesota, Minneapolis.

125. Ibid., pp. 22-23.
126. P. Armer, “Editor’s Readout: Suspense Won’t Kill

Us,” Datamation, vol. 19, no. 6, June 1973.
127. Proc. Rand Symp., “Is It Overhaul or Trade-in

Time? Part II,” Datamation, vol. 5, no. 5, May
1959.

128. C. Shaw, “Programming Schisms,” Datamation,
vol. 8, no. 9, Sept. 1962, p. 32.

129. Proc. Rand Symp., 1969. Charles Babbage Inst.
Archives, CBI 78, Box 3, Fld. 4, Univ. of Minneso-
ta, Minneapolis.

130. M. Gotterer, “The Impact of Professionalization
Efforts on the Computer Manager,” p. 368.

131. W. Flywheel, “Letter to the Editor (On Profession-
alism),” Datamation, vol. 5, no. 5, May 1959, p.
2. The “other organization” that he was referring
to was the American Federation of Data Process-
ing Societies (AFIPS).

132. Proc. Rand Symp., “Is It Overhaul or Trade-in Time?
Part II,” Datamation, vol. 5, no. 4, Apr. 1959, p. 27.

133. R. Canning, “Professionalism: Coming or Not?,”
p. 2.

134. Ibid., p. 2.
135. For a fuller discussion of this, see N. Ensmenger,

From ‘Black Art’ to Industrial Discipline: The

Software Crisis and the Management of Program-

mers, doctoral dissertation, History & Sociology
of Science Dept., Univ. of Pennsylvania, 2001.

136. R. Jones, “A Time to Assume Responsibility,”
Datamation, vol. 13, no. 9, Sept. 1967, p. 160.

137. “Survey on Use of Service Bureaus,” Wall Street J.,
special report, 1969, Charles Babbage Inst.
Archives, CBI 88, Box 30, Fld. 29, Univ. of
Minnesota, Minneapolis.

138. T. Lethbridge, “What Knowledge is Important to
a Software Professional?” and G. Pour, M. Griss,
and M. Lutz, “The Push to Make Software Engi-
neering Respectable,” Computer vol. 33, no. 5,
May 2000, pp. 35-51.

139. N. Ensmenger, “Software as Labor Process,” in
Mapping the History of Computing: Software Issues,
U. Hashagen, R. Keil-Slawik, and A. Norberg,
eds., Springer-Verlag, New York, to be published
in 2002.

140. S. McConnell, After the Gold Rush: Creating a True

Profession of Software Engineering, Microsoft Press,
Redmond, Wash., 1999.

141. See, for example, A. Abbott, The Systems of Pro-

fessions: An Essay on the Division of Expert Labor,
Univ. of Chicago Press, Chicago, 1988.

142. The heated recent debate about a potential IT
worker shortage reveals the highly contested
nature of questions of skill, education, and certifi-
cation. For a good introduction to this debate,
see P. Freeman and W. Aspray, The Supply of Infor-

mation Technology Workers in the United States,
Computing Research Assoc., Washington, D.C.,
1999.

143. In fact, the only published reference I could find
to Eckert’s speech was an offhand comment
made by Robert Gordon in his “Review of Charles
Lecht, The Management of Computer Program-
mers,” Datamation, vol. 14, no. 4, Apr. 1968.

Nathan Ensmenger is a lecturer in the History and
Sociology of Science Dept. at the University of
Pennsylvania. He is currently working on a history of
the development of the software engineering disci-
plines. Contact him at History and Sociology of
Science Dept., University of Pennsylvania, Logan
Hall, 249 S. 36th Street, Philadelphia, PA 19104-6304;
(215)898-8697; nathanen@sas.upenn.edu.

For further information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

October–December 2001 19

