
115

 In the April 1967 issue of Cosmopolitan magazine, sandwiched between “ The
Bachelor Girls of Japan ” and “ A Dog Speaks: Why a Girl Should Own a Pooch, ”
there appeared a curious little essay entitled simply “ The Computer Girls. ” As
the article explained, these were the female “ computer programmers ” who
taught the dazzling new “ miracle machines ” called computers “ what to do and
how to do it. ” There were already more than 20,000 women working as com-
puter programmers in the United States, argued the article ’ s author, Lois Mandel,
and there was an immediate demand for 20,000 more. Not only could a talented
 “ computer girl ” command as much $20,000 a year, but the opportunities for
women in computing were effectively “ unlimited. ” The rapid expansion of the
computer industry meant that “ sex discrimination in hiring ” was unheard of,
Mandel confi dently declared, and anyone with aptitude — male or female,
college educated or not — could succeed in the fi eld. And not only were women
in computing treated as equals, but they actually had many advantages over
their male colleagues. Programming was “ just like planning a dinner, ” Mandel
quoted the noted computer scientist Dr. Grace Hopper as saying, “ You have to
plan ahead and schedule everything so it ’ s ready when you need it. Programming
requires patience and the ability to handle detail. Women are ‘ naturals ’ at
computer programming ” [1] .

 It would be easy to dismiss “ The Computer Girls ” as a fl uff piece, a
half - hearted attempt by Cosmopolitan to capitalize on contemporary interest in
the computer revolution. To modern readers the very language of the “ computer
girl ” appears condescending and sexist. The analogy between computer pro-
gramming and recipe creation seems forced and superfi cial (see Fig. 8.3). At
times the article descends into what seems almost a parody of formulaic
 Cosmopolitanism , such as when Sally Brown, “ a redhead from South Bend,

Making Programming
Masculine

 NATHAN ENSMENGER

 6

Gender Codes: Why Women Are Leaving Computing, Edited by Thomas J. Misa
Copyright © 2010 the IEEE Computer Society

116 CHAPTER 6 MAKING PROGRAMMING MASCULINE

Indiana, ” confesses that she doesn ’ t mind working late because there is often
 “ a nice male programmer to take a girl home. … ” At one point the author
speculates, seemingly without irony, about the “ the chances of meeting men in
computer work. ” (The conclusion she comes to is that these are “ very good, ”
as the fi eld was currently “ overrun ” with men.) The last word of the article text
comes from a patronizing male programmer: of course “ we like having the girls
around, ” he declares, “ they ’ re prettier than the rest of us. ” And, in true
 Cosmopolitan style, the article concludes with a “ Cosmo Quiz ” — by answering
a few simple questions, any Cosmo girl could see whether she too had what it
took to be a professional computer programmer making “ $15,000 after fi ve
years ” [1] .

 But underneath its seemingly frivolous exterior, “ The Computer Girls ”
article gives insight into the gender dynamics of computer work at one of the
most critical periods in its history. It refl ects very accurately the confusing — and
often contradictory — messages about the proper role of women in the comput-
ing fi elds. On the one hand, women did play a critical role in early computing,
particularly in computer programming. Compared to most technical professions,
computer programming was unusually open to females (see Figs. 1.1 , 10.1 ,
 10.3 , and 12.4). But on the other hand, in the late 1960s the computer program-
ming community was also actively making itself masculine, pursuing a strategy
of professional development that would eventually make it one of the most
stereotypically male professions, inhospitable to all but the most adventurous
and unconventional women.

 Let ’ s begin with what the Cosmopolitan article gets right.
 First, it is true that in the late 1960s there were an exceptionally large

number of women working in computer programming. In fact, if anything the
 Cosmo article underestimates the percentage of women programmers. Mandel
suggests that one out of every nine working programmers was female. This is
probably overly conservative. The exact percentage of female programmers is
diffi cult to pin down with any accuracy — even fi guring out the total number of
programmers in this period is diffi cult — but other reliable contemporary observ-
ers suggest that it was closer to 30% [2] . The fi rst government statistics on the
programming profession do not appear until 1970, when it was calculated that
22.5% of all programmers were women — an estimate more than twice Mandel ’ s
estimate [3] .

 Of course, computing itself is a very broad term covering a multitude of
occupational categories, including high - status jobs like computer programming
and systems analysis as well as low - status jobs such as keypunch operator.
Women tended to congregate in the lower end of the occupational pool in
computing. Even within computer programming there were different roles dif-
ferentially available to men and women. But as the Cosmopolitan article rightly
points out, compared to most of the traditional professions, computer program-
ming was remarkably receptive to females (see Chapters 10 and 11). One of
the programmers it profi led, Helene Carson, had previously earned an MA
degree in astrophysics at Harvard. Although Carlson had discovered that “ there
wasn ’ t much a woman could do in astronomy, ” in computing she felt that she
had been “ fully accepted as a professional ” [1] .

 Again, there is evidence that Carlson (and Cosmo) was absolutely spot -
 on in regard to the vertical mobility available to women in computer program-

CHAPTER 6 MAKING PROGRAMMING MASCULINE 117

ming. Compared to other technical disciplines, computer programming was not
highly stratifi ed along gender lines. Not only were women able to break into
the entry levels of the profession, but some were able to climb to its highest
pinnacles. In 1969, for example, the Data Processing Management Association
recognized Grace Hopper with its very fi rst “ man of the year ” award in the
computer sciences. That an emerging professional society with grand aspirations
for technical and managerial leadership would even consider giving its fi rst
major award to a woman is really quite remarkable. Although Hopper was
unusual in that she possessed both a Ph.D. and a commission in the United
States Navy (at that time as a Lieutenant Commander), she was not entirely sui
generis : other women, including Betty Snyder Holberton, Jean Sammet, and
Beatrice Helen Worsley, all came to occupy infl uential positions within the
computing community (see Figs. 3.4 , 6.3 , 12.2 , and 12.3) [4] .

 In addition to accurately representing the state of the contemporary labor
market in programming, the Cosmopolitan article also does a reasonable job of
explaining its unique characteristics. In large part, the unusual freedom of
opportunity available to women in computing was simply an outgrowth of the
rapid growth of the commercial computer industry. An industry that was dou-
bling in size every year or two simply could not afford to discriminate against
women (Fig. 6.1). “ Every company that makes or uses computers hires women
to program them, ” the article noted matter - of - factly: “ If a girl is qualifi ed, she ’ s
got the job. ” And since the meaning of “ qualifi ed ” in this period was still being

 Figure 6.1. Control Data appeals to “ girl graduate ” and her parents. “ The
world of opportunity lies before you … be part of the data processing,
computers, and orbiting space vehicle intrigue, ” suggested Control Data to the
 “ girl graduate. ” To her parents, “ You ’ re not losing a daughter — you ’ re gaining
a career girl. … Let her give Control Data a try. ” (Courtesy of Charles Babbage
Institute.)

118 CHAPTER 6 MAKING PROGRAMMING MASCULINE

negotiated (more on this point later), there was no particular reason for fi rms to
privilege men over women [1] .

 It would be diffi cult to overemphasize the degree to which the program-
mer labor shortage of the 1960s dominated contemporary discussions of the
health and future of the computer industry. For years, industry employers had
been warning of an imminent shortage of computer programmers. The “ gap in
programming support ” threatened to wreak havoc with the industry [5] . In 1962
the editors of the powerful industry journal Datamation declared that “ fi rst on
anyone ’ s checklist of professional problems is the manpower shortage of both
trained and even untrained programmers, operators, logical designers and engi-
neers ” [6] . In 1966 the “ personnel crisis ” had developed into a full blown
 “ software crisis, ” according to Business Week magazine [7] . An informal 1967
survey of MIS (management information systems) managers identifi ed as the
primary hurdle “ handicapping the progress of MIS ” to be “ the shortage of good,
experienced people ” [8] . One widely quoted study released that same year
noted that although there were already 100,000 programmers working in the
United States, there was an immediate need for at least 50,000 more [9] .
Estimates of the number of programmers that would be required by 1970 ranged
as high as 650,000 [10] . “ Competition for programmers has driven salaries up
so fast, ” warned Fortune in 1967, “ that programming has become probably the
country ’ s highest paid technological occupation. … Even so, some companies
can ’ t fi nd experienced programmers at any price ” [11] . The ongoing “ shortage
of capable programmers, ” argued Datamation , “ had profound implications, not
only for the computer industry as it is now, but for how it can be in the future ”
 [10] .

 In the face of this perpetual shortage of programmers, employers turned
to extraordinary measures. Recruitment companies scoured local community
centers and YMCA facilities for potential programmer trainees, administering
programming aptitude tests to almost every warm body they could fi nd [12] . In
1968 one computer service bureau in New York City even began testing inmates
at the nearby Sing Sing prison, promising them permanent positions on their
release [13] . Given that employers were willing to hire prisoners as program-
mers, their appeal to Cosmopolitan readers is unexceptional. As in the case of
other severe labor shortages — wartime, for example — women were able to
move into fi elds from which they might otherwise have been excluded.

 The combination of low barriers to entry and subsidized technical edu-
cation made programming powerfully appealing to many women who might
otherwise be trapped in traditionally female occupations. But it was not only
the desperate need for programmers that allowed women unique opportunities
within the profession. Although in the late 1960s programming was generally
considered highly skilled labor — as one observer declared, “ generating software
is ‘ brain business, ’ often an agonizingly diffi cult intellectual effort ” — the exact
nature of that intellectual effort was not yet clearly defi ned [11] . Programming
was “ not yet a science, ” argued the same observer, “ but an art that lacks stan-
dards, defi nitions, agreement on theories and approaches ” [11] . The lack of a
fully established scientifi c or engineering identity left space open for women.
Although the possession of a college degree in mathematics was still considered
a necessity in scientifi c computing (which tipped the scales demographically in

CHAPTER 6 MAKING PROGRAMMING MASCULINE 119

favor of males), business computing — the most rapidly growing segment of the
commercial computer programming industry — required an entirely different set
of skills. What these skills were no one quite knew, and so many fi rms relied
on aptitude tests to determine which employees had the most potential for
programming. Aptitude was everything; you either had it or you didn ’ t. And
since there was no particular reason that these aptitude tests were gender spe-
cifi c (again, more on this later), there was also no reason that men would be
more likely than women to be selected as programmer trainees. In addition, as
the Cosmopolitan article also correctly noted, since most fi rms preferred to train
programmers from within, and therefore often tested all of their employees for
programming aptitude, even women working in such highly feminized (and
low - status) occupations as stenography had a chance at becoming a program-
mer. The trick was getting some initial experience: as one employment coun-
selor cited by Mandel argued, “ a girl ’ s best bet is to get a spot anywhere in the
computer department, using skills like fi ling or typing or accounting, with the
plan in mind to get on the fi rm ’ s programmer - trainee list from the inside. ” There
were outside vocational schools that claimed to prepare people for careers in
programming, but as one of the “ girls ” quoted in the article declared, “ I ’ d never
consider paying for my own training when I can get someone else to pay for
it. ” [1 , p. 56].

 It is worth noting as well that, given this context, the quiz provided at
the end of “ The Computer Girls ” article was no superfl uous or silly afterthought.
The quiz included real questions from the aptitude test developed by NCR to
test for programming aptitude. Similar tests, most notably the IBM Programmer
Aptitude Test (PAT), were used by 80% of all employers to select for program-
mer trainees [14] . In 1967 alone, the PAT was administered to more than
700,000 individuals [15] .

 In any case, after noting a few other reasons why programming might
be an appealing profession for women — including that at least some program-
ming work could be done at home (while children were napping) — the
 Cosmopolitan article concluded by suggesting that it was largely a lack of
knowledge about the fi eld that kept women from entering it in greater numbers.
Since programming was thought to be vaguely mathematical in nature (incor-
rectly, the article concludes), and since female students were often discouraged
from pursuing any fi elds involving science or mathematics, they too often
missed out on the exciting opportunities available in programming. This was
unfortunate. “ I don ’ t know of any other fi eld, outside of teaching, where there ’ s
as much opportunity for a woman, ” the article quoted the director of education
for the Association for Computing Machinery, James Adams, as saying. “ Soon,
mothers will be telling their daughters: ‘ Now study your arithmetic so you can
become a computer girl. ’ ” (See Figure 6.2 .)

 What makes the vision of widespread female participation in the com-
puter industry portrayed in “ The Computer Girls ” so intriguing today, of course,
is that it is so unfamiliar. From a contemporary perspective, the computing
professions appear egregiously male dominated. The problem of female partici-
pation in computer science programs — declining since the mid - 1980s — is of
particular concern and is generally explained in terms of “ opening up ” the
discipline to women. The idea that many of the computing professions were

120 CHAPTER 6 MAKING PROGRAMMING MASCULINE

not only historically unusually accepting of women, but were in fact once
considered “ feminized ” occupations, seems extraordinary, if not unbelievable.
And yet a historical understanding of how the computing professions acquired
their gendered identity, how they were “ made masculine, ” is critical to any
attempt to address the current gender imbalance in computing. The historical
perspective, in this case, is not only relevant but essential.

 Beginning in the 1990s, historians of computing began to recognize the
crucial contributions that women made to the development of electronic com-
puting. Like many such (re)discoveries of the previously unrecognized contribu-
tions of women, this one had both historical and contemporary signifi cance.
Given that computing was generally considered to be particularly masculine
(even when compared to the traditionally male - dominated engineering disci-
plines), the surprisingly large presence of women in early computing seemed
to turn on its head conventional assumptions about the lack of female participa-
tion in contemporary computing. It wasn ’ t that women were uninterested in
computing, or unprepared or constitutionally disinclined to participate, the
historical evidence seemed to suggest, but rather that their participation had
been systematically ignored or underreported [16] . In light of contemporary

 Figure 6.2. Evelyn Murphy, a “ computer girl, ” at the control console of the
National Bureau of Standards pilot computer (c.1960). (National Bureau of
Standards image number 30062 – 3.)

IN THE BEGINNING WERE THE WOMEN … 121

debates about low (and declining) female enrollments in departments of com-
puter science, this seemed a signifi cant and empowering discovery [17] . The
focus of most of this literature has been, understandably enough, on what Judy
Wacjman, among others, has called the “ hidden history ” of women in technol-
ogy [18] . The goal was to explore what the history of women in computing had
to say about women — about their contributions, experiences, and abilities [19] .

 This chapter will address instead the fl ip side of this question: namely,
what the history of women in computing has to say about computing . Because
of the modern association of computer work — particularly computer program-
ming — with high - status males, we tend to assume that such work has always
been masculine, and that the presence of women is therefore exceptional. My
argument is that most computer work — again, particularly computer program-
ming — began as women ’ s work. It had to be made masculine. This process of
masculinization was closely associated with the development of the profes-
sional structures of the discipline: formal programs in computer science, profes-
sional journals and societies, certifi cation programs, and standardized
development methodologies. Seen from the perspective of aspiring computer
professionals (primarily male), “ The Computer Girls ” article represented not a
celebration of the openness and opportunity inherent in their industry, but an
indictment of everything that was wrong with it.

 In terms of the larger questions addressed in this volume, this chapter
provides important insights into the way in which the structures of a profession
both refl ect and replicate the culture of its practitioners. One of the most sig-
nifi cant barriers to female participation in computing is the culture of comput-
ing, a culture that is perceived to be inherently (and excessively) masculine.
The roots of this culture reach back into the early history of electronic comput-
ing and can only be understood, and addressed, in the context of a full historical
understanding of its origins.

 IN THE BEGINNING WERE THE WOMEN …
 The most prominent case study in the history of women in early computing is,
in fact, the earliest. In the early 1940s a group of six women — Kathleen McNulty,
Frances Bilas, Betty Jean Jennings, Betty Holberton, Ruth Lichterman, and
Marlyn Wescoff — were recruited to assist with the development and operation
of the University of Pennsylvania ’ s ENIAC machine (Fig. 6.3). The ENIAC
(Electronic Numerical Integrator And Computer) was one of the fi rst, and cer-
tainly most famous, early electronic computers, and the “ ENIAC girls ” (as they
were often referred to by contemporaries) were the female “ human computers ”
recruited by the male ENIAC engineers/managers to “ set up ” the general - pur-
pose ENIAC machine to perform the specifi c “ plans of computation ” required
to solve real - world problems. Although the idea of the computer “ program ” had
not yet been developed, the women of ENIAC are nevertheless widely cele-
brated as the world ’ s fi rst computer programmers. And not only was the pio-
neering work that they did on the ENIAC historically signifi cant, many went on
to subsequent careers — often at the highest levels — in electronic computing.

 The expectation was that the work of “ setting up ” the ENIAC would be
relatively trivial. But in his 1996 article based on interviews with the ENIAC

122 CHAPTER 6 MAKING PROGRAMMING MASCULINE

programmers, Barkley Fritz highlights the substantial contributions that these
women made to the operation — and particularly the troubleshooting — of the
ENIAC. According to Betty Jean Jennings, for example, the ENIAC women
learned to understand the internal wiring diagrams of the ENIAC machine, and
 “ as a result we could diagnose troubles almost down to the individual vacuum
tube. Since we knew both the application and the machine, we learned to
diagnose troubles as well as, if not better than, the engineer ” [20 , p. 20]. In a
few cases these female programmers signifi cantly affected the design of the
ENIAC and subsequent computers. ENIAC programmer Betty Holberton recalled
one particularly signifi cant episode when she convinced John von Neumann to
include a “ stop instruction ” in the machine: although initially dismissive, von
Neumann eventually recognized the programmer ’ s legitimate need for such an
instruction. Other accounts by participants and observers echo the critically
important — but generally unanticipated — role that the ENIAC programmers
played in facilitating the successful launch of one of the world ’ s most famous
early electronic computers. Yet, as Jennifer Light has convincingly demon-
strated, the contributions of these women were subsequently systematically
eliminated from the historical record [16] .

 There is no question that the work of the ENIAC women was disregarded
in large part simply because they were women. But almost as signifi cant as their
gender was their subordinate position as “ software ” workers in a hardware -
 oriented development project. Obviously, the two are closely related. Of course,

 Figure 6.3. Frances (Betty) Holberton (right) and Glen Beck (left) with ENIAC
at the U.S. Army Ballistic Research Laboratory (BRL) at Aberdeen Proving
Ground, Maryland. (U.S. Army Photo, http://ftp.arl.army.mil/ ∼ mike/
comphist/ .)

IN THE BEGINNING WERE THE WOMEN … 123

use of the word “ software ” in this context is anachronistic — the word itself
would not be introduced until 1958 — but the hierarchical distinctions and
gender connotations it embodies — between “ hard ” technical mastery and the
 “ softer, ” more social (and implicitly, of secondary importance) aspects of com-
puter work — are applicable [21] . In the status hierarchy of the ENIAC project,
it was clearly the male computer engineers who were signifi cant. The ENIAC
women were expected to simply adapt the “ plans of computation ” already
widely used in human computing projects to the new technology of the elec-
tronic computer. These “ plans of computation ” were themselves highly gen-
dered, having been traditionally developed by women for women (human
computing had been largely feminized by the 1940s). The ENIAC women would
simply “ set up ” the machine to perform these predetermined plans: that this
work would, in fact, be diffi cult and require radically innovative thinking was
completely unanticipated [22 , p. 53]. The telephone switchboard - like appear-
ance of the ENIAC programming cable - and - plug panels reinforced the notion
that programmers were mere machine operators, that programming was more
handicraft than science, more feminine than masculine, more mechanical than
intellectual (Fig. 6.4).

 The idea that the development of hardware was the real business of
computing, and that software was at best secondary, persisted for many years.
In the fi rst textbook on computing published in the United States, for example,
Herman Goldstine and John von Neumann outlined a clear division of labor in
computing — presumably based on their experience with the ENIAC project —
 that clearly distinguished between the “ head - work ” of the (male) scientist,
or “ planner, ” and “ hand - work ” of the (largely female) “ coder ” [23] . In the

 Figure 6.4. Programming ENIAC as telephone switching. Betty Jean Jennings
Bartik (left) and Frances Bilas Spence (right) setting up the ENIAC at the Moore
School. (U.S. Army Photo, http://ftp.arl.army.mil/ ∼ mike/comphist/ .)

124 CHAPTER 6 MAKING PROGRAMMING MASCULINE

Goldstine – von Neumann schema, the “ planner ” did the intellectual work of
analysis, and the “ coder ” simply translated this work into a form that a computer
could understand. “ Coding ” was a “ static ” process that could be performed by
a low - level clerical worker. “ Coding ” implied mechanical translation or rote
transcription; “ coders ” were obviously low on the intellectual and professional
status hierarchy. It was not unreasonable to expect that, as was the case in the
ENIAC project, that most of these “ coders ” would be women.

 An early manuscript version of the UNIVAC “ Introduction to
Programming ” manual mirrored this distinction between “ planner ” and “ coder. ”
In this instance the term “ programmer ” was used, somewhat unconventionally,
in place of “ planner, ” but the distinction between the analytical “ programmer ”
(the person who “ studies the problem, determines the appropriate method of
solution, and prepares the fl ow chart ”) and the clerical “ coder ” (who “ need only
be familiar with the technique of reducing the fl ow chart to the specifi c instruc-
tions, or coding, required by the UNIVAC to solve the problem ”) remains the
same [24] . In the UNIVAC manual, like the Goldstine – von Neumann textbook,
the real business of programming was analysis: the actual coding aspect of
programming was trivial and mechanical.

 It was not until the early 1950s that the term “ programmer ” was widely
adopted within the computing community. As David Grier has suggested, the
verb “ to program, ” with its military connotations of “ to assemble ” or “ to orga-
nize, ” suggested a more thoughtful and system - oriented activity [22 , p. 52]. But
even as “ programmer ” was increasingly adopted within the computing com-
munity, software workers would struggle to distance themselves from the status
(and gender) connotations suggested by the older designation “ coder. ” The
accusation that programmers were “ mere coders ” was used throughout the
1950s and 1960s by those who wanted to counter the infl uence of “ uppity ”
software workers. The noted computer scientist John Backus, for example,
argued that the adoption of the title “ programmer ” by former “ coders ” happened
 “ for the same reason that janitors are now called ‘ custodians ’ . … Programmer
was considered a higher class enterprise than ‘ coder, ’ and things have a ten-
dency to move in that direction ” [25] .

 The confl ation of programming and coding, and the association of both
with low - status clerical labor, suggested the ways in which early software workers
were gendered female. In the ENIAC project, of course, the programmers actually
were women. But the suggestion that “ coding ” was low - status clerical work
also implied an additional association with female labor. As Margery Davies
 [26] , Sharon Hartman Strom [27] , and Elyce Rotella [28] have described, clerical
work had, by the second decade of the 20th century, become largely feminized.
This was particularly true of clerical occupations that were characterized by
the rigid division of labor and the introduction of new technologies. Some
of these occupations carried over directly into the computer era: the job of key-
punch operator, for example, had been thoroughly feminized long before it
became associated with electronic data processing [29] . And although today we
do not associate the work of keypunchers with the work of the computer pro-
grammer, in the 1950s and 1960s the differentiation between keypunch operator
and other forms of computer work was not always clear. The Cosmopolitan
article, for example, lumped keypunch operators in among the “ computer girls, ”

THE “BAD BOYS” OF PROGRAMMING 125

and other contemporary sources identifi ed keypunch operators as an obvious
source of programmer trainees [30, 31] . In any case, the historical pattern has
been that low - status occupations, with the exception of those requiring certain
forms of physical strength, have often become feminized.

 THE “ BAD BOYS ” OF PROGRAMMING
 In the 1950s, however, computer programming was beginning to acquire new
status and a new gender identity. The experience of the ENIAC girls had shown
that electronic computing was anything but an “ automated form of hand com-
putation. ” The neat distinction made by Goldstine and von Neumann between
analysis and implementation quickly broke down in practice. To begin with,
since the primary purpose of the earliest computers was to produce solutions
to complex mathematical functions that could not be solved analytically, the
programmers of these computers necessarily required skill in numerical analy-
sis. This process of analysis was itself something of an art form: numerical
solutions always involved a compromise between speed and accuracy — even
when using the fastest computers. Choosing the right approximation involved
balancing acceptable error against the specifi c limitations of a given machine —
a process that required daring, creativity, and mathematical intuition.

 Perhaps even more signifi cantly, the performance and memory con-
straints of the fi rst generation of electronic computers demanded that program-
mers cultivate a series of idiosyncratic craft techniques to overcome the
limitations of primitive hardware. For example, contemporary memory devices
were so slow and had such little capacity that programmers had to develop
ingenious techniques to fi t their programs into the available memory space. In
order to coax every bit of speed out of a relatively slow storage device such as
a rotating memory drum, programmers would carefully organize their coded
instructions in such a way as to assure that each instruction passed by the
magnetic read head in the right order and at just the right execution time. Only
the best programmers could hope to develop applications that worked at accept-
able levels of usability and performance.

 For all of these reasons, programming began to acquire a reputation for
being incomprehensible to all but a small set of extremely talented insiders. As
John Backus would later describe it, “ programming in the 1950s was a black
art, a private arcane matter … each problem required a unique beginning at
square one, and the success of a program depended primarily on the program-
mer ’ s private techniques and invention. ” Techniques developed for one applica-
tion or installation could not be easily adapted for other purposes. There were
few useful or widely applicable tools available to programmers, and certainly
no “ science ” of programming. Programmers often worked in relative isolation
and had few opportunities for formal or even informal education. They generally
perceived little value in the work going on at other fi rms or laboratories, as it
was equally haphazard and idiosyncratic. They placed great emphasis on local
knowledge and individual ability.

 The heady combination of mathematics, engineering “ tinkering, ” and
arcane technique attracted a certain kind of male to computer programming.
Some had abandoned careers in more established scientifi c disciplines to pursue

126 CHAPTER 6 MAKING PROGRAMMING MASCULINE

the emerging fi eld of electronic computing. Others drifted in from mathematics
or electrical engineering, or from careers in business or data processing. A few,
such as the physicist - turned - programmer Edsger Dijkstra, worried about the lack
of a “ sound body of knowledge that could support it [programming] as an intel-
lectually respectable discipline ” [32] . The popular notion that programmers
were idiosyncratic geniuses and that “ a really competent programmer should
be puzzle - minded and very fond of clever tricks ” was a pernicious anachronism,
Dijkstra would later argue, that encouraged a short - sighted, “ tinkering ” approach
to software development. Academically minded programmers like Dijkstra felt
that too many of their colleagues regarded their work as temporary solutions to
local problems, rather than as an opportunity to develop a more permanent
body of knowledge and technique. What computing needed to realize its true
revolutionary potential, Dijkstra argued, was a more rigorous approach to pro-
gramming, one modeled after the science of applied mathematics [33] . But most
programmers accepted — and many reveled in — the conventional belief that, at
least for the conceivable future, programming would remain the exclusive
domain of the select few who possessed the “ right stuff. ” Either way, this new
occupational and professional identity, whether based on the academic prestige
of the emerging discipline of computer science or the exclusivity of the “ lone
gun ” tinkerer, was essentially masculine.

 This perception of programming as an idiosyncratic arcane discipline —
 and, by extension, its practitioners a “ long - haired programming priesthood ” [34 ,
p. 201] — was reinforced by a series of aptitude tests and personality profi les
that focused on innate abilities. By the mid - 1960s the majority of companies
(80%) were using such tests and profi les as their primary tool for identifying
programmer trainees. “ Creativity is a major attribute of technically oriented
people, ” suggested one representative profi le: “ Look for those who like intel-
lectual challenge rather than interpersonal relations or managerial decision -
 making. Look for the chess player, the solver of mathematical puzzles ” [35] .
Many of the advertisements for programmers in this period specifi cally refer-
enced chess playing, musical ability, and mathematics [36] . In 1956 IBM
launched an advertisement for programmers that led to the hiring of such
notable chessmen as Arthur Bisguier, the U.S. Open Chess champion, Alex
Bernstein, a U.S. collegiate champion, and Sid Noble, the self - proclaimed
 “ chess champion of the French Riviera ” [37] . (It should be noted, however, that
the same campaign also netted an Oxford trained crystallographer, an English
Ph.D. candidate from Columbia University, an ex - fashion model (female), and
a “ proto - hippie, ” so obviously chess - playing ability was not the sole criterion.)
In any case, good programming was believed to be dependent on unique quali-
fi ed individuals, and that what defi ned these unique individuals was some
indescribable, impalpable quality — a “ twinkle in the eye, ” an “ indefi nable
enthusiasm, ” or what one interviewer described as “ the programming bug that
meant … we ’ re going to take a chance on him despite his background ” [38] .

 In addition, great disparities were discovered between the productivity
of individual programmers, with one widely cited IBM study suggesting that a
truly excellent programmer was 26 times more effi cient than his merely average
colleagues [39] . Despite the serious methodological fl aws that compromised
this particular study (including a sample population of only 12 individuals), the

THE “BAD BOYS” OF PROGRAMMING 127

26 : 1 performance ratio quickly became part of the standard lore of the industry.
 “ When a programmer is good, he is very, very good. But when he is bad, he is
horrid, ” the study declared, reinforcing the notion that skilled programmers
were thought to be effectively irreplaceable and were to be treated and com-
pensated accordingly. Programmers were to be selected for their intellectual
gifts and aptitudes, rather than their business knowledge or managerial savvy.

 The notion that programming was a “ black art ” pervades the literature
from the early decades of computing. Even today, more than half a century after
the invention of the fi rst electronic computers, the notion that computer pro-
gramming still retains an essentially “ artistic ” character is still widely accepted
 [40, 41] . Whether or not this is true or desirable is an entirely different question —
a subject of considerable and contentious debate. What is important is that by
characterizing the work that they did as “ artistic, ” programmers could lay claim
to the autonomy and authority that came with being an artist. Note that the
appeal here is to the tradition of the artisan, or craftsman, which is a masculine
identity, not the potentially effeminate “ artsy ” type.

 The widespread perception that programming ability was an innate
ability, rather than an acquired skill or the product of a particular form of tech-
nical education, could be seen as gender neutral or even female friendly. After
all, the aptitude tests for programming ability were widely distributed among
female employees, including clerical workers and secretaries. And, according
to one 1968 study, it was found that a successful team of computer specialists
included an “ ex - farmer, a former tabulating machine operator, an ex - key punch
operator, a girl who had done secretarial work, a musician and a graduate in
mathematics. ” Of these, the mathematician “ was considered the least compe-
tent ” [31] . As hiring practices went, aptitude testing at least had the virtue of
being impersonal and seemingly objective. Being a member of the “ old boys
club ” does not do much for one ’ s scores on a standardized exam. (Fraternities
and other male social organizations did serve as clearinghouses for stolen copies
of popular aptitude tests such as the IBM PAT. Such theft and other forms of
cheating were rampant in the industry, and taking the test more than once was
almost certain to lead to a passing grade.)

 But the aptitude tests and personality profi les did embody and privilege
masculine characteristics. For example, despite the growing consensus within
the industry (particularly in business data processing) that mathematical training
was irrelevant to most commercial programming, popular aptitude tests such as
the IBM PAT still emphasized mathematical ability [42, 43] . Some of the math-
ematical questions tested only logical thinking and pattern recognition, but
others required formal training in mathematics — a fact that Cosmopolitan noted
as discriminating against women.

 Even worse were the personality profi les. The use of personality profi les
to identify programmers began, as with other industry - standard recruiting prac-
tices, at the System Development Corporation (SDC), the Rand Corporation
spin - off charged with the development of the software for the SAGE air - defense
system. Faced with the need to train computer programmers in unprecedented
numbers — in 1956 SDC employed 700 programmers, almost three - fi fths of the
total number of programmers available worldwide, and by the beginning of the
1960s had trained 7000 more — SDC relied extensively on aptitude testing and

128 CHAPTER 6 MAKING PROGRAMMING MASCULINE

personality profi ling. By the beginning of the 1960s, however, SDC psycholo-
gists had developed more sophisticated models based on the extensive employ-
ment data the company had collected over the previous decade, as well as
surveys of members of the Association for Computing Machinery and the Data
Processing Management Association. In a series of papers published in serious
academic journals such as the Journal of Applied Psychology and Personnel
Psychology , SDC psychologists Dallis Perry and William Cannon provided a
detailed profi le of the “ vocational interests of computer programmers ” [44] . The
scientifi c basis for their profi le was the Strong Vocational Interest Bank (SVIB),
which had been widely used in vocational testing since the late 1920s.

 The basic SVIB in this period consisted of 400 questions aimed at elicit-
ing an emotional response (“ like, ” “ dislike, ” or “ indifferent ”) to specifi c occupa-
tions, work and recreational activities, types of people, and personality types.
By the 1960s, more than 50 statistically signifi cant collections of preferences
(“ keys ”) had been developed for such occupations as artist, mathematician,
policeman, and airplane pilot. The assumption behind the use of such profi les
was that candidates who had interests in common with those individuals who
were successful in a given occupation were themselves also likely to achieve
similar success.

 Many of the traits that Perry and Cannon attributed to successful pro-
grammers were unremarkable: for the most part programmers enjoyed their
work, disliked routine and regimentation, and were especially interested in
problem and puzzle - solving activities [44] . The programmer key they developed
bore some resemblance to the existing keys for engineering and chemistry, but
not to those of physics or mathematics, which Perry and Cannon interpreted as
a refutation of the traditional focus on mathematics training in programmer
recruitment. Otherwise, programmers resembled other white - collar profession-
als in such diverse fi elds as optometry, public administration, accounting, and
personnel management.

 In fact, there was only one really “ striking characteristic ” about program-
mers that the Perry and Cannon study identifi ed. This was “ their disinterest in
people. ” Compared with other professional men, “ programmers dislike activities
involving close personal interaction. They prefer to work with things rather than
people ” [44] . In a subsequent study, Perry and Cannon demonstrated this to be
true of female programmers as well [45] .

 The idea that computer programmers lacked “ people skills ” quickly
became part of the lore of the computer industry. The infl uential industry analyst
Richard Brandon argued that this was in part a refl ection of the selection process
itself, with its emphasis on mathematics and logic. The “ Darwinian selection ”
mechanism of personnel profi ling, Brandon suggested, selected for personality
traits that performed well in the artifi cial isolation of the testing environment,
but which proved dysfunctional in the more complex social environment of a
corporate development project. Programmers were “ excessively independent, ”
argued Brandon, often to the point of mild paranoia. The programmer type is
 “ often egocentric, slightly neurotic, and he borders upon a limited schizophre-
nia. The incidence of beards, sandals, and other symptoms of rugged individual-
ism or nonconformity are notably greater among this demographic group.
Stories about programmers and their attitudes and peculiarities are legion, and
do not bear repeating here ” [46] .

THE “BAD BOYS” OF PROGRAMMING 129

 Needless to say, these psychological profi les embodied a preference for
stereotypically masculine characteristics. A 1970 review of the psychometric
literature noted that computer programmers received unusually high masculin-
ity and low femininity scores. In fact, only four occupational groups received
higher masculinity scores (unfortunately, the review does not mention which
four). “ These consistent results [high masculinity scores] defi ne one character-
istic of the people in data processing jobs, ” the review concluded — namely,
their masculine self - identity [47] .

 The idea that “ detached ” (read male) individuals made good program-
mers was embodied, in the form of the psychological profi le, into the hiring
practices of the industry [43] . Possibly this was a legacy of the murky origins
of programming in the early 1950s; perhaps it was a self - fulfi lling prophecy.
Nevertheless, the idea of the programmer as being particularly ill - equipped for
or uninterested in social interaction did become part of the conventional wisdom
of the industry. The association of masculine personality characteristics with
inherent programming ability helped create an occupational culture in which
female programmers were seen as exceptional or marginal. Only by behaving
less “ female ” could they be perceived as being acceptable. Many women still
did continue to be hired as programmers and other computer specialists, but
they did so in an environment that was becoming increasingly normalized as
masculine.

 One interpretation of the male bias embedded in these aptitude tests and
personality profi les is that such tests are, in fact, an accurate refl ection of the
mental or emotional characteristics that make for a good programmer — logical,
detached, antisocial — and that these traits just happen to be more predominant
in males. This is the essentialist argument: gender discrimination as a function
of biology. Even in the 1960s and 1970s there seemed little evidence for such
reductionist explanations [48] .

 A second interpretation is that the tests were developed deliberately to
exclude women from an increasingly high - status, lucrative, and therefore male -
 dominated profession. This is the conspiratorial argument.

 Another interpretation is that programming ability has no correlation at
all with biologically determined predispositions, but that the widespread use of
gender - biased testing regimes by industry employers nevertheless did create a
feedback cycle that ultimately selected for programmers with stereotypically
masculine characteristics. The primary selection mechanism used by the indus-
try selected for antisocial, mathematically inclined males, and therefore antiso-
cial, mathematically inclined males were overrepresented in the programmer
population; this in turn reinforced the popular perception that programmers
 ought to be antisocial and mathematically inclined (and male), and so on ad
infi nitum. This would be a historically continent argument: gender discrimina-
tion as a function of historical accident.

 It is this last explanation that seems most plausible. In the case of
aptitude testing and personality profi ling, at least, it appears that the privileging
of masculine characteristics is the result of some combination of laziness, ambi-
guity, and traditional male privilege. There was widespread evidence, even in
the late 1960s, that psychometric testing was inaccurate, was unscientifi c, had
been widely compromised, and was a poor predictor of future performance.
Nevertheless, these methods continued to be used simply because they were

130 CHAPTER 6 MAKING PROGRAMMING MASCULINE

convenient. The rapid expansion of the commercial computer industry in the
early 1960s demanded the recruitment of large armies of new professional pro-
grammers. At the same time, the general lack of consensus about what con-
stituted relevant knowledge or experience in the computer fi elds undermined
attempts to systematize the production of programmers. Commercial program-
ming schools were seen as being too lax in their standards; the emerging
academic discipline of computer science was seen as too stringent. Neither
offered a reliable short - term solution to the burgeoning labor shortage in pro-
gramming. In the face of such uncertainty and ambiguity, aptitude testing and
personality profi ling promised at least the illusion of managerial control. To
borrow a phrase from contemporary computer industry parlance, aptitude test-
ing was a solution that scaled effi ciently . That is to say, the costs of aptitude
testing grew in a predictable, linear relationship to the number of applicants (as
opposed to other recruitment methods such as personal interviews, whose costs
in time and money grew rapidly). Put even more simply, it was possible to admin-
ister aptitude tests quickly and inexpensively to thousands of aspiring program-
mers. Compared to its time - consuming and expensive alternatives, aptitude
testing was a cheap and easy solution. And since the contemporary emphasis on
individual genius over experience or education meant that a star programmer
was as likely to come from the secretarial pool as the engineering department,
the ability to screen large numbers of potential trainees was preeminent.

 But the kinds of questions that could easily be tested using multiple
choice aptitude tests and mass - administered personality profi les necessarily
focused on mathematical trivia, logic puzzles, and word games. The test format
simply did not allow for any more nuanced or meaningful or context - specifi c
problem solving. And, in the 1950s and 1960s at least, such questions did
privilege the typical male educational experience. Again, this bias toward male
programmers was not so much deliberate as it was convenient. The fact that
the use of lazy screening practices inadvertently excluded large numbers of
potential female trainees was simply never considered. But the increasing
assumption that the average programmer was also male did play a key role in
the establishment of a highly masculine programming subculture.

 There has been much written in recent years about the distinctively
masculine culture of computing and the way in which this culture discourages
women from entering the computing professions [49 – 51] . Of all the explana-
tions given for the deplorably low rates of female participation in computing
(or at least in academic computer science), cultural arguments are the most
convincing. It is important to note, therefore, that the origins of this culture lie
not in the early 1940s, with the invention of computing, but in subsequent
decades. This culture was not inherent in electronic computing, or even adopted
directly from related disciplines; it had to be created, and recreated, over the
course of decades. One of the essential ways in which this culture was repli-
cated was through the development of practices and institutions.

 PROFESSIONALIZATION = MASCULINIZATION
 The process of making programming masculine did not begin — or end — with
the transformation of the feminized clerical work of “ coding ” into the highly

PROFESSIONALIZATION = MASCULINIZATION 131

masculine, seat - of - the - pants “ black art ” of programming of the 1950s, not even
with the embodiment of certain masculine values into the hiring procedures of
the industry. To begin with, this transformation was never fully complete.
Aspects of programming remained rote, mechanical, and low status. It was also
not clear that the frontier mentality of programming culture in the 1950s was
anything but a function of the immaturity of the industry. The infl ux of new
programmer trainees and vocational school graduates into the software labor
market exacerbated an already bad labor situation. The market was fl ooded
with aspiring programmers with little training and no practical experience. As
one study by the Association for Computing Machinery ’ s Special Interest Group
on Computer Personnel Research (SIGCPR) warned, by 1968 there was a
growing oversupply of a certain undesirable species of software specialist. “ The
ranks of the computer world are being swelled by growing hordes of program-
mers, systems analysts and related personnel, ” the SIGCPR argued. “ Educational,
performance and professional standards are virtually nonexistent and confusion
grows rampant in selecting, training, and assigning people to do jobs ” [52] . At
the same time that the demand for skilled programmers was increasing dramati-
cally (and seemingly without limit), when salaries and opportunities for occu-
pational mobility were at their peak, many programmers were plagued with
uncertainty about the status and future of their discipline.

 There were tangible reasons for this uncertainty. The increasing capabili-
ties and reliability of second generation hardware meant that the baroque “ work
arounds ” and optimizations so prized by programmer - tinkerers were no longer
necessary. In addition, the development of “ automatic programming systems ”
threatened to make programmers obsolete altogether, and to return responsibil-
ity for the “ head work ” involved in problem analysis back to the scientists and
managers. The persistent lack of programmers to develop a “ scientifi c ” basis for
their discipline suggested that they were at best artisans or technicians, the last
vestiges of a “ pre industrial ” approach to software development. (The most
damning critique of the “ black art ” of programming came from Douglas McIroy
at the 1968 NATO Conference on Software Engineering: “ We undoubtedly
produce software by backward techniques. We undoubtedly get the short end
of the stick in confrontations with hardware people because they are the indus-
trialists and we are the crofters. Software production today appears in the scale
of industrialization somewhere below the more backward construction agen-
cies. I think that its proper place is considerable higher, and would like to
investigate the prospects for mass - production techniques in software. ”) The
organizational tensions provoked by the increasing use of computerized systems
for managerial purposes created resentment against the perceived “ abdication ”
of management imperatives to whiz - kid “ computer boys ” [53] . These tensions
refl ected themselves in active attempts by managers to reassert their traditional
authority over computer programmers by redefi ning their work as “ merely ”
technical. Finally, the rising cost of software relative to hardware meant that
fi rms began looking for ways to reduce costs by “ rationalizing ” their develop-
ment practices (Fig. 6.5). Such “ rationalization ” often meant the incorporation
of a less expensive, lower skill (read feminized) workforce.

 Certainly corporations, academics, and other reformers tried to ratio-
nalize the practices of computer programmers in response to the emerging

132 CHAPTER 6 MAKING PROGRAMMING MASCULINE

 “ software crisis ” of the late 1960s. In Programmers and Managers: The
Routinization of Computer Programming in the United States , the historian
Philip Kraft argued that managers had, in fact, been successful in “ degrading ”
the work of computer specialists. “ Programmers, systems analysts, and other
software workers, ” he argued, were the victims of efforts to “ break down, sim-
plify, routinize, and standardize ” their work practices. Kraft suggested that
corporate managers had generally been successful in imposing structures on
programmers that have eliminated their creativity and autonomy. His analysis
was remarkably comprehensive, covering such issues as training and education,
structured programming techniques (“ the software manager ’ s answer to the
conveyor belt ”), the social organization of the workplace (aimed at reinforcing
the fragmentation between “ head ” planning and “ hand ” labor), and careers,
pay, and professionalism (encouraged by managers as a means of discouraging
unions). In 1979 Joan Greenbaum echoed Kraft ’ s conclusions, arguing that “ if
we strip away the spin words used today like ‘ knowledge ’ worker, ‘ fl exible ’
work, and ‘ high tech ’ work, and if we insert the word ‘ information system ’ for
 ‘ machinery, ’ we are still talking about management attempts to control and
coordinate labor processes ” [54] . More recently, Greg Downey has suggested
a connection between routinization, feminization, and the increasing use of
foreign labor in software development (“ outsourcing ”) [55] .

 Figure 6.5. At Tulane University, systems analyst William Cahill and computer
programmer Dorothy J. King provided time - sharing services for computer -
 assisted menu planning (c. 1964). (Courtesy Charles Babbage Institute.)

PROFESSIONALIZATION = MASCULINIZATION 133

 It is questionable how successful corporate managers and other “ ratio-
nalizers ” were in their quest to transform software development into a con-
trolled, industrial manufacturing process. Computer programmers are, on the
whole, well paid, highly valued, and largely autonomous professionals. But it
is clear that many programmers in the 1960s were worried about the possibility
of having their work routinized and degraded. Certainly the management litera-
ture from this period is full of confi dent claims about the ability of new perfor-
mance metrics, development methodologies, and automatic programming
languages to reduce corporate dependence on individual programmers [56] . As
Michael Cusumano has described, the vision of the “ software factory ” — in
which hordes of low - paid, low - skill programmers cranked out mass - produced
software products — was a persistent theme in this literature [57] .

 One of the time - honored strategies for dealing with labor “ problems ” in
the United States has been the use of female workers. There is a vast historical
literature on this topic: from the very origins of the American industrial system
women have been seen as a source of cheap, compliant, and undemanding
labor [58, 59] .

 The same dynamic was a work in computer programming. In a 1963
 Datamation article lauding the virtues of the female computer programmer, for
example, Valerie Rockmael focused specifi cally on her stability, reliability, and
relative docility: “ Women are less aggressive and more content in one position.
 … Women consider fringe benefi ts of more importance than their male peers
and are more prone to stay on the job if they are content, regardless of a lack
of advancement. They also maintain their original geographic roots and are less
willing to travel or change job locations, particularly if they are married or
engaged ” [60] . In an era in which turnover rates for programmers averaged 20%
annually, this was a compelling argument for employers. Note that this was
something of a backhanded compliment, aimed more at the needs of employers
than female programmers. In fact, the “ most undesirable category of program-
mers, ” Rockmael argued, was “ the female about 21 years old and unmarried, ”
because “ when she would start thinking about her social commitments for the
weekend, her work suffered proportionately ” [60] .

 Women were often used in advertisements from this period as a visual
proxy for low - skill, low - wage labor. For example, in its 1968 “ Meet Susie
Meyers ” advertisements, the IBM Corporation suggested that even a “ young girl ”
with “ no previous programming experience ” could program a computer using
its new PL/1 programming language. The two - page, full - color advertisements
showed a pretty blond in a colorful miniskirt dancing circles around her com-
puter. If the problem with programming was that it was overly expensive (“ Let ’ s
face it, ” the ad copy confi ded, “ the cost of programming just keeps going up ”),
then the solution was the combination of mechanization and feminization.
Although the advertisement promised “ a brighter future for your programmers, ”
the obvious subtext was that these programmers were becoming increasingly
replaceable. If pretty little Susie Meyers, with her spunky miniskirt and utter
lack of programming experience, could develop software effectively in PL/1, so
could just about anyone.

 These attempts to mobilize gendered rhetoric and visuals in the ser-
vice of what one contemporary described as the “ the domestication of this
once proud, wild animal ” (the computer programmer) did not go unnoticed by

134 CHAPTER 6 MAKING PROGRAMMING MASCULINE

programmers [61] . “ The Computer Girls ” article, for example, prompted an
almost immediate response from the Computer Sciences Corporation. Although
the overlying tone of the advertisement was light - hearted — “ In a recent issue of
 Cosmopolitan , Helen Gurley Brown exhorted her girl readers to become pro-
grammers and make 15,000 after fi ve years … ” — the underlying concern it
expressed was also quite apparent: the suggestion that “ Cosmo girls ” could
make for good programmers was implicitly demeaning, and threatening to the
status and future of the discipline [62] .

 I have written extensively elsewhere about the “ Question of
Professionalism ” as it emerged in the computer fi elds during the late 1960s [63,
64] . For the purposes of this chapter it is enough to note that the development
of the structures of a programming profession — including formal programs in
academic computer science, professional journals and societies, and profes-
sional certifi cation programs — became the goal of many computer program-
mers, and their corporate employers, as a means of addressing the perceived
 “ software crisis ” of the late 1960s.

 The professionalization of programming and other computer specialties
was appealing to a number of constituencies. For practitioners, professionalism
offered increased social status, greater autonomy, improved opportunities for
advancement, and better pay. It provided individuals with a “ monopoly of
competence ” — the control over a valuable skill that was readily transferable
from organization to organization — that provided leverage in the labor market
 [65] . Professionalism provided a means of excluding undesirables and competi-
tors; it assured basic standards of quality and reliability; it provided a certain
degree of protection from the fl uctuations of the labor market; and it was seen
by many workers as a means of advancement into the middle class [66] . The
1960s were a period when many white - collar occupations were pursuing pro-
fessional agendas, and the sociological literature of the period seemed to provide
a clear road map to the benefi ts of professionalism. These benefi ts seemed
available to almost any occupation. (The sociologist Harold Wilensky describes
numerous case studies of occupations attempting to professionalize in this
period, among them librarians, pharmacists, funeral directors, and high school
teachers [67] .)

 The professionalization efforts of computer specialists were, to a certain
extent, encouraged by their corporate employers. Professionalism provided a
familiar solution to the increasingly complex problems of programmer manage-
ment. “ The concept of professionalism, ” argued one personnel research journal
from the early 1970s, “ affords a business - like answer to the existing and future
computer skills market. … The professional ’ s rewards are full utilization of his
talents, the continuing challenge and stimulus of new EDP situations, and an
invaluable broadening of his experience base ” [68] . Insofar as it encouraged
good corporate citizenship, professionalism had the potential to solve a number
of pressing management problems: it might motivate staff members to improve
their capabilities; it could bring about more commonality of approaches; it
could be used for hiring, promotions, and raises; and it could help solve the
perennial question of “ who is qualifi ed ” [69] . At the very least, allowing pro-
grammers to think that they were professionals would go a long way toward
reducing turnover and maintaining the stability of the data processing staff [70] .

CONCLUSION 135

 The desire to develop professional standards is an understandable, and
indeed laudable, agenda for programmers to pursue. But it does carry with it
certain implications for the gender dynamics of the discipline. As Margaret
Rossiter and others have suggested, professionalization implies masculinization
 [71 – 73] . The imposition of formal educational requirements, such as a college
degree, can make it diffi cult for women — particularly women who have taken
time off to raise children — to enter the profession. Similarly, certifi cation pro-
grams or licensing requirements — such as the Data Processing Management
Association ’ s Certifi cate in Data Processing Program — also erected barriers to
entry that disproportionately affected women. In 1965, for example, the
Association for Computing Machinery imposed a 4 - year degree requirement for
membership, which, in an era when the gender ratio of male to female college
undergraduates was close to 2 : 1, excluded signifi cantly more women than men
 [74] . A survey from the late 1970s showed that fewer than 10% of ACM
members were women [75] . Professionalism also suggests a certain degree of
managerial authority and competence — skills and characteristics that were often
seen as being masculine rather than feminine (see Chapter 5 , this volume). The
CDP examinations explicitly required candidates to have at least 3 years of
experience, and the majority of CDP holders worked in middle management
 [76] . And in his 1971 book The Psychology of Computer Programming , Gerald
Weinberg notes the commonly held belief that female programmers were inca-
pable of leading a group or supervising their male colleagues [43] . The more
programmers were seen as potential managers (a new development that came
with professionalization), the more women were excluded.

 There were other, more subtle ways in which professionalization implied
masculinization. Perhaps most signifi cantly, professionalization requires seg-
mentation and stratifi cation. In order to elevate the overall status of their disci-
pline, aspiring professionals had to distance themselves from those aspects of
their work that were seen as low status and routine. This work did not just
disappear — it was just done by other people. The job category of “ programmer ”
had been used as a blanket term to describe a broad range of computer workers,
but it was increasingly replaced by a complicated hierarchy of job titles: junior
programmer, senior programmer, lead programmer, junior analyst, senior ana-
lysts, program manager, and so on. Again, it is diffi cult to gather accurate sta-
tistics on who occupied what categories, but there is some evidence to suggest
that women were generally confi ned to the lower levels of the professional
pyramid [77] . This calls into question the more optimistic claims about the
participation of women in computing: without knowing exactly what kinds of
work these women were doing, it is diffi cult to draw any fi rm conclusions about
the true nature of the opportunities available to women in computing [78] .

 CONCLUSION
 Contemporary discussions about the underrepresentation of women in comput-
ing often center around the precipitous decline in female enrollments in aca-
demic computer science programs that started in the mid - 1980s. But this sudden
decline was only relative to an earlier and equally dramatic increase in female
enrollments that occurred over the previous decades. In many ways it is this

136 CHAPTER 6 MAKING PROGRAMMING MASCULINE

remarkable bulge in female enrollments that most deserves explanation.
Compared to other scientifi c and engineering disciplines in this period, com-
puter science — or at least computer programming, which was its closest analog
prior to the institutionalization of the discipline in the late 1960s — was unusu-
ally welcoming to women. As “ The Computer Girls ” article in Cosmopolitan
illustrates, and many other sources confi rm, computing in its early years was
seen as not only being unusually open to women, but also as having unique
advantages for women (e.g., the ability to work from home) [79] . It is only more
recently that computer programming acquired its characteristically masculine
identity. Unlike other technical or academic disciplines, which had been tradi-
tionally male dominated and had to be opened up to female participation,
computer programming started out with an ambiguous gender identity. An
activity originally intended to be performed by low - status clerical staff — and
more often than not female — computer programming was gradually and delib-
erately transformed into a high - status, scientifi c, and masculine discipline.

 The “ masculinization ” of computing was not universal or linear. Even
as the computing fi elds were beginning to professionalize, women were con-
tinuing to work in computing in substantial numbers — as the continuing increase
in computer science enrollments throughout the early 1980s indicates. To
suggest that a discipline has been made masculine, however, is not to claim
that all of its practitioners are male, but rather that the ideals of the discipline
are masculine ideals. It is entirely possible, for example, to talk about science
being gendered male without arguing that there are no female scientists [71,
80] . To the degree that women succeed in masculinized disciplines, however,
it is by suppressing their femininity: to act female in such contexts is to act
 “ unprofessionally ” [81] . There is a large literature on the ways in which women
in such fi elds are forced to accommodate themselves to the dominant gender
dynamics of the discipline. The masculinization of a profession erects barriers
to female participation, but it does not eliminate it altogether.

 The history of the “ computer girls ” suggests at least two explanations for
the remarkable occupational sex change that occurred in computing over the
course of the mid - 20th century. The fi rst is a structural argument and suggests
that masculinization is characteristic of any discipline that is actively profes-
sionalizing. In any case, seen through the lens of the history of the profession-
alization of the computing disciplines, the unusual pattern of female enrollments
in computer science is slightly more explicable. In the early decades of comput-
ing, before the discipline was effectively professionalized, the fi eld was much
more open to female participation. The additional opportunities promised by
the emergence of the personal computer might explain the fi nal surge of the
late 1970s. But eventually the development of the structures of a profession — a
slow but steady process that had started decades earlier — brought to an end the
era of unprecedented openness in computing, and brought enrollments in com-
puter science programs back in line with other scientifi c, mathematical, and
engineering disciplines. In this sense, while enrollments in computer science
programs are an extremely inadequate measure of female participation in com-
puting overall, it is a reasonable measure of the professionalization and mascu-
linization of the discipline. In fact, if we interpret the formation of academic
computer science programs as a crucial contributor to the masculinization of

CONCLUSION 137

programming, rather than as a measure of its degree, then the focus of the
conversation changes fundamentally. Instead of asking why there are so few
women in computer science, we might ask instead why a particular vision of
the discipline — one based on masculine ideals and values — came to dominate
the academic study of computer programming.

 This structural explanation is not entirely suffi cient, however. Although
patterns in computer science enrollments do resemble those of other scientifi c
disciplines (and perhaps even more those of engineering programs), it also has
its own, distinctively masculine culture. Many observers have identifi ed this
culture as being particularly unappealing to women. The popular association
of computing culture with the “ nerd ” stereotype is perhaps the most common
explanation for low rates of participation among females. In recent decades the
 “ computer nerd ” has become a staple of modern American culture and is invari-
ably represented as eccentric, unkempt, antisocial — and male.

 The story of the computer “ nerd ” is often associated with the personal
computer. A powerful mythology has developed around the role of the nerdy
loner in the “ accidental ” creation of the personal computer industry [82] . The
presence of white, adolescent, male nerds is often represented as the essential
characteristic of any successful technological start - up company. Nerd culture
supposedly dominates most modern computer science departments.

 As we have seen, however, the social construction of the computer
programmer as a nerdy eccentric predates the personal computer by several
decades. It originated in the early association of programming ability with chess
playing and mathematics puzzles, was reinforced by scientifi cally dubious
aptitude tests and personality profi les, and by the early 1960s had become
embodied in the hiring practices of the growing commercial computer industry.
The institutionalization of gender norms in this period highlights the ways
in which structure and culture are mutually constitutive, and ultimately self -
 replicating. Even as underlying structural explanations disappear, the cultural
superstructure remains intact.

 One simple but powerful example of this relationship has to do with the
development of the “ nocturnal ” culture of computing. In an era when computers
were large, expensive machines that ran in batch - production mode, computer
programmers often had unfettered access to the computer only during off - hours,
which often meant overnight. In some cases, this represented a tangible struc-
tural barrier to female participation: some corporations specifi cally prohibited
women from remaining on - premises after business hours (ostensibly for safety
reasons), which effectively prevented these women from working as program-
mers [43 , p. 85]. But even after the technical requirements for such nocturnal
programming activities disappeared, the culture of staying up all night and
ignoring the normal conventions of 24 - hour time continued to persist and, in
fact, be celebrated, within certain computing communities [83 – 85] . The degree
to which these practices are unappealing or impractical for women refl ects the
close interaction between culture and structure in the replication of gender
norms and identity. What seems to contemporaries like the “ natural ” way in
which things have “ always ” been done is historically contingent.

 It is this relationship between structure and culture that reveals most
clearly the value of the history of computing to the contemporary practice of

138 CHAPTER 6 MAKING PROGRAMMING MASCULINE

computing. Ideas about how computing should be done corresponded closely
with perceptions of who should be doing the computing. In the case of com-
puter programming, these ideas and perceptions changed dramatically over the
course of the mid - 20th century, often in ways that were invisible to practitioners.
The widespread adoption of aptitude testing by corporate employers, for
example, was not deliberately aimed at excluding women and, in fact, might
in other circumstances have served to expand opportunities for female participa-
tion. But the particular ways in which aptitude tests and personality profi les
were developed, and the ways in which these tests and profi les were used in
the context of other efforts to defi ne what computer programming was and who
should be doing it, had unintended consequences. These consequences became
embodied in the structures of the industry. The gender identity and culture of
computing became fi xed, and ultimately self - perpetuating, as these structures
became normalized.

 REFERENCES
 1. Lois Mandel , “ The Computer Girls , ” Cosmo-
politan (April 1967): 52 – 56 .

 2. Richard Canning , “ Issues in Programming
Management , ” EDP Analyzer , Vol. 12 , No. 4 (1974):
 1 – 14 .

 3. Bruce Gilchrist and Richard Weber , “ Enumer-
ating Full - Time Programmers , ” Communications
of the ACM , Vol. 17 , No. 10 (1974): 592 – 593 .

 4. Adele Mildred Koss , “ Programming on the
Univac 1 , ” IEEE Annals of the History of Com-
puting , Vol. 25 , No. 1 (2003): 48 – 59 ; Scott M.
 Campbell , “ Beatrice Helen Worsley , ” IEEE Annals
of the History of Computing , Vol. 25 , No. 4 (2003):
 51 – 62 .

 5. Robert Patrick , “ The Gap in Programming
Support , ” Datamation , Vol. 7 , No. 5 (1961): 37 ; Don
 Madden , “ The Population Problem , ” Datamation ,
Vol. 8 , No. 1 (1962): 26 .

 6. “ Careers in Computers ” [advertisement] , Data-
mation , Vol. 8 , No. 1 (1962): 80 , 21.

 7. “ Software Gap — A Growing Crisis for Com-
puters , ” Business Week (5 November 1966): 127 .

 8. “ Not Quite All About MIS , ” Datamation , Vol.
 13 , No. 5 (1967): 21 .

 9. Edward Markham , “ EDP Schools — An Inside
View , ” Datamation , Vol. 14 , No. 4 (1968): 22 – 27 .

 10. Richard Tanaka , “ Fee or Free Software , ”
 Datamation , Vol. 13 , No. 10 (1967): 205 – 206 .

 11. Gene Bylinsky , “ Help Wanted , ” Fortune ,
Vol. 75 , No. 3 (1967): 141 .

 12. Jean P. Gilbert and David B. Mayer ,
 “ Experiences in Self - selection of Disadvantaged
People into a Computer Operator Training Pro-
gram , ” in SIGCPR ’ 69: Proceedings of the Seventh
Annual Conference on SIGCPR (New York : ACM
Press , 1969), pp. 79 – 90 .

 13. “ First Programmer Class at Sing Sing Grad-
uates , ” Datamation , Vol. 14 , No. 6 (1968): 97 – 98 .

 14. Charles Lawson , “ A Survey of Computer
Facility Management , ” Datamation , Vol. 8 , No. 7
(1962): 29 – 32 .

 15. Walter J. McNamara , “ The Selection of
Computer Personnel , ” in SIGCPR ’ 67: Proceedings
of the Fifth SIGCPR Conference on Computer
Personnel Research (New York : ACM Press , 1967),
pp. 52 – 56 .

 16. Jennifer Light , “ When Computers Were
Women , ” Technology & Culture , Vol. 40 , No. 3
(1999): 455 – 483 .

 17. Amita Goyal , “ Women in Computing , ” IEEE
Annals of the History of Computing , Vol. 18 , No.
 3 (1996): 36 – 42 .

 18. Judy Wajcman , “ Refl ections on Gender and
Technology , ” Social Studies of Science , Vol. 30 ,
No. 3 (2000): 447 – 464 .

 19. Janet Abbate , “ How Did You First Get into
Computing? ” IEEE Annals of the History of Com-
puting , Vol. 25 , No. 4 (2003): 4 – 8 .

 20. W. Barkley Fritz , “ The Women of ENIAC , ”
 Annals of the History of Computing , Vol. 18 , No.
 3 (1996): 13 – 23 .

REFERENCES 139

 21. John Tukey , “ The Teaching of Concrete
Mathematics , ” American Mathematical Monthly ,
Vol. 65 , No. 1 (1958): 1 – 9 .

 22. David Alan Grier , “ The ENIAC, the Verb to
Program, and the Emergence of Digital Computers , ”
 IEEE Annals of the History of Computing , Vol. 18 ,
No. 1 (1996): 51 – 55 .

 23. Herman Goldstine and John von Neumann ,
 Planning and Coding of Problems for an Electronic
Computing Instrument (Princeton, NJ : Institute for
Advanced Study , 1947).

 24. “ Introduction to Programming , ” type written
manuscript, dated 11 June 1949. Hagley
Archives, Sperry Rand Corporation: Univac
Division (Accession 1825), Box 372.

 25. Richard Wexelblat , ed., History of Program-
ming Languages (New York : Academic Press ,
 1981), p. 69 .

 26. Margery Davies , Woman ’ s Place Is at the
Typewriter: Offi ce Work and Offi ce Workers,
1870 – 1930 (Philadelphia : Temple University
Press , 1982).

 27. Sharon Hartman Strom , Beyond the Type-
writer: Gender, Class, and the Origins of Modern
American Offi ce Work, 1900 – 1930 (Urbana :
 University of Illinois Press , 1992).

 28. Elyce J. Rotella . From Home to Offi ce: U.S.
Women at Work, 1870 – 1930 (Ann Arbor : UMI
Research Press , 1981).

 29. Thomas Haigh , “ The Chromium - Plated Tabu-
lator , ” IEEE Annals of the History of Computing ,
Vol. 23 , No. 4 (2001): 75 – 104 .

 30. Jackson Granholm , “ How to Hire a Program-
mer , ” Datamation , Vol. 8 , No. 8 (1962): 31 – 32 .

 31. Hans Albert Rhee , Offi ce Automation in
Social Perspective: The Progress and Social
Implications of Electronic Data Processing (Oxford :
 Basil Blackwell , 1968).

 32. Edsger Dijkstra , “ The Humble Programmer , ”
 Communications of the ACM , Vol. 15 , No. 10
(1972): 859 – 866 .

 33. Edsger Dijkstra , “ Programming as a Discipline
of Mathematical Nature , ” American Mathematical
Monthly , Vol. 81 , No. 6 (1974): 608 – 612 .

 34. Martin Campbell - Kelly and William Aspray ,
 Computer: A History of the Information Machine
(New York : Basic Books , 1996).

 35. Joseph O ’ Shields , “ Selection of EDP Person-
nel , ” Personnel Journal , Vol. 44 , No. 9 (1965):
 472 – 474 .

 36. Nathan Ensmenger , The Computer Boys Take
Over: Computers, Programmers, and the Politics
of Technical Expertise (Cambridge : MIT Press ,
 2010).

 37. Mark Halpern , “ Memoirs (Part 1) , ” Annals of
the History of Computing , Vol. 13 , No. 1 (1991):
 101 – 111 .

 38. “ The Computer Personnel Research Group , ”
 Datamation , Vol. 9 , No. 1 (1963): 38 – 39 .

 39. Hal Sackman , Warren J. Erickson , and E. E.
 Grant , “ Exploratory Experimental Studies Com-
paring Online and Offl ine Programming Perfor-
mance , ” Communications of the ACM , Vol. 11 ,
No. 1 (1968): 3 – 11 .

 40. Rustom P. Mody , “ Is Programming an Art? ”
 Software Engineering Notes , Vol. 17 , No. 4 (1992):
 19 – 21 .

 41. Maurice Black , The Art of Code (Ph.D. thesis,
 University of Pennsylvania , 2002).

 42. William Paschell , Automation and Employ-
ment Opportunities for Offi ce Workers: A Report
on the Effect of Electronic Computers on Employ-
ment of Clerical Workers (Washington, DC : Bureau
of Labor Statistics , 1958).

 43. Gerald Weinberg , The Psychology of Com-
puter Programming (New York : Van Nostrand
Rheinhold , 1971).

 44. Dallis Perry and William Cannon , “ Vocational
Interests of Computer Programmers , ” Journal
of Applied Psychology , Vol. 51 , No. 1 (1967):
 28 – 34 .

 45. Dallis Perry and William Cannon , “ Vocational
Interests of Female Computer Programmers , ”
 Journal of Applied Psychology , Vol. 52 , No. 1
(1968): 31 .

 46. Richard Brandon , “ The Problem in Perspec-
tive , ” in Proceedings of the 1968 23rd ACM
National Conference (New York : ACM Press ,
 1968), pp. 332 – 334 .

 47. Theodore Willoughby , “ Needs, Interests, and
Reinforcer Preferences of Data Processing Person-
nel , ” in Proceedings of the Eighth Annual SIGCPR
Conference (New York : ACM Press , 1970), pp.
 119 – 143 .

140 CHAPTER 6 MAKING PROGRAMMING MASCULINE

 48. William Ledbetter , “ Programming Aptitude:
How Signifi cant Is It? ” Personnel Journal , Vol. 54 ,
No. 3 (1975): 165 – 166 , 175 .

 49. Jane Margolis and Allan Fisher , Unlocking
the Clubhouse (Cambridge : MIT Press , 2002).

 50. Jennifer Taylor , “ The Decline of Women
in Computer Science, 1940 – 1982 ” (MA thesis,
Harvard University Graduate School of Education,
 2005).

 51. J. McGrath Cohoon and William Aspray ,
 Women and Information Technology: Research
on Underrepresentation (Cambridge : MIT Press ,
 2006).

 52. Hal Sackman , “ Conference on Personnel
Research , ” Datamation , Vol. 14 , No. 7 (1968):
 74 – 76 , 81.

 53. John Golda , “ The Effects of Computer Tech-
nology on the Traditional Role of Management ”
(MA thesis, Wharton School of Business, University
of Pennsylvania, 1965).

 54. Joan Greenbaum , “ On Twenty - fi ve Years
with Braverman ’ s ‘ Labor and Monopoly Capital ’ , ”
 Monthly Review , Vol. 50 , No. 8 (1999): 28 – 42 .

 55. Greg Downey , “ Commentary , ” International
Review of Social History , Vol. 48 , No. 11 (2003):
 225 – 261 .

 56. Nathan Ensmenger , “ From ‘ Black Art ’ to
Industrial Discipline ” (Ph.D. thesis, University of
Pennsylvania, 2001).

 57. Michael Cusumano , “ Factory Concepts and
Practices in Software Development , ” IEEE Annals
of the History of Computing , Vol. 13 , No. 1 (1991):
 3 – 32 .

 58. Ruth Milkman , Gender at Work: The
Dynamics of Job Segregation by Sex During World
War II (Urbana : University of Illinois Press , 1987).

 59. Alice Kessler - Harris , Out to Work: A History
of Wage Earning Women in the United States
(New York : Oxford University Press , 1982).

 60. Valerie Rockmael , “ The Woman Programmer , ”
 Datamation , Vol. 9 , No. 1 (1963): 41 .

 61. Datamation Editorial , “ Of Maturity and Meat-
balls , ” Datamation , Vol. 9 , No. 8 (1963): 23 .

 62. Computer Sciences Corporation , “ In case you
missed our fi rst test … ” Datamation , Vol. 13 , No.
 9 (1967): 149 .

 63. Nathan Ensmenger , “ The ‘ Question of Profes-
sionalism ’ in the Computer Fields , ” IEEE Annals of
the History of Computing , Vol. 23 , No. 4 (2001):
 56 – 73 .

 64. Nathan Ensmenger and William Aspray ,
 “ Software as a Labor Process , ” in Ulf Hashagen ,
 Reinhard Keil - Slawik , and Arthur L. Norberg , eds.,
 History of Computing: Software Issues (New York :
 Springer - Verlag , 2002), pp. 139 – 166 .

 65. Magali Sarfatti Larson , The Rise of Profession-
alism: A Sociological Analysis (Berkeley : University
of California Press , 1977).

 66. Robert Zussman , Mechanics of the Middle
Class: Work and Politics Among American Engineers
(Berkeley : University of California Press , 1985).

 67. Harold Wilensky , “ The Professionalization of
Everyone? ” American Journal of Sociology , Vol.
 70 , No. 2 (1964): 137 – 158 .

 68. Personnel Journal Editorial, “ Professionalism
Termed Key to Computer Personnel Situation , ” Per-
sonnel Journal , Vol. 51 , No. 2 (1971): 156 – 157 .

 69. Richard Canning , “ Professionalism: Coming or
Not? ” EDP Analyzer , Vol. 14 , No. 3 (1976): 1 – 12 .

 70. Robert Gordon , “ Personnel Selection , ” in
 Fred Gruenberger and Stanley Naftaly , eds., Data
Processing … Practically Speaking (Los Angeles :
 Data Processing Digest , 1967), pp. 87 – 88 .

 71. Margaret Rossiter , Women Scientists in America:
Struggles and Strategies to 1940 (Baltimore : Johns
Hopkins University Press , 1982).

 72. Jeffrey Hearn , “ Notes on Patriarchy, Profes-
sionalization and the Semi - Professions , ” Sociology ,
Vol. 16 , No. 2 (1982): 184 – 202 .

 73. Ruth Oldenziel , Making Technology
Masculine: Men, Women, and Modern Machines
in America, 1870 – 1945 (Amsterdam : Amsterdam
University Press , 1999).

 74. Claudia Goldin , Lawrence Katz , and Ilyana
 Kuziemko , “ The Homecoming of American College
Women , ” Journal of Economic Perspectives , Vol.
 20 , No. 4 (2006): 133 – 156 .

 75. Thomas D ’ Auria , “ ACM Membership Profi le
Report , ” Communications of the ACM , Vol. 20 ,
No. 10 (1977): 688 – 692 .

 76. Theodore Willoughby , “ Psychometric Char-
acteristics of the CDP Examination , ” in Proceedings

REFERENCES 141

of the Thirteenth Annual SIGCPR Conference
(New York : ACM Press , 1975), pp. 152 – 160 .

 77. Richard Weber and Bruce Gilchrist , “ Discrim-
ination in the Employment of Women in the Com-
puter Industry , ” Communications of the ACM ,
Vol. 18 , No. 7 (1975): 416 – 418 .

 78. Beverly H. Burris , “ Technocracy and Gender
in the Workplace , ” Social Problems , Vol. 36 , No.
 2 (1989): 165 – 180 .

 79. Adele Mildred Koss , “ Programming at
Burroughs and Philco in the 1950s , ” IEEE Annals
of the History of Computing , Vol. 25 , No. 4
(2003): 40 – 50 .

 80. Evelyn Fox Keller , “ Gender and Science:
Origin, History, and Politics , ” Osiris , Vol. 10
(1995): 27 – 38 .

 81. Carol Cohn , “ War, Wimps and Women , ” in
 M. Cooke and A. Woolcott , eds., Gendering War
Talk (Princeton, NJ : Princeton University Press ,
 1993), pp. 227 – 246 .

 82. Robert Cringely , Accidental Empires: How
the Boys of Silicon Valley Make Their Millions,
Battle Foreign Competition, and Still Can ’ t Get a
Date (New York : Addison - Wesley , 1992).

 83. Joseph Weizenbaum , Computer Power and
Human Reason: From Judgment of Calculation
(San Francisco : W.H. Freeman , 1976).

 84. Steven Levy , Hackers: Heroes of the Com-
puter Revolution (Garden City, NY : Anchor Press/
Doubleday , 1984).

 85. Sherry Turkle , The Second Self: Computers
and the Human Spirit (New York : Simon and
Schuster , 1984).

