
ThH 0XltLplH 0HDnLnJV Rf D FlRZFhDrt
NDthDn (nVPHnJHr

,nfRrPDtLRn & &XltXrH: $ JRXrnDl Rf HLVtRr\, VRlXPH ��, NXPbHr �, 20�6,
pp. �2����� ($rtLFlH�

PXblLVhHd b\ 8nLvHrVLt\ Rf THxDV PrHVV
D2,: �0.�����lDF.20�6.00��

FRr DddLtLRnDl LnfRrPDtLRn DbRXt thLV DrtLFlH

Access provided by Indiana University Libraries (2 Aug 2016 15:07 GMT)

httpV:��PXVH.jhX.HdX�DrtLFlH�624��2

https://muse.jhu.edu/article/624952

321

Information & Culture, Vol. 51, No. 3, 2016
©2016 by the University of Texas Press
DOI: 10.7560/IC51302

The Multiple Meanings of a Flowchart

Nathan Ensmenger

From the very earliest days of electronic computing, flowcharts have been
used to represent the conceptual structure of complex software systems.
In much of the literature on software development, the flowchart serves
as the central design document around which systems analysts, computer
programmers, and end users communicate, negotiate, and represent
complexity. And yet the meaning of any particular flowchart was often
highly contested, and the apparent specificity of such design documents
rarely reflected reality. Drawing on the sociological concept of the bound-
ary object, this article explores the material culture of software develop-
ment with a particular focus on the ways in which flowcharts served as
political artifacts within the emerging communities of practices of com-
puter programming.

 In the September 1963 issue of the data-processing journal Datama-
tion, there appeared a curious little four-page supplement titled “The
Programmer’s Primer and Coloring Book.”1 This rare but delightful
bit of period computer industry whimsy is full of self-deprecating (and
extremely “in”) cartoons about the working life of computer program-
mers. For example, “See the program bug. He is our friend!! Color him
swell. He gives us job security.” Some of these jokes are a little dated, but
most hold up surprisingly well.
 One of the most insightful and revealing of “The Programmer’s
Primer and Coloring Book” cartoons is also one of the most minimal-
istic. The drawing is of a simple program flowchart accompanied by a
short and seemingly straightforward caption: “This is a flowchart. It is
usually wrong.”
 In case you don’t get the joke, here is some context: by the early
1960s, the flowchart was well established as an essential element of any
large-scale software development project. Originally introduced into

Nathan Ensmenger is an associate professor in the School of Informatics and Computing
at Indiana University. Much of his research focuses on the history of software and software
workers, although he is currently working on a book exploring the global environmental
history of the digital economy.

322 I&C/Multiple Meanings of a Flowchart

computing by John von Neumann in the mid-1940s, flowcharts were
a schematic representation of the logical structure of a computer pro-
gram. The idea was that an analyst would examine a problem, design
an algorithmic solution, and outline that algorithm in the form of a
flowchart diagram. A programmer (or “coder”) would then translate
that flowchart into the machine language understood by the computer.
The expectation was that the flowchart would serve as the design sche-
matic for the program code (in the literature from this period flowcharts
were widely referred to as the “programmer’s blueprint”) with the as-
sumption that once this “blueprint” had been developed, “the actual
coding of the computer program is rather routine.”2

 For contemporary audiences, the centrality of the flowchart to soft-
ware development would have been self-evident. Every programmer
in this period would have learned how to flowchart.3 In the same year
that “The Programmer’s Primer and Coloring Book” was published,
the American Standards Association approved a standardized flowchart
symbol vocabulary.4 Shortly thereafter, the inclusion of flowcharting
instruction in introductory programming courses was mandated by
the Association for Computing Machinery’s influential Curriculum ’68
guidelines.5 A 1969 IBM introduction to data processing referred to
flowcharts as “an all-purpose tool” for software development and noted
that “the programmer uses flowcharting in and through every part of

Figure 1. “The Programmer’s Primer and Coloring Book,” Datamation
(September 1963).

323

his task.”6 By the early 1970s, the conventional wisdom was that “devel-
oping a program flowchart is a necessary first step in the preparation of
a computer program.”7

 But every programmer in this period also knew that although draw-
ing and maintaining an accurate flowchart was what programmers were
supposed to do, this is rarely what happened in actual practice. Most pro-
grammers preferred not to bother with a flowchart or produced their
flowcharts only after they were done writing code.8 Many flowcharts
were only superficial sketches to begin with and were rarely updated
to reflect the changing reality of a rapidly evolving software system.9
Many programmers loathed and resented having to draw (and redraw)
flowcharts, and the majority did not. Frederick Brooks, in his classic text
on software engineering, dismissed the flowchart as an “obsolete nui-
sance,” “a curse,” and a “space hogging exercise in drafting.”10 Wayne
LeBlanc lamented that despite the best efforts of programmers to “com-
municate the logic of routines in a more understandable form than com-
puter language by writing flowcharts,” many flowcharts “more closely
resemble confusing road maps than the easily understood pictorial rep-
resentations they should be.”11 Donald Knuth argued that flowcharts
not only were time-consuming to create and expensive to maintain but
also were generally rendered obsolete almost immediately. In any active
software development effort, he argued, “any resemblance between our
flow charts and the present program is purely coincidental.”12

 All of these critiques are, of course, the basis of the humor in the
Datamation cartoon: as every programmer knew well, although in theory
the flowchart was meant to serve as a design document, in practice it
often served only as ex post facto justification. Brooks denied that he
had ever known “an experienced programmer who routinely made de-
tailed flow charts before beginning to write programs,” suggesting that
“where organization standards require flow charts, these are almost
invariably done after the fact.”13 And in fact, one of the first commer-
cial software packages, Applied Data Research’s Autoflow, was designed
specifically to reverse-engineer a flowchart “specification” from already-
written program code. In other words, the implementation of many
software systems actually preceded their own design! This indeed is a
wonderful joke or, at the very least, a paradox. As Marty Goetz, the in-
ventor of Autoflow, recalled, “Like most strong programmers, I never
flowcharted; I just wrote the program.”14 For Goetz, among others, the
flowchart was nothing more than a collective fiction: a requirement
driven by the managerial need for control and having nothing to do
with the actual design or construction of software. The construction of
the flowchart could thus be safely left to the machine, since no one was

324 I&C/Multiple Meanings of a Flowchart

really interested in reading it in the first place. Indeed, the expert con-
sensus on flowcharts seemed to accord with the popular wisdom cap-
tured by “The Programmer’s Primer and Coloring Book”: there were
such things as flowcharts, and they were generally wrong.

Flowcharts as Boundary Objects

 It would be easy to view the flowchart as a failed technology, an ear-
nest attempt to visualize complexity and guide software design that sim-
ply was not up to the task. But while the truth expressed in this cartoon
was meant to be humorous, my analysis of it will be entirely serious. I
will suggest that not only was the flowchart one of the most significant
and durable innovations of the great computer revolution of the mid-
twentieth century but that the Datamation cartoon captures perfectly its
essential paradox: computer flowcharts were at once both widely used
(and useful), and they were almost always an incorrect and inadequate
reflection of reality. To view the computer flowchart as having only one
purpose (and a failed purpose at that) is narrow and misleading; in
reality, every flowchart had multiple meanings and served several pur-
poses simultaneously. Yes, flowcharts were imagined (and sometimes
used) as design specifications for programmers, but they were also tools
for analysis, planning, and communication. For managers, they were a
mechanism for organizing the work process, estimating costs, managing
projects, and exerting industrial discipline. Flowcharts were blueprints,
contracts, and documentation. They could also be read as maps of the
technological, social, and organizational life of software systems.
 To borrow a concept from Susan Leigh Starr and James Griesemer,
the computer flowchart can be thought of as a boundary object, an
artifact that simultaneously inhabits multiple intersecting social and
technical worlds. In each of these worlds, the boundary object has a well-
defined meaning that “satisf[ies] the informational requirements” of
the members of that community; at the intersection of these worlds, the
boundary object is flexible enough in meaning to allow for conversation
between multiple communities.15 As Starr and Griesemer describe it, suc-
cessful boundary objects are “both plastic enough to adapt to local needs
and the constraints of the several parties employing them, yet robust
enough to maintain a common identity across sites.”16 Boundary objects
have become a central analytical tool in the history and sociology of sci-
ence because they allow for technological artifacts to have meanings that
are both fixed and flexible, multifarious without being contradictory.
 More recently, Kathryn Henderson has applied the concept of
boundary objects to the sketches and drawings used by engineers to

325

communicate among themselves and between design groups, as well as
with managers, machinists, and shop workers. She identifies these visual
and representational technologies as boundary objects that both convey
useful information and function in a more explicitly organizational role
as “conscription devices.” As the common point of focus for conversa-
tion and negotiation about the design process, boundary objects enlist
group participation by serving as an essential repository of knowledge
and interaction. “To participate at all in the design process,” Henderson
argues, “actors must engage one another through the visual representa-
tion.”17 Such was the conscriptive power of these objects that “if a visual
representation is not brought to a meeting of those involved with the
design, someone will sketch a facsimile on a white board. . . . [A] team
member will leave the meeting to fetch the crucial drawings so group
members will be able to understand one another.”18

 In a similar manner, flowcharts serve simultaneously as boundary
objects and conscription devices. It is no coincidence that flowcharts
became ubiquitous (in fact, compulsory) in the period known to con-
temporaries and historians alike as the “software crisis.” As the historian
Michael Mahoney famously suggested, the history of computing in the
1960s revolves around the growing realization that “software is hard.”19
By the end of that decade, the dramatically rising costs associated with
software development seemed to many observers a harbinger of the im-
minent “fizzle of the computer revolution.”20 And to the dismay of many
computer specialists, it was becoming increasingly clear that the real
reasons why software was so hard were not primarily technological but
rather social and organizational. It was not programming per se that
made software development so difficult but the larger processes of prob-
lem analysis, design, communication, and documentation associated
with programming that posed the real problem.21 As software projects
expanded in scope and complexity, flowcharts increasingly served not
only as a means of organizing and communicating technical knowledge
but also as tools for resolving (or at least mediating) political, organiza-
tional, and, in some cases, legal disputes.

From Flow Diagram to Flowchart

 The first printed use of a flowchart in the context of electronic
computing can be found in a 1946 report by Haskell Curry and Willa
Wyatt describing a method for performing inverse interpolation on the
ENIAC.22 But in a subsequent paper Curry credited the original idea
to John von Neumann and Herman Goldstine, and it was a 1948 re-
port by these two authors that first systematically described and applied

326 I&C/Multiple Meanings of a Flowchart

a system for symbolically representing algorithms using a “flow dia-
gram.”23 Not only was this 1948 report much more widely disseminated
(the Curry/Wyatt paper was classified), but it carried with it the prestige
and authority of von Neumann, and as a result it is von Neumann and
Goldstine to whom the concept of the programmer’s flow diagram is
generally attributed.24

 But while von Neumann and Goldstine might have been the first to
apply it to computing, the flow diagram was already by this period a
well-established representational technology. Such diagrams had long
been used by hydrodynamic engineers to track the circulation of fluids,
and in the early twentieth century they had been adopted by process
engineers in a wide variety of industries to outline “the course through
which any material—from corn flour to an engine block—travels whilst
undergoing manufacture.”25 Indeed, it has been speculated that it was in
his early training as a chemical engineering student that von Neumann
would have learned about the flow diagram. In any case, by the 1930s
flow diagrams were widely used within industrial manufacturing, and as
understandings of what constituted “material flow” expanded and be-
came increasingly abstract, they were used to document everything from
department organization to the movement of records. Along with the
Gantt chart, the flow diagram was one of several emerging technologies
for visualizing organizational and procedural complexity.26

 The appropriation of a technology that already had a well-established
meaning in the context of industrial manufacturing reveals much about
what von Neumann and Goldstine thought about computer program-
ming—and computer programmers. In the vision of computer program-
ming outlined in “Planning and Coding of Problems for an Electronic
Computing Instrument,” von Neumann and Goldstine propose a six-
step programming process: in the first five steps of this process, which
they referred to as the “dynamic” phase, a skilled mathematician or sci-
entist would conceptualize a problem mathematically and physically,
perform a numerical analysis, and design an algorithm. The product of
these first five phases would be the flow diagram. In the sixth and final
stage of the programming process, the “static” phase, a coder would
transform the flow diagram into a set of specific machine instructions.
Implied by the language used to describe it, the work of the coder was
assumed to be straightforward, mechanical, and merely clerical. “We feel
certain that a moderate amount of experience with this stage of coding
suffices to remove from it all difficulties, and to make it a perfectly rou-
tine operation,” von Neumann and Goldstine confidently declared.27 In
the case of the ENIAC project, which was the only model of software
development that von Neumann and Goldstine had available to them,

327

the low-status, seemingly routine task of coding the flow diagram was
generally assigned to women.
 The flow diagrams introduced by von Neumann and Goldstine in
the late 1940s were adopted by, among others, the programmers at the
newly formed Eckert-Mauchly Computer Corporation (soon to become
the UNIVAC division at Remington Rand). In April 1950 Grace Hopper
and Betty Holberton introduced what they called “flow charts” into the
teaching materials that they developed for a programming course at
EMCC. These materials specifically reference the earlier work of von
Neumann and Goldstine.28 Flow diagrams in the style created by von
Neumann and Goldstine can also be found in the documentation for a
differential analysis program developed for the earliest versions of the
ACE computer designed by Turing at the National Physical Laboratory.29
By the end of the 1950s the “flow chart” (or, increasingly, “flowchart”)
had been thoroughly integrated into the programming practices of
the industry.30

 This early phase of the dissemination of flowchart technology
seems to emphasize the first meaning of the flowchart outlined by von
Neumann and Goldstine; that is, the flowchart was a high-level concep-
tual technology intended primarily for scientists and other problem-
domain specialists for the development of algorithmic solutions. As
Hollis Kinslow, who oversaw the development of the IBM Time-Sharing
Monitor System in the early 1960s, would later describe it, the design

Figure 2. An original flow diagram from Goldstine and von
 Neumann’s 1948 “Planning and Coding of Problems for an Elec-
tronic Computing Instrument.”

328 I&C/Multiple Meanings of a Flowchart

process for many large software projects revolved entirely around the
flowchart:

1. Flowchart until you think you understand the problem.
2. Write code until you realize that you don’t.
3. Go back and re-do the flowchart.
4. Write some more code and iterate to what you feel is the correct

solution.31

In this representation of the role of the flowchart, the chart functions
largely as a design technology, a “thing for thinking with,” as Sherry
Turkle has suggested.32 As one popular textbook from the early 1970s
described it, “Flowcharting is an essential tool in problem solving. . . .
The person who cannot flowchart cannot anticipate a problem, analyze
the problem, plan the solution, or solve the problem.”33 This sentiment
is very much in line with the principal meaning of the flow diagram as
outlined by von Neumann and Goldstine: the flow diagram was a user-
friendly tool for high-level planners to make use of as they found con-
venient or necessary. If a scientist found the flow diagram/flowchart to
be useful as an aid to thought or as a memory device, then he (or, very
occasionally, she) could go ahead and make use of it; if not, he was free
to develop his own design techniques and technologies.
 If we look more closely at the representation of the flowchart as em-
bodied in the many training tools, textbooks, templates, and software
methodologies that were produced in the 1950s and 1960s, however, we
see that it is the second of von Neumann and Goldstine’s purposes—the
flowchart as means of encouraging industrial discipline—that would ul-
timately become dominant. Yes, flow diagrams were a tool for analysis
and a method of formalizing and documenting a mathematical algo-
rithm, but they were also a tool for planning, organizing, and distribut-
ing the mental and mechanical labor required to construct a computer
program. In the context of an emerging “software crisis” defined by the
inability of organizations to train, recruit, manage, and retain skilled
computer programmers, the belief (hope?) that a well-defined flowchart
could help bring order to the seeming chaos of software development
was appealing to employers, managers, and programmers alike.34

Flowchart as Blueprint

 By the middle of the 1960s, a common language and symbolic vo-
cabulary for constructing computer flowcharts had emerged and been

329

formalized in national (and later international) standards, institution-
alized in curriculum and textbooks, and embodied in physical objects
such as templates and worksheets.35 In 1965 a working group within the
American Standards Association representing a consortium of academic
societies (among them the Association for Computing Machinery and
the American Management Association), computer manufacturers (in-
cluding IBM, Honeywell, and Remington Rand UNIVAC), user groups,
and the Department of Defense published its “Conventions for the Use
of Symbols in the Preparation of Flowcharts for Information Processing
Systems.” A similar set of conventions was adopted by the International
Standards Organization (ISO) in 1973.
 The standardization of flowchart symbols allowed the charts to be-
come more portable, both conceptually and organizationally. As Bruno
Latour famously suggested of engineering drawings, by “flatten[ing] out
onto the same surface” an otherwise disconnected set of activities (e.g.,
business process analysis and computer programming), standardized
flowcharts created an “optically consistent space” that allowed a variety
of actors to focus their attention on a single, well-defined problem.36
The standardized objects on a flowchart provided an unambiguous rep-
resentation of reality that could be productively used to plan and or-
ganize work, measure results, and allocate responsibility. Anyone who
learned to master the vocabulary of the standardized flowchart could,
in theory, at least, contribute to the conversation about how a given soft-
ware project should be designed and what it ought to accomplish.
 For many participants in the corporate computer revolution of the
1960s, learning to flowchart was their first (and in some cases only) les-
son in software development.37 Using the predefined symbol charts and
templates provided by the ANSI and ISO guidelines, even the least tech-
nically proficient employee could quickly assemble a coherent, legible,
and standardized flowchart quickly and easily.38 The ability to construct
a flowchart provided the illusion, at least, of mastery over a complex pro-
cess of software analysis and design, a comforting thought in a period in
which many corporate managers worried about computer specialists us-
ing their technical expertise to make an “electronic power grab.”39

 Even aspiring programmers or programmer trainees often spent
more time drawing flowcharts than working with actual computer
code.40 Paper was cheap, while computer time was expensive. Vocational
schools and academic computer science programs alike focused on
the flowchart as an essential tool for learning and communication.
In fact, in a 1965 article titled “Education and Training of a Business
Programmer” that nicely captures the conventional wisdom of the era,

330 I&C/Multiple Meanings of a Flowchart

the flowchart served as the foundational document on which an entire
software development work process was constructed. The first step of
the process was the analysis of the problem, the second the develop-
ment of the flowchart, and the third (and final) the translation of the
flowchart into a programming language.41 Indeed, by the end of the
1970s it was “almost impossible to find an introductory programming
text that [did] not make extensive use of flowcharts.”42

 In this dramatically simplified model of software development (which
was endorsed by, among others, the Data Processing Management Asso-
ciation, the preeminent industry professional society in this period), the
flowchart functioned as the central design document. The most com-
mon analogy used to explain the role of flowchart was the architectural
blueprint. Consider the following claims from Thomas McInerney and
Andre Vallee’s 1973 A Student’s Guide to Flowcharting :

Figure 3. This IBM flow charting tem-
plate embodied the ISO and ANSI
standards adopted in 1970.

331

Flowcharts are to programmers as blueprints are to engineers. Be-
fore a construction engineer begins in building, he draws detailed
plans from which to work. These plans are called blueprints.
 Before a programmer begins to code a program into one of the
computer languages (such as COBOL or ALGOL), you must have
a detailed blueprint of the steps to follow. The blueprint is known
as a flowchart.
 Engineers and construction foremen must be able to draw
and read blueprints. Programmers must be able to draw and
read flowcharts. Flowcharting is a necessary and basic skill for all
programmers.43

 In their suggestion that a flowchart is a blueprint, the authors of this
guidebook—and many other programming textbooks from this pe-
riod—are not waxing idly metaphorical. They were describing a software
development methodology in which the flowchart plays a very specific
and absolutely indispensable role as both a design schematic and a tool
for organizing the division of labor and the work of construction.44

 The flowchart-as-blueprint analogy implied a very specific relation-
ship between the designer/architect and the programmer/builder. As
Ronald Elliott described in his 1972 Problem Solving and Flowcharting,
“The purpose of drawing a flowchart is to make the coding of the prob-
lem easier. The program code should follow the flowchart step-by-step.
When this procedure is followed, the program code should reflect ex-
actly the same procedures as those of the flowchart.”45 George Gleim, in
his 1970 Program Flowcharting, argued that drawing the flowchart was the
critical task associated with software development. “Once the flowchart
has been correctly developed,” he suggested, “the actual coding of the
computer program is rather routine.”46 In this reiteration of the head/
hand distinction first outlined by Goldstine and von Neumann, it was
in the construction of the flowchart that the real intellectual work of
problem solving was accomplished.47 As Thomas Schriber in his 1969
Fundamentals of Flowcharting described it, once a proper flowchart had
been developed, the person charged with “preparing the [program-
ming] language equivalent of a flowchart” would find the task “to be
largely a mechanical one.”48 In their repeated assertions that the true
meaning of the flowchart was as design document, these texts attempted
to establish or reify an occupational and professional hierarchy within
computing in which the high-level conceptual work of design could be
clearly distinguished from the “merely technical” labor of computer
programmers. As I have written about extensively elsewhere, the gender

332 I&C/Multiple Meanings of a Flowchart

and status associations of the term “coder” would structure debates
about the nature of software development, and of software developers,
for the next several decades.49

 Of course, if this direct and uncomplicated relationship between
the construction of a flowchart and the coding of a computer program
were indeed true, then it was absolutely essential that (1) the flowchart
be constructed prior to the writing of the code and (2) that it be an
accurate representation of reality.50 Indeed, as students in introduc-
tory courses were constantly being reminded, since “a correctly drawn
flowchart allows the actual computer programming to be accomplished
[the] cardinal rule of good programming technique is ‘flowchart now,
code later.’”51 Equally obvious was the fact that “if the flowchart is in-
correct, the program will be coded incorrectly. Therefore the program-
mer should be sure his flowchart is drawn properly before coding.” But
contained within this admonishment to “draw correctly” were hints of
the difficulty inherent in doing so. The same textbook that declared the
flowchart cardinal to programming went on to acknowledge that “de-
termining whether the flowchart is correct or not may prove to be a
difficult task.”52 Left unspoken was the question of who was responsible
for determining that the flowchart was correct and when in the develop-
ment process this verification was supposed (or likely) to happen.
 This admission that the idealized flowchart diagram did not always
correspond well with the messy reality of an actual computer program
hinted at growing dissatisfaction with the overly simplistic flowchart-
as-blueprint model of software development. This dissatisfaction was
as much about the hierarchy of work embodied by the flowchart as it
was a critique of the usefulness or accuracy of the flowchart itself. At
the same time that flowchart technology was becoming increasingly
regimented, routinized, and standardized in the management and edu-
cational literature, working programmers were challenging and reshap-
ing its fundamental identity.53 For them, the flowchart was not so much
a top-down design specification produced by scientists or managers
aimed at organizing and directing the practical effort of low-level com-
puter programmers as a pragmatic tool for facilitating communication
across disciplinary, professional, and organizational boundaries. This
re negotiation of the ontological status of flowcharts mirrored a larger
shift that was happening in the professional status of programmers and
the power relationships within corporate computerization efforts. For a
time, however, these changing and, to a certain degree, incommensu-
rate understandings of what a flowchart was and what it was for created
confusion and conflict as various actors attempt to understand, accom-
modate, or resist changes in its meaning and purpose.

333

When Flowcharts Fail

 In one of his characteristic biblical allusions, Frederick Brooks, in
his The Mythical Man-Month, quoted the rebuke that the Apostle Peter
delivered to those Christians who were attempting to impose on the
Gentile converts the rules and restrictions of traditional Judaism: “Why
lay a load on their backs which neither of our ancestors nor we ourselves
were able to carry?”54 In this case, the load in question was the require-
ment that programmers maintain a “detailed blow-by-blow flow chart”
documenting their program design. The discipline of flowcharting was
“more preached than practiced.” At best, the flowchart was an educa-
tional technology “suitable only for initiating beginners into algorithmic
thinking”; more often, it was an “obsolete nuisance” that only hindered
the efforts of experienced programmers. His particular objection was
to the use of the flowchart as a design document: “The pitiful, multi-
page, connection-boxed form to which the flow chart has today been
elaborated, it has proved to be essentially useless as a design tool—
programmers draw flow charts after, not before, writing the programs
they describe.” He noted as evidence that many software houses had
developed special computer programs to produce this supposedly “in-
dispensable design tool” after the fact. In other words, the “original”
flowchart was reverse engineered from the completed code base for
which it was ostensibly the blueprint.55

 Although Brooks was a particularly vociferous critic of the flowchart,
his was anything but a lone voice crying in the wilderness. The most
common complaints had to do with the challenge of finding an appro-
priate level of granularity: outside of the toy examples that were pro-
vided in their introductory flowcharting courses, programmers and
analysts in the real world found it difficult to produce flowcharts that
were simultaneously detailed enough to be useful guides to develop-
ment and abstract enough to avoid becoming overly complex, unwieldy,
or expensive. As Ned Chapin suggested in his tutorial “Flowcharting
with the ANSI standard,” a flowchart that contained too much detail was
no more useful (or easy to produce) than its equivalent program code.
Producing a meaningful flowchart required compressing, condens-
ing, and eliminating details. “But which ones? And how many? A poor
choice can render the resulting flow diagram nearly useless.”56

 In his 1963 article “Computer-Drawn Flowcharts,” Donald Knuth
mocked the oversimplified flowchart too often presented in program-
ming textbooks (see figure 4).57 But elsewhere he also provided an ex-
ample, drawn from his very first academic publication, of what he called
an “octopus” diagram (see figure 5).58 The flowchart in question was

334 I&C/Multiple Meanings of a Flowchart

allegedly a visual depiction of a compiler that he called RUNCIBLE, but
Knuth offered a challenge: “Anyone who believes that flowcharts are the
best way to understand a program is urged to look at this example.” In
retrospect, Knuth argued, it would have been easier for a reader to com-
prehend Knuth’s actual program code than to comprehend the mean-
ing of his flow diagram.59

Figure 4. One frequent complaint about flowcharts is that they were too
simple. Donald Knuth provided one such example in his 1963 article
“Computer-Drawn Flowcharts.”

Figure 5. This flowchart, which describes Knuth’s 1959 RUNCIBLE com-
piler, is far too complex to be useful.

335

 Finding the “right” scale at which to draw a flowchart was as much
an organizational as a technological challenge and depended greatly on
one’s understanding of the relationship between the tasks of analysis,
planning, and programming. When the task at hand involved develop-
ing a solution to a well-defined mathematical problem (which was true
of many of the earliest electronic computing projects), it was perhaps
possible for one flowchart to serve both as a design tool for scientists and
as a detailed work plan for organizing and directing the practical efforts
of computer programmers. In the increasingly complex and sprawling
applications being developed in the business context, however, accom-
plishing both objectives with a single representational technology was
difficult, if not impossible.60 There were simply too many purposes to
satisfy and too many acts of translation that needed to happen to make
the flowchart legible and meaningful to multiple constituencies.
 In the heterogeneous sociotechnical context of corporate data-
processing systems, the flowcharts developed by systems analysts, pro-
grammers, or other technical specialists were often revealed to be overly
simplistic—or optimistic. A 1959 report titled “Business Experience with
Electronic Computers,” produced by the consulting company Price
Waterhouse, described the situation:

Because the background of the early programmers was acquired
mainly in mathematics or other scientific fields, they were used to
dealing with well-formulated problems and they delighted in a so-
phisticated approach to coding their solutions. . . . When they ap-
plied their talents to the more sprawling problems of business, they
often tended to underestimate the complexities and many of their
solutions turned out to be oversimplifications. Most people con-
nected with electronic computers in the early days will remember
the one- or two-page flow charts which were supposed to cover the
intricacies of the accounting aspects of a company’s operations.61

In the Price Waterhouse report, managerial disappointment with the
flowchart is a reflection of a larger problem of communication and ex-
pertise. Over the course of the 1950s, the electronic digital computer,
which had originally been imagined as a scientific or military instru-
ment, was being gradually reinvented (both literally and figuratively) by
business machines manufacturers such as IBM and Remington Rand as
a tool for corporate data processing. The problems that business ana-
lysts and programmers worked on “tended to be larger, more highly
structured (while at the same time less well-defined), less mathematical,
and more tightly coupled with other social and technological systems

336 I&C/Multiple Meanings of a Flowchart

than were their scientific counterparts.”62 In this context, it became in-
creasingly clear that computer programming involved more than the
mechanical “coding” of a design specification developed by other, more
conceptual thinkers. In practice, the work of programmers was more
like translation than transcription: in other words, it required not only
the ability to speak to multiple communities and across several “lan-
guages” (in this case, both human and machine) but also at least some
understanding of the underlying problem domain.
 The rising professional and intellectual status of programming is rep-
resented in the technical and management literature from this period, as
well as in the increasing popularity of hybrid and broadly encompassing
job titles such as “systems analyst,” “programmer/analyst,” “software ar-
chitect,” and “software engineer.”63 These analysts and architects still drew
flowcharts, but the primary audience for these charts was not computer
programmers but managers and end users. These high-level flowcharts
were necessarily drawn at a different scale from those intended for pro-
grammers. They might have still remained useful as a thinking tool or a
design document but not as a detailed blueprint for a work process.
 As computer programmers gained more status and autonomy, they
assumed more control over low-level design decisions. In the absence of
the rigid distinction between “head” and “hand” work imagined by von
Neumann and Goldstine, however, the flowchart was not as obviously
useful as a means of mapping the complexity of a software project. Even
after the invention of high-level programming languages, actually im-
plementing the abstract algorithm described by even the most detailed
flowchart required intimate knowledge of the individual compiler being
used, the specific hardware platform being targeted, and possibly even
the social and organizational configuration of the imagined end user.
For the purposes of making or documenting highly detailed design de-
cisions, it was not clear that drawing a flowchart was necessary or help-
ful. One common complaint among programmers was of the absurdity
of the “seven-page program that required a twenty-page flow diagram”
to document.64 For certain purposes, at least, the most useful (and, in all
cases, the most accurate) representation of a computer program was the
program itself.65 For a skilled programmer who could read computer
code, why bother with the overhead involved with drawing a (largely
superfluous) flowchart?
 In her analysis of engineering drawings as boundary objects, Beth
Bechky shows how these drawings are used to reinforce occupational
and status boundaries between engineers and technicians. As with
flowcharts, engineering drawings were imperfect (“the technicians,
and even the engineers, were aware that the drawings would never truly

337

represent how to build”) and deliberately so.66 For engineers, the formal-
ization, standardization, and high level of abstraction embodied in the
drawings served to differentiate their knowledge (high level, scientific,
global) from that of the technicians (machine specific, heuristic, local).
According to Bechky, the drawings “needed to remain abstract not only
for their use as an epistemic tool, but also for reasons of boundary main-
tenance and task control.”67 Seen in this light, the lack of definitive clar-
ity on the part of these drawings was a feature, not a flaw, “because if
every aspect of the work were easily codified and understood, engineers
would be unable to maintain their status as experts.”68 In a similar man-
ner, their monopoly of the production of flowcharts, however ambigu-
ous these might be, allowed systems analysts and managers to exert, if
only symbolically, their control over the work process of software devel-
opment. In this sense, boundary objects served not as the “anchors and
bridges” originally envisioned imagined by Starr and Griesemer, but as a
means of “creating barricades and mazes, protecting and/or privileging
different interest groups’ frames of reference or occupational positions,
rather than creating new shared understandings and perspectives which
can inhibit and constrain the possibilities for change.”69

Objects to Talk With

 Even in some imagined world in which a flowchart could be drawn to
the ideal scale (and perfectly accurately), its perfection was at best transi-
tory. Flowcharts represented a snapshot in time, the design and structure
of the computer program as it existed at that moment. Flowcharts were
rendered immediately obsolete whenever any changes were made to ei-
ther the design or the implementation of the code. As Frederick Hosch
observed in his 1977 ACM SIGCSE paper, “Whither Flowcharting,”

It has been my experience that little real use is made of documen-
tary flowcharts. In the first place, the flowchart of a program that
has been in production for any period of time is usually out of date.
While the program is modified and corrected, the flowchart is usu-
ally ignored, so that even if a beautifully drawn flowchart originally
existed, it almost certainly bears no relationship to the program
by the time it is needed. If a project manager does succeed in hav-
ing a flowchart kept up to date, after a few modifications it will be
no easier to read than the associated code (although it will un-
doubtedly be more colorful). The end result is that it is ultimately
easier to go directly to the appropriate code than to bother with
the flowchart.70

338 I&C/Multiple Meanings of a Flowchart

Although Hosch’s experience with out-of-date flowcharts would have
been familiar to any working computer programmer, his characteriza-
tion of the flowchart as being ex post facto documentation rather than
ex ante design reflects a subtle but significant shift in the conventional
wisdom about what a flowchart was—and was for. In the model of soft-
ware development embodied by the “documentary flowchart,” the
relationship between the user/client and the builder/programmer en-
visioned by von Neumann and Goldstine was turned on its head: rather
than the flowchart being a blueprint drawn up by an expert scientist or
manager to be transcribed into computer code by a low-status “flowchart
jockey,” it was high-level documentation produced by programmers to
communicate to managers (and other programmers) the choices that
they (the programmers) made in the implementation of their program
code.71 In the earlier model, the flowchart was primarily a technology
for translating between man and machine; increasingly, the flowchart
served to facilitate human-to-human communication.
 There are at least two important developments that help explain the
shift from design-oriented to documentary flowcharts. The first, which
has already been alluded to, involves the rapid expansion in this period
of the size, scope, and sophistication of software projects. As the histo-
rian Thomas Hughes has suggested, all large technological systems are
really best understood as sociotechnical systems, but this is especially
true of software-based technologies.72 Mapping a complex human cogni-
tive or work process into machine-oriented algorithms involved commu-
nication, negotiation, and compromise. Developing large-scale software
products involved ongoing (and often contentious) dialogue between a
variety of interested parties, including systems analysts, software archi-
tects, computer programmers, machine operators, corporate managers,
and end users. Savvy software developers quickly realized that “com-
munication with the computer [writing code] is only half of the prob-
lem; as we have indicated . . . communication with other humans is just
as important.”73

 The second explanation for the shift from flowchart as blueprint to
flowchart as documentation has to do with the surprising fragility of
software systems: although in theory computer code was immune to the
normal processes of wear and tear that plagued other more material
devices (it was, in essence, “a technology that could never be broken”),
in practice, software systems had to be constantly maintained.74 What
exactly constituted “maintenance” in the context of an ephemeral,
largely intangible technology like software is beyond the scope of this
article, but suffice it to say that by the early 1970s software maintenance
was estimated to represent between 50 and 70 percent of all software

339

expenditures.75 Software maintenance was an enormously expensive
and time-consuming endeavor whose central challenges all involved
questions of communication: in this case, communications between
programmers and managers, between one programmer and another,
and even between an individual programmer and his or her future self.
Despite efforts to cultivate good code commentary practices and other
standardized documentary practices, reading and comprehending com-
puter code remained notoriously difficult—even for the original author.
In this context, the flowchart provided a form of visual documentation
that facilitated understanding, memory, and conversation.76 Flowcharts
were also a form of insurance against the costs of subsequent mainte-
nance. Considered as Latourian mobiles, flowcharts could commu-
nicate across both space and time.77 In her work on project planning

Figure 6. This advertisement for Quickdraw, an NCR software product that
reverse engineered a flowchart from previously written application code
illustrates one goal of the flowchart, which was to free managers from
their dependence on the tacit knowledge of individual programmers.

340 I&C/Multiple Meanings of a Flowchart

timelines, Elaine Yakura has suggested that such “temporal boundary
objects” make time simultaneously concrete and negotiable among di-
verse participants. They allow for the shared “expectation of a definite,
predictable conclusion” while at the same time allowing different groups
the interpretive flexibility to “fill in the gaps” according to their own as-
sumptions and preferences.78

 That the same flowchart technology could serve both “creative” and
“expository” purposes (to borrow from the terminology that Donald
Knuth developed) had the potential to cause confusion and consterna-
tion.79 Much of Frederick Brooks’s frustration with the flowchart, for
example, is based on the premise that flowcharts were intended primar-
ily for creative purposes. The fact that flowcharts rarely corresponded
to reality, or were being produced only retrospectively after the code
was already written, was proof of their inherent insufficiency as a design
tool. The fact that they continued to be required by so many software
development managers was a reflection of either unthinking adher-
ence to tradition or bureaucratic incompetence. For those who believed
flowcharts to be documentary or expository, however, none of these
objections applied. If “flowcharts are primarily intended as tools for
human communication,” then it was possible for them to be simulta-
neously beneficial and inaccurate, so long as they facilitated meaningful
dialogue between designers, users, and programmers.80 And if the only
flowcharts that could be considered definitely true to life were those
 created by machine and after the fact, then so be it. Lois Haibt, who
developed an early tool for reverse engineering flowcharts from already
written machine code, argued that “flowcharts serve two important pur-
poses: making a program clear to someone who wishes to know about
it and aiding the programmer himself to check that the program as
 written does the required job.” For either of those purposes, the best au-
thor of the flowchart was not a human but a machine. A good flowchart
ought to “show accurately what the program does rather than what the
programmer might expect it to do.”81

 The most prominent advocate of the expository perspective on the
flowchart was the software developer and contractor Applied Data Re-
search (ADR). In the mid-1960s, ADR pioneered the concept of the
commercial “software product”; prior to this period, software either
came bundled with machine by the computer manufacturer or had
to be developed in-house or by an independent contract developer.82
ADR was one such contractor, but in 1964 it began selling an automatic
flowcharting program called Autoflow to all of its clients who owned an
RCA 501 mainframe computer. Selling the same software program many
times to multiple customers was obviously a profitable business model,

341

but it required a general-purpose application that appealed to a wide
variety of users. Since every company that owned or used a computer
also made use of flowcharts, Autoflow was an obvious candidate for
packaging as the first software product. After ADR developed versions
of Autoflow that ran on the increasingly dominant IBM platforms, the
company started selling thousands of copies. When IBM started ship-
ping its own free alternative Flowcharter with all of its new machines,
ADR launched an antitrust suit that eventually led to IBM’s enormously
significant “unbundling” decision in 1970.83

 Although Marty Goetz, the ADR product manager in charge of
Autoflow, would later claim that Autoflow was popular because it al-
lowed “strong programmers” to avoid the tedious work of drawing up a
flowchart prior to writing their code, the Autoflow marketing literature
from this period makes it clear that ADR viewed flowcharts as documen-
tation, not design specification. Although some of Autoflow’s touted
features were design oriented (using Autoflow would “facilitate analysis”
and help diagnose “errors in logic flow and syntax”), the majority were
focused on the communications tasks required for long-term software
maintenance: Autoflow “provides hardcopy communication medium for
all project personnel,” “assists management in educating and training
junior personnel,” and “allows management to . . . review and supervise
program activity and quality.”84 The popularity of Autoflow and its many
competitors both reified the popularity of the flowchart while at the
same time subverting its ostensible function. While aspiring program-
mers were still being indoctrinated into the belief that the flowchart was
a blueprint, in most corporations the principal purpose of the flowchart
had largely shifted from design to documentation. What is particu-
larly interesting about this shift is that it does not involve any change
in the structure of the flowchart: the standardized visual language that
emerged in the early 1960s remains remarkably stable over time. The
technology does not change; it is simply imagined and interpreted dif-
ferently.85 For those who imagined the flowchart as a design document,
a technology like Autoflow represented a fundamental subversion of the
design process; for those who regarded the flowchart as a technology for
documentation, Autoflow was not only appropriate but desirable.
 And so we see that in the corporate context, at the very least, the
flowchart survived in large part because, despite its limitations, it was
able to acquire new meanings over time that prevented it from becom-
ing obsolete or irrelevant. By extending the notion of the boundary ob-
ject to include not only fixed but discursive meanings (i.e., by allowing
for multiple, even contradictory “readings”), as Cliff Oswick and Maxine
Robertson have done, we can accommodate these multiple meanings

342 I&C/Multiple Meanings of a Flowchart

of the flowchart without requiring any one of them to be absolute or
exclusive.86 Different parties could believe different things about what
flowcharts were “really” meant to accomplish. What matters is that the
one object could be shared across multiple communities in ways that
were relevant and productive. In fact, we might argue that it was the in-
terpretive flexibility of the flowchart that provided it with its conscriptive
power. Flowcharts might individually have been fallible, but collectively
they were necessary. Not only were they a necessary tool for facilitating
communication, but they also served as a form of implied contract be-
tween the various actors in the software development project. Having
the client or end user sign off on a flowchart helped protect the project
manager and programmers against “feature creep.” At the same time,
the flowchart provided some guarantee to the client or manager that
the programmers would build the system that the client or manager had
requested rather than the one that the programmers thought was best
or most interesting. In a period in which many organizations worried
that they had lost control over the process of technological development
and that the “computer boys” had taken over, the idea of the flowchart
as a contract was reassuring.87

Flowcharts Considered Harmful

 In March 1968 the noted computer scientist (and soon to be Turing
Award laureate) Edsger Dijkstra wrote a short but influential letter to
the editors of the Communications of the ACM in which he urged that the
go to statement be considered harmful. The overuse of this popular
programming construct, argued Dijsktra, had such “disastrous effects”
on the writing of logically correct, legible, and maintainable computer
code that it “should be abolished from all ‘higher level’ programming
languages.”88 While there were equally prominent computer scientists
who disagreed vehemently with Dijkstra’s assessment, his letter pro-
voked a lively debate that ultimately culminated in the emergence of
the Structured Programming paradigm, one of the most significant in-
novations in software development of the next several decades. As with
the larger “software engineering” movement of which it was a part,
structured programming was both a specific technical approach to de-
signing and writing code and a statement about computer program-
ming as an intellectual and occupational activity. To write unstructured
code, according to Dijkstra and his supporters, was not simply to cre-
ate programs that were unwieldy, error prone, and difficult to maintain
but to demean the status of the discipline and to mark the programmer
as unprofessional.89

343

 Although the focus of Dijkstra’s critique of contemporary program-
ming practices focused on the go to statement, the flowchart was indi-
rectly implicated.90 The go to statement was used to transfer control of
a program from one line of code to another. Whereas invoking a sub-
routine or a function returned control (and generally a value) to the
original calling routine, the go to statement served as a one-way jump
(or branch). As such, it corresponded directly to the decision node of
a flowchart. In fact, some argued that the branching structure of the
flowchart encouraged the use of go to statements.91 “Flowcharts look like
spaghetti, and therefore encourage spaghetti-like programs. . . . [T]hey
provide irresistible temptations to jump into the middle of otherwise
working construction, violating their preconditions and generating un-
traceable bugs.”92 Others simply identified both practices as being simi-
larly counterproductive to well-structured programming: “Flowcharts,
like goto’s, belong to the class of objects that are detrimental to good pro-
gramming.”93 A series of popular books published in the 1970s and orga-
nized around “programming proverbs” suggested that “the case against
program flowcharts is similar to the case against GOTO. The lines and ar-
rows can easily lead the user into a highly sequential mode of thinking.”94
Once the “structured programming approach is fully adopted, the need
for flow charts will be reduced,” argued one 1975 article in the ACM
SIGCPR (Special Interest Group on Computer Programming Research).95

 The debate about structured programming focused intense scru-
tiny on the flowchart. Some computer scientists attempted to reform
the technology. Although “conventional flowcharts [were] a hindrance
to structured programming,” they nevertheless had value, and at the
very least were ubiquitous in practice, and so perhaps they could be
reformed.96 In 1973 Ben Schneiderman and Ike Nassi published their
proposal for “flowchart techniques for structured programming.”97 The
representational system that they developed eventually became known
as the Nassi-Schneiderman diagram, and it bears only a vague resem-
blance to the traditional flowchart. But by this period even proposing
an article on flowcharts provoked what Schneiderman later called the
“most brutal rejection letter” that he ever received. An anonymous re-
viewer for the Communications of the ACM not only recommended that
the ACM never publish any more articles on flowcharts (“flowcharts
[were] a crutch we invented to try to understand programs written in
a confusing style”) but also suggested that “the best thing the authors
could do is collect all copies of this technical report and burn them,
before anybody reads them.”98 The prolific writer of systems analysis and
computer programming textbooks, Ned Chapin, also proposed his own
version of a structured flowchart that he called “Chapin Charts.”99

344 I&C/Multiple Meanings of a Flowchart

 For the most part, however, the structured programming move-
ment signaled the beginning of the end of the traditional flowchart.
The late 1970s and early 1980s witnessed a spate of empirical research
on flowcharts, the most significant of which was a 1977 study that con-
cluded, “No statistically significant difference between flowchart and
nonflowchart groups has been shown, thereby calling into question the
utility of detailed flowcharting.”100 By the beginning of the 1980s, the
flowchart was a defunct technology—at least in terms of the academic
literature.101 Today most programmers use other forms of software vi-
sualizations, from Bachmann diagrams to UML diagrams, to attempt to
map the complexity of software systems development.

The Flowchart Is Dead. Long Live the Flowchart!

 Although by the late 1970s most academic computer scientists had
dismissed the flowchart as being both incorrect and irrelevant, as a rep-
resentational technology flowcharts have proven remarkably long-lived.
Flowcharts are still widely used in introductory programming courses,
particularly those aimed at nonspecialists.102 They are also enormously
popular in contemporary management literature for many of the same
reasons that they were popular with managers in the early decades of
computing: flowcharts embody the idealized separation of head and
hand that is essential to modern managerial capitalism. Even among
nonprogrammers, the flowchart is one of the most visible symbols of
the pervasive influence of the computational mind-set on popular cul-
ture. Flowcharts have become one of the most accessible forms of visual
humor, for example, as even the most cursory search on the Internet
will reveal: “Should I do my laundry?” “Do I deserve a cookie?” and
“How to write an academic article” are all examples of the ways in which
flowcharts are mobilized as visual illustrations in a wide variety of con-
texts. The fact that such charts are assumed to be instantly recognizable
and readily understood by a wide variety of audiences is a testament to
the remarkable degree to which an obsolete software development tech-
nology has survived and adapted to a changing environment.
 The unexpected durability of flowcharts is significant for historians
for several reasons. In recent years it has become clear to historians of
computing that it is the history of software, not the computer itself, that
is most essential to understanding the larger economic, social, and cul-
tural significance of the “digitization” of modern society.103 But one of
the many challenges associated with writing the history of software is
that software is largely invisible, intangible, and ephemeral. Although

345

software is arguably the primary interface through which most of us per-
ceive and experience the electronic digital computer, software leaves
surprisingly few material traces of its existence or influence. The com-
puter code that makes up software is constantly evolving and being re-
written—or rewriting itself; program listings and source code are rarely
archived in a form accessible or legible to historians; magnetic tape,
floppy disks, and CD-ROMS have notoriously short life spans, and even
when they survive, it is difficult or impossible to find the hardware re-
quired to read or execute the software that they contain. Documentation
and manuals are rendered obsolete by even the most minor software up-
dates and are often deliberately destroyed or discarded. In other words,
software history is lacking in material resources and culture. Flowcharts
are one of the few tangible remnants from this critical period in soft-
ware history, and historians of computing have not yet learned to make
effective use of them.

Figure 7. This cartoon from the XKCD webcomic (xkcd.com) is but one
example of the adaptation of the flowchart into popular culture. The
flowchart is one of the most durable and recognizable visual cultural
expressions of the pervasiveness of the computational mind-set.

346 I&C/Multiple Meanings of a Flowchart

 In addition to being quite literally durable in ways that other forms
of software are not, flowcharts provide a unique record of the larger
software processes and organizations of which computer code is but
one component. A well-written computer program is, in theory at least,
self-documenting; that is, the computer code itself contains its own
complete written specification. And yet despite the computer scientist
Donald Knuth’s famous claim that computer programs, like literature,
were meant to be read by humans as much as by machines, for the most
part computer programs are too arcane and idiosyncratic for even their
original authors to fully understand.104 Flowcharts allow us to “see” soft-
ware in ways that are otherwise impossible. Not only do they provide a
visual record of the design of software systems (albeit, as we have seen,
never an entirely accurate record), flowcharts can also serve as a map
of the complex social, organizational, and technological relationships
that comprise most large-scale software systems. In this sense, the many
liabilities of flowcharts identified by contemporaries—that they were im-
perfect, imprecise, mutable, and contested—become virtues for the his-
torians. As David Nicolini, Jeanne Mengis, and Jacky Swan note in their
work on bioreactors as boundary objects, the “career” of such objects
“may not look like an orderly trajectory as much as a messy, iterative
journey.” It is as “triggers of contradictions and negotiation,” rather than
as stable, mutually agreed upon representations of reality, that bound-
ary objects help “explain the potentially conflictual nature of collabora-
tive activity.”105 To acknowledge that any particular flowchart satisfied
no one entirely and was the subject of constant critique, conflict, and
negotiation is simply to recognize that, like all maps, the flowchart rep-
resented only a selective perspective on reality. Interpreted creatively by
historians, however, such maps become a means of unraveling the as-
sumptions built into software systems about who would use them, how,
and for what purposes. They become “epistemic objects” not only for
our historical actors but also for historians as analysts.106

Notes

1. Paul DesJardins and Dave Graves, “The Programmer’s Primer and Color-
ing Book,” Datamation 9, no. 9 (1963): 47–50.

2. I. G. Seligsohn, Your Career in Computer Programming (New York: Julian
Messner, 1967); George Gleim, Program Flowcharting (New York: Holt, Rinehart
and Winston, 1970).

3. Robert J. Rossheim, “Report on Proposed American Standard Flowchart
Symbols for Information Processing,” Communications of the ACM 6, no. 10
(1963): 599–604.

347

4. Saul Gorn, “Conventions for the Use of Symbols in the Preparation of
Flowcharts for Information Processing Systems,” Communications of the ACM 8,
no. 7 (1965): 439–40.

 5. G. K. Gupta, “Computer Science Curriculum Developments in the 1960s,”
IEEE Annals of the History of Computing 29, no. 2 (2007): 40–54.

 6. IBM Corporation, Introduction to IBM Data Processing Systems (White Plains:
IBM Technical Publications, 1969).

 7. Gleim, Program Flowcharting.
 8. Alfonso F. Cardenas, “Technology for Automatic Generation of Applica-

tion Programs: A Pragmatic View,” MIS Quarterly 1, no. 3 (1977): 49–72.
 9. J. M. Yohe, “An Overview of Programming Practices,” ACM Computing

Surveys 6, no. 4 (1974): 221–45.
10. Frederick Brooks, The Mythical Man-Month (Reading, MA: Addison, 1982).
11. Wayne LeBlanc, “Standardized Flowcharts,” ACM SIGDOC Asterisk Journal

of Computer Documentation 4, no. 8 (1978): 18–28.
12. Donald E. Knuth, “Computer-Drawn Flowcharts,” Communications of the

ACM 6, no. 9 (1963): 555–63.
13. Brooks, The Mythical Man-Month.
14. M. Goetz, “Memoirs of a Software Pioneer: Part 1,” IEEE Annals of the

History of Computing 224, no. 1 (2002): 43–56.
15. Susan Leigh Starr and James R. Griesemer, “Institutional Ecology, ‘Trans-

lations’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Mu-
seum of Vertebrate Zoology, 1907–39,” Social Studies of Science 19, no. 3 (1989):
387–420.

16. Ibid., 12.
17. Kathryn Henderson, “Flexible Sketches and Inflexible Data Bases: Visual

Communication, Conscription Devices, and Boundary Objects in Design Engi-
neering,” Science, Technology & Human Values 16, no. 4 (1991): 456, emphasis
added.

18. Ibid.
19. Michael S. Mahoney, “What Makes the History of Software Hard,” IEEE

Annals of the History of Computing 30, no. 3 (2008): 8–18.
20. Arnold Ditri and Donald Wood, “The End of the Beginning—the Fizzle

of the ‘Computer Revolution’” (New York: Touche Ross and Company, 1969).
21. Nathan Ensmenger, The Computer Boys Take Over: Computers, Programmers,

and the Politics of Technical Expertise (Cambridge, MA: MIT Press, 2010).
22. Haskell Curry and Willa Wyatt, “A Study of Inverse Interpolation of the

Eniac,” Aberdeen Ballistics Research Laboratory, 1946.
23. Haskell Curry, “On the Composition of Programs for Automatic Com-

puting,” Naval Ordnance Laboratory, 1949; John von Neumann and Herman
Goldstine, “Planning and Coding of Problems for an Electronic Computing In-
strument,” Institute for Advanced Study, Princeton, NJ, 1948.

24. S. J. Morris and O. C. Z. Gotel, “Flow Diagrams: Rise and Fall of the First
Software Engineering Notation,” in Diagrams ’06: Proceedings of the 4th Inter-
national Conference on Diagrammatic Representation and Inference (Berlin: Springer-
Verlag, 2006).

25. Ibid., 3.
26. James M. Wilson, “Gantt Charts: A Centenary Appreciation,” European

Journal of Operational Research 149, no. 2 (2003): 430–37.

348 I&C/Multiple Meanings of a Flowchart

27. Von Neumann and Goldstine, “Planning and Coding.”
28. Stephen Morris and Orlena Gotel, “The Role of Flow Charts in the Early

Automation of Applied Mathematics,” BSHM Bulletin: Journal of the British Society
for the History of Mathematics 26, no. 1(2011): 44–52.

29. Morris and Gotel, “Flow Diagrams.”
30. Sperry Rand Corporation, An Introduction to Programming the UNIVAC

1103A and 1105 Computing Systems (New York: Remington Rand Univac, 1958).
31. Brian Randall and John N. Buxton, Software Engineering: Proceedings of the

NATO Conferences (New York: Petrocelli/Carter, 1976).
32. Sherry Turkle, Evocative Objects: Things We Think With (Cambridge, MA:

MIT Press, 2011).
33. IBM Corporation, Flowcharting Techniques (White Plains, NY: IBM Corpo-

ration, 1971).
34. Gene Bylinsky, “Help Wanted: 50,000 Programmers,” Fortune 75 (1967):

141–68; Eloina Paleaz, “A Gift from Pandora’s Box: The Software Crisis” (PhD
diss., University of Edinburgh, 1988); Nathan Ensmenger, “The ‘Question of
Professionalism’ in the Computer Fields,” IEEE Annals of the History of Computing
23, no. 4 (2001): 56–73.

35. IBM, Flowcharting Techniques.
36. Bruno Latour, “Visualization and Cognition: Drawing Things Together,”

Knowledge and Society 6 (1986): 1–40.
37. S. D. Conte et al., “An Undergraduate Program in Computer Science—

Preliminary Recommendations,” Communications of the ACM 8, no. 9 (1965):
543–52; Robert Ashenhurst, “Curriculum Recommendations for Graduate Pro-
fessional Programs in Information Systems,” Communications of the ACM 15, no. 5
(1972): 363–98.

38. Ned Chapin, “Flowcharting with the ANSI Standard: A Tutorial,” ACM
Computing Surveys 2, no. 2 (1970): 119–46.

39. Robert McFarland, “Electronic Power Grab,” Business Automation 12
(1965): 30–39; Harry Stern, “Information Systems in Management Science,”
Management Science 13, no. 8 (1970): 540–42.

40. Edward Markham, “EDP Schools: An Inside View,” Datamation 14, no. 4
(1968): 22–27.

41. John Hanke, William Boast, and John Fellers, “Education and Training
of a Business Programmer,” Journal of Data Management 3, no. 6 (1965): 38–53.

42. F. A. Hosch, “Whither Flowcharting?,” ACM SIGCSE Bulletin 9, no. 3
(1977): 66–73.

43. Thomas McInerney and Andre Vallee, A Student’s Guide to Flowcharting
(Englewood Cliffs, NJ: Prentice-Hall, 1973).

44. A. R. Feinstein, “An Analysis of Diagnostic Reasoning. 3. The Construction
of Clinical Algorithms,” Yale Journal of Biology and Medicine 47, no. 1 (1974):
5–32; Patrica Baucom, “Software Blueprints,” in ACM ’78: Proceedings of the 1978
Annual Conference (New York: ACM Press, 1978).

45. Ronald Elliott, Problem Solving and Flowcharting (Reston, VA: Reston Pub-
lishing, 1972).

46. Gleim, Program Flowcharting.
47. Cyrus F. Gibson and Richard L. Nolan, “Organizing and Managing Com-

puter Personnel: Conceptual Approaches for the MIS Manager,” in Proceedings
of the Eleventh Annual SIGCPS Computer Personnel Research Conference, SIGCPR ’73
(New York: ACM Press, 1973), 19–45.

349

48. Thomas Schriber, Fundamentals of Flowcharting (New York: Wiley and Sons,
1969).

49. Nathan Ensmenger, “Making Programming Masculine,” in Gender Codes:
Why Women Are Leaving Computing (Hoboken, NJ: Wiley and Sons, 2010).

50. John Lenher, Flowcharting (Philadelphia: Auerbach Publishers, 1972);
Mario Farino, Flowcharting (Englewood Cliffs, NJ: Prentice-Hall, 1970).

51. Eliot, Problem Solving and Flowcharting, 5.
52. Ibid., 73.
53. Hosch, “Whither Flowcharting?”
54. Acts 15:10, Good News Bible translation, quoted in Brooks, The Mythical

Man-Month (1982).
55. Brooks, The Mythical Man-Month, 194.
56. Chapin, “Flowcharting,” 143.
57. Knuth, “Computer-Drawn Flowcharts.”
58. Donald Knuth, “Structured Programming with Go To Statements,” Com-

puting Surveys 6, no. 4 (1974): 261–301.
59. Quote is from Knuth, “Structured Programming,” 292. The flowchart

described is from Donald Knuth, “RUNCIBLE—Algebraic Translation on a
Limited Computer,” Communications of the ACM 2, no. 11 (1959): 18–21.

60. G. J. Nutt, “The Computer System Representation Problem,” in The 1st
Symposium on Simulation of Computer Systems (Piscataway, NJ: IEEE Press, 1973).

61. B. Conway, J. Gibbons, and D. E. Watts, “Business Experience with Electronic
Computers: A Synthesis of What Has Been Learned from Electronic Data Process-
ing Installations,” report produced by Price Waterhouse, New York, 1959, 82.

62. Ensmenger, The Computer Boys Take Over, 59.
63. Ibid.
64. Chapin, “Flowcharting,” 142.
65. K. C. Waddel and J. H. Cross, “Survey of Empirical Studies of Graphical

Representations for Algorithms,” in CSC ’88: Proceedings of the 1988 ACM Sixteenth
Annual Conference on Computer Science (New York: ACM Press, 1988).

66. Beth A. Bechky, “Object Lessons: Workplace Artifacts as Representations
of Occupational Jurisdiction,” American Journal of Sociology 109, no. 3 (2003):
720–52.

67. Beth A. Bechky, “Object Lessons,” in The Knowledge Economy and Lifelong
Learning, ed. D. W. Livingstone and David Guile, vol. 4, The Knowledge Econ-
omy and Education (Sense Publishers, 2012), 229–56, emphasis added.

68. Ibid.
69. Starr and Griesemer, “Institutional Ecology”; Cliff Oswick and Maxine

Robertson, “Boundary Objects Reconsidered: From Bridges and Anchors to Bar-
ricades and Mazes,” Journal of Change Management 9, no. 2 (2009): 179–93.

70. Hosch, “Whither Flowcharting?,” 70.
71. 2nd RAND Symposium (1959), CBI 78, box 1, folder 1, Archives of the

Charles Babbage Institute, University of Minnesota, Minneapolis.
72. Wiebe Bijker, Thomas Hughes, and T. J. Pinch, eds., The Social Construc-

tion of Technological Systems (Cambridge, MA: MIT Press, 1987).
73. Yohe, “An Overview of Programming Practices.”
74. Nathan Ensmenger, “Software as History Embodied,” IEEE Annals of the

History of Computing 31, no. 1 (2009): 88–91.
75. Richard Canning, “The Maintenance ‘Iceberg,’” EDP Analyzer 10, no. 10

(Vista, CA: Canning Publications, 1972): 1–14.

350 I&C/Multiple Meanings of a Flowchart

76. T. C. Willoughby and A. D. Arnold, “Communicating with Decision Ta-
bles, Flowcharts, and Prose,” SIGMIS Database 4 (1972).

77. Latour, “Visualization and Cognition.”
78. Elaine Yakura, “Charting Time: Timelines as Temporal Boundary Ob-

jects,” Academy of Management Journal 45, no. 5 (2002): 956–70.
79. Knuth, “Computer-Drawn Flowcharts.”
80. Yohe, “An Overview of Programming Practices.”
81. Lois Haibt, “A Program to Draw Multilevel Flow Charts,” Papers Presented

at the 1959 Western Joint Computer Conference (New York: ACM Press, 1960), 131.
82. Thomas Haigh, “Software in the 1960s as Concept, Service, and Product,”

IEEE Annals of the History of Computing 24, no. 1 (2002): 5–13.
83. Goetz, “Memoirs.”
84. Gerardo Con Diaz, “Intangible Inventions: Patents and the History of

Software Development, 1945–1985” (PhD diss., Yale University, 2016), 139.
85. One particularly interesting example of this interpretive flexibility also

involves Marty Goetz, the creator of Autoflow. In 1965 Goetz had applied for
a patent for a software-based sorting application and had provided, as the pri-
mary description of his invention, the flowchart of his algorithm. In 1968 he
was granted the first software patent ever awarded, in the process defining yet
another meaning for the flowchart, this time as a form of legal documentation.

86. Oswick and Robertson, “Boundary Objects Reconsidered,” Journal of
Change Management 9, no. 2 (2009): 179–93.

87. Ensmenger, The Computer Boys Take Over.
88. Edsger Dijkstra, “Go To Statement Considered Harmful,” Communications

of the ACM 11 (1968): 147.
89. Ensmenger, The Computer Boys Take Over.
90. E. Dijkstra, Trip Notes, 1965 (EWD 572). Quoted in http://kazimirmajorinc

.com/Documents/Why-Dijkstra-didnt-like-Lisp/index.html.
91. Linda Jones and David Nelson, “A Quantitative Assessment of IBM’s Pro-

gramming Productivity Techniques,” in DAC ’76 Proceedings of the 13th Design
Auto mation Conference (New York: ACM Press, 1976).

92. C. H. Lindsey, “Structure Charts a Structured Alternative to Flowcharts,”
ACM SIGPLAN Notices 12 (1977): 36.

93. Hosch, “Whither Flowcharting?,” 67.
94. Quote from Henry Ledgard and John Tauer, Pascal with Excellence (Engle-

wood Cliffs, NJ: Prentice Hall, 1986), 208. See also Louis Chmura and Henry
Ledgard, Cobol with Style: Programming Proverbs (Rochelle Park, NJ: Hayden Book
Company, 1976); Henry Ledgard and L. J. Chmura, FORTRAN with Style: Pro-
gramming Proverbs (Rochelle Park, NJ: Hayden Book Company, 1978).

95. Angel Vargas, Luis Kornhauser, and Javier Olivares, “Development of a
Job Description for Unionized Programmers,” in ’75 Proceedings of the Thirteenth
Annual SIGCPR Conference (New York: ACM Press, 1975), 135.

96. Lindsey, “Structure Charts,” 36; LeBlanc, “Standardized Flowcharts.”
97. Ike Nassi and Ben Schneiderman, “Flowchart Techniques for Structured

Programming,” ACM SIGPLAN Notices 8, no. 8 (1973): 12–26.
98. “Letter from ACM Communications to B. Shneiderman” (1972), ac-

cessed April 28, 2015, https://www.cs.umd.edu/hcil/members/bshneiderman
/nsd/rejection_letter.html.

351

 99. Ned Chapin, “New Format for Flowcharts,” Software: Practice and Experi-
ence 4 (1974); Ned Chapin, “Some Structured Analysis Techniques,” ACM SIG-
MIS Database 10 (1978).

100. Ben Shneiderman et al., “Experimental Investigations of the Utility of
Detailed Flowcharts in Programming,” Communications of the ACM 20 (1977):
373; H. R. Ramsey and M. E. Atwood, “Flowcharts vs. Program Design Lan-
guages: An Experimental Comparison,” Communications of the ACM 26 (1983);
J. B. Brooke and K. D. Duncan, “Experimental Studies of Flowchart Use at Dif-
ferent Stages of Program Debugging,” Ergonomics 23, no. 11 (1980): 1057–91;
Bill Curtis, “A Review of Human Factors Research on Programming Languages
and Specifications,” Proceedings of the 1982 Conference on Human Factors in Comput-
ing Systems (New York: ACM Press, 1982).

101. Maarten van Emden, “Flowcharts, the Once and Future Programming
Language,” accessed May 23, 2015, https://vanemden.wordpress.com/2012/04
/08/flowcharts-the-once-and-future-programming-language/.

102. Anil Bikas Chaudhuri, The Art of Programming Through Flowcharts & Al-
gorithms (Bangalore: Firewall Media, 2005); Kang Zhang, Software Visualization:
From Theory to Practice (Boston: Kluwer Academic, 2003).

103. Nathan Ensmenger, “The Digital Construction of Technology: Rethink-
ing the History of Computers in Society,” Technology and Culture 53, no. 4 (2012):
753–76.

104. Donald Knuth, Literate Programming (Stanford, CA: Center for the Study
of Language, 1992).

105. David Nicolini, Jeanne Mengis, and Jacky Swan, “Understanding the
Role of Objects in Cross-Disciplinary Collaboration,” Organization Science 23
(2012): 621.

106. Karin Knorr Cetina, “Sociality with Objects Social Relations in Postsocial
Knowledge Societies,” Theory, Culture & Society 14, no. 4 (1997): 1–30.

