
104 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/04/$20.00 © 2004 IEEE

Think Piece

Of all the developments in the recent history of comput-
ing, none has attracted such widespread attention as the
emergence of the open-source software movement. In part,
this is due to the remarkable successes of such open-source
projects as Linux, Sendmail, and Apache. Versions of the
GNU/Linux operating system are used by 40 percent of
large American corporations, 65 percent of the world’s Web
servers run Apache, and Sendmail manages 80 percent of
the world’s email. Even traditional commercial vendors
such as IBM, Apple, and Novell have jumped on the open-
source bandwagon; the Macintosh OS X operating system
is based on a BSD derivative, and IBM recently announced
a $1 billion commitment to open-source development.1

Despite these apparent successes, however, the lessons
of the open-source movement are not necessarily those
that its proponents might hope or imagine. They suggest
more about new methods and questions for historians to
grapple with than obvious conclusions about a new “one
best way” to manage software development.

The various meanings of “openness”
At its most basic, open source refers simply to software

that is made publicly available as uncompiled source
code. Such openness is unusual but hardly unprecedent-
ed. There can be compelling reasons for making source
code available, even in competitive commercial environ-
ments in which intellectual property rights are generally
fiercely protected. After all, secrets are just one way of pro-
tecting intellectual property; there are others, equally
common and effective.

In popular usage, however, the designation of open
source is often used to refer to software that is not just
open but also free. Free software, in this case, refers to
software source code that is both publicly available and
free (mostly) of license and copyright restrictions. In gen-
eral, the only restrictions imposed are designed to assure
that it continues to remain unrestricted. Finally, software
that is free (of licensing restrictions) is often also made
available free of cost. Most often when people talk about
open-source software they are referring to projects that
are simultaneously open, free, and free of charge.

The appeal and power of open-source software goes
beyond these notions of openness and freedom, however.
The open-source philosophy is as much about process as
it is product. Although advocates argue that open-source
methods produce the best software in technical terms (in
large part because it can harness the many eyes of a larger
community to develop, test, and debug software), these

methods are also the best in a larger social, moral, and
political sense. As Steven Weber suggests in his excellent
book The Success of Open Source, “Technical discussions [in
the open-source community] on how things should work
and should be done are intimately related to beliefs about
and reflections on social practices”2 Open-source projects
represent an idealized vision of democracy in action—run
by volunteers and organized only on an informal, ad hoc
basis; decisions are made by consensus rather than decree.
Project participants are independent agents—often wide-
ly distributed geographically—who communicate largely
through email and newsgroups. There are no scheduled
meetings, no rigid job descriptions or organized division
of labor, no managerial hierarchies or process controls.

In short, open-source development projects seem to
ignore almost all the supposed lessons of modern indus-
trial manufacturing. By radically altering the social and
political organization of software development, open
source seemingly solves some of the most intractable
problems that have plagued the software industry over
the last several decades. Theological debates about the
intricacies of intellectual property law and licensing
schemes aside, the open-source movement is about new
ways of managing complex development projects.
Increasingly, this applies not only to software; the open-
source model has been extended (in theory) to include a
wide range of problem domains.

It is easy to see why the open-source movement has
attracted so much popular and scholarly attention. It is
at once political, social, and technical. By freely giving
away valuable intellectual property, open-source devel-
opers turn on its head one of the fundamental assump-
tions that neoclassical economists make about basic
human motivation. As seemingly self-organizing com-
munities, they suggest interesting new ways for ethnog-
raphers and political scientists to think about the process
of self-governance. Also, as part of the anti-Microsoft
movement, they represent hope to those who resent large
corporate monopolies and the constraints (and expens-
es) of propriety software systems. For programmers and
engineers feeling trapped by cubicles and bureaucracy,
open source is an opportunity for creativity, autonomy,
and self respect. For everyone else, open source offers up
colorful stories full of eccentrics, underdogs, and 20-year-
old billionaires. In many ways, the open-source move-
ment has become a kind of Rorschach blot in which
everyone sees what they are already looking for.

Open Source’s Lessons for Historians

Nathan L. Ensmenger
University of Pennsylvania

continued on p. 102

The future of open source’s past
Despite the open-source movement’s diverse

appeal (or perhaps because of it), the literature
on the subject is still immature. Much of it is
ahistorical and lacking in context, is written by
advocates, and is therefore uncritical or takes
too seriously such vague notions as “self organ-
izing” or “gift economies.” Let me therefore
suggest two potential contributions that the
history of computing can make to understand-
ing open-source development lessons and spec-
ulate on several ways in which historians could
in turn benefit from this discussion.

First of all, much of the literature on open
source emphasizes its radical break with the
dominant model of closed-source, proprietary,
packaged commercial software. Although this
model might dominate in the modern PC soft-
ware market, it is by no means universal, par-
ticularly if we are looking across the entire
history of electronic computing. In fact, the
very notion of software is a historically con-
structed category. Although the term itself has
been around since the 1850s, it was first applied
to computing only in the late 1950s. It was not
until the 1960s that it became widely adopted,
and even then, it was often used to refer to sys-
tems software (later operating systems) rather
than applications. What little commercial soft-
ware that was available from outside vendors (as
opposed to being developed in-house) was gen-
erally bundled with hardware and was therefore
not purchased as such.

In the first decades of electronic computing,
even software developed internally was often
freely distributed (in both meanings of the
word) by user groups such as SHARE (IBM) and
the Univac Scientific Exchange (USE).3 It was
not until the late 1960s, with the IBM

unbundling decision, that software developed
into a packaged product. In the mainframe
world, purchasing software was often as much
about consulting services and support as it was
the actual application code. The emergence of a
market for closed-source, packaged software
was not an obvious or inevitable development;
like most other developments in the history of
computing, it is the result of complex histori-
cal processes playing out in a larger social, tech-
nical, legal, and economic environment.4 In
this light, open-source software is part of a con-
tinuum of possible configurations of technolo-
gy, markets, and intellectual property regimes,
rather than a radical departure from some nat-
ural arrangement.

Second, what is often seen as the open-
source movement’s most distinctive character-
istic—its seamless blending of technical, social,
and political agendas—has been a central fea-
ture of the history of software since at least the
1950s. Developing good software is notorious-
ly difficult, and the central themes of the per-
sistent “software crisis” that has plagued the
industry since the early 1960s are as much
social as they are technical:

• the problem of managing complexity and
communications within large organizations;

• the difficulties inherent in negotiating
between business and technical objectives;
and

• the rising costs associated with user support,
training, documentation, and maintenance.

Open-source advocates are not the first to rec-
ognize the social and organization dimensions
of this crisis. A widely cited 1968 article by
Melvin Conway argued that a system’s archi-
tecture reflects the communications structure
of the organization that produced it.5 Frederick
Brooks’ 1975 classic book The Mythical Man-
Month described the failure of the OS/360
software development project as one of organ-
ization and communication.6 The solutions to
these problems proposed in this earlier period
might not have been so explicitly social and
political as open source, but every effort to
establish a software component’s factory, a
chief programmer team, or a new software
engineering methodology carried with it
deeply embedded assumptions about organiza-
tional structure, professional status and author-
ity, and individual autonomy.

Are software developers skilled professionals
or factory laborers? Active participants in the
planning and design process, or mere subordi-
nates to managers and analysts? Is computer

102 IEEE Annals of the History of Computing

Think Piece

In many ways, open source

can only be understood as

the most recent chapter

in a long-running debate

that encompasses the

entire history of

software development.

continued from p. 104

programming art, science, or routinized indus-
trial work? In many ways, open source can only
be understood as the most recent chapter in a
long-running debate that encompasses the
entire history of software development.

Finally, some lessons from the open-source
movement for historians: Pay attention to the
social context of software development. If
nothing else, the open-source movement has
revealed that seemingly technical debates
about “the one best way” to manage software
development are also debates about organiza-
tional and professional politics, status and
identity, and moral significance. Software work-
ers are important. They have independent ideas
and agendas and often play an active role in
shaping their social and technical environ-
ment. Technologies reflect organizational struc-
tures. Processes are as important as products.

References and notes
1. S. Weber, The Success of Open Source, Harvard

Univ. Press, 2004.
2. Ibid., p. 88.
3. A. Akera, “Voluntarism and the Fruits of Collabo-

ration: The IBM User Group,” SHARE Technology
& Culture, vol. 42, no. 3, 2001, pp. 710-736.

4. M. Campbell-Kelly, From Airline Reservations to
Sonic the Hedgehog: A History of the Software
Industry, MIT Press, 2003.

5. M. Conway, “How Do Committees Invent,”
Datamation, vol. 14, no. 4, 1968, pp. 28-31. This
idea has become popularly known as Conway’s
Law.

6. F. Brooks, The Mythical Man-Month: Essays on
Software Engineering, Addison-Wesley, 1975.

Readers may contact Nathan Ensmenger at
nathanen@sas.upenn.edu.

October–December 2004 103

