
Capacity, Error Exponent, and Structural Results
for Communication Networks

by

Mohsen Heidari Khoozani

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering and Computer Science)

in The University of Michigan
2019

Doctoral Committee:

Professor S. Sandeep Pradhan, Chair
Associate Professor Achilleas Anastasopoulos
Professor David L. Neuhoff
Professor Martin J. Strauss
Professor Wojciech Szpankowski, Purdue University



Mohsen Heidari-Khoozani

mohsenhd@umich.edu

ORCID iD: 0000-0002-0012-2900

c©Mohsen Heidari-Khoozani 2019



To Maman and Baba with love.

ii



ACKNOWLEDGEMENTS

I would like to express my high gratitude to my advisor Professor Sandeep Prad-

han. I am truly thankful of him for his constant support, encouragement and expert

guidance over the past five years. I have been very fortunate to work with an advi-

sor who gave me the freedom to explore on my own, while being deeply involved in

my research. Sandeep’s high standards on the quality of research as well as ethical

conducts are aspects I hope to emulate in my future career.

It has been a pleasure to have Professor Achilleas Anastopolos, Professor David

Neuhoff, Professor Martin Strauss, and Professor Wojciech Szpankowski in my dis-

sertation committee. I am especially indebted to Professor Anastopolos for being

my collaborator and for many extensive and illuminating discussions we had over

the years. I am grateful to Professor Szpankowski and Professor Neuhoff for tak-

ing the time to provide me with their invaluable advice. I wish to thank Professors

Neuhoff and Professor Anastasopoulous for excellent courses in Source Coding the-

ory and Channel Coding theory. I am thankful to Professor Strauss for providing a

complementary perspective on my research.

I would like to thank the entire faculty of the Department of Electrical Engineering

for creating a great learning atmosphere. I would like to express my special gratitude

to Professor Demos Teneketzis for teaching me probability and random processes and

for many interesting discussions over the past five years. It was a great pleasure

and a learning experience to have been a GSI for my advisor Professor Pradhan

and Professor Teneketzis. I am also grateful to the faculty of the Department of

iii



Mathematics for inspiration and intellectual incentives.

Ann Arbor has been a second home for me with wonderful memories, thanks to

amazing friends I have had here over the years. My special thanks go to Hamidreza

Aghasi and Farhad Shirani for being incredible friends and colleagues. I extend my

special thanks to my uncle Hossein and his wife Fatima for their selfless support

since day one of my PhD life. I also cannot emphasize enough the importance of all

the fantastic friends that I was lucky to meet during these years: Parisa Ghaderi,

Mehrzad Samadi, Armin Jam, Avish Kosari, Mina Jafari, Mehrdad Moharami, Sal-

imeh Yasayee Sekeh, Ali Mostajeran, Mahmoud Barangi, Hamidreza Tavafoghi, Pari-

naz Naghizadeh, Payam Mirshams, Nina Zabihi, Azadeh Ansari, Morteza Noushad,

Nyousha Navidi, Armin Sarabi and Mohammad Masoud among them. I am grateful

to my colleagues Aria Sahebi, Arun Padakandla, Touheed Atif and Deepanshu Vasal.

Lastly, it is my greatest wish to thank my mother, my father and my little brothers.

I deeply indebted to them for their support, encouragements and especially many

sacrifices they made for my sake throughout of my life. No amount of thanks could

repay them for their kindness and love.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Point-to-point Communications . . . . . . . . . . . . . . . . 1
1.1.1 The Capacity . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Random Codebooks . . . . . . . . . . . . . . . . . . 3
1.1.3 Error Exponent . . . . . . . . . . . . . . . . . . . . 3

1.2 Multi-Terminal Communication . . . . . . . . . . . . . . . . . 4
1.2.1 On the Structure of Capacity Achieving Codes . . . 5

1.3 Channels with Noiseless Feedback . . . . . . . . . . . . . . . 8
1.3.1 Coding Structures for MAC with Feedback . . . . . 9
1.3.2 On the Error Exponent of MAC with Feedback . . . 10

1.4 Communication Systems with Continuous Alphabets . . . . . 11

II. Quasi-Structured Codes for Multi-Terminal Communications 13

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Quasi Group Codes . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Properties of Quasi Group Codes . . . . . . . . . . . . . . . . 22
2.4 Binning Using QGC . . . . . . . . . . . . . . . . . . . . . . . 26

v



2.5 Distributed Source Coding . . . . . . . . . . . . . . . . . . . 31
2.6 Computation Over MAC . . . . . . . . . . . . . . . . . . . . 34
2.7 MAC with States . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.2 Achievable Rates . . . . . . . . . . . . . . . . . . . 39
2.7.3 An Example . . . . . . . . . . . . . . . . . . . . . . 43

III. Joint Source-Channel Coding in MAC . . . . . . . . . . . . . . 46

3.1 Preliminaries and Problem Formulation . . . . . . . . . . . . 47
3.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Randomized Coding Strategy . . . . . . . . . . . . . 48
3.1.3 Conferencing Common Information . . . . . . . . . 51
3.1.4 Problem Formulation . . . . . . . . . . . . . . . . . 52

3.2 Applications of Common Information in MAC with Correlated
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Encoding of Uni-Variate Common Information . . . 54
3.2.2 Encoding of Conferencing Common Information . . 56

3.3 Three-User MAC with Correlated Sources . . . . . . . . . . . 57
3.3.1 A Three-User Extension of CES Scheme . . . . . . 58
3.3.2 New Sufficient Condition . . . . . . . . . . . . . . . 61
3.3.3 Suboptimnality of CES Scheme . . . . . . . . . . . 63

IV. Structured codes for Communications over MAC with Feed-
back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Preliminaries and Model . . . . . . . . . . . . . . . . . . . . . 70
4.2 Conferencing Common Information in MAC-FB . . . . . . . . 74
4.3 Necessity of Structured Codes for MAC-FB . . . . . . . . . . 78

V. Algebraic Structures for Multiple Descriptions . . . . . . . . . 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Random Coding Improvements for Discrete Sources . . . . . . 88
5.4 Improvements Using Random Codes for Continuous Sources . 90
5.5 Achievable RD Using Lattice Quantizers . . . . . . . . . . . . 92

VI. On the Error Exponent of MAC with Noiseless Feedback . . 95

6.1 Problem Formulation and Definitions . . . . . . . . . . . . . . 96
6.1.1 The Feedback-Capacity Region of MAC . . . . . . . 98
6.1.2 Notational Conventions . . . . . . . . . . . . . . . . 99

6.2 A Lower-Bound for the Reliability Function . . . . . . . . . . 100
6.3 An Upper-bound for the Reliability Function . . . . . . . . . 102

vi



6.3.1 Proof of the Upper-Bound . . . . . . . . . . . . . . 103
6.3.2 An Alternative Proof for the Upper-Bound . . . . . 108

6.4 The Shape of the Lower and Upper Bounds . . . . . . . . . . 110
6.4.1 On the Tightness of the Bounds on the Error Expo-

nent . . . . . . . . . . . . . . . . . . . . . . . . . . 112

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . 119
A.4 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . 122
A.5 Proof of Theorem II.2 . . . . . . . . . . . . . . . . . . . . . . 125

A.5.1 Analysis of E1, E2 . . . . . . . . . . . . . . . . . . . 127
A.5.2 Analysis of Ed . . . . . . . . . . . . . . . . . . . . . 128

A.6 Proof of Theorem II.3 . . . . . . . . . . . . . . . . . . . . . . 135
A.6.1 Analysis of E1, E2 . . . . . . . . . . . . . . . . . . . 137
A.6.2 Analysis of Ec . . . . . . . . . . . . . . . . . . . . . 137
A.6.3 Analysis of Ed . . . . . . . . . . . . . . . . . . . . . 139

A.7 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . 144
A.8 Proof of Lemma 27 . . . . . . . . . . . . . . . . . . . . . . . . 146
A.9 Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.10 Proof of Claim 1 . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.1 Proof of Theorem III.1 . . . . . . . . . . . . . . . . . . . . . . 157
B.2 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . . . . . 162
C.1 Proof of Theorem IV.1 . . . . . . . . . . . . . . . . . . . . . . 164
C.2 Proof of Lemma 13 . . . . . . . . . . . . . . . . . . . . . . . . 168
C.3 Proof of Lemma 14 . . . . . . . . . . . . . . . . . . . . . . . . 170
C.4 Proof of Lemma 15 . . . . . . . . . . . . . . . . . . . . . . . . 172
D.1 Proof of Theorem V.2 . . . . . . . . . . . . . . . . . . . . . . 175
E.1 Proof of Theorem VI.1 . . . . . . . . . . . . . . . . . . . . . . 181
E.2 Proof of Lemma 20 . . . . . . . . . . . . . . . . . . . . . . . . 185
E.3 Proof of Lemma 24 . . . . . . . . . . . . . . . . . . . . . . . 187
E.4 Proof of Theorem VI.2 . . . . . . . . . . . . . . . . . . . . . . 190
E.5 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . . . 193

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

vii



LIST OF FIGURES

Figure

1.1 Distributed compression of two correlated binary source (X, Y ). Each
encoder observes one of the sources. The encoders communicate in-
formation to a central decoder. The decoder uses the received in-
formation to reconstruct (a function of) the sources. The design
objective is to minimize the rate of transmissions. . . . . . . . . . . 6

2.1 An example for the problem of distributed source coding. In this
setup, the sources X1 and X2 take values from Zpr . The decoder
reconstructs X1 +X2 losslessly. . . . . . . . . . . . . . . . . . . . . 32

2.2 An example for the problem of computation over MAC. The channel
input alphabets belong to Zpr . The receiver decodes X1 +X2 which
is the modulo-pr sum of the inputs of the MAC. . . . . . . . . . . . 35

2.3 A two-user MAC with distributed states. The states (S1, S2) are
generated randomly according to PS1S2 . The entire sequence of each
state Si is available non-casually at the ith transmitter, where i = 1, 2. 39

3.1 The diagram of a two-user MAC with correlated sources. In this
Setup, the source sequences (Sn1 , S

n
2 ) are observed by the correspond-

ing encoders. The encoders produce (Xn
1 , X

n
2 ) which are channel’s

input sequences. Upon observing the channel output Y n, the de-
coder produces an estimate for the sources. The design objective is
to provide a lossless estimate of the source sequences at the receiving
end of the channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 In CES scheme uni-variate common parts are encoded using identical
encoders. Random variable Un represents the encoded version of the
common part at each transmitter. . . . . . . . . . . . . . . . . . . . 55

3.3 The random variables involved in the three-user extension of CES. . 58

viii



3.4 The diagram the setup introduced in Example 9. Note the input
alphabets of this MAC are restricted to {0, 1}. . . . . . . . . . . . . 64

4.1 The three-user MAC with noiseless feedback. If the switch Si is
closed, the feedback is available at the ith encoder, where i = 1, 2, 3. 69

4.2 Applications of conferencing common information for communica-
tions over MAC-FB. The new sub-messages at block b are denoted
by Mi,b. At the end of block b − 1, each Transmitter decodes the
modulo-two sum of the other two transmitters. The decoded sums
are denoted by Ti,b, i = 1, 2, 3. Note that T1,b ⊕ T2,b ⊕ T3,b = 0 with
probability close to one. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 The MAC with feedback setup for Example 10. . . . . . . . . . . . 78

4.4 The second channel for Example 10. If the condition X31 = X12⊕X22

holds, the channel would be the one on the left; otherwise it would
be the right channel. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 An example of a MD problem with two-descriptions. The problem
consists of one encoder with three decoders. Encoder produces two
descriptions of the source. Decoder 1 and 2 receive only one de-
scription of the source; whereas Decoder 12 has access to the two
descriptions sent by the encoder. . . . . . . . . . . . . . . . . . . . . 85

6.1 Given a rate pair (R1, R2) which is inside the capacity region, consider
the line passing (R1, R2) and the origin. Then, (R′1, R

′
2) is the point

of intersection of this line with the boundary of the capacity region. 111

6.2 The conceptual shape of the lower/upper-bound on the error expo-
nent of a given MAC with respect to the transmission rate pair (R1, R2).113

ix



LIST OF TABLES

Table

2.1 Distribution of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Achievable sum-rate using different coding schemes for Example 2.
Note that Z , X1 ⊕4 X2. . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Achievable rates using different coding schemes for Example 3. Note
that Z , X1 +X2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Distribution of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1 The conditions on x(·) and S. . . . . . . . . . . . . . . . . . . . . . 154

x



LIST OF APPENDICES

Appendix

A. Proofs for Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B. Proofs for Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C. Proofs for Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D. Proofs for Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

E. Proofs for Chapter VI . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xi



LIST OF ABBREVIATIONS

PtP point-to-point

VLC variable-length code

IID independent identically distributed

MAC multiple-access channel

BC broadcast channel

IC Interference channel

DMC discrete memoryless channel

QSC quasi-structured code

QGC Quasi Group Codes

MAC-FB MAC with feedback

AWGN additive white Gaussian noise

MD multiple descriptions

CES Cover-El Gamal-Salehi

CL Cover-Leung

xii



ABSTRACT

In various multi-terminal communication scenarios, contrary to point-to-point

communication, characterization of fundamental limits such as capacity and error

exponent is still an open problem. We study such fundamental limits and the struc-

ture of optimality achieving codes. This thesis consists of two parts: in the first part,

we investigate the role of algebraic structures in multi-terminal communications. We

show the necessity of various types of algebraic structure in capacity achieving codes

and argue that the lack of such structures in the conventional random codes leads

to their sub-optimality. We develop a new class of partially structured codes called

quasi-structured code (QSC). Such codes span the spectrum from completely struc-

tured to completely unstructured codes. It is shown that the application of QSCs

leads to improvements over the current coding strategies for many problems includ-

ing distributed source coding and multiple-access channel (MAC) with feedback.

In the second part of the thesis, we study the optimal error exponent in various

multi-terminal communication scenarios. We derive a lower and upper bound on the

error exponent of discrete memoryless MAC with noiseless feedback and variable-

length codes (VLCs). The bounds increase linearly with respect to a specific Eu-

clidean distance measure defined between the transmission rate pair and the capacity

boundary. The bounds are shown to be tight for specific classes of MACs.

xiii



CHAPTER I

Introduction

1.1 Point-to-point Communications

Information theory is a “mathematical theory of communications” [1], provid-

ing an abstract model to analyze communication systems. Based on this model, a

communication system consists of the following essential features:

• An information source, producing an a priori unknown message or a sequence of

messages, modeled as a random variable (or a random sequence) taking values

from a set M.

• A channel, representing the medium over which the communication takes place.

The channel’s input and output alphabets are denoted by X and Y , respectively.

The effect of the channel on the input is modeled by a random mapping from

X to Y1.

• A (block) encoder that maps the observed message (sequence) to a channel

input sequence of length n. Such sequence is called a codeword and n is called

the blocklength.

• A decoder that observes the channel output sequences and outputs an estimate

of the original message.

1In this work, we restrict ourselves to stationary and memoryless channels.
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Typically, the message is selected with uniform distribution fromM. Given a fidelity

measure, such as the probability of decoding the correct message, one can determine

whether a target threshold is met. Often, probability of decoding a wrong message,

known as error probability, is considered as a measure of the reliability of the com-

munication system. The ratio

R ,
log2 |M|

n
, (1.1)

known as the transmission rate, gives the amount of transmitted information and is

measured in bits per channel use. The design objective for a communication system

is to find a pair of encoder - decoder satisfying an error probability ε with the highest

possible transmission rate. A pair encoder - decoder is often referred to as a coding

strategy or coding scheme.

1.1.1 The Capacity

The capacity is defined as the maximum transmission rate for which a commu-

nication with vanishing probability of error, ε → 0, is possible. More precisely, the

capacity is expressed as

C , lim
ε→0

lim
n→∞

log2 |M(n, ε)|
n

, (1.2)

where M(n, ε) is the maximum possible message size M for any code with blocklength

n and error probability lower than ε. Two imperative results in information theory

are 1) recognizing that the capacity of a communication system is fundamental to

its performance limits, and 2) characterizing the capacity of a channel in terms of

commutable quantities called mutual information.
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1.1.2 Random Codebooks

In search of codes for reliable communications in information theory, one consid-

ers a method involving so-called independent identically distributed (IID) random

codebooks2 [2] that is proved to be capacity achieving [1]. In this method, for each

possible realization of the message an IID random sequence Xn is generated accord-

ing to an appropriately predefined probability distribution PX . Such a code possesses

only single-letter empirical properties. This enables one to derive performance limits,

in terms of achievable rates, as a functional of the underling probability distribu-

tion PX . In this context, the capacity of any stationary and memoryless channel is

achievable using unstructured random codes and is expressed as

C = max
PX

I(X;Y ),

where I(X;Y ) is the mutual information [1–3].

1.1.3 Error Exponent

The work on characterizing the channel capacity indicates that communications

with arbitrary small probability of error is possible if and only if R < C [1, 2]. This

result, as in equation (1.2), is a characterization for asymptotically large blocklength

n. However, due limitations on the delay of the communication in practical applica-

tions, the blocklength is finite. Moreover, the communication often takes place with

non-zero error probability. For these applications, it is required to specify the rate of

the decay of the error probability as a function of rate and blocklength.

The idea is to fix a rate R and study the function Pe(n,R) which is the smallest

error probability among codes with length n and rate R. The asymptotic behavior

of this function for fixed rate is determined by the reliability function (also known as

2Such codes are sometimes referred to as unstructured random codes.
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the error exponent) [4] which is defined as

E(R) , lim sup
n→∞

− 1

n
logPe(n,R). (1.3)

An implication of (1.3) is that if R < C, then the smallest possible error probability

decreases exponentially as n increases. The exponent is determined by E(R).

1.2 Multi-Terminal Communication

In the context of developing a mathematical formulation for communication among

multiple transmitters and receivers, similar approaches, as in point-to-point (PtP)

setting, are taken to model a communication network [5]. For that, many funda-

mental problems are identified such as multiple-access channel (MAC), broadcast

channel (BC) and Interference channel (IC) [2, 5, 6]. These problems are viewed as

building blocks; studying them gives insight into understanding larger networks. In

this context, multiple transmission rates, one for each transmitter-receiver pair, are

defined. The capacity region is, then, defined as the set of all rate-tuples for which

communications with vanishing error probability is possible. Following the insights

from PtP setting, the following fundamental problems need to be addressed:

(1) Computable characterization of the capacity region,

(2) The design of capacity achieving codes,

(3) Closed-form expression for the error exponent.

As for the first problem, followed by the work in [1], the capacity region is charac-

terized in terms of “single-letter” information quantities for a few problems including

MAC and degraded BC [2,5] . However, characterizing the capacity region of several

multi-terminal systems, such as IC, and BC, remains an open problem.

4



As for the second problem, based on the initial successes in PtP setting, it was

widely believed that one can achieve the capacity of any network communication prob-

lem using IID codebooks. However, departing from traditional approaches, Körner

and Marton [7] suggested a technique based on statistically correlated codebooks

(identical random linear codes), referred to as (random) structured codes, that outper-

formed all techniques using random unstructured codes. This technique was proposed

for compression of two correlated binary sources when the objective is to reconstruct

the modulo-two sum of the sources. Also, recent results for the problem of IC [8]

showed that the well-known Han-Kobayashi rate region [9] is strictly sub-optimal.

These investigations, together with similar observations ( [10–35]) indicate that cod-

ing strategies solely based on random unstructured codebooks may not be capacity

achieving. This points out to the need for more investigations into the structure of

the capacity achieving codes for multi-terminal communications.

1.2.1 On the Structure of Capacity Achieving Codes

In the context of PtP communications, if one constructs a random codebook sim-

ply by choosing the codewords using IID random variables, then, with high probabil-

ity, the codebook is capacity achieving. However, this is not the case in multi-terminal

communication systems. It appears that there is a trade-off between cooperation and

communication/compression in networks. To see this, consider the following obser-

vations.

As depicted in Figure 1.1, suppose there are two correlated binary sources of

information; each observed by one encoder. The objective of the encoders is to

compress the sources in a distributed fashion such that a central decoder would be

able to reconstruct the sources losslessly (Slepian-Wolf setting [36]). For this setup,

5



Enc. 1

Enc. 2

Dec.PXY

X

Y

Figure 1.1: Distributed compression of two correlated binary source (X, Y ). Each
encoder observes one of the sources. The encoders communicate infor-
mation to a central decoder. The decoder uses the received information
to reconstruct (a function of) the sources. The design objective is to
minimize the rate of transmissions.

the minimum required rate is

R1 ≥ H(X|Y ), R2 ≥ H(Y |X), R1 +R2 ≥ H(X, Y ),

where H(·) is the entropy of the sources. In general, to achieve the Slepian-Wolf

performance limit, one can use independent Shannon-style unstructured code ensem-

bles [2]. However, if the objective is to reconstruct the modulo-two sum of the sources,

then as Körner and Marton suggested, identical linear codes are needed. With this

approach, when the joint distribution PXY is symmetric, the minimum required rate

is

R1 = R2 ≥ H(X ⊕ Y ).

This implies that the sum-rate is 2H(X⊕Y ) which can be strictly less than H(X, Y ).

In summary, to achieve network cooperation (decoding the sum) the users must use

identical linear codes. However, if the objective is to have the full reconstruction

of both the sources at the decoder, then the use of identical binning can be strictly

suboptimal.

A similar observation was made recently regarding the interference channels [33]:
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each cooperating transmitter using identical linear codes must pay some penalty

in terms of sacrificing her/his rate for the overall good of the network. A selfish

user intent on maximizing individual throughput must use essentially independent

Shannon-style unstructured code ensembles. These observations indicate that the

algebraic structures of coding strategies contribute to balance the trade-off between

cooperation and communication/compression.

Toward addressing the role of algebraic structures in balancing the trade-off, one

needs a measure for algebraic closure (“closedness”) properties of codebooks. Assume

the codewords of a codebook C are binary vectors. The size of the modulo-two sum

of C with itself can be viewed as a measure of its algebraic closure. On one extreme,

C is completely structured in the sense that the size of C ⊕ C equals the size of C.

This implies that C is closed under modulo-two addition. On the other extreme,

unstructured Shannon random codes are completely unstructured in the sense that

the size of C ⊕ C is close to the size of C × C with high probability. This gap between

the completely structured codes and the completely unstructured codes leads to the

following question:

Is there a spectrum of strategies involving partially structured codes or partially

unstructured codes that lie between these two extremes?

In Chapter II, we investigate the existence of partially structured codes that close

this gap and lie between the two extremes. To this end, we develop a new class

of codes called quasi-structured code (QSC). A QSC is defined as a subset of a

structured code (e.g. linear code)3. We show that QSCs span the spectrum from

completely structured to completely unstructured. More precisely, the size of C ⊕ C

is between |C| and |C|2. We provide a method for constructing specific subsets of

these codes by putting single-letter distributions on the indices of the codewords. We

can analyze the performance of the resulting code ensemble, and characterize the

3The motivation for this work comes from our earlier work on multi-level polar codes based on
Zpr [37]. A multi-level polar code is not a group code. But it is a subset a nontrivial group code.
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asymptotic performance using single-letter information quantities. By choosing the

single-letter distribution on the indices one can operate anywhere in the spectrum

between the two extremes: structured codes and unstructured codes. We use these

class of codes to derive strictly improved achievable regions for many fundamental

multi-terminal problems.

1.3 Channels with Noiseless Feedback

A challenging part of information theory is the study of channels with feedback.

In this model, output symbols of a memoryless channel are available, with one unite

of delay, to the transmitter. Surprisingly, the first result in this context indicates that

feedback does not increase the capacity of discrete memoryless channel (DMC) [38].

Furthermore, feedback does not improve the error exponent of symmetric channels

when fixed blocklength codes are used [39,40].

For communications over channels with feedback, one can use a so-called variable-

length code (VLC) whose length can depend on the channel realizations. In this

context, feedback does help. Feedback reduces the complexity of the encoding and

decoding required to achieve a target error probability [41]. In a remarkable work,

Burnashev [42] demonstrated that the error exponent improves for DMCs with feed-

back and variable-length codes. The error exponent has a simple form

E(R) = (1− R

C
)C1, (1.4)

where 0 ≤ R < C is the (average) rate of transmission, C is the capacity of the chan-

nel, and C1 is the maximal relative entropy between conditional output distributions.

In the context of communications over multi-user channels, the benefits of feedback

are more prominent. Gaarder and Wolf [43] showed that feedback can expand the

capacity region of discrete memoryless MAC. Similar to the study of communication

8



systems without feedback, three research directions are identified: 1) characterization

of the capacity region, 2) structure of capacity achieving codes , and 3) closed-form

expression for the error exponent. There are many partial results (namely, [44–46])

to address the first problem. The capacity region of two-user discrete memoryless

MAC with feedback (MAC-FB) is characterized by Kramer in 1998 [47]. However,

the characterization is in terms of multi-letter directed mutual information measures

which is not computable in general. To the best of our knowledge, there is no closed-

form expression for the error exponent of MAC with feedback. Finding a computable

characterization for the capacity region and the error exponent of MAC-FB remains

an open problem. In this thesis, we investigate the problem of communications over

MAC with feedback to characterize 1) the error exponent, and 2) the structure of

capacity achieving codes. In what follows, we explain our main contributions in this

setting.

1.3.1 Coding Structures for MAC with Feedback

In MAC-FB setup, the transmitters send independent messages simultaneously

to a receiver. However, conditioned on the feedback, the messages are statistically

correlated. This correlation can be used to combat interference and channel noise

more effectively in subsequent channel uses.

We study the problem of finding capacity achieving coding strategies for MAC-FB

setup. For that, in Chapter IV, we make a connection between MAC-FB and another

fundamental problem called transmission of correlated sources over MAC [48]. This

problem is explained as follows:

MAC with correlated source: In this problem, there are multiple transmitters;

each observing a source correlated to others. The transmitters do not communicate

with each other and wish to send their observations via a MAC to a central receiver.
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The receiver reconstructs the sources losslessly. This problem is studied in many

works including [6, 48,49].

In addition, we use the concept of common information due to Gács-Körner [50]

and Witsenhausen [51] which is explained as follows:

Common information: The common information between two random variables

S1, S2 is the maximum entropy of W which is a function of S1 and a function of S2,

i.e., W = f(S1) = g(S2). In other words, common information quantifies the amount

of common randomness that can be extracted by knowing S1 and S2 separately.

We seek a more general definition of common information which incorporates the

cases with more than two random variables, say S1, S2, and S3. We introduce a new

form of common information called conferencing common information. In Chapter

III, we study the use of this common information to develop coding strategies for

the three-user version of MAC-FB and MAC with correlated sources. It is shown, in

Chapter III and IV, that exploiting conferencing common information contributes to

improvements over conventional coding schemes, such as Cover - El Gamal - Salehi

[48], and Cover - Leung schemes [52].

1.3.2 On the Error Exponent of MAC with Feedback

The decoding error in a MAC-FB setup consists of the union of two error events

(say E1, E2) one for decoding each transmitter’s message. Therefore, the probability

of error equals to the sum of the following three terms: P (E1\E2), P (E2\E1), and

P (E1 ∩ E2). The main challenge in finding the error exponent in this setting is to

analyze the exponential rate of decay of these probabilities and to determine which

term is the dominant one.

To overcome this challenge, in Chapter VI, we make a connection between this

problem and the problem of sequential hypothesis testing [53]. We use the tools from
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dynamic programming and Burnashev’s techniques for PtP settings [42] to derive

bounds on the error exponent of MAC-FB. We derive an upper bound and a lower

bound on the error exponent. In this setting, we observe that the upper bound can

be expressed in the following form

Eu(R1, R2) = (1− ||R||
C(θR)

)Du (1.5)

where (||R||, θR) denote the polar coordinate of (R1, R2) in R2. Also, C(θR) is the

point of the capacity frontier at the angle determined by R. The lower-bound is the

same as Eu but with different constant Dl. The constants Dl and Du depend only on

the channel’s transition probability matrix and are determined by the relative entropy

between the conditional output distributions.

1.4 Communication Systems with Continuous Alphabets

Communications over channels/ networks whose input alphabets are Euclidean

spaces, e.g. R, accounts for different coding strategies than the discrete counterparts.

A well-known example is the channel with additive white Gaussian noise (AWGN)

Y = X +N, N ∼ N (0, 1) (1.6)

with input power constraint 1
n

∑n
i=1X

2
i ≤ P . The works in finding low-complexity

and capacity achieving codes for these channels give rise to many coding structures

such as Lattice codes [54–56] .

Lattice codes are analogous of linear codes in Euclidean spaces. A lattice code in

Rd is defined as the set of all linear combinations, with integer coefficients, of a given

set of linearly independent vectors in Rd. Traditionally, performance characterization

of lattices is carried out using Gaussian test channels. Such techniques are known to
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be suitable for Gaussian source/channel setups. The capacity of the AWGN channel

in (1.6) is achievable using lattices [54]. However, for general channel/source setups,

it is difficult to derive achievable rates of lattices using such techniques. Recently, a

new method is introduced to overcome this challenge [57]. In the method, first the ob-

jective continuous source/ channel problem is quantized to obtain its discrete version.

The performance analysis is carried out for the discrete version of the problem and

inner bounds are derived in terms of discrete mutual information quantities. Then,

it is shown that as the discretization process keeps refining, the mutual information

terms converge to the continuous ones. Hence, inner bounds are obtained for the

original continuous source/channel setup. This method is not restricted to PtP sys-

tems. Using this approach together, in Chapter V, we extend our results in discrete

settings to multi-terminal systems with continuous alphabets. We introduce coding

schemes based on lattices for multiple descriptions (MD) and MAC problems. We

show that applications of lattices for such problems lead to performance improvements

comparing to the conventional coding strategies.
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CHAPTER II

Quasi-Structured Codes for Multi-Terminal

Communications

Stepping beyond this conventional technique, Körner and Marton [7] proposed a

technique based on statistically correlated codebooks (in particular, identical random

linear codes) possessing algebraic closure properties, henceforth referred to as (ran-

dom) structured codes, that outperformed all techniques based on (random) unstruc-

tured codes. This technique was proposed for the problem of distributed computation

of the modulo two sum of two correlated symmetric binary sources [7]. Applications

of structured codes were also studied for various multi-terminal communication sys-

tems, including, but not limited to, distributed source coding [10–13], computation

over MAC [14–20], MAC with side information [11, 21–24], the joint source-channel

coding over MAC [25], multiple-descriptions [26], interference channel [27–33], broad-

cast channel [34] and MAC with Feedback [35]. In these works, algebraic structures

are exploited to design new coding schemes which outperform all coding schemes

solely based on random unstructured codes. The emerging opinion in this regard is

that even if computational complexity is a non-issue, algebraic structured codes may

be necessary, in a deeply fundamental way, to achieve optimality in transmission and

storage of information in networks.

There are several algebraic structures such as fields, ring and groups. Linear
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codes are defined over finite fields. The focus of this work is on structured codes

defined over the ring of modulo-m integers, that is Zm. Group codes are a class of

structured codes constructed over Zm, and were first studied by Slepian [58] for the

Gaussian channel. A group code over Zm is defined as a set of codeswords that is

closed under the element-wise modulo-m addition. Linear codes are a special case of

group codes (the case when m is a prime). There are two main incentives to study

group codes. First, linear codes are defined only over finite fields, and finite fields

exists only when alphabet sizes equal to a prime power, i.e., Zpr . Second, there are

several communications problems in which group codes have superior performance

limits compared to linear codes. As an example, group codes over Z8 have better

error correcting properties than linear codes for communications over an additive

white Gaussian noise channel with 8-PSK constellation [59]. As an another example,

construction of polar codes over alphabets of size equal to a prime power pr, is more

efficient with a module structure rather than a vector space structure [37, 60–62].

Bounds on the achievable rates of group codes in PtP communications were studied

in [59, 63–67]. Como [66] derived the largest achievable rate using group codes for

certain PtP channels. In [63], Ahlswede showed that group codes do not achieve

the capacity of a general discrete memoryless channel. In [67], Sahebi et.al., unified

the previously known works, and characterized the ensemble of all group codes over

finite commutative groups. In addition, the authors derived the optimum asymptotic

performance limits of group codes for PtP channel/source coding problems.

Contributions

Our contributions in this Chapter are as follows. A new class of codes over groups

called Quasi Group Codes (QGC) is introduced. These codes are constructed by tak-

ing subsets of group codes. This work considers QGCs over cyclic groups Zpr . One

can use the fundamental theorem of finitely generated Abelian groups to generalize
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the results of this paper to QGCs over non-cyclic finite Abelian groups. Information-

theoretic characterizations for the asymptotic performance limits and properties of

QGCs for source coding and channel coding problems are derived in terms of single-

letter information quantities. Covering and packing bounds are derived for an ensem-

ble of QGCs. Next, a binning technique for the QGCs is developed by constructing

nested QGCs. As a result of these bounds, the PtP channel capacity and optimal

rate-distortion function of sources are shown to be achievable using nested QGCs.

The applications of QGCs in some multi-terminal communications problems are con-

sidered. More specifically our study includes the following problems:

Distributed Source Coding A more general version of Körner-Marton problem

is considered. In this problem, there are two distributed sources taking values from

Zpr . The sources are to be compressed in a distributed fashion. The decoder wishes

to compute the modulo pr-addition of the sources losslessly.

Computation over MAC In this problem, two transmitters wish to communicate

independent information to a receiver over a MAC. The objective is to decode the

modulo-pr sum of the codewords sent by the transmitters at the receiver. This prob-

lem is of interest in its own right. Moreover, this problem finds applications as an

intermediate step in the study of other fundamental problems such as the interference

channel and broadcast channel [34,68].

MAC with Distributed States In this problem, two transmitters wish to com-

municate independent information to a receiver over a MAC. The transition proba-

bility between the output and the inputs depends on states S1, and S2 corresponding

to the two transmitters. The state sequences are generated IID according to some

fixed joint probability distribution. Each encoder observes the corresponding state

sequence non-causally. The objective of the receiver is to decode the messages of both
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transmitters.

These problems are formally defined in the sequel. For each of these problems, a

coding scheme based on (nested) QGCs is introduced. It is shown, through examples,

that the coding scheme improves upon the best-known coding strategies based on

unstructured codes, linear codes and group codes. In addition, for each problem a

new single-letter achievable rate-region is derived. These rate-regions strictly subsume

all the previously known rate-regions for each of these problems.

2.1 Preliminaries

A group is a set equipped with a binary operation denoted by “+”. All groups

in this paper are Abelian. Given a prime power pr, the group of integers modulo-pr

is denoted by Zpr , where the underlying set is {0, 1, · · · , pr − 1}, and the addition

is modulo-pr addition. Given a group M , a subgroup is a subset H which is closed

under the group addition. For s ∈ [0 : r], define

Hs = psZpr = {0, ps, 2ps, · · · , (pr−s − 1)ps},

and Ts = {0, 1, · · · , ps−1}. For example, H0 = Zpr , T0 = {0}, whereas Hr = {0}, Tr =

Zpr . Note, Hs is a subgroup of Zpr , for s ∈ [0 : r]. Given Hs and Ts, each element

a of Zpr can be represented uniquely as a sum a = t + h, where h ∈ Hs and t ∈ Ts.

We denote such t by [a]s. Note that [a]s = a mod ps, for s ∈ [0, r]. Therefore, with

this notation, [·]s is a function from Zpr → Ts. Note that this function satisfies the

distributive property:

[a+ b]s =
[
[a]s + [b]s

]
s

For any elements a, b ∈ Zpr , we define the multiplication a · b by adding a with
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itself b times. Given a positive integer n, denote Znpr =
⊗n

i=1 Zpr . Note that Znpr is

a group, whose addition is element-wise and its underlying set is {0, 1, . . . , pr − 1}n.

We follow the definition of shifted group codes on Zpr as in [67] [10].

Definition 1 (Shifted Group Codes). An (n, k)-shifted group code over Zpr is defined

as

C = {uG + b : u ∈ Zkpr}, (2.1)

where b ∈ Znpr is the translation (dither) vector and G is a k × n generator matrix

with elements in Zpr .

We follow the definition of typicality as in [3].

Definition 2. For any probability distribution P on X and ε > 0, a sequence xn ∈ X n

is said to be ε-typical with respect to P if

∣∣∣ 1
n
N(a|xn)− P (a)

∣∣∣ ≤ ε

|X | , ∀a ∈ X ,

and, in addition, no a ∈ X with P (a) = 0 occurs in xn. Note that N(a|xn) is the

number of the occurrences of a in the sequence xn. The set of all ε-typical sequences

with respect to a probability distribution P on X is denoted by A
(n)
ε (X).

The above definition can be extended to define joint typicality with respect to a

joint probability distribution PXY on X ×Y . A pair of sequences (xn,yn) ∈ X n×Yn

is said to be jointly ε-typical with respect to PXY if

∣∣∣ 1
n
N(a, b|xn,yn)− PXY (a, b)

∣∣∣ ≤ ε

|X ||Y| , ∀(a, b) ∈ X × Y

such that none of (a, b) with PXY (a, b) = 0 occurs in (xn,yn). The set of all such

pairs is denoted by A
(n)
ε (X, Y ).
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2.2 Quasi Group Codes

Linear codes and group codes are two classes of structured codes. These codes

are closed under the addition of the underlying group or field. It is known in the

literature that coding schemes based on linear codes and group codes improve upon

unstructured random coding strategies [7]. In this section, we propose a new class of

structured codes called quasi-group codes.

A QGC is defined as a subset of a group code. Therefore, QGCs are not necessarily

closed under the addition of the underlying group. An (n, k) shifted group code over

Zpr is defined as the image of a linear mapping from Zkpr to Znpr as in Definition 1.

Let U be an arbitrary subset of Zkpr . Then a QGC is defined as

C = {uG + b : u ∈ U}, (2.2)

where G is a k× n matrix and b is an element of Znpr . If U = Zkpr , then C is a shifted

group code. As we will show, by changing the subset U , the code C ranges from

completely structured codes (such as group codes and linear codes) where |C+C| = |C|

to completely unstructured codes where |C + C| ≈ |C|2. For a general subset U , it

is difficult to derive a single-letter characterization of the asymptotic performance of

such codes. To address this issue, we present a special type of subsets U for which

single-letter characterization of their performance is possible.

Construction of U Given a positive integer m, consider m mutually independent

random variables U1, U2, · · · , Um. Suppose each Ui takes values from Zpr with distri-

bution PUi , i ∈ [1 : m]. For ε > 0, and positive integers ki, define U as a Cartesian

product of the ε-typical sets of Ui, i ∈ [1 : m]. More precisely,

U ,
m⊗
i=1

A(ki)
ε (Ui). (2.3)
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In this construction, set U is determined by m, ki, ε, and the PMFs PUi , i ∈ [1 : m].

An example of such construction for m = 1 is given in the following.

Example 1. Let U be a random variable over Zpr with PMF PU . For ε > 0, let U to

be the set of all ε-typical sequences uk. More precisely, define U = A
(k)
ε (U). In this

case, U is determined by the PMF PU and ε. For instance, if U is uniform over Zpr ,

then U = Zkpr .

In what follows, we provide an alternative representation for the construction

given in (2.3). Let k ,
∑m

i=1 ki and denote qi ,
ki
k

. With this notation, qi, i ∈ [1,m]

form a probability distribution; because, qi ≥ 0 and
∑

i qi = 1. Therefore, we can

define a random variable Q with P (Q = i) = qi. Define a random variable U with

the conditional distribution P (U = a|Q = i) = P (Ui = a) for all a ∈ Zpr , i ∈ [1 : m].

With this notation the set U in the above construction is characterized by a finite

set Q, a pair of random variables (U,Q) distributed over Zpr ×Q, an integer k, and

ε > 0. The joint distribution of U and Q is denoted by PUQ. Note that we assume

PQ(q) > 0 for all q ∈ Q. For a more concise notation, we identify the set U without

explicitly specifying ε. Q can be interpreted as a time sharing random variable. It

determines the contribution of Ui, measured by ki
k

, in the construction of U . With

the notation given for the construction of U , we define its corresponding QGC.

Definition 3. An (n, k)- QGC C over Zpr is defined as in (2.2) and (2.3), and is

characterized by a matrix G ∈ Zk×npr , a translation b ∈ Znpr , and a pair of random

variables (U,Q) distributed over the finite set Zpr ×Q. The set U in (2.3) is defined

as the index set of C.

Remark 1. Any shifted group code over Zpr is a QGC.

Remark 2. Let C be a random (n, k)-QGC constructed by selecting the elements of

its generator matrix and translation vector randomly independently with uniform
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distribution from Zpr , r > 1. In contrast to linear codes, codewords of C are not

necessarily pairwise independent.

Information theoretic analysis of coding strategies are usually carried out by con-

structing ensembles of randomly generated codebooks [2, 5]. Following the same ap-

proach, we construct ensembles of QGCs with different blocklengths.

Fix positive integers (n, k) and random variables (U,Q). We create an ensemble

of codes by taking the collection of all (n, k)-QGCs with random variables (U,Q),

for all matrices G and translations b. A random codebook C from this ensemble is

chosen by selecting the elements of G and b randomly and uniformly from Zpr . In

order to characterize the asymptotic performance limits of QGCs, we need to define

sequences of ensembles of QGCs. For any positive integer n, let kn = cn, where c > 0

is a constant. Consider the sequence of the ensembles of (n, kn)-QGCs with random

variables (U,Q). In the next two lemmas, we characterize the size of randomly selected

codebooks from these ensembles. The first lemma shows that the index set U for an

ensemble of QGCs approximately equals to 2kH(U |Q).

Lemma 1. Let Un be the index set associated with the ensemble of (n, kn)-QGCs with

random variables (U,Q) and ε > 0, where kn = cn for a constant c > 0. Then there

exists N > 0, such that for all n > N ,

∣∣∣ 1

kn
log2 |Un| −H(U |Q)

∣∣∣ ≤ ε′,

where ε′ is a continuous function of ε, and ε′ → 0 as ε→ 0.

Proof. The proof is given in Appendix A.1

Remark 3. As an immediate consequence of Lemma 1, we provide an upper-bound on

the size of a QGC. For that, let Cn be an (n, kn)-QGC with random variables (U,Q).
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Then, for large enough n,

1

n
log2 |Cn| ≤

kn
n
H(U |Q) + ε′. (2.4)

To explain inequality (2.4), note that a codebook Cn is the image of the index set

Un under the mapping Φn(u) = uGn+bn. Therefore, the bound in (2.4) is due to the

fact that Φn is, in general, a many-to-one mapping. In the case of linear codes (r = 1),

it is assumed that k < n. In this case, for sufficiently large n, Φn is injective with

high probability. This implies that the size of a random linear code approximately

equals ≈ 2k. Consequently, k
n

is a relevant measure for the rate of a (k, n) linear

code. However, for a QGC (general r ≥ 2), even if k ≥ n, under certain conditions,

Φn is “almost” injective with high probability. In what follows, we characterize these

conditions. We begin by defining α-injectivity.

Definition 4. A mapping φ : U → X , defined on finite sets (U ,X ), is said to be

α-injective, if there exists a subset A ⊆ U with cardinality at least α|U| such that

restriction of φ to A is injective.

By the above definition, any 1-injective map is one-to-one. The next lemma shows

that under particular conditions on (U,Q) and for sufficiently large n, the mapping

Φn is α-injective with high probability, where α ≈ 1.

Lemma 2. Let Un be the index set associated with the ensemble of (n, kn)-QGCs with

random variables (U,Q), where kn = cn for a constant c > 0. Define a map Φn : Un →

Znpr , Φn(u) = uGn for all u ∈ Un, where Gn is a kn × n matrix whose elements are

chosen randomly and uniformly from Zpr . Suppose H(U |[U ]s, Q) ≤ 1
c
(r− s) log2 p− ε

for all s ∈ [0 : r− 1]. Then, for any γ, δ > 0 and sufficiently large n, the mapping Φn

is (1− δ)-injective with probability at least (1− γ). 1

1Note that the map Φn in the lemma does not have any translation, i.e., b = 0. It is sufficient to
prove the lemma for b = 0. This is due to the fact that if Φn is (1− δ)-injective, then so is Φn + b,
for any translation b.
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Proof. The proof is provided in Appendix A.2.

As a result, under the conditions given in Lemma 2, the rate of a random codebook

selected from ensemble of (n, k)-QGCs with random variables (U,Q) approximately

equals R ≈ k
n
H(U |Q), with high probability. The condition in Lemma 2 can viewed

as a restriction on the size of the index set, that is

k

n
H(U |[U ]s, Q) ≤ (r − s) log2 p− ε, 0 ≤ s ≤ r − 1. (2.5)

We refer to this condition as the injectivity condition.

2.3 Properties of Quasi Group Codes

It is known that if C is a random unstructured codebook, then |C+ C| ≈ |C|2 with

high probability. Group codes on the other hand are closed under the addition, which

means |C + C| = |C|. Comparing to unstructured codes, when the structure of the

group codes matches with that of a multi-terminal channel/source coding problem,

it turns out that higher/lower transmission rates are obtained. However, in certain

problems, the structure of the group codes is too restrictive. More precisely, when the

underlying group is Zpr for r ≥ 2, there are several nontrivial subgroups. These sub-

groups cause a penalty on the rate of a group code. This results in lower transmission

rates in channel coding and higher transmission rates in source coding.

Quasi group codes balance the trade-off between the structure of the group codes

and that of the unstructured codes. More precisely, when C is a QGC, then |C + C|

is a number between |C| and |C|2. This results in a more flexible algebraic structure

to match better with the structure of the channel or source. This trade-off is shown

more precisely in the following lemma.

Lemma 3. Let Ci, i = 1, 2 be an (n, ki)-QGC over Zpr with random variables (Ui, Q).
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Suppose, PU1,U2,Q is such that the Markov chain U1 ↔ Q ↔ U2 holds and that the

injectivity condition in (2.5) is satisfied for (U1, Q) and (U2, Q).

1. Suppose k1 = k2 = k, and the generator matrices of C1, C2 and D are identical.

Let D be an (n, k)-QGC with random variables (U1 +U2, Q) and the same gen-

erator matrix as for C1 and C2. Suppose Ui is selected randomly and uniformly

from the index set (see Definition 3) of Ci, i = 1, 2. Let Xi be the codeword of

Ci corresponding to Ui, i = 1, 2. Then, for all ε > 0 and sufficiently large n,

P{X1 + X2 ∈ D} ≥ 1− δ(ε),

where δ(ε)→ 0 as ε→ 0.

2. C1 + C2 is an (n, k1 + k2)-QGC with random variables (UI , (Q, I)), where I ∈

{1, 2}. If I = i, then UI = Ui, i = 1, 2. In addition, P (I = i, Q = q, UI = a) =

ki
k1+k2

P (Q = q)P (Ui = a|Q = q), for all a ∈ Zpr , q ∈ Q and i = 1, 2.

Proof. Suppose Ui is the index set, Gi is the matrix, and bi is the translation of

Ci, i = 1, 2.

We prove the first statement for the case when time sharing random variable

Q is trivial. The proof for general Q follows from similar steps. If Q is trivial,

the index sets satisfy Ui = A
(k)
ε (Ui), i = 1, 2. Since k1 = k2 and G1 = G2, then

Xi = UiG+bi, i = 1, 2. With this notation, X1 +X2 = (U1 +U2)G+b1 +b2. From

Lemma 28, with probability at least 1 − 2−nε/p
r
, we have (U1,U2) ∈ A

(k)
δ(ε)(U1, U2),

where δ is a function as in Lemma 28. Therefore, U1 + U2 ∈ A
(k)
δ(ε)(U1 + U2) with

probability at least 1 − 2−nε/p
r
. The proof is complete by noting that the index set

of D is defined as Ud , A
(k)
δ(ε)(U1 + U2).
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For the second statement, we have

C1 + C2 = {[u1,u2]

G1

G2

+ b1 + b2 : ui ∈ Ui, i = 1, 2}.

Therefore, C1 +C2 is an (n, k1 +k2)-QGC. Note that U1×U2 is the index set associated

with this codebook. The statement follows, since each subset Ui, i = 1, 2 is a Cartesian

product of ε-typical sets of Ui,q, q ∈ Q. The random variables (UI , (Q, I)) describes

such a Cartesian product.

We explain the intuition behind the lemma. Suppose C1, C2 and D are QGCs

with identical generator matrices and with random variables U1, U2 and U1 + U2,

respectively. Then D = C1 + C2 with probability approaching one.

Remark 4. If C1 and C2 are the QGCs as in Lemma 3, then from standard counting

arguments we have

max{|C1|, |C2|} ≤ |C1 + C2| ≤ min{prn, |C1| · |C2|}

In what follows, we derive a packing bound and a covering bound for a QGC

with matrices and translation chosen randomly and uniformly. Fix a PMF PXY , and

suppose an ε-typical sequence y is given with respect to the marginal distribution

PY . Consider the set of all codewords in a QGC that are jointly typical with y with

respect to PXY . In the packing lemma, we characterize the conditions under which

the probability of this set is small. This implies the existence of a “good-channel”

code which is also a QGC. In the covering lemma, we derive the conditions for which,

with high probability, there exists at least one such codeword in a QGC. In this case

a “good-source” code exists which is also a QGC. These conditions are provided in

the next two lemmas.
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For any positive integer n, let kn = cn, where c > 0 is a constant. Let Cn be a

sequence of (n, kn)-QGCs with random variables (U,Q), ε > 0. By Rn denote the

rate of Cn. Suppose the elements of the generator matrix and the translation of Cn
are chosen randomly and uniformly from Zpr .

Lemma 4 (Packing). Let (X, Y ) ∼ PXY . By cn(θ) denote the θth codeword of Cn.

Let Ỹn be a random sequence distributed according to
∏n

i=1 PY |X(ỹi|cn,i(θ)). Suppose,

conditioned on cn(θ), Ỹn is independent of all other codewords in Cn. Then, for any

θ ∈ [1 : |Cn|], and δ > 0, ∃N > 0 such that for all n > N ,

P{∃x ∈ Cn : (x, Ỹn) ∈ A(n)
ε (X, Y ),x 6= cn(θ)} < δ,

if the following bounds hold

Rn < min
0≤s≤r−1

H(U |Q)

H(U |Q, [U ]s)

(
log2 p

r−s −H(X|Y, [X]s) + η(ε)
)
, (2.6)

where η(ε)→ 0 as ε→ 0 .

Proof. See Appendix A.3.

Lemma 5 (Covering). Let (X, X̂) ∼ PXX̂ , where X̂ takes values from Zpr . Let Xn

be a random sequence distributed according to
∏n

i=1 PX(xi). Then, for any δ > 0,

∃N > 0 such that for all n > N ,

P{∃x̂ ∈ Cn : (Xn, x̂) ∈ A(n)
ε (X, X̂)} > 1− δ

if the following inequalities hold

Rn > max
1≤s≤r

H(U |Q)

H([U ]s|Q)

(
log2 p

s −H([X̂]s|X) + η(ε)
)
. (2.7)

Proof. See Appendix A.4.
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Remark 5. The covering and packing bounds for the special of r = 1 are simplified to

Packing: Rn < log2 p−H(X|Y ), Covering: Rn > log2 p−H(X̂|X)

Lemma 3, 4 and Lemma 5 provide a tool to derive inner bounds for achievable

rates using quasi group codes in multi-terminal channel coding and source coding

problems.

2.4 Binning Using QGC

Note that in a randomly generated QGC, all codewords have uniform distribution

over Znpr . However, in many communication setups we require application of codes

with non-uniform distributions. In addition, we require binning techniques for various

multi-terminal communications. In this section, we present a method for random

binning of QGCs. In the next sections, we will use random binning of QGCs to

propose coding schemes for various multi-terminal problems.

We introduce nested quasi group codes using which we propose a random binning

technique. A QGC CI is said to be nested in a QGC CO, if CI ⊂ CO + b, for some

translation b. Suppose CO is an (n, k + l)-QGC with the following structure,

CO , {uG + vG̃ + b : u ∈ U ,v ∈ V}, (2.8)

where U and V are subsets of Zkpr , and Zlpr , respectively. Define the inner-code as

CI , {uG + b : u ∈ U}.

By Definition 3, CI is an (n, k)-QGC. In addition, there exists a ∈ Znpr such that

CI ⊂ CO + a. The pair (CI , CO) is called a nested QGC. For any fixed element v ∈ V ,
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we define its corresponding bin as the set

B(v) , {uG + vG̃ + b : u ∈ U}. (2.9)

Definition 5. An (n, k, l)-nested QGC is defined as a pair (CI , CO), where CI is an

(n, k)-QGC, and CO = {xI + x̄ : xI ∈ CI , x̄ ∈ C̄}, where C̄ is an (n, l)-QGC. Let

the random variables corresponding to CI and C̄ are (U,Q) and (V,Q), respectively.

CI , CO and C̄ are called the inner, the outer and the shift codes, respectively. Then,

CO is characterized by (U, V,Q).

In a nested QGC both the outer-code and the inner-code are themselves QGCs.

More precisely we have the following remark.

Remark 6. Let (CI , CO) be an (n, k1, k2)-nested QGC with random variables (U1, U2, Q).

Suppose the joint distribution among (U1, U2, Q) is the one that satisfies the Markov

chain U1 ↔ Q ↔ U2. Then by Lemma 3 CO is an (n, k1 + k2)-QGC with random

variables (UI , (Q, I)).

Note that with equation (2.9), B(v) = CI + vG̃. As a result, each bin is a shifted

version of the inner-code. Thus, each bin in an (n, k, l)-nested QGC is also an (n, k)-

QGC.

Remark 7. Suppose (CI , CO) is an (n, k1, k2)-nested QGC with random matrices and

translations. Assume the injectivity condition (2.5) holds for CI and CO. By RO

and RI denote the rates of CO and CI , respectively. Let ρ denote the binning rate (

the rate of C̄ as in Definition 5). Using Remark 6 and 3, for large enough n, with

probability close to one, |RO −RI − ρ| ≤ o(ε).

Intuitively, as a result of this remark, RO ≈ RI + ρ. Furthermore, since the

injectivity condition holds, then with probability close to one,

RO ≈
k

n
H(U |Q) +

l

n
H(V |Q), RI ≈

k

n
H(U |Q), and ρ ≈ l

n
H(V |Q).
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This implies that the bins B(v) corresponding to different v ∈ C̄ are “almost disjoint”.

In this method for binning, since both the inner-code and the outer-code are QGCs,

the structure of the inner-code, bins and the outer-code can be determined using the

PMFs of the related random variables (that is U, V and Q as in Definition 5).

PtP Communications

We established a set of lemmas (Lemma 1- 5) that are used to derive achievable

rates for coding strategies based on QGCs. In the following, we introduce a coding

strategy using QGCs and show the achievability of the Shannon performance limits for

PtP channel and source coding problem. For that, we first provide a set of definitions

to model PtP channel and source coding problem.

Channel Model: A discrete memoryless channel is characterized by the triple

(X ,Y , PY |X), where the two finite sets X and Y are the input and output alpha-

bets, respectively, and PY |X is the channel transition probability matrix.

Definition 6. An (n,Θ)-code for a channel (X ,Y , PY |X) is a pair of mappings (e, f)

where e : [1 : Θ]→ X n and f : Yn → [1 : Θ].

Definition 7. For a given channel (X ,Y , PY |X), a rate R is said to be achievable if

for any ε > 0 and for all sufficiently large n, there exists an (n,Θ)-code such that :

1

Θ

Θ∑
i=1

P n
Y |X(f(Y n) 6= i|Xn = e(i)) < ε,

1

n
log Θ > R− ε.

The channel capacity is defined as the supremum of all achievable rates.

Source Model: A discrete memoryless source is a tuple (X , X̂ , PX , d), where the two

finite sets X and X̂ are the source and reconstruction alphabets, respectively, PX is

the source probability distribution, and d : X × X̂ → R+ is the (bounded) distortion

function.
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Definition 8. An (n,Θ)-code for a source (X , X̂ , PX , d) is a pair of mappings (e, f)

where f : X n → [1 : Θ] and e : [1 : Θ]→ X̂ n.

Definition 9. For a given source (X , X̂ , PX , d), a rate-distortion pair (R,D) is said

to be achievable if for any ε > 0 and for all sufficiently large n, there exists an

(n,Θ)-code such that :

1

n

n∑
i=1

d(Xi, X̂i) < D + ε,
1

n
log Θ < R + ε,

where X̂n = e(f(Xn)). The optimal rate-distortion region is defined as the set of all

achievable rate-distortion pairs.

Definition 10. An (n,Θ)-code is said to be based on nested QGCs, if there exists an

(n, k, l)-nested QGC with random variables (U, V,Q) such that a) Θ = |V|, where V

is the index set associated with the codebook C̄ (see Definition 5), b) for any v ∈ V,

the output of the mapping e(v) is in B(v), where B(v) is the bin associated with v,

and is defined as in (2.9).

Definition 11. For a channel, a rate R is said to be achievable using nested QGCs if

for any ε > 0 and all sufficiently large n, there exists an (n,Θ)-code based on nested

QGCs such that:

1

Θ

Θ∑
i=1

P (f(Y n) 6= i|Xn = e(i)) < ε,
1

n
log Θ > R− ε.

For a source, a rate-distortion pair (R,D) is said to be achievable using nested QGSs,

if for any ε > 0 and for all sufficiently large n, there exists an (n,Θ)-code based on

nested QGCs such that:

1

n

n∑
i=1

d(Xi, X̂i) < D + ε,
1

n
log Θ < R + ε,
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where X̂n = e(f(Xn)).

Theorem II.1. The PtP channel capacity and the optimal rate-distortion region of

sources are achievable using nested QGCs.

In what follows, we introduce an achievable scheme using nested QGCs and pro-

vide an outline of the proof for the theorem.

Channel coding using QGCs Consider a memoryless channel with input alpha-

bet X and conditional distribution PY |X . Let the prime power pr be such that

|X | ≤ pr. Fix a PMF PX on X , and set l = nR, where R will be determined

later. Let (CI , CO) be an (n, k, l)-nested QGC with random variables (U, V,Q). Let Q

be a trivial random variable, and U and V be independent with uniform distribution

over {0, 1}. The elements of the generator matrix and the translation used for the

nested QGC are drawn randomly and uniformly from Zpr . Let RI and RO denote the

rate of the inner-code CI and the outer-code CO, respectively. According to Remark

7, with probability close to one, RO ≈ RI + R and the binning rate approximately

equals to l
n
H(V ) = R.

Suppose the messages are drawn randomly and uniformly from {0, 1}l. Upon

receiving a message v, the encoder first calculates its bin, that is B(v). Then it finds

x ∈ B(v) such that x ∈ A(n)
ε (X). If x was found, it is transmitted to the channel.

Otherwise, an encoding error is declared. Upon receiving y from the channel, the

decoder finds all c̃ ∈ CO such that (c̃,y) ∈ A(n)
ε (X, Y ). Then, the decoder lists the

bin number for any of such c̃. If the bin number is unique, it is declared as the

decoded message. Otherwise, an encoding error will be declared.

The effective transmission of the above coding strategy equals the binning rate,

i.e., R. Using the covering lemma (Lemma 5), the probability of the error at the

encoder approaches zero, if RI ≥ log pr −H(X). Using the packing lemma (Lemma

4), the probability of error at the decoder approaches zero, if RO ≤ log pr−H(X|Y ).
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As a result, the effective transmission rate R ≤ I(X;Y ) is achievable.

Source coding using QGCs We use the same nested QGC constructed for the

channel coding problem. Given a distortion level D, consider a random variable X̂

such that E{d(X, X̂)} ≤ D. Let x be a typical sequence from the source. The encoder

finds a codeword c ∈ CO such that (x, c) is jointly ε-typical with respect to PXPX̂|X .

If no such c was found, an encoding error will be declared. Otherwise, the encoder

sends the bin index v for which c ∈ B(v). Given v, the decoder finds c̃ ∈ B(v) such

that c̃ is ε-typical with respect to PX̂ . An error occurs, if no unique codeword c̃ was

found.

Note that with high probability the effective transmission rate approximately

equals to R. Using Lemma 5, the encoding error approaches zero, if RO ≥ log pr −

H(X̂|X). Using Lemma 4, the decoding error approaches zero, if RI ≤ log pr−H(X̂).

As a result the rate R ≥ I(X; X̂) and distortion D is achievable.

2.5 Distributed Source Coding

In this section, we consider a distributed source coding problem described as

follows. Suppose X1 and X2 are sources with alphabet Zpr and with joint PMF

PX1X2 . The jth encoder compresses Xj and sends it to a central decoder. The

decoder wishes to reconstruct X1 + X2 losslessly, where the addition is modulo-pr.

Figure 2.1 depicts the diagram of this setup.

It is assumed that n IID copies of the sources are made available at the encoders,

where n is called the blocklength. In what follows, we define the encoding and de-

coding processes and formulate the problem setup.

Definition 12. An (n,Θ1,Θ2)-code consists of two encoding functions

fi : Znpr → {1, 2, · · · ,Θi}, i = 1, 2,
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Enc. 1

Enc. 2

Dec.PXY

X

Y

Figure 2.1: An example for the problem of distributed source coding. In this setup,
the sources X1 and X2 take values from Zpr . The decoder reconstructs
X1 +X2 losslessly.

and a decoding function

g : {1, 2, · · · ,Θ1} × {1, 2, · · · ,Θ2} → Znpr

Definition 13. Given a pair of sources (X1, X2) ∼ PX1X2 with values over Zpr×Zpr ,

a pair (R1, R2) is said to be achievable if for any ε > 0 and sufficiently large n , there

exists an (n,Θ1,Θ2)-code such that,

1

n
log2Mi < Ri + ε, for i = 1, 2, and P{X1

n + X2
n 6= g(f1(X1

n), f2(X2
n))} ≤ ε.

For this problem, we adopt nested QGCs and propose a new coding scheme. The

following theorem presents an achievable rate region for the defined setup.

Theorem II.2. For a pair of sources (X1, X2) ∼ PX1X2 with values from Zpr , lossless

reconstruction of the modulo-pr sum X1 + X2 is possible with transmission rate-pair

(R1, R2), if there exist random variables (W1,W2, Q) such that the following bound

holds

Ri ≥ log2 p
r − min

0≤s≤r−1

H(Wi|Q)

H(W1 +W2|[W1 +W2]s, Q)
(log2 p

(r−s) −H(X1 +X2|[X1 +X2]s)),

(2.10)

where i = 1, 2, (W1,W2) take values from Zpr , the Markov chain W1−Q−W2 holds,
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and the injectivity condition (2.5) is satisfied for each pair (W1, Q) and (W2, Q). In

addition, |Q| ≤ r is sufficient to achieve the above bounds.

Proof. See Appendix A.5.

Remark 8. The intuition for the rate-region can be briefly explained as follows. Each

source is encoded using a nested QGC. The source covering task constrains the rate

of the outer code. The packing task induced by the need to recover the sum (X1 +X2)

at the decoder constrains the rate of the inner code. The overall rates of transmission

is given by the difference between these two rates.

Every linear code and group code is a QGC. Therefore, the achievable rate region

given in Theorem II.2 subsumes the one achieved using linear codes or group codes

with jointly typical encoding/decoding techniques. We show, through the following

example, that the inclusion is strict.

Example 2. Consider a distributed source coding problem in which X1 and X2 are

sources over Z4 and lossless reconstruction of X1 ⊕4 X2 is required at the decoder.

Assume X1 is uniform over Z4. X2 is related to X1 via the equation X2 = N −X1,

where N is a random variable which is independent of X1. The distribution of N is

presented in Table 3.1.

Table 2.1: Distribution of N
N 0 1 2 3
PN 0.06 0.54 0.04 0.36

Using random unstructured codes, the rates (R1, R2) such thatR1+R2 ≥ H(X1, X2)

are achievable [36]. It is also possible to use linear codes for the reconstruction of

X1 ⊕4 X2. For that, the decoder first reconstructs the modulo-7 sum of X1 and X2,

then from X1 ⊕7 X2 the modulo-4 sum is retrieved. This is because linear codes

are built only over finite fields, and Z7 is the smallest field in which the modulo-4
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addition can be embedded. Therefore, the rates R1 = R2 ≥ H(X1 ⊕7 X2) is achiev-

able using linear codes over the field Z7 [7]. As is shown in [67], group codes in this

example outperform linear codes. The largest achievable region using group codes is

described by all rate pair (R1, R2) such that Ri ≥ max{H(Z), 2H(Z|[Z]1)}, i = 1, 2,

where Z = X1 ⊕4 X2. It is shown in [16] that using transversal group codes the

rates (R1, R2) such that Ri ≥ max{H(Z), 1/2H(Z) + H(Z|[Z]1)} are achievable.

An achievable rate region using nested QGC’s can be obtained from Theorem II.2.

Let Q be a trivial random variable and set P (W1 = 0) = P (W2 = 0) = 0.95 and

P (W1 = 1) = P (W2 = 1) = 0.05. As a result one can verify that the following is

achievable:

Rj ≥ 2−min{0.6(2−H(Z)), 5.7(2− 2H(Z|[Z]1)}.

Note that the factors 0.6 and 5.7 are determined by the specific choice of the proba-

bility distribution on (W1, Q) and (W2, Q). Different factor are obtained by changing

the probability distributions. We compare the achievable rates of these schemes. The

result are presented in Table 2.2.

Table 2.2: Achievable sum-rate using different coding schemes for Example 2. Note
that Z , X1 ⊕4 X2.
Scheme Achievable Rate

Unstructured Codes H(X1, X2) 3.44
Linear Codes H(X1 ⊕7 X2) 4.12
Group Codes max{H(Z), 2H(Z|[Z]1)} 3.88

QGCs 2−min{0.6(2−H(Z)), 5.7(2− 2H(Z|[Z]1)} 3.34

2.6 Computation Over MAC

In this section, we consider the problem of computation over MAC. Figure 2.2

depicts an example of this problem. In this setup X1 and X2 are the channel’s inputs,

and take values from Zpr . Two distributed encoders map their messages to Xn
1 and
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Xn
2 . Upon receiving the channel output the decoder wishes to decode Xn

1 + Xn
2

losslessly. The definition of a code for computation over MAC, and an achievable

rate are given in Definition 15 and 16, respectively. Applications of this problem are

found in various multi-user communication setups such as interference and broadcast

channels.

PY |X1,X2

X1

X2

Decoder
Y

Z = X1 ⊕X2

Figure 2.2: An example for the problem of computation over MAC. The channel
input alphabets belong to Zpr . The receiver decodes X1 + X2 which is
the modulo-pr sum of the inputs of the MAC.

Definition 14. A two-user MAC is a tuple (X1,X2,Y , PY |X1X2), where the finite

sets X1,X2 are the inputs alphabets, Y is the output alphabet, and PY |X1X2 is the

channel transition probability matrix. Without loss of generality, it is assumed that

X1 = X2 = Zpr , for a prime-power pr.

Definition 15 (Codes for computation over MAC). An (n,Θ1,Θ2)-code for compu-

tation over a MAC (Zpr ,Zpr ,Y , PY |X1X2) consists of two encoding functions and one

decoding function fi : [1 : Θi]→ Znpr , for i = 1, 2, and g : Yn → Znpr , respectively.

Definition 16 (Achievable Rate). (R1, R2) is said to be achievable, if for any ε > 0,

there exists for all sufficiently large n an (n,Θ1,Θ2)-code such that

P{g(Y n) 6= f1(M1) + f2(M2)} ≤ ε, Ri − ε ≤
1

n
log Θi,

where M1 and M2 are independent random variables and P (Mi = mi) = 1
Θi

for all

mi ∈ [1 : Θi], i = 1, 2.

For the above setup, we use QGCs to derive an achievable rate region.
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Theorem II.3. Given a MAC (Zpr ,Zpr ,Y , PY |X1X2), rate-pair (R1, R2) is achievable

according to Definition 16, if there exist random variables (Q,X1, X2, V1, V2,W1,W2)

such that the following bounds hold

Ri ≤ min
0≤s≤r

H(Vi|Q)

H(V |[V ]s, Q)

(
log2 p

r−s −H(X|Y, [X]s)

− max
1≤t≤r
j=0,1

H(W |[W ]s, Q)

H([Wj]t|Q)

(
log2 p

t −H([Xj]t)
))

where i = 1, 2, (V1, V2,W1,W2) take values from Zpr , and W = W1 + W2, V =

V1 + V2, X = X1 + X2. Moreover, the injectivity condition (2.5) is satisfied for

each pair (W1, Q), (W2, Q), (V1, Q), and (V2, Q) and the joint PMF of all the random

variables factors as

PQX1X2V1V2W1W2Y = PX1PX2PQPY |X1X2

2∏
i=1

PVi|QPWi|Q.

Remark 9. The cardinality bound |Q| ≤ r2 is sufficient to achieve the rate region in

the theorem.

Proof. See Appendix A.6.

Corollary 1. A special case of the theorem is when X1 and X2 are distributed uni-

formly over Zpr . In this case, the following is achievable

Ri ≤ min
0≤s≤r

H(Vi|Q)

H(V1 + V2|[V1 + V2]s, Q)
I(X1 +X2;Y |[X1 +X2]s), i = 1, 2, (2.11)

We show, through the following example, that QGC outperforms the previously

known schemes.

Example 3. Consider the MAC described by Y = X1 + X2 + N, where X1 and X2

are the channel inputs with alphabet Z4. N is independent of X1 and X2 with the

distribution given in Table 3.1.
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Using standard unstructured codes the rate pair (R1, R2) satisfying R1 + R2 ≤

I(X1X2;Y ) are achievable. Note that the modulo-4 addition can be embedded in a

larger field such as Z7. For that linear codes over Z7 can be used. In this case, the

following rates are achievable:

R1 = R2 = max
PX1

PX2
:X1,X2∈Z4

min{H(X1), H(X2)} −H(X1 ⊕7 X2|Y ),

where the maximization is taken over all probability distribution PX1PX2 on Z7 ×Z7

such that P (Xi ∈ Z4) = 1, , i = 1, 2. This is because, Z4 is the input alphabet of the

channel.

It is shown in [67] that the largest achievable region using group codes is

Ri ≤ min{I(Z;Y ), 2I(Z;Y |[Z]1)},

where Z = X1 + X2 and X1 and X2 are uniform over Z4. Using Corollary 1, QGC’s

achieveRi ≤ min{0.6I(Z;Y ), 5.7I(Z;Y |[Z]1)}. This can be verified by checking (2.11)

when Q is a trivial random variable, P (V1 = 0) = P (V2 = 0) = 0.95 and P (V1 = 1) =

P (V2 = 1) = 0.05. Note that the factors 0.6 and 5.7 are determined by the specific

choice of the probability distribution on (W1, Q) and (W2, Q). Different factors can

be obtained by changing the probability distributions. We compare the achievable

rates of these schemes for the explained setup. The result are presented in Table 2.3.

Table 2.3: Achievable rates using different coding schemes for Example 3. Note that
Z , X1 +X2.

Scheme Achievable Rate (R1 = R2)
Unstructured Codes I(X1X2;Y )/2 0.28

Linear codes min{H(X1), H(X2)} −H(X1 ⊕7 X2|Y ) 0.079
Group Codes min{I(Z;Y ), 2I(Z;Y |[Z]1)} 0.06

QGCs min{0.6I(Z;Y ), 5.7I(Z;Y |[Z]1)} 0.33
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2.7 MAC with States

2.7.1 Model

Consider a two-user discrete memoryless MAC with input alphabets X1,X2, and

output alphabet Y . The transition probabilities between the input and the output

of the channel depends on a random vector (S1, S2) which is called state. Figure 2.3

demonstrates such setup. Each state Si takes values from a set Si, where i = 1, 2. The

sequence of the states is generated randomly according to the probability distribution∏n
i=1 PS1S2 . The entire sequence of the state Si is known at the ith transmitter,

i = 1, 2, non-causally. The conditional distribution of Y given the inputs and the

state is PY |X1X2S1S2 . Each input Xi is associated with a state dependent cost function

ci : Xi × Si → [0,+∞)2. The cost associated with the sequences xni and sni is given

by

c̄i(x
n
i , s

n
i ) =

1

n

n∑
j=1

ci(xij, sij).

Definition 17. An (n,Θ1,Θ2)-code for reliable communication over a given two-user

MAC with states is defined by two encoding functions

fi : {1, 2, . . . ,Θi} × Sni → Yn, i = 1, 2,

and a decoding function

g : Yn → {1, 2, . . . ,Θ1} × {1, 2, . . . ,Θ2}.

Definition 18. For a given MAC with state, the rate-cost tuple(R1, R2, τ1, τ2) is said

to be achievable, if for any ε > 0, and for all large enough n there exists an (n,Θ1,Θ2)-

2We use a cost function for this problem because, in many cases without a cost function the
problem has a trivial solution.
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Enc. 1

Enc. 2

PY |X1X2S1S2

X2

Dec.

PS1

PS2

X1

S2

S2

S1

S1

Y

Figure 2.3: A two-user MAC with distributed states. The states (S1, S2) are gener-
ated randomly according to PS1S2 . The entire sequence of each state Si
is available non-casually at the ith transmitter, where i = 1, 2.

code such that

P{g(Y n) 6= (M1,M2)} ≤ ε,
1

n
log Θi ≥ Ri − ε, E{c̄i(fi(Mi), S

n
i )} ≤ τi + ε,

for i = 1, 2, where a) M1,M2 are independent random variables with distribution

P (Mi = mi) = 1
Θi

for all mi ∈ [1 : Θi], b) (M1,M2) is independent of the states

(S1, S2). Given τ1, τ2, the capacity region Cτ1,τ2 is defined as the set of all rates (R1, R2)

such that the rate-cost (R1, R2, τ1, τ2) is achievable.

2.7.2 Achievable Rates

We propose a structured coding scheme that builds upon QGC. Then we present

the single-letter characterization of the achievable region of this coding scheme. Using

this binning method, a rate region is given in the following theorem.

Theorem II.4. For a given MAC (X1,X2,Y , PY |X1X2) with independent states (S1, S2)
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and cost functions c1, c2 the following rates are achievable using nested-QGC

R1 +R2 ≤ r log2 p−H(Z1 + Z2|Y,Q)− max
i=1,2
1≤t≤r

{H(V1 + V2|Q)

H([Vi]t|Q)

(
log2 p

t −H([Zi]t|Q,Si)
)}
,

where the joint distribution of the above random variables factors as

PS1S2PQPY |X1X2

∏
i=1,2

PVi|QPZi|QSiPXi|QZiSi .

Proof. Let CI,j be an (n, k)-QGC with matrix Gj, translation bj, and random vari-

ables (Wj, Q), where Wj is uniform over {0, 1}, and j = 1, 2. Denote W1 and W2

as the index sets associated with CI,1 and CI,1, as in (2.2). Let C̄1, C̄2 and D̄ be

three (n, l) QGC with identical matrices Ḡ and identical translations b̄. Suppose

(Vj, Q) are the random variables associated with C̄j, where j = 1, 2. Furthermore, let

(V1 + V2, Q) is the random variable associated with D̄. Suppose that the elements of

all the matrices and the translations are selected randomly and uniformly from Zpr .

Rate of C̄i is denoted by ρi, rate of D̄ is denoted by ρ, and that of CI,i is Ri, i = 1, 2.

For each, sequence zi and si, generate a sequence xi randomly with IID distribution

according to P n
Xi|ZiSi , i = 1, 2. Denote such sequence by xi(si, zi).

Codebook Construction: For each encoder we use a nested QGC. For the

first encoder, we use the (n, k, l)nested QGC generated by CI,1 and C̄1. For the

second encoder, we use the (n, k, l)-nested QGC characterized by CI,2 and C̄2. The

codebook used in the decoder is CI,1 + CI,2 + D̄. By Lemma 3 , this codebook is an

(n, 2k + l)-QGC. In addition, the rate of such code is R1 +R2 + ρ

Encoding: For i = 1, 2, the ith encoder is given a message θi, and an state

sequence si. The encoder first calculates the bin associated with θi. Then it finds a

codeword zi in that bin such (zi, si) are jointly ε-typical with respect to PZiSi . If no

such sequence was found, the error event Ei will be declared. The encoder calculates

xi(si, zi), and sends it through the channel. Define the event Ec as the event in
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which (Z1,Z2, s1, s2) are not jointly ε′- typical with respect to the joint distribution

PZ1Z2S1S2 .

Decoding: The decoder receives yn from the channel. Then it finds w̃1 ∈

W1, w̃2 ∈ W2, and ṽ ∈ A(n)
ε (V1 + V2) such that the corresponding codeword defined

as

z̃ = w̃1G1 + w̃2G2 + ṽḠ + b1 + b2 + b̄

is jointly ε̃-typical with Y with respect to PZ1+Z2,Y . If w̃1, w̃2 are unique, then they

are considered as the decoded messages. Otherwise an error event Ed will be declared.

Error Analysis: We use Lemma 5 for E1 and E2. For that in the covering bound

given in (2.7) set R = ρi, U = Vi, Q = Q̄, X̂ = Xi, and X = Si, where i = 1, 2. As a

result, P (E1) and P (E2) approaches zero as n→∞, if the covering bound holds:

ρi > max
1≤t≤r

H(Vi|Q̄)

H([Vi]t|Q̄)
(log2 p

t −H([Z]t|Si)).

Note that by Remark 3, ρi ≤ l
n
H(Vi|Q̄) + δ(ε). Thus, the above bound gives the

following bound

l

n
H([Vi]t|Q̄) > log2 p

t −H([Z]t|Si), 1 ≤ t ≤ r, i = 1, 2. (2.12)

Analysis of Ec ∩ Ec
1 ∩ Ec

2 Define the set

Es1,s2 ,
{

(z1, z2) ∈ Znpr × Znpr :(zi, si) ∈ A(n)
ε (Zi, Si),

(z1, z2, s1, s2) /∈ A(n)
ε (Z1, Z2, S1, S2), i = 1, 2

}
.

Therefore, probability of Ec ∩ Ec
1 ∩ Ec

2 can be written as

P (Ec ∩ Ec
1 ∩ Ec

2) =
∑

(s1,s2)∈A(n)
ε (S1,S2)

P n
S1,S2

(s1, s2)
∑

(z1,z2)∈Es1,s2

P (e1(Θ1, s1) = x1, e2(Θ2, s2) = x2),
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where ei is the output of the ith encoder, and Θi is the random message to be

transmitted by encoder i, where i = 1, 2. To bound P (Ec∩Ec
1 ∩Ec

2), we use a similar

argument as in the proof of Theorem II.3. We can show that, E{P (Ec∩Ec
1∩Ec

2)} → 0

as n→∞.

Analysis of Ed∩(Ec∪E1∪E2)c Next, we use Lemma 4 to provide an upper-bound

on P (Ed ∩ (Ec ∪ E1 ∪ E2)c). Conditioned on Ec
1 ∩ Ec

2, the event Ed is the same as

the event of interest in Lemma 4. Set Cn = CI,1 + CI,2 + D̄, and R = R1 +R2 + ρ. It

can be shown that P (Ed ∩ (Ec ∪E1 ∪E2)c) approaches zero, if the packing bound in

(2.6) holds. Since Wi is uniform over {0, 1}, then H(Wi|Q, [Wi]t) = 0 for all t > 0.

Therefore, the packing bound is simplified to

R1 +R2 + ρ ≤ log2 p
r −H(Z1 + Z2|Y ). (2.13)

Note that ρ ≤ l
n
H(V1 + V2|Q). Therefore, if the bound

R1 +R2 ≤ log2 p
r −H(Z1 + Z2|Y )− l

n
H(V1 + V2|Q), (2.14)

holds on R1 +R2, then (2.13) holds too. Using (2.12), we establish a lower-bound on

l
n
H(V1 + V2|Q). We have

l

n
H(V1 + V2|Q) >

H(V1 + V2|Q)

H([Vi]t|Q̄)

(
log2 p

t −H([Z]t|Si),
)

1 ≤ t ≤ r, i = 1, 2. (2.15)

Then combining (2.14) and (2.15) gives the following:

R1 +R2 ≤ log2 p
r −H(Z1 + Z2|Y )− H(V1 + V2|Q)

H([Vi]t|Q̄)

(
log2 p

t −H([Z]t|Si)
)
.

Since these bounds hold for i = 1, 2, and 1 ≤ t ≤ r, we get the bound in the theorem.
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Lemma 6. The rate region given in Theorem II.4 contains the achievable rate region

using group codes and linear codes. For that let Vi, i = 1, 2 be distributed uniformly

over Zpr . Therefore, we get the bound

R1 +R2 ≤ min
i=1,2
1≤t≤r

{r
t
H([Zi]t|QSi)} −H(Z1 + Z2|Y Q).

Jafar [69] used the Gel’fand-Pinsker approach for the point-to-point channel cod-

ing with states, and proposed a coding scheme using unstructured random codes.

Using this scheme a single-letter and computable rate region is characterized.

Definition 19. For a MAC (X1,X2,Y , PY |X1X2) with states (S1, S2) and cost func-

tions c1, c2, define RGP as

max
{
I(U1, U2;Y |Q)− I(U1;S1|Q)− I(U2;S2|Q)

}
, (2.16)

where the maximization is taken over all joint probability distributions PS1S2QU1U2X1X2Y

satisfying E{ci(Xi, Si)} ≤ τi for i = 1, 2, and factoring as

PQPS1S2PY |X1X2

∏
i=1,2

PUiXi|SiQ.

The collection of all such PMFs PS1S2QU1U2X1X2Y is denoted by PGP .

To the best of our knowledge, RGP is the current largest achievable rate region

using unstructured codes for the problem of MAC with states [69].

2.7.3 An Example

We present a MAC with state setup for which RGP is strictly contained in the

region characterized in Theorem II.4.
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Example 4. Consider a noiseless MAC given in the following

Y = X1 ⊕4 S1 ⊕4 X2 ⊕4 S2,

where X1, X2 are the inputs, Y is the output, and S1, S2 are the states. All the random

variables take values from Z4. The states S1 and S2 are mutually independent, and

are distributed uniformly over Z4. The cost function at the first encoder is defined as

c1(x) ,

 1 if x ∈ {1, 3}

0 otherwise,

whereas, for the second encoder the cost function is

c2(x) ,

 1 if x ∈ {2, 3}

0 otherwise.

We are interested in satisfying the cost constraints E{c1(X1)} = E{c2(X2)} = 0. This

implies that, with probability one, X1 ∈ {0, 2}, and X2 ∈ {0, 1}.

Lemma 7. For the setup in Example 4, an outer-bound for RGP is the set of all rate

pairs (R1, R2) such that R1 +R2 < 1.

Proof. See Appendix A.7.

Using numerical analysis, we can provide a tighter bound on the sum-rate which

is R1 + R2 ≤ 0.32. However, the bound in Lemma 7 is sufficient for the purpose of

this paper.

Corollary 2. For the MAC with states problem in Example 4, the rate pairs (R1, R2)

satisfying R1 +R2 = 1 is achievable.

Proof. The proof follows using Theorem II.4 with appropriately selected distributions

PVi|Q, PZi|QSi , and PXi|QZiSi for i = 1, 2. For that, let Q be a trivial random variable
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and (V1, V2) be IID random variables uniform distribution over {0, 1}. Conditioned

on S1, the distributions of Z1 is given by

PZ1|S1(z1|s1) ,

 1/2 if z1 = −s1, or z1 = −s1 + 2

0 otherwise,

The distribution of Z2 conditioned on S2 is

PZ2|S2(z2|s2) ,

 1/2 if z2 = s2, or z2 = s2 + 1

0 otherwise,

The conditional distributions of Xi given (Si, Zi), i = 1, 2, are governed by the relation

Xi = Zi 	 Si, i = 1, 2. As a result, X1 ∈ {0, 2}, and X2 ∈ {0, 1}, with probability

one. Hence, the cost constraints for (c1, c2) are satisfied. Therefore, for the defined

distributions, the sum-rate given in the Theorem is simplified to R1 + R2 ≤ 1. As a

result the sum-rate R1 +R2 = 1 is achievable.
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CHAPTER III

Joint Source-Channel Coding in MAC

The separation principle of Shannon plays a fundamental role to reinforce the

notion of modularity. This in turn allows separate development of source and channel

code design. However, as shown by Shannon [1], the separation does not generalize

to multi-terminal communications. For instance, this phenomenon was observed in

many-to-one communications involving transmission of correlated sources over MAC

[48].

In the problem of MAC with correlated sources, there are multiple transmitters,

each observing a source correlated to others. The transmitters do not communicate

with each other and wish to send their observations via a MAC to a central receiver.

The receiver reconstructs the sources losslessly. The separate coding approach in-

volves a source coding part and a channel coding part. In the channel coding part,

Ahlswede [6] and Liao [70] studied the case where the transmitters have indepen-

dent information and derived the capacity region for channel coding over MAC. In

the source coding part, the distributed source coding problem was studied in which

transmitters can communicate to the receiver error-free. Slepian and Wolf showed

that lossless reproduction of the sources is possible with rates close to the joint en-

tropy [36].

Due to suboptimality of the separation based strategies, the joint source-channel
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coding approach has been of great interest. Cover-El Gamal-Salehi (CES) scheme

introduced in [48], is a generalization of the results in [6] and [49]. Using this scheme a

single-letter characterization of the set of sources that can be reliably transmitted was

derived. It was shown that this scheme strictly improves upon the previously known

strategies. However, Dueck [71] proved that this approach only gives a sufficient

condition and not a necessary one. The joint source-channel coding problem is well

studied in other settings such as: source coding with side information via a MAC [11],

broadcast channels with correlated sources [72] and interference channels [73].

Recently, structured codes were used to design coding strategies for joint source-

channel coding problems, [14,16,18,74]. A graph-theoretic framework was introduced

in [74] to improve the joint source-channel coding schemes both in the MAC and the

broadcast channel.

In this chapter, we investigate the shortcomings of coding strategies based on

unstructured codes such as CES scheme. We observe that further improvements are

possible when the sources impose an algebraic structure. One example is when one of

the sources is the modulo sum of the other two. In this scenario, a structured coding

strategy is needed for the codebooks to match with the structure of the sources. With

this intuition, first we characterize existing algebraic structures in correlated sources.

In particular, we define a new class of common information called “conferencing

common information”. Next, we propose new coding strategies that exploit such

structures and contribute to improvements in terms of achievable rates.

3.1 Preliminaries and Problem Formulation

3.1.1 Notations

Calligraphic letters are used to denote sets such as X ,Y . For any set A, let

SA = {Sa}a∈A. If A = ∅, then SA = ∅. As a shorthand, we sometimes denote
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a triple (s1, s2, s3) by s. We also denote a triple of sequences (s1, s2, s3) by s. By

Fq, we denote the field of integers modulo-q, where q is a prime number. For any

mapping Φ : A 7→ B and any integer n, define the mapping Φn : An 7→ Bn such that

Φn(an) , (Φ(a1),Φ(a2), ...,Φ(an)) for all an ∈ An.

3.1.2 Randomized Coding Strategy

In a multi-terminal communication system a block coding scheme identifies a set of

t block encoding functions ei : Ski 7→ X n
i , where i ∈ [1 : t], k is the input blocklength,

n is the output blocklength, and (Ski ,X n
i ) are the input-output alphabets. Let Hn

k

denote the set of all such encoding functions that can be used for a multi-terminal

system.

To characterize performance limits (in terms of achievable rates or error exponent)

of a communication system, it is necessary to show the existence of an optimality

achieving coding scheme. A conventional method in information theory to show

the existence of an optimal coding scheme is the so-called random coding technique.

In this approach, the encoders are generated randomly according to a predefined

probability measure on the set of all encoders. Then, it will be shown that the

expectation of the performance criterion for such random encoders approaches the

optimal performance limit of the communication setup. With this notion, one can

identify a (random) coding strategy by the corresponding probability measure on the

set of all encoders. In what follows, we formalize the definition of a randomized coding

strategy.

Definition 20. A randomized coding strategy for the set Hn
k of all encoders in a

communications system is characterized by a probability distribution Pnk on Hn
k .

There are several well-known examples of randomized coding strategies including:

standard unstructured random codes for PtP communications [1], CES for MAC with

correlated sources [48], random linear codes, etc.
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Example 5. CES scheme with blocklength n is a randomized coding strategy with

probability measure Pnn that factors as

Pnn(e1, e2) =
∏

(s1,s2)∈Sn1 ×Sn2

n∏
i=1

PX1X2|S1S2(e1,i(s1), e2,i(s2)|s1,i, s2,i)

for all encoding functions ej : Snj 7→ X n
j , j = 1, 2, where e1,i and e2,i is the ith output

of e1 and e2, respectively. Also, the conditional distribution PX1X2|S1S2 is the marginal

of a distribution of the form PUX1X2|S1S2 = PUPX1|US1PX2|US2 .

Example 6. (identical) random linear codes over Fq with t-encoders are randomized

coding strategies where Pnk is the uniform probability measure on the set of all encod-

ing functions ei, i ∈ [1, t] of the form ei(a) = φ(a) + bi,∀a ∈ Fkq , where φ : Fkq 7→ Fnq

is a linear transformation and bi ∈ Fnq are vectors satisfying b1 ⊕ b2 ⊕ ...⊕ bt = 0

Some of the known coding strategies are considered to be “structured” such as

linear code; whereas some are considered to be “unstructured” such as unstructured

random codes. In what follows, we aim to develop a measure to identify when a

coding strategy is “unstructured”.

By (E1, E2, ..., Et) denote random encoders of a randomized coding strategy Pnk .

For each random encoder Ej, let Ej,i denote the ith output of the encoder, where

i ∈ [1, n].

Definition 21. A randomized coding strategy Pnk is said to be δ- unstructured for input

distribution PSk , if δ ≥ 0 is the largest number for which the following inequalities

hold for any non-constant mapping Φ : X1 ×X2 × · · · × Xt 7→ {0, 1}

P
{

Φn
(
E1(Sk1 ), E2(Sk2 )), ..., Et(S

k
t )
)

= 0n
}
≤ 1− δ, ∀i ∈ [1, n]. (3.1)

A well-known example of a δ-unstructured coding strategy is CES scheme.
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Lemma 8. The CES scheme for which PX1,X2|S1,S2(x1, x2|s1, s2) > ε, ∀xi ∈ Xi,∀si ∈

Si, i = 1, 2 is δ-unstructured for any source distribution, where δ ≥ 1− (1− ε)n.

Proof. We need to find δ that satisfies (3.1). Let (E1, E2) represent random encoders

in CES scheme. Given any non-constant mapping Φ we have:

P
{

Φn
(
E1(Sn1 ), E2(Sn2 )

)
= 0

}
=
∑
sn1 ,s

n
2

P n
S1,S2

(sn1 , s
n
2 )P
{

Φn
(
E1(sn1 ), E2(sn2 )

)
= 0
∣∣∣sn1 , sn2}

Note that conditioned on (sn1 , s
n
2 ) the outputs of the encoders (Xn

1 , X
n
2 ) are IID. Hence,

the probability in the right-hand side term above equals

n∏
i=1

P
{

Φ(X1,i, X2,i) = 0
∣∣s1,i, s2,i

}
Let Null(Φ) represent the null set of Φ. Then, the above term equals

n∏
i=1

P
{

(X1,i, X2,i) ∈ Null(Φ)
∣∣s1,i, s2,i

}
≤

n∏
i=1

sup
A(X1×X2

PX1,X2|S1,S2(A|s1,i, s2,i)

<
n∏
i=1

(1− ε) = (1− ε)n,

where the last inequality follows as PX1,X2|S1,S2(x1, x2|s1, s2) > ε. As a result for any

mapping Φ we obtain

P
{

Φn
(
E1(Sn1 ), E2(Sn2 )

)
= 0

}
< (1− ε)n,

which implies that δ ≥ 1− (1− ε)n.

According to Definition 21, when S1 ⊕ S2 ⊕ ... ⊕ St = 0 with probability one,

coding strategies such as random linear/group codes with identical generating matrix

are not δ-unstructured for any δ ≥ 0.
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3.1.3 Conferencing Common Information

Joint source-channel coding techniques exploit the existing statistical correlations

in the sources. This has been done in [48] through the notion of “common infor-

mation”. A well-known definition of common information is due to Gács-Körner-

Witsenhausen (GKW) [50], [51]. In subsection, we define a new class of common

information called conferencing common information. Let us begin with the defini-

tion of GKW common information.

Definition 22 (GKW Common part). A common part between random variables

(X, Y ) is a random variable W for which there exist functions f, g such that W =

f(X), and W = g(Y ) with probability one. In this work, such a random variable W

is sometimes called a uni-variate common part.

Definition 23 (GKW Common Information). The common information between ran-

dom variables (X, Y ) is defined as the maximum entropy of W where W is a common

part between (X, Y ).

One can generalize the above definitions for more than two random variables. With

this notion, we can define a common part between random variables (S1, S2, . . . , Sk)

as a random variable W for which there exist functions fi, i ∈ [1 : k] such that

W = fi(Si) holds with probability one.

Definition 24. The conferencing common part among three random variables (S1, S2, S3)

is a triplet (T1, T2, T3) for which there exist functions fi, gi, i ∈ {1, 2, 3} such that

the inequalities Ti = fi(Xi) = gi(Xj, Xk) hold with probability one for all distinct

i, j, k ∈ {1, 2, 3}.

As a result of Definition 22 and 24, the common parts defined among three random

variables (S1, S2, S3) are (W12,W13,W23,W123, T1, T2, T3), where Wij is the pairwise

common part between (Si, Sj), W123 is the mutual common part (all in the sense of
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Definition 22 ), and (T1, T2, T3) are conferencing common parts (as in Definition 24)

among (S1, S2, S3).

In this work, we focus on a special class of conferencing common part which is

defined as follows.

Definition 25. Given m and random variables (S1, S2, S3), an m-additive common

part is defined as a triple (T1, T2, T3) each taking values in Zm such that Ti = fi(Si), i =

1, 2, 3, and T1 ⊕m T2 ⊕m T3 = 0 hold with probability one.

The following example provides a triplet of binary sources with a 2-additive com-

mon part.

Example 7. Let S1, S2 and S3 be three Bernoulli random variables. Suppose S1 and

S2 are independent and S3 = S1⊕2 S2 with probability one. It is not difficult to show

that uni-variate common parts are trivial, i.e., (W12,W13,W23,W123) are constant. As

for the conferencing common parts, set Ti = Si, i = 1, 2, 3. Then (T1, T2, T3) satisfies

the conditions in Definition 25 for m = 2. Therefore, (T1, T2, T3) is a 2-additive

common part of (S1, S2, S3).

3.1.4 Problem Formulation

As depicted in Figure 3.1, the problem of MAC with correlated sources consists

of multiple transmitters, each observing a source sequence statistically correlated to

others. The source sequences are sent by the transmitters via a MAC to a central

receiver. The objective of the receiver is to reconstruct the source sequences losslessly.

It is assumed that the channel is a discrete memoryless MAC and the source sequences

are discrete and generated IID according to a known joint PMF. In what follows, we

formulate this problem more precisely.

Definition 26. A discrete memoryless MAC with t users is defined by input alphabets

X1×X2×· · ·×Xt, output alphabet Y, and a transition probability matrix PY |X1,X2,··· ,Xt.

52



Enc. 1

Enc. 2

Dec.PY jX1;X2

PS1;S2

S1

S2
X2

X1

Y (Ŝ1; Ŝ2)

Figure 3.1: The diagram of a two-user MAC with correlated sources. In this Setup,
the source sequences (Sn1 , S

n
2 ) are observed by the corresponding encoders.

The encoders produce (Xn
1 , X

n
2 ) which are channel’s input sequences.

Upon observing the channel output Y n, the decoder produces an estimate
for the sources. The design objective is to provide a lossless estimate of
the source sequences at the receiving end of the channel.

The input and output alphabets are assumed to be finite sets. This setup is denoted

by PY |X1,X2,··· ,Xt .

Definition 27. The input sources for a t-user MAC are defined as t sequences

of random variables (Sn1 , S
n
2 , · · · , Snt ) generated IID according to a joint distribu-

tion PS1,S2,··· ,St. Such input sources are denoted by the underlying random variables

(S1, S2, · · · , St).

In this paper, no bandwidth expansion is considered for transmission of the

sources. In other words, the input and output sequences at each transmitter have

identical blocklength.

Definition 28. A coding scheme (without bandwidth expansion) for transmission of

the sources (S1, S2, . . . , St) over a MAC consists of encoding functions ei : Sni →

X n
i , i ∈ [1 : t], and a decoding function d : Yn → Sn1 × Sn2 × · · · × Snt . The parameter

n is called blocklength.

Definition 29. Given a MAC PY |X1,X2,··· ,Xt and for an ε > 0, a source (S1, S2, . . . , St)

is said to be ε-transmissible using a coding scheme with encoders ei, i ∈ [1 : t] and a

decoder g, if

P
{
d(Y n) 6= (Sn1 , S

n
2 , . . . S

n
t )|Xn

i = ei(S
n
i ), i ∈ [1 : t]

}
≤ ε,
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where n is the blocklength of the coding scheme.

For a given MAC with correlated sources setup, let Hn denote the set of all

encoders that map the source sequences to the channel’s input sequences. Based on

Definition 20, a randomized coding strategy is identified by a probability measure on

Hn. 1

Definition 30. Given a MAC PY |X1,X2,··· ,Xt and for an ε > 0, a source (S1, S2, . . . , St)

is said to be ε-transmissible using a randomized coding strategy Pn, if

EPn

[
P
{
d(Y n) 6= (Sn1 , S

n
2 , . . . S

n
t )|Xn

i = ei(S
n
i ), i ∈ [1 : t]

}]
≤ ε.

Definition 31. A source (S1, S2, . . . , St) is said to be reliably transmissible over a

MAC PY |X1,X2,··· ,Xt, if for any ε > 0 there exists a randomized coding strategy (or

equivalently a coding scheme) using which it is ε-transmissible.

3.2 Applications of Common Information in MAC with Cor-

related Sources

In this section, we investigate techniques to exploit common information in the

the problem of MAC with correlated sources. We show how algebraic structures in

the statistic of the sources can be exploited using structured codes.

3.2.1 Encoding of Uni-Variate Common Information

The two-user version of MAC with correlated sources is investigated in [48] and

CES scheme is introduced. It is observed that common information can be trans-

mitted more efficiently and treating it separately may lead to achieving higher rates.

This coding strategy is explained here.

1Note that here k = n because no bandwidth expansion is considered.
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Let W be a uni-variate common part between the input sources (S1, S2) as in

Definition 22. In CES scheme, as shown in Figure 3.2, first the common part W

is calculated at each encoder. The common part is available at both transmitters.

Therefore, it is transmitted using identical encoders (as it is done in PtP communi-

cations). Next, at each transmitter, each source is encoded using a codebook that is

“super-imposed” on the common codebook.

It is shown in [48] that using CES scheme reliable transmission of (S1, S2) is

possible if the following conditions are satisfied,

H(S1|S2) ≤ I(X1;Y |X2, S2, U),

H(S2|S1) ≤ I(X2;Y |X1, S1, U),

H(S1, S2|W ) ≤ I(X1X2;Y |W,U),

H(S1, S2) ≤ I(X1X2;Y ),

where W is the common part between (S1, S2), and the joint distribution of all the

random variables factors as

PS1,S2,U,X1,X2,Y = PS1,S2PUPX1|S1,UPX2|S2,UPY |X1,X2 .

S
n
1

S
n
2

W
n

Enc. U U
n

U
n

W
n

Enc. 1:

Enc. 2: Enc. U

Figure 3.2: In CES scheme uni-variate common parts are encoded using identical
encoders. Random variable Un represents the encoded version of the
common part at each transmitter.
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3.2.2 Encoding of Conferencing Common Information

Unlike uni-variate common information, conferencing common parts are not avail-

able at any Transmitter. This is due to the fact that conferencing common parts are

bi-variate functions of the sources. As a result, to exploit conferencing common in-

formation, different coding techniques need to to be developed. The focus of this

work is on q-additive common information, where q is a prime number. Such class of

common information can be exploited using linear (or affine) maps.

For a fixed prime number q, suppose (T1, T2, T3) are non-trivial q-additive common

parts of given sources (S1, S2, S3). We construct three affine maps for encoding of such

common parts. Let G be a n by n matrix with elements in Fq. Also, select vectors

b1,b2,b3 ∈ Fnq such that b1⊕b2⊕b3 = 0. Define the encoded version of the common

parts as V n
i = T ni G⊕bi, where i = 1, 2, 3. Since in this approach an affine map is used

to encode each q-additive common part, the equality V n
1 ⊕ V n

2 ⊕ V n
3 = 0 holds with

probability one. One may adopt a randomized affine map to encode the q-additive

common parts. For that, we can select the matrix G and the vectors b1,b2,b3

randomly and uniformly from the set of all matrices and vectors with elements in Fq.

In what follows, we show that applications of affine maps for transmission of

q-additive common information improves upon CES scheme.

Example 8. Suppose (S1, S2, S3) are as in Example 7. The sources are to be trans-

mitted via a MAC with binary inputs X1 × X2 × X3, binary outputs Y1 × Y2, and a

conditional probability distribution that satisfies

(Y1, Y2) =


(X1 ⊕Nδ, X1 ⊕N ′δ, if X3 = X1 ⊕X2,

(N1/2, N
′
1/2), if X3 6= X1 ⊕X2,

(3.2)

where Nδ, N
′
δ, N1/2 and N ′1/2 are independent Bernoulli random variables with param-

eter δ, δ, 1
2
, and 1

2
, respectively.
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As explained in Example 7, the uni-variate common parts are trivial, and the

2-additive common parts are Ti = Si, i = 1, 2, 3. For such setup, we use random affine

maps explained above. For that set Xn
i = Sni G⊕Bi, i = 1, 2, 3, where G,B1,B2,B3

are selected randomly, and satisfying B1 ⊕ B2 ⊕ B3 = 0. The following lemma

provides a necessary and sufficient condition for reliable transmission of (S1, S2, S3).

The achievability is obtained using the above approach.

Lemma 9. For the setup defined in Example 8, the sources are reliably transmissible,

if and only if H(Si) ≤ 1 − hb(δ), where i = 1, 2. Furthermore, such sources are

ε-transmissible for any ε > 0 and using identical random linear codes.

Proof. The proof for the direct part follows using random affine maps and from the

standard arguments. For the converse part, suppose (S1, S2, S3) are ε-transmissible

using a coding scheme with (e1, e2, e3) as the encoders and g as the decoder. From

Fano’s inequality

1

n
H(Sn1 , S

n
2 ) ≤ 1

n
I(Sn1 , S

n
2 ;Y n

1 , Y
n

2 ) + 2ε+
1

n
hb(ε)

(a)
=

1

n
I(Xn

1 , X
n
2 , X

n
3 ;Y n

1 , Y
n

2 ) + 2ε+
1

n
hb(ε)

(b)

≤ 2− hb(δ) + 2ε+
1

n
hb(ε),

where (a) follows because of the Mrkov chain (S1, S2, S3)↔ (X1, X2, X3)↔ (Y1, Y2).

Inequality (b) holds as the mutual information does not exceed the sum-capacity of

the MAC which equals to 2 − hb(δ). The proof is complete as the inequalities hold

for arbitrary ε > 0.

3.3 Three-User MAC with Correlated Sources

In this section, we investigate coding strategies in three-user MAC with correlated

sources. We first present an extension of CES scheme for such problem and then
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propose a new coding strategy. A new sufficient condition is characterized which

improves upon the one derived using CES scheme.

3.3.1 A Three-User Extension of CES Scheme

For the case of multiple sources, say (S1, S2, S3), a similar idea as in CES can be

used to encode the uni-variate common parts. In what follows we provide a natural

extension of CES scheme to three-use MAC with correlated sources.

The uni-variate common parts among the sources (S1, S2, S3) are defined as fol-

lows. There are four components denoted by (W12,W13,W23,W123). For more conve-

nience, we denote the pairwise common parts either by Wij or Wji (we simply drop

the condition j > i, as it is understood that Wij = Wji).

The first step in CES scheme is to capture the common parts among the sources.

By observing S1 at the first transmitter, three common parts can be calculated:

W123,W12, and W13. Similarly, at the ith transmitter W123,Wij, and Wik are calcu-

lated, where i, j, k are distinct elements of {1, 2, 3}. The three-user extension of CES

involves three layers of coding. In the first layer W123 is encoded at each encoder.

Next, based on the output of the first layer, the Wij’s are encoded. Finally, based on

the output of the first and the second layers, S1, S2 and S3 are encoded. Figure 3.3

shows the random variables involved in the extension of CES.
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1 W
n
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W

n

12
W

n

13

S
n

2 W
n

123
W

n

12
W

n

23

S
n

3 W
n

123
W

n

13
W

n

23

Enc.1

Enc.2

Enc.3

U
n

123 U
n

12
U

n

13

U
n

123 U
n

12
U

n

23

U
n

123 U
n

13
U

n

23

Figure 3.3: The random variables involved in the three-user extension of CES.

As a result, the extension of CES scheme is a randomized coding strategy with

the following probability measure.

Remark 10. The three-user extension of CES scheme is a coding strategy with a
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probability measure Pnn that factors as

Pnn(e1, e2, e3) =
∏
s∈Sn

n∏
i=1

PX|S
(
e1,i(s1), e2,i(s2), e3,i(s3)

∣∣∣ s1,i, s2,i, s3,i

)
,

where PX|S is the conditional and marginal distribution obtained from the joint PMF

in (3.3).

The following proposition determines sufficient conditions for which correlated

sources can be transmitted using the above scheme.

Proposition 1. The reliable transmission of the sources (S1, S2, S3) over a three-

user MAC is possible if for any distinct i, j, k ∈ {1, 2, 3} and any B ⊆ {12, 13, 23} the

following inequalities hold

H(Si|SjSk) ≤ I(Xi;Y |SjSkXjXkU123U12U13U23),

H(SiSj|SkWB) ≤ I(XiXj;Y |SkWBU123UikUjkUBXk),

H(S1S2S3|W123WB) ≤ I(X1X2X3;Y |W123WBU123UB),

H(S1S2S3) ≤ I(X1X2X3;Y ),

where Uij = Uji and the joint distribution of (S,X,U123, U12, U13, U23) factors as

PS1,S2,S3PU123

 ∏
b∈{12,13,23}

PUb|WbU123

PX1|S1U123U12U13PX2|S2U123U12U23PX3|S3U123U13U23 .

(3.3)

Outline of the proof. Suppose (S1, S2, S3, X1, X2, X3, U123, U12, U13, U23) is distributed

according to the joint PMF given in (3.3). Let the sequence si ∈ Sni be a realization

of the ith source, where i = 1, 2, 3.
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Codebook Generation At each Transmitter three different codebooks are defined,

one for the mutual common part, one for the pairwise common parts, and one for the

input source. The construction of these codebooks is given below:

1. For each realization w123 of the mutual common part, a sequence u123 is gener-

ated randomly according to the marginal PMF
∏

l∈[1,n] PU123 . Such sequence is

indexed by u123(w123).

2. Given b ∈ {12, 13, 23} and for each u123 and wb a sequence ub is generated

randomly according to the conditional PMF
∏

l∈[1,n] PUb|WbU123 . Such sequence

is indexed by ub(wb,u123).

3. Given distinct elements i, j, k ∈ {1, 2, 3}, any realization si of the source, the

common parts (w123,wij,wik), and the corresponding sequences u123(w123), uij(wij,u123)

and uik(wik,u123) generate a random IID sequence xi according to
∏

l∈[1,n] PXi|SiU123UijUik .

For shorthand, such sequence is denoted by xi(si,u123,uij,uik).

Encoding Upon observing a realization si of the ith source, Transmitter i first

calculates the common part sequences (w123,wij,wik), where i, j, k ∈ {1, 2, 3} are

distinct. Then, the transmitter finds the corresponding sequences

(u123(w123), uij(wij,u123), uik(wik,u123))

and sends xi(si,u123,uij,uik) to the channel.

Decoding Upon receiving y from the channel, the decoder finds source realizations

(s̃1, s̃2, s̃3) such that

(s̃, ũ123, ũ12, ũ13, ũ23, x̃1, x̃2, x̃3,y) ∈ A(n)
ε (S, U123, U12, U13, U23, X1, X2, X3, Y ),
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where ũ123 = u123(w̃123), ũij = uij(w̃ij, ũ123), xi = xi(s̃i, ũ123, ũij, ũik), and i, j, k ∈

{1, 2, 3} are distinct. Note that (w̃123, w̃12, w̃13, w̃23) are the corresponding common

part sequences of (s̃1, s̃2, s̃3).

A decoding error will be occurred, if no unique (s̃1, s̃2, s̃3) is found. Using a

standard argument as in [48], it can be shown that the error probability is sufficiently

small for large enough n, if the conditions in Preposition 1 are satisfied.

3.3.2 New Sufficient Condition

We use the intuition behind the argument above and propose a new coding strat-

egy in which a combination of random linear codes (as in Example 6) and the extension

CES scheme (as in Definition 10) is used. The coding scheme uses both uni-variate

and q-additive common information among the sources. In the next Theorem, we de-

rive sufficient conditions for transmission of correlated sources over three-user MAC.

Theorem III.1. A source (S1, S2, S3) is reliably transmissible over a MAC PY |X1,X2,X3,

if for any distinct i, j, k ∈ {1, 2, 3} and for any A ⊆ {1, 2, 3},B ⊆ {12, 13, 23} the

followings hold:

H(Si|SjSk) ≤ I(Xi;Y |SjSkU123U12U13U23V1V2V3XjXk) (3.4)

H(SiSj|SkWBTA) ≤ I(XiXj;Y |SkWBU123UikUjkUBTAVkVAXk) (3.5)

H(SiSjSk|W123WBTA) ≤ I(XiXjXk;Y |W123WBU123UBTAVA) (3.6)

H(SiSjSk|TA) ≤ I(XiXjXk;Y |TAVA) (3.7)

where the joint distribution of all the random variables factors as

PS1,S2,S3PU123

[ ∏
b∈{12,13,23}

PUb|WbU123

]
PV1V2V3

[ ∏
i,j,k∈{1,2,3}

j<k

PXi|SiU123UijUikVi

]
, (3.8)
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where the random variables (W123,W12,W13,W23) are the uni-variate common parts,

(T1, T2, T3) are q-additive common parts for a prime q, and PV1V2V3 = 1
q21{V3 =

V1 ⊕q V2}.

Remark 11. The set of sufficient conditions given in Theorem III.1 includes the one

in Proposition 1. For that select the joint distribution in (3.8) such that Xi be

independent of Vi for all i = 1, 2, 3.

Outline of the proof. We use affine maps to encode q-additive common parts and build

upon the coding scheme described in the proof of Proposition 1. Suppose the random

variables (S,X,U123, U12, U13, U23, V ) are distributed according to a joint distribution

that factors as in (3.8).

Codebook Generation At each transmitter five different codebooks are defined,

one codebook for the q-additive common part Ti, three codebooks for uni-variate

common parts (W123,Wij,Wik), where i, j, k are distinct elements of {1, 2, 3}, and

one codebook for generating the total output Xn
i .

1. The codebooks for encoding of uni-variate common parts are as in the proof of

Proposition 1.

2. The codebook for encoding of (T1, T2, T3) is defined using affine maps. Generate

two vectors b1,b2 of length n, and an n × n matrix G with elements selected

randomly, uniformly and independently from Fq. Set b3 = b1 ⊕ b2. For each

sequence ti ∈ Fnq , define vi(ti) = tiG⊕bi, where i = 1, 2, 3, and all the additions

and multiplications are modulo-q.

3. Given distinct i, j, k ∈ {1, 2, 3}, any realization si of the source, the common

parts (w123,wij,wik, ti), and the corresponding sequences

(
u123(w123), uij(wij,u123), uik(wik,u123), vi(ti)

)
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generate a random IID sequence xi according to
∏

l∈[1,n] PXi|SiU123UijUikVi . For

shorthand, such sequence is denoted by xi(si,u123,uij,uik,vi).

Encoding Assume si is a realization of the ith source, where i = 1, 2, 3. Transmitter

i first calculates the common part sequences (w123,wij,wik, ti), where i, j, k ∈ {1, 2, 3}

are distinct. Next, the transmitter finds the corresponding sequences

(
u123(w123), uij(wij,u123), uik(wik,u123), vi(ti)

)
and sends xi(si,u123,uij,uik,vi) to the channel.

Decoding Upon receiving y from the channel, the decoder finds sequences s̃i ∈

Sni , i = 1, 2, 3, such that

(s̃, ũ123, ũ12, ũ13, ũ23, ṽ, x̃,y) ∈ A(n)
ε (S, U123, U12, U13, U23, V ,X, Y ),

where ũ123 = u123(w̃123), ũij = uij(w̃ij, ũ123), , ṽi = vi(t̃i), x̃i = xi(s̃i, ũ123, ũij, ũik, t̃i),

and i, j, k ∈ {1, 2, 3} are distinct. Note that (w̃123, w̃12, w̃13, w̃23) and (t̃1, t̃2, t̃3) are

the uni-variate and q-additive common part sequences of (s̃1, s̃2, s̃3), respectively.

A decoding error will be occurred, if no unique (s̃1, s̃2, s̃3) is found. It is shown in

Appendix B.1 that the probability of error approaches zero as n → ∞, if (3.4)-(3.7)

are satisfied.

Remark 12. The coding strategy explained in the proof of Theorem III.1 subsumes

the extension of CES scheme and identical random linear coding strategy.

3.3.3 Suboptimnality of CES Scheme

It is noted in Remark 11 that the sufficient conditions in Theorem III.1 includes

the one derived using CES in Proposition 1. In this section we show that this inclusion
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is strict and that CES scheme is suboptimal when applied to three-user MAC with

correlated sources. The argument starts by introducing an example which is given

below.

Example 9. Consider the sources denoted by (S1, S2, S3), where S1 and S3 are in-

dependent independent Bernoulli random variables with parameter σ and γ, respec-

tively. Suppose the third source satisfies S3 = S1 ⊕2 S2 with probability one. For

shorthand we associate such sources with the parameters (σ, γ). The sources are to

be transmitted trough a MAC with binary inputs as shown in Figure 3.4. In this

channel the noise random variable N is assumed to be independent of other random

variables. The PMF of N is given in Table 3.1, where the parameter 0 ≤ δ ≤ 1
2
, δ 6= 1

4
.

Table 3.1: Distribution of N
N 0 1 2 3
PN

1
2
− δ 1

2
δ 0

NS1 ∼ Be(σ)

S2 = S1 ⊕2 S3

S3 ∼ Be(γ)

X1

X2

X3

Y

2 4

Enc.1

Enc.2

Enc.3

Figure 3.4: The diagram the setup introduced in Example 9. Note the input alphabets
of this MAC are restricted to {0, 1}.

For this setup, we show that there exist parameters (σ, γ) whose corresponding

sources in Example 9 cannot be transmitted reliably using the CES scheme. How-

ever, according on Theorem III.1, such sources can be reliably transmitted. This

emphasizes the fact that efficient encoding of conferencing common information con-

tributes to improvements upon coding schemes solely based on uni-variate common
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information. In what follows, we explain the steps to show the existence of such

parameters.

Remark 13. For a especial case in which σ = 0, the qualities S1 = 0 and S2 = S3 hold

with probability one. From Proposition 1, such (S1, S2, S3) can be transmitted using

CES scheme, if hb(γ) ≤ 2−H(N) holds.

Let γ∗ ∈ [0, 1
2
] be such that γ∗ = h−1

b (2−H(N)). Such γ∗, exists as 0 ≤ 2−H(N) ≤

1. By Remark 13, the sources (S1, S2, S3) with parameter (σ = 0, γ = γ∗) can be

transmitted reliably using CES scheme. However, we argue that for small enough

ε > 0, the sources with parameter (σ = ε, γ = γ∗−ε) cannot be transmitted using this

scheme (Lemma 11). Whereas, from Theorem III.1, this source can be transmitted

reliably (Lemma 12). The existence of such ε is investigated in the next two lemmas.

Lemma 10. For the MAC in Example 9, I(X1, X2, X3;Y ) ≤ 2−H(N), with equality

if and only if X3 = X1 ⊕2 X2 with probability one, and X3 is uniform over {0, 1}.

Proof. Note I(X1, X2, X3;Y ) = H(Y ) − H(N). We proceed by finding all the

necessary and sufficient conditions on PX1,X2,X3 for which Y is uniform over Z4.

From Figure 3.4, Y = (X1 ⊕2 X2) ⊕4 X3 ⊕4 N . Denote X ′2 = X1 ⊕2 X2. Let

P (X ′2 ⊕4 X3 = i) = q(i) where i = 1, 2, 3, 4. Since X ′2 and X3 are binary, q(3) = 0.

Given the distribution of N is Table 3.1, the distribution of Y is as follows:

P (Y = 0) = q(0)(
1

2
− δ) + q(2)δ, P (Y = 1) = q(0)

1

2
+ q(1)(

1

2
− δ)

P (Y = 2) = q(0)δ + q(2)(
1

2
− δ), P (Y = 3) = q(2)

1

2
+ q(1)δ

Assume δ 6= 1
4
. By comparing the first and third bounds, we can show that Y is

uniform, if and only if q(1) = 0 and q(0) = q(2) = 1
2
. Note

q(1) = P (X ′2 = 0, X3 = 1) + P (X ′2 = 1, X3 = 0)
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Therefore, q(1) = 0 implies that X3 = X ′2 with probability one. If this condition is

satisfied, then q(0) = P (X3 = 0) and q(2) = P (X3 = 1). Since q(0) = q(2) = 1
2

then

X3 is uniform over {0, 1}. To sum up, we proved that Y is uniform, if and only if 1)

X3 = X1 ⊕2 X2. 2) X3 is uniform over {0, 1}.

Lemma 11. For the setup in Example 9, there exists ε > 0 such that the sources

(S1, S2, S3) with parameters (σ > 0, γ ≥ γ∗ − ε) cannot be transmitted reliably using

the three-user CES scheme.

Proof. We first derive an outer bound for the CES scheme. Consider the fourth

inequality in Proposition 1. Since σ > 0 there is no common part. Let U ′ =

U123U12U13U23. Suppose the source (S1, S2, S3) in Example 9 can be transmitted

using CES, then the following holds

h(γ) + h(σ) ≤ max
p(u′)p(x|u′s)

I(X1X2X3;Y |U ′), (3.9)

where

p(s, x, u′) = p(s)p(u′)p(x1|s1, u
′)p(x2|s2, u

′)p(x3|s3, u
′).

It can be shown that the inequality in (3.9) is equivalent to

h(γ) + h(σ) ≤ max
p(x|s)

I(X1X2X3;Y ), (3.10)

where p(s, x) = p(s)p(x1|s1)p(x2|s2)p(x3|s3).

Next, we argue that the right-hand side in (3.10) is strictly less than h(γ∗) =

2−H(N). For the moment assume this argument is true. Then by the bound above,

h(γ)+h(σ) < h(γ∗). This implies that ∃ε0 > 0 such that for any σ, h(γ∗)−h(γ) > ε0.

Hence, as the entropy function is continuous, ∃ε > 0 such that any source with σ > 0

and γ ≥ γ∗ − ε cannot be transmitted using the CES scheme.

It remains to show that the right-hand side in (3.10) is strictly less than 2−H(N).
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Note that Lemma 10 characterizes the set of all distributions PX1,X2,X3 for which

I(X1X2X3;Y ) = 2 −H(N). The distributions induced in CES scheme for this case

satisfy the Markov chain X3−S3−X1, X2. Hence, we can show for these distributions,

the condition X3 = X1 ⊕2 X2 hold if and only if X3 is a function of S3. However,

as γ < 1/2, X3 cannot be uniform over {0, 1}. This contradicts with the second

condition and completes the proof.

Lemma 12. ∃ ε′ > 0 such that the sources with parameters (σ, γ), satisfying σ ≤ ε′

and |γ − γ∗| ≤ ε′, are transmissible reliably.

Proof. The proof is given in Appendix B.2.

The final step in our argument is as follows. Take ε′′ = min{ε, ε′}, where ε and

ε′ are as in Lemma 11 and 12, respectively. Then, as a result of these lemmas, the

sources (S1, S2, S3) with parameters σ = ε′′ and γ = γ∗− ε′′ are transmissible reliably;

while they cannot be transmitted using CES scheme.
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CHAPTER IV

Structured codes for Communications over MAC

with Feedback

The problem of three user MAC with noiseless feedback is depicted in Figure 4.1.

This communication channel consists of one receiver and multiple transmitters. After

each channel use, the output of the channel is received at each transmitter noiselessly.

Gaarder and Wolf [43] showed that the capacity region of the MAC can be expanded

through the use of the feedback. This was shown in a binary erasure MAC. Cover

and Leung [52] studied the two-user MAC with feedback, and developed a coding

strategy using unstructured random codes.

The main idea behind the CL scheme is to use superposition block-Markov en-

coding. The scheme operates in two stages. In stage one, the transmitters send the

messages with a rate outside of the no-feedback capacity region (i.e. higher rates than

what is achievable without feedback). The transmission rate is taken such that each

user can decode the other user’s message using feedback. In this stage, the receiver is

unable to decode the messages reliably, since the transmission rates are outside the

no-feedback capacity region. Hence, the decoder only is able to form a list of “highly

likely” pairs of messages. In the second stage, the encoders fully cooperate to send

the messages (as if they are sent by a centralized transmitter). The receiver decodes

the message pair from its initial list. After the initiation block, superposition coding
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is used to transmit the sequences corresponding to the two stages.

Enc. 1

Enc. 2

Enc. 3

D
el
ay

p(y|x1, x2, x3)

X1n

X2n

X3n

S1

S2

S3

Dec.

Figure 4.1: The three-user MAC with noiseless feedback. If the switch Si is closed,
the feedback is available at the ith encoder, where i = 1, 2, 3.

The single-letter achievable rate region for the CL scheme was characterized in [52].

Later, it was shown that the CL scheme achieves the feedback capacity for a class

of MAC with feedback [75]. However, this is not the case for the general MAC with

feedback [76]. Several improvements to the CL achievable region were derived [77],

[78]. In [77] and [78], additional stages are appended to the CL scheme. In these

schemes, the encoders decode each others’ messages in several stages. Kramer [47],

used the notion of directed information to derive the capacity region of the two-user

MAC with feedback. However, the characterization is not computable, since it is an

infinite letter characterization. Finding a computable characterization of the capacity

region remains an open problem.

In this chapter, we study the problem of three-user MAC with feedback. We pro-

pose a new coding scheme which builds upon the CL scheme. We derive a computable

single-letter achievable rate region for this scheme, and show that the new region im-

proves upon the previous known achievable regions for this problem. Recently, we

69



showed that the application of structured codes results in improved performance for

the problem of transmission of sources over the MAC [25]. Here, we use the ideas

proposed in [25] to prove the necessity of structured codes in the problem of MAC

with feedback. Specifically, we use quasi-linear codes that are proposed in [79].

The coding scheme operates in three stages. In stage one, the encoders send

independent messages with rates outside of the CL region. Therefore, encoders are

unable to decode each others’ messages. However, each encoder can decode the binary

sum of the messages of the other two encoders. In stage two, the messages are

superimposed on the summation which is decoded in the previous stage. At the end

of this stage, the encoders decode each others’ messages. Stage three is similar to the

second stage in CL scheme. We provide an example where the new coding scheme

achieves optimal performance, whereas the previous schemes are suboptimal. Finally,

we prove that any optimality achieving coding scheme must use encoders whose set

of output sequences is linearly closed.

4.1 Preliminaries and Model

In what follows, we formulate the problem of communications over MAC-FB. We

restrict ourselves to MAC with noiseless feedback in which all or a subset of the

transmitters have access to the feedback perfectly. Consider a t-user MAC identified

by a transition probability matrix PY |X1,X2,...,Xt as in Definition 26. Let yn be a

realization of the output of the channel after n uses, where xni is the ith input sequence

of the channel, i ∈ [1, t]. Then, the following condition is satisfied:

p(yn|yn−1, xn−1
i , i ∈ [1, t]) = p(yn|x1n, x2n, ..., xtn). (4.1)

It is assumed that noiseless feedback is made available, with one unite of delay,

to a subset T ⊆ [1, t] of the transmitters. Figure 4.1 illustrates an example of this
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setup. In the figure, the switches Si, i = 1, 2, 3 determine which transmitter receives

the feedback. A formal definition of a MAC-FB setup is given in the following.

Definition 32. A t-user MAC-FB setup is characterized by a t-user MAC PY |X1,X2,...,Xt

and a subset T ⊆ [1, t] determining the transmitters which have access to the feedback.

Definition 33. For a t-user MAC-FB setup with a subset T ⊆ [1, t], an (N,Θ1, ...,Θt)

coding scheme consists of t sequences of encoding functions defined as,

ei,n : [1,Θi]× Yn−1 → Xi, for i ∈ T , and ej,n : [1,Θj]→ Xj, for j ∈ [1, t]\T .

where n ∈ [1, N ] and a decoding function denoted by

d : YN → [1,Θ1]× [1,Θ2]× · · · × [1,Θt].

We use a unified notation ei,n(m, yn−1) to denote the encoders, as it is understood

that for i /∈ T the encoder ei,n is only a function of the message m. Moreover, for

shorthand, the encoders of the coding scheme are denoted by e.

It is assumed that, Transmitter i receives a message index Mi which is drawn

randomly and uniformly from [1,Θi], where i ∈ [1, t]. Furthermore, the message

indexes (M1.M2, ...,Mt) are assumed to be mutually independent. For this setup, the

average probability of error is defined as

Perr(e) , P{d(Y N) 6= (M1,M2, ...,Mt)}, (4.2)

where e denotes the encoders of the coding scheme.

Definition 34. For a t-user MAC-FB, a rate-tuple (R1, R2, ..., Rt) is said to be
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achievable using an (N,Θ1,Θ2, ...,Θt) coding scheme, if for any ε > 0

Perr(e) < ε,
1

N
log2 Θi ≥ Ri − ε, where i ∈ [1, t].

Based on our earlier discussion in Section 3.1, one can consider a randomized

coding strategy for which the encoding functions are selected randomly according to

a predefined probability measure. For that we take a similar approach as in Definition

20 and define a randomized coding strategy as in the following.

Definition 35. For a t-user MAC-FB setup, an (N,Θ1,Θ2, ...,Θt) randomized cod-

ing strategy is characterized by a probability measure PN on the set of all encoding

functions (ei,n) with i ∈ [1, t] and n ∈ [1, N ] as in Definition 33.

Let E denote random encoders of a randomized coding strategy with probability

measure PN , then the expected error probability is

P̄err , EPN [Perr(E)}],

where Perr(·) is defined as in (4.2).

Definition 36. A rate-tuple (R1, R2, ..., Rt) is said to be achievable using an (N,Θ1,Θ2, ...,Θt)

randomized coding strategy with probability measure PN if for any ε > 0

P̄err < ε,
1

N
log2 Θi ≥ Ri − ε, i ∈ [1, t].

Remark 14. The capacity region is defined as the closure of the set of all rate tuples

(R1, R2, ..., Rt) that are achievable using a coding scheme or a randomized coding

strategy.

We extend the results of Kramer for t-user MAC with feedback. We derive a

multi-letter characterization for the capacity region. We use the notion of directed
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information presented in [47].

H(Yn||Xn) =
n∑
k=1

H(Yk|Yk−1,Xk).

Directed information from a sequence Xn to a sequence Yn is defined as

I(Xn → Yn) = H(Yn)−H(Yn||Xn).

Directed information from a sequence Xn to a sequence Yn when causally conditioned

on Zn is defined by

I(Xn → Yn||Zn) = H(Yn||Zn)−H(Yn||XnZn).

Let I(Xn → Yn) be the directed information from Xn to Yn. Define

In(X → Y ) ,
1

n
I(Xn → Yn). (4.3)

Definition 37. Given a positive integer N and a t-user MAC with feedback, define

RL as the convex hull of the set of all rates (R1, R2, ..., Rt) such that,

RA ≤ IL(XA → Y ||XAc), for all A ⊆ [1, t]. (4.4)

where the conditional distribution p(x1,l, x2,l, ..., xt,l|xl−1
1 , xl−1

2 , ..., xl−1
t , yl−1) factors as∏t

i=1 p(xi,l|xl−1
i yl−1).

Proposition 2. The capacity region of t-user MAC with feedback is characterized by

CFB =
⋃∞
L=1RL.

Proof. The proof is a streightforward generalization of the proof in [47].

Note that this is a multi-letter characterization, and is not computable.
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4.2 Conferencing Common Information in MAC-FB

Prior to the start of communications over a MAC-FB setup, the messages are

mutually independent. During the communication, after multiple uses of the channel,

the messages are statistically correlated conditioned on the feedback. In this section,

we make a connection to the problem of MAC with correlated sources to design

coding strategies that exploit the statistical correlation among the messages. We use

the notion of conferencing common information to propose a new coding strategy for

3-user MAC-FB.

We begin by explaining the intuition behind Cover-Leung (CL) scheme [52]. In CL

scheme, the message indexes are transmitted in N channel uses. The communications

take place in B blocks, each of length n, where N = Bn. The message for Transmitter

i is divided into B sub-messages denoted by (Mi,1,Mi,2, ...,Mi,B), where i = 1, 2. At

the first block of the communication (b = 1), the transmitters send the sub-messages

(M1,1,M2,1) with a rate outside of the no-feedback capacity region (i.e. higher rates

than what is achievable without feedback). Therefore, the receiver is unable to decode

the sub-messages reliably - rather it is only able to form a list of “highly likely” pairs

of messages. However, the transmission rates are taken to be sufficiently low such

that each user can reliably decode the other user’s sub-message using the feedback.

Therefore, at the end of this block, (M1,1,M2,1) is known at the two transmitters

with “high” probability. Hence, at the next block of the transmission (b = 2), one

can view (M1,1,M2,1) as a common information that is known at the transmitters.

At this block, a superposition block-Markov encoding is used to send the common

information as well the new sub-messages (M1,2,M2,2). At the end of this block,

the receiver decodes (M1,1,M2,1) from its initial list. The scheme is repeated for the

next blocks b > 2. Using this approach, the following rate-region is achievable for

communications over a MAC PY |X1,X2 with noiseless feedback available at the two
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transmitters [52]:

R1 ≤ I(X1;Y |X2, U), R2 ≤ I(X2;Y |X1, U), R1 +R2 ≤ I(X1, X2;Y ).

Where, the joint distribution of the random variables (U,X1, X2, Y ) factors as

PUPX1|UPX2|UPY |X1,X2 .

As explained, the decoded sub-messages (M1,b,M2,b) are used as a common infor-

mation for the next block of transmission. One can extend CL scheme for a multi-user

MAC-FB setup (say a three-user MAC-FB). In this setup, the transmitters send the

messages with rates outside of the no-feedback capacity region. Hence, the receiver

is not able to decode the messages. However, the transmission rates are taken to

be sufficiently low so that each user can decode the sub-messages of the other users.

The decoded sub-messages at the end of each block b are used as uni-variate common

parts for the next block of transmission. Also, one can use the notion of conferencing

common information as defined in Section 3.1.3 to design a more sophisticated coding

scheme.

In what follows, we gave the intuition behind the use of conferencing common

information in MAC-FB. Consider a three-user MAC-FB setup as depicted in Figure

4.2. Similar to the two-user version of the problem, the communications take place

in B blocks each of length n. Moreover, the message at Transmitter i is divided

into B sub-messages denoted by (Mi,1,Mi,2, ...,Mi,B), where i = 1, 2, 3. Suppose, the

transmission rates are such that neither the decoder nor the transmitters can decode

the messages. However, at each block b, the rates are sufficiently low so that each

transmitter is able to decode the modulo-two sum of the other two sub-messages. For

instance, Transmitter 1 can decode M2,b⊕M3,b with high probability. Let Ti,b denote

the decoded sum at Transmitter i, where i = 1, 2, 3. Then, for binary messages,
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T1,b⊕T2,b⊕T3,b = 0 with high probability. As a result, (T1, T2, T3) can be interpreted

as 2-additive conferencing common parts (see Definition 25). Building upon this

intuition, in what follows, we propose a coding strategy for communications over 3-

user MAC-FB. Further, we derive a new commutable achievable rate region for the

three-user MAC with feedback problem.

Enc. 1M1;b; T1;b

M2;b; T2;b

M3;b; T3;b

Enc. 2

Enc. 3

X1;b

X2;b

X3;b

PY jX1X2X3

Y

Figure 4.2: Applications of conferencing common information for communications
over MAC-FB. The new sub-messages at block b are denoted by Mi,b.
At the end of block b − 1, each Transmitter decodes the modulo-two
sum of the other two transmitters. The decoded sums are denoted by
Ti,b, i = 1, 2, 3. Note that T1,b ⊕ T2,b ⊕ T3,b = 0 with probability close to
one.

Definition 38. For a given set U and a three-user MAC with feedback (X1,X2,X3,Y , PY |X1X2X3),

define P as the collection of all distributions P of the form

PUPV1V2V3

3∏
i=1

PTiPXi|UTiViPY |X1X2X3 ,

where (T1, T2, T3) are mutually independent with uniform distribution over F2, (V1, V2, V3)

are pairwise independent each with uniform distribution over F2, and PV1V2V3(v1, v2, v3) =

1
4
1{v1 ⊕ v2 ⊕ v3 = 0}.

Fix a distribution P ∈ P. Denote Si = (Xi, Ti, Vi) for i = 1, 2, 3. Consider

two sets of random variables (U, S1, S2, S3, Y ) and (Ũ , S̃1, S̃2, S̃3, Ỹ ). Suppose the

distribution of each set of the random variables is P . Then with this notation we
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have

PUS1S2S3Y = PŨ S̃1S̃2S̃3Ỹ
= P

Theorem IV.1. Consider a MAC (X1,X2,X3,Y , PY |X1X2X3), and a distribution P ∈

P. For any subset A ⊆ {1, 2, 3}, and for any distinct elements i, j, k ∈ {1, 2, 3} the

following bounds hold

RA ≤ I(XA;Y |USAcṼ1Ṽ2Ṽ3) + I(U ;Y |Ũ Ỹ )

Ri +Rj ≤ I(Ti ⊕ Tj;Y |UTkXkṼ1Ṽ2Ṽ3)

+ I(X̃iX̃j; Ỹ |Ũ S̃kṼ1Ṽ2Ṽ3Vk)

+ I(X̃iX̃j;Y |Ũ S̃kṼ1Ṽ2Ṽ3USkỸ )

Ri +Rj ≤
H(Wi) +H(Wj)

H(Wi ⊕Wj)
I(Ti ⊕ Tj;Y |UTkXk),

where 1) Wi, is a Bernoulli random variable that is independent of all other random

variables, 2) the equality Vi = T̃j ⊕ T̃k holds with probability one, and 3) the Markov

chain

Ũ , S̃1, S̃2, S̃3 ↔ V1, V2, V3 ↔ U, Ti, Xi,

holds for i = 1, 2, 3.

Proof. The proof is given in Appendix C.1.

Remark 15. The rate region in Theorem IV.1 contains the three-user extension of the

CL region. For that set V1, V2, V3 to be independent of all other random variables.

This gives a distribution in P.
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4.3 Necessity of Structured Codes for MAC-FB

In this section, we show that coding strategies based on structured codes are

necessary for the problem of MAC with feedback. We first provide an example of a

MAC with feedback. Then, we propose a coding scheme using linear codes, and show

that such coding scheme achieves optimality in terms of achievable rates.

Example 10. Consider the three-user MAC with feedback problem depicted in Fig-

ure 4.3. In this setup, there is a MAC with three binary inputs, where the ith input

is denoted by the pair (Xi1, Xi2) for i = 1, 2, 3. The output of the channel is denoted

by a binary vector (Y1, Y21, Y22). Assume that noiseless feedback is available only at

the third transmitter.

Enc. 1

Enc. 2

Enc. 3

(X11, X12)

Dec.

D
elay

(X21, X22)

(X31, X32)

(Y1, Y21, Y22)

MAC

Figure 4.3: The MAC with feedback setup for Example 10.

The MAC in this setup consists of two parallel channels. The first channel is

a three-user binary additive MAC with inputs (X11, X21, X31), and output Y1. The

transition probability matrix of this channel is described by the following relation:

Y1 = X11 ⊕X21 ⊕X31 ⊕ Ñδ,

where Ñδ is a Bernoulli random variable with bias δ, and is independent of the inputs.

The second channel is a MAC with (X12, X22, X32) as the inputs, and (Y21, Y22) as
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the output. The conditional probability distribution of this channel satisfies

(Y21, Y22) =


(X12 ⊕Nδ, X22 ⊕N ′δ), if X32 = X12 ⊕X22,

(N1/2, N
′
1/2), if X32 6= X12 ⊕X22,

(4.5)

where Nδ, N
′
δ, N1/2 and N ′1/2 are independent Bernoulli random variables with param-

eter δ, δ, 1
2
, and 1

2
, respectively. The relation between the output and the input of the

channel is depicted in Figure 4.4. The channel operates in two states. If the condition

X31 = X12 ⊕ X22 holds, the channel would be in the first state (the left channel in

Figure 4.4); otherwise it would be in the second state (the right channel in Figure

4.4). In this channel, Nδ and N ′δ are Bernoulli random variables with identical bias

δ. Whereas, N1/2 and N ′1/2 are Bernoulli random variables with bias 1
2
. We assume

that Ñδ, Nδ, N
′
δ, N1/2, and N ′1/2 are mutually independent, and are independent of all

the inputs.

Nδ

X12 Y21

X22 Y22

N ′
δ

N1/2

N ′
1/2

X32 = X12 ⊕X22 X32 6= X12 ⊕X22

X12

X22

Y21

Y22

Figure 4.4: The second channel for Example 10. If the condition X31 = X12 ⊕ X22

holds, the channel would be the one on the left; otherwise it would be the
right channel.

We use linear codes to propose a new coding strategy for the setup given in

Example 10. The scheme uses a large number L of blocks. The length of each block

is n. Each encoder has two outputs, one for each channel. We use identical linear

codes with length n and rate k
n

for each transmitter. The coding scheme at each

block is performed in two stages. In the first stage, each transmitter encodes the
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fresh message at the beginning of the block l, where 1 ≤ l ≤ L. The encoding process

is performed using the identical linear codes. At the end of the block l, the feedback

is received by the third user. In stage 2, the third user uses the feedback from the first

channel (that is Y1) to decode the binary sum of the messages of the other encoders.

Then, it encodes the summation, and sends it through its second output. If the

decoding process is successful at the third user, then the relation X32 = X12 ⊕ X22

holds with probability one. This is because identical linear codes are used to encode

the messages. As a result of this equality, the channel in Figure 4.4 is in the first

state with probability one. In the next Lemma, we show that the rate

(1− h(δ), 1− h(δ), 1− h(δ))

is achievable using this strategy.

Lemma 13. For the channel given in Example 10, the rate triple (1 − h(δ), 1 −

h(δ), 1− h(δ)) is achievable.

Proof. The proof is given in Appendix C.2.

Remark 16. Based on Preposition 2, the triple (1−h(δ), 1−h(δ), 1−h(δ)) is a corner

point in the capacity region of the channel in Example 10. This implies the optimality

of the above coding strategy in terms of achievable rates.

The above coding strategy is different from known schemes in two ways: 1) Iden-

tical linear codes are used to encode the messages, 2) The third user uses feedback to

decode only the binary sum others’ messages.

One implication of Remark 16 is that the proposed coding scheme achieves opti-

mality. We show a stronger result in this Subsection. We prove that every coding

scheme that achieves (1 − h(δ), 1 − h(δ), 1 − h(δ)), should carry certain algebraic

structures such as closeness under the binary addition.
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Suppose there exists a (N,M1,M2,M3) transmission system with rates close to

Ri = 1− h(δ), and average probability of error close to 0, in particular

P̄ < ε,
1

n
log2Mi ≥ 1− h(δ)− ε, i = 1, 2, 3,

where ε > 0 is sufficiently small. Since there is no feedback at the first and second

encoder, the transmission system predetermines a codebook for user 1 and 2. Note

that there are two outputs for encoder 1 and 2. Suppose C12 and C22 are the codebooks

assigned to the second output of encoder 1 and encoder 2, respectively.

Let XN
i2 be the second output of encoder i, where i = 1, 2, 3. Let Xi2,l denote the

lth component of XN
i2 , where 1 ≤ l ≤ N, i = 1, 2, 3. The following lemmas hold for

this transmission system.

Lemma 14. For any fixed c > 0, define

INc := {l ∈ [1 : N ] : P (X32,l 6= X12,l ⊕X22,l) ≥ c}.

Then, the inequality |I
N
c |
N
≤ η(ε)

2c(1−h(δ))
holds, where η(ε) is a function such that, η(ε)→

0, as ε→ 0.

Proof. The proof is given in Appendix C.3.

The Lemma implies that in order to achieve (1−h(δ), 1−h(δ), 1−h(δ)), the third

user needs to decode X12,l ⊕ X22,l for “almost all” l ∈ [1 : N ]. This requirement is

necessary to insure that the channel given in Figure 4.4 is in the first state.

In the next step, we use the results of Lemma 14, and drive two necessary condi-

tions for decoding X12 ⊕X22.
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Lemma 15. The following holds

1

N

∣∣ log ||C12 ⊕ C22|| − log ||C12||
∣∣ ≤ λ1(ε),

1

N

∣∣ log ||C12 ⊕ C22|| − log ||C22||
∣∣ ≤ λ2(ε),

where λj(ε)→ 0, as ε→ 0, j = 1, 2.

Proof. The proof is given in Appendix C.4.

As a result of this lemma, log ||C12 ⊕ C22|| needs to be close to log ||C12|| and

log ||C22||. This implies that C12 and C22 possesses an algebraic structure, and are

almost close under the binary addition. Not that for the case of unstructured random

codes ||C12 ⊕C22|| ≈ ||C12|| × ||C22||. Hence, unstructured random coding schemes are

suboptimal in this example.

Remark 17. The three-user extension of CL scheme is suboptimal. Because, the

conditions in Lemma 15 are not satisfied.
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CHAPTER V

Algebraic Structures for Multiple Descriptions

5.1 Introduction

In Chapter II- IV, we investigated algebraic structures in multi-terminal commu-

nication systems with discrete alphabets. In this chapter, we build upon the results in

discrete setting and investigate the applications of algebraic structured codes (such as

Lattices) in communication systems with continuous alphabets such as MD. Lattice

codes are analogous of linear codes in Euclidean spaces, e.g. Rd. A lattice code in

Rd is defined as the set of all linear combinations, with integer coefficients, of a given

set of linearly independent vectors in Rd. With the recent developments in Gaussian

network information theory, lattices have received significant attentions due to their

applications for efficient quantization, channel coding and cryptography in continu-

ous settings [54] [55]. Lattices have become a standard tool to design block codes for

communications over AWGN channels. Lattice quantizers have been of great interest

in compression of continuous sources [80] [81]. In the PtP communication settings,

the interest towards such codes is mainly due to reduced complexity of encoding

and decoding. In multi-terminal commumcations, the significance of lattice codes is

augmented because they give performance gains over unstructured codes in terms of

achievable rates. These gains are observed in a variety of multi-terminal settings such

as dirty MAC [21,22], and interference channel [27, 29,32]
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Traditionally, performance characterization of lattices was carried out using Gaus-

sian test channels. Such techniques are known to be suitable for Gaussian source/channel

setups. However, for general distributions in channel/source coding, it is difficult to

derive achievable rates of lattices using such techniques. Recently, a new method

is introduced in [57] to overcome this challenge. In the method, first the objective

continuous source/ channel problem is quantized to obtain its discrete version. The

performance analysis is carried out for the discrete version of the problem and inner

bounds are derived in terms of discrete mutual information quantities. Then, it is

shown that as the discretization process keeps refining, the mutual information terms

converge to the continuous ones. Hence, inner bounds are obtained for the origi-

nal continuous source/channel setup. Using this approach, the authors in [57] show

achievability of the Wyner-Ziv rate region in the PtP set-up.

In this chapter, we investigate the applications of lattice-based strategies for MD

problem. A MD problem, as depicted in Figure 5.1, consists of one encoder and several

decoders. The encoder compresses the source into several descriptions and transmits

them through noiseless links. Each decoder receives a subset of these descriptions.

The decoder then finds a reconstruction of the source using the descriptions it has

received. The problem arises naturally when a transmitter wishes to send data to dif-

ferent receivers with varying quality of service demands. Another instance of the MD

problem emerges when dealing with channel blackouts. In this situation, satisfactory

source reconstruction is ensured via transmitting different descriptions of the source

through multiple paths. In the latter perspective, each decoder represents the actual

receiver in a specific blackout situation where a subset of the transmission links are

experiencing failures; these failures are known at the decoder, but not at the encoder.

The best known achievablity scheme for discrete MD problem with two descrip-

tions is due to Zhang and Berger [82]. Zhang-Berger scheme consists of a base layer

codebook and several refinement layer codebooks. The base layer is transmitted over
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Figure 5.1: An example of a MD problem with two-descriptions. The problem con-
sists of one encoder with three decoders. Encoder produces two descrip-
tions of the source. Decoder 1 and 2 receive only one description of the
source; whereas Decoder 12 has access to the two descriptions sent by the
encoder.

all descriptions and is decoded at every decoder, while the refinement layer con-

tains codebooks decoded at individual decoders. There has been several attempts to

generalize Zhang-Berger scheme for MD with L-descriptions [83–86]. CMS scheme in-

troduced in [86] unifies all of the previous schemes. The strategy is based on random

unstructured codes and binning. This scheme is enhanced by adding a strututured

coding layer [87]. In this Chapter, we provide a new achievable RD region for the

L-descriptions problem using random lattice codes. We show that using a pair of

nested lattice quantizers with the same inner code gives strict improvements over

CMS scheme in terms of achievable rates.

5.2 Preliminaries

Coset linear codes: For a prime q, let Fq denote the modulo-q field of integers.

A linear code over Fq with blocklength n is a subspace of Fnq . A k-dimensional linear

subspace of Fnq can be viewed as the image of a linear transformation from Fkq to Fnq .

A linear code with generator matrix Gk×n is defined as

C = {ukGk×n|uk ∈ Fk
q}.
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Such a characterization is unique up to invertible linear transformations of Gk×n.

A coset linear code is a shifted version of a linear code and is characterized by a

generator matrix Gk×n and a dither bn:

C = {ukGk×n + bn|uk ∈ Fk
q}.

The rate of the linear code is given by R , k
n

log2 q.

Nested Linear Codes: A pair of coset linear codes (Ci, Co), are called nested if

Ci ⊆ Co. Co and Ci are called the outer and inner codes, respectively. A nested linear

code over Fq is characterized by two generator matrices Gk×n and ∆Gl×n and a

dither bn, all with elements in Fq. With this notation the inner code is characterized

as

Ci , {ukGk×n + bn|uk ∈ Fk
q}.

and the outer code is defined as

Co , {ukGk×n + vl∆Gl×n + bn|uk ∈ Fk
q,v

l ∈ Fl
q}

Here (Gk×n,bn) is a characterization for Cin and ([G,∆G]t,bn) characterizes Co. Note

that since Ci ⊂ Co, one can always find such a characterization where the dithers are

equal. Co can be viewed as a union of shifted versions of Ci, where the shift vector is

chosen from the linear subspace generated by ∆G. Each of these shifted version of

Ci is called a bin of Co and is shown by Bm:

Bm = {aG +m∆G +B|a ∈ Fkp}.

Lattice Code Generation: A lattice code is a subspace of Rn which is closed under

real addition. Also a coset lattice code is defined as a shifted version of a lattice code.
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A method for generating such constructions using linear codes was presented in [57],

here we present a brief summary of the method. Take an arbitrary coset linear code

C over Fp. Choose γ ∈ R+. Such γ is called the step size of the lattice code and

determines the distance between codewords in the lattice construction. First the

linear code is symmetrized with respect to the origin and scaled for the step-size γ.

Define this symmetrized and scaled version as follows:

Λ(C, γ, p) = {γ(cn − p− 1

2
)|cn ∈ C}.

Λ(C, γ, p) is used as the building block for constructing the lattice code. We generate

the lattice code by considering disjoint shifted copies of Λ(C, γ, p):

Λ̄(C, γ, p) =
⋃

v∈γpZn
{v + Λ(C, γ, p)}.

Coset and nested lattice codes are also defined in a similar fashion by constructing

a pair (Λi,Λo) from an underlying pair of nested linear codes (Ci, Co). Similar to nested

linear codes, for m ∈ Flp bin m can be defined as:

B̄m = {γ(cn − p− 1

2
)|cn ∈ Bm}, (5.1)

where Bm is a bin in the underlying nested linear code.

Measures of Information: We use the notion of [57] to define Kullback-Leibler

divergence and the mutual information. Consider random variables U, V on Rd with

probability measure PUV . Take an arbitrary finite measurable partition A = {Ai}i∈1:n

of Rd. Define random variables UA, VA taking values from the set [1 : n] with the

following probability measure:

PUA,VA(i, j) = PU,V (Ai, Aj).
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The Kullback-Leibler divergence between U and V is defined as follows:

D(PU‖PV ) := sup
A∈ARd

D(PUA‖PVA),

where ARn is the set of all finite measurable partitions of Rn.

Typicality: We use the definition of weak* typicality in [57]. For a subset A of Rn,

the set Aε = {x ∈ Rd | ∃y ∈ A, ‖x− y‖ ≤ ε} is called the ε-neighborhood of A. For a

given probability measure P1, P2 the Prokhorov distance is given as follows:

π(P1, P2) = inf{ε | P1(A) < P2(Aε) + ε, P2(A) < P1(Aε) + ε,∀A ∈ B(Rd)},

where B(Rd) denotes the Borel σ- algebra on Rd.

For a pair x, y ∈ Rd define the empirical probability measure induced by (x, y) on

the set of Borel sets in Rd as:

P̄xy(A,B) :=
n∑
i=1

1{xi ∈ A, yi ∈ B},∀A,B ∈ B(Rd). (5.2)

A sequence x is weak* ε-typical with distribution PX if

π(P̄x, PX) < ε. (5.3)

Also sequences x, y are said to be weak* joint ε-typical with distribution PXY , if

π(P̄xy, PXY ) < ε. (5.4)

5.3 Random Coding Improvements for Discrete Sources

The CMS scheme with binning was recently improved upon. Here we give a brief

summary of the improved scheme for the general L-descriptions problem.
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Codebook Generation: Let CM ,M ∈ 22[1:L]
be the set of codebooks used in the

improved version, where 2A is the set of all subsets of A. CM is decoded at decoder

N , if N ∈ M . UM is the underlying random variable for codebook CM . Define a

joint probability distribution PU on random variables UM ∈ 22[1:L]
. Each codebook

CM is generated randomly and independently based on PUM with rate rM . The ith

description bins the codebook randomly, uniformly and independently with binning

rate ρM,i. These bin numbers are sent through the description. Decoder N , upon

receiving the descriptions finds a unique vector (unM)N∈M of jointly typical sequences.

If the vector does not exist or is not unique, the decoder declares error.

Covering Bounds: Since codebooks are generated randomly and independently,

in order to be able to find a jointly typical set of sequences Un
M with the source vector

Xn, the following mutual covering bounds need to be satisfied:

H(UM|X) ≥
∑
M∈M

(H(UA)−rA), ∀M ⊂ 22[1:L]

.

Packing Bounds: For decoder N , description i is received if i ∈ N . Since binning

is done independently and uniformly, in order to find a unique set of jointly typical

sequences (unM)N∈M , we need to have the following packing bounds:

H(UL) ≤
∑
M∈L

(H(UM) +
∑
i∈[1:L]

ρM,i − rM), ∀L ⊂MN ,

where MN = {M |N ∈M}. The resulting RD vector is:

Ri =
∑
M

ρM,i

DN = E
{
dN(hN(UMN

, X))
}
.
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It can be shown that the codebook CM is non-redundant if and only if M is a

Sperner family in [1 : L] and it is not any of {}, {{}} or 2[1:L]. This observation

decreases the number of necessary codebooks significantly. For example in the three

descriptions problem |22[1:3] | = 256 whereas there are only 20 Sperner families (i.e. 17

necessary codebooks).

Next we show that the region is achievable using linear codes. Use the same coding

scheme as described above, except that we use random linear codes instead of random

unstructured codes.

Lemma 16. The following RD vectors are achievable using linear codes:

H(UM|X) ≥
∑
M∈M

(log q−ro,M) (5.5)

H(UL) ≤
∑
M∈L

(log q +
∑
j∈[1:L]

ρM,i − ro,M) ∀L ⊂MN (5.6)

ri,M ≤ log q −H(UQ,M) ∀M ∈M (5.7)

Ri =
∑
M

ρM,i (5.8)

DN = E
{
dN(hN(UMN

, X))
}
. (5.9)

Remark 18. If we take ri,M = log q − H(UQ,M), the region reduces to the improved

CMS region.

5.4 Improvements Using Random Codes for Continuous Sources

In this section we use the new lattice construction to show that the bounds in the

previous section are achievable for general continuous sources.

Theorem V.1. The rate distortion region in the previous section is achievable for

continuous sources if we replace entropies with differential entropies.
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Proof. The proof involves two steps, first we approximate the n length vector of X

with an n-length vector of the random variable Xq,γ. Xq,γ is a discrete random variable

defined on Xq,γ = [−γ q−1
2
, γ q−1

2
]∩ γZ. In the next step, we use the fact that for Xq,γ,

the definition of typicality in section II reduces to the definition in the discrete case,

to show that by the same arguments as in the previous section, the improved CMS

with binning is achievable for continuous UM and X.

Here we give a more detailed version of the proof. Fix n, q and γ. Fix a probability

distribution PUM ,X , where UM is the set of random variables from the last section.

The underlying alphabet for UM is Xq,γ. The definition of Xq,γ is as follows:

Xn
q,γ = argmin

{
d2(Xn, xnq,γ)|xnq,γ ∈ X n

q,γ},

here d2(an, bn) =
∑n

i=1(ai − bi)
2. Note that if γ → 0 and γq → ∞ then

d2(Xn, Xn
q,γ)→ 0.

Codebook Generation For M ∈ 22[1:L]
randomly, uniformly and independently

generate a nested linear code (CM,o, CM,i) over Zn
q . Let the rates of the nested code

be (rM,o, rM,i). Fix γ and construct the corresponding nested lattice Λ̄M,i, Λ̄M,o. For

each description, bin the outer code with binning rate ρM,i.

Encoding For a source vector xn, find the corresponding xnq,γ. Find a set of weak∗-

typical sequences unM . Note since the underlying alphabet for all these variables is

Xq,γ, weak∗ typicality is equivalent to strong typicality in the discrete case. Each

description carries the bin numbers for the corresponding vectors.

Decoding Upon receiving the bin numbers, decoder N finds a unique set of weak∗-

typical sequences ûM , N ∈M .

Since weak∗ typicality reduces to strong typicality in this case, it is clear that
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Xq,γ can be reconstructed in the decoder with the rate distortions in Section III. If

the distortion function at all decoders is bounded and continuous, then we can take

γ → 0 and γq → ∞ in the same manner as in [57], then since d2(Xn, Xn
q,γ) → 0 by

continuity of the distortion measures, the RD vectors in Section III are achievable for

continuous sources and discrete UM .

Theorem III.6 in [57] shows that for continuous UM we can take UM,q,γ such that

as γ → 0 and γq → ∞ mutual information terms and distortions containing UM,q,γ,

converge to the terms containing UM . We showed that the improved CMS with

binning RD region is achievable using linear codes. Since the bounds in that scheme

can be written only in terms of mutual informations, the proof is complete.

5.5 Achievable RD Using Lattice Quantizers

It was shown in [26] that in the L-descriptions problem with discrete sources and

reconstructions, when L ≥ 3, it is beneficial to use a nested linear code for a pair of

random variables. Here we calculate the rate-distortion region resulting from such

a scheme. We first calculate the achievable region using linear codes in the discrete

case and then show convergence for lattices in the continuous case. Note that since

we are planning to use a nested code, the mutual covering bounds are not enough to

ensure existence of jointly typical sequences. Hence we need a new covering lemma.

Let (C, C ′) be a pair of nested linear codes over Fq such that their inner codebooks

are the same. Since the inner code is the same we need new covering bounds to insure

the existence of jointly typical sequences. The following theorem gives the required

covering bounds.

Theorem V.2. Let U and V be the underlying random variables for a pair of nested

linear codes (C, C ′). Suppose the two nested codes share an identical inner code. Let
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the joint probability distribution on (U, V,X) be given by PU,V,X . For a given ε-typical

sequence xn the probability of finding a jointly ε-sequence (un, vn) in the codebooks C

and C ′ goes to 1 as long as the following covering bounds are satisfied:

ro ≥ log q −H(U |X))

r′o ≥ log q −H(V |X))

ro + r′o ≥ 2 log q −H(U, V |X)

ro + r′o − ri ≥ log q −H(iU + V |X),∀i ∈ Zq

Where ro, r
′
o are the rate of outer code of C and C ′, respectively and ri denotes the

rate of the inner code in C and C ′.

Proof. See Appendix D.1.

Remark 19. Note in the above lemma if we take ri = 0, then the two codes are

generated independently, so the covering bounds reduce to mutual covering bounds

in the original scheme. However transmitting the linear combination of U and V

would require a larger rate since they are coming from two independent codebooks

(i.e. the rate of the codebook for U + iV would be equal to rU + rV is the packing

bounds). On the other hand if we take ro = ri, then the covering bounds become

tighter, since we are using the exact same linear code.

The packing bounds are also affected. We partition the decoders into three sets:

Case 1: Decoder s reconstructs both U and V . In this case, the decoder receives

one bin number for each of un, vn and un+jvn. Using this the decoder can restrict the

search over vectors of un and vn to bin sizes 2rU−ρU−tρU+jV for un and 2rV −ρV −(1−t)ρU+jV

for vn where t ∈ [0, 1] (the choice of t is arbitrary since the bin number for U + jV
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can be interpreted as either information about U or V ). So in the packing bounds ρU

is replaced with ρU + tρU+jV and ρV is replaced with ρV + (1− t)ρU+jV ,

Case 2: The decoder only reconstructs U (or V), in which case reconstructing U + jV

is equivalent to reconstructing both U and V . So we write the packing bounds as if

U and V are reconstructed at the decoder and V is sent with binning rate ρU+jV .

Case 3: The decoder does not reconstruct U or V . In this case in the packing bound,

U+jV is treated as the underlying random variable for a codebook of rate ro+r′o−ri
and bin rate ρU+jV and the mutual packing bounds are written for the decoder.

Based on the arguments in the previous section we only need to show that the

bounds in this scheme can also be written in terms of mutual informations. First

note that after the Fourier-Motzkin elimination the log q terms would cancel. Lastly

the term H(U + jV |X) differs with H(U |X) only in mutual information terms:

H(U+jV |X)−H(U |X)

= H(U+jV |X)−H(U, V |X) +H(V |X,U)

= H(U+jV |X)−H(U+jV, V |X) +H(V |X,U)

= −H(V |X,U+jV ) +H(V |X,U)

= I(U+jV ;V |X)− I(U ;V |X)

So, the terms in the covering bound differ with the one in the improved CMS

only in mutual information quantities. Hence, the region is achievable for continuous

sources.

94



CHAPTER VI

On the Error Exponent of MAC with Noiseless

Feedback

Many existing communication systems with feedback (such as ARQ) have variable

length. Therefore, in the analysis of fundamental limits for channels with feedback, it

is more relevant to allow codes whose length can depend on the channel behavior. In

the regime of asymptotically large average block-length, the error exponent, defined

as the exponential rate of decay of the probability of error with respect to the average

block-length, has been an important performance measure for variable-length codes

with feedback.

In this Chapter, we study the error exponent of discrete memoryless MAC with

noiseless feedback. In particular, we derive an upper-bound and a lower-bound. We

make a connection between this problem and the problem of sequential hypothesis

testing. We use the tools from dynamic programming and Burnashev’s techniques for

the PtP case to derive the bounds on the error exponent of MAC-FB. The bounds

have a similar expression. In this setting, the upper bound is described below

Eu(R1, R2) = (1− ||R||
C(θR)

)Du (6.1)

where (||R||, θR) denote the polar coordinate of (R1, R2) in R2. Also, C(θR) is the
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point of the capacity frontier at the angle determined by R. The lower-bound is the

same as Eu but with different constant Dl. The constants Dl and Du are determined

by the relative entropy between the conditional output distributions. An interesting

observation is that the bounds increase linearly with respect to a specific Euclidean

distance measure defined between the transmission rate pair and the capacity bound-

ary. The lower and upper bounds match for a class of MACs.

6.1 Problem Formulation and Definitions

Consider a discrete memoryless MAC with input alphabets X1,X2, and output al-

phabet Y . The channel conditional probability distribution is denoted by Q(y|x1, x2)

for all (y, x1, x2) ∈ Y × X1 × X2. Such setup is denoted by (X1,X2,Y , Q). Let yt

and xti, i = 1, 2, be the channel output and the inputs sequences after t uses of the

channel, respectively. Then, the following condition is satisfied:

P (yt|yt−1, xt−1
1 , xt−1

2 ) = Q(yt|x1t, x2t). (6.2)

We assume that the output of the channel as a feedback is available at the encoders

with one unit of delay.

Definition 39. An (M1,M2, N)- variable-length code (VLC) for a MAC (X1,X2,Y , Q)

with feedback is defined by

• A pair of messages W1,W2 selected randomly with uniform distribution from

{1, 2, . . . ,Mi}, i = 1, 2.

• Two sequences of encoding functions

ei,t : {1, 2, . . . ,Mi} × Y t−1 → Xi, t ∈ N, i = 1, 2,

one for each transmitter.
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• A sequence of decoding functions

dt : Y t → {1, 2, ...,M1} × {1, 2, ...,M2}, t ∈ N.

• A stopping time T with respect to (w.r.t) the filtration Ft defined as the σ-algebra

of Y t for t ∈ N. Furthermore, it is assumed that T satisfies E[T ] ≤ N .

For each i = 1, 2, given a message Wi, the tth output of Transmitter i is denoted

by Xi,t = ei,t(Wi, Y
t−1).

Let (Ŵ1,t, Ŵ2,t) = dt(Y
t). Then, the decoded messages at the decoder are denoted

by Ŵ1 = Ŵ1,T , and Ŵ2 = Ŵ2,T . In what follows, for any (M1,M2, N) VLC, we

define average rate-pair, error probability, and error exponent. Average rates for an

(M1,M2, N) VLC are defined as

Ri ,
log2Mi

E[T ]
, i = 1, 2.

The probability of error is defined as

Pe = P
(

(Ŵ1, Ŵ2) 6= (W1,W2)
)
.

The error exponent of a VLC with probability of error Pe and stopping time T is

defined as E , − log2 Pe
E[T ]

.

Definition 40. A reliability function E(R1, R2) is said to be achievable for a given

MAC, if for any R1, R2 > 0 and ε > 0 there exists an (M1,M2, N)-VLC such that

− log2 Pe
N

≥ E(R1, R2)− ε, and
log2Mi

N
≥ Ri − ε,

where i = 1, 2, and Pe is the error probability of the VLC.
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Definition 41. The reliability function of a MAC with feedback is defined as the

supremum of all achievable reliability functions E(R1, R2).

6.1.1 The Feedback-Capacity Region of MAC

We summarize Kramer’s results presented in [47] for the feedback capacity of

MAC. We use directed information and conditional directed information as defined

in [47]. The normalized directed information from a sequence Xn to a sequence Yn

when causally conditioned on Zn is denoted by

In(X → Y ||Z) =
1

n
I(Xn → Yn||Zn). (6.3)

The feedback-capacity region of a discrete memoryless MAC with feedback (X1,X2,Y , Q)

is denoted by C, and is the closure of the set of all rate-pairs (R1, R2) such that

R1 ≤ IL(X1 → Y ||X2)

R2 ≤ IL(X2 → Y ||X1)

R1 +R2 ≤ IL(X1X2 → Y ),

where L is a positive integer, and PXL
1 X

L
2 Y

L factors as

L∏
l=1

P1,l(x1l|xl−1
1 yl−1)P2,l(x2l|xl−1

2 yl−1)Q(yl|x1,lx2,l). (6.4)

Definition 42. Let λ1, λ2, λ3 ≥ 0, and λ1 + λ2 + λ3 = 1. Define

Cλ = sup
L∈N

sup
P
XL1 X

L
2 Y

L

λ1IL(X1 → Y |X2) + λ2IL(X2 → Y |X1)

+ λ3IL(X1X2 → Y ),
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where PXL
1 X

L
2 Y

L factors as in (6.4).

Fact 1. The feedback-capacity of a discrete memoryless MAC with feedback is the

same as the closure of the set of rate-pairs (R1, R2) such that the inequality

λ1R1 + λ2R2 + λ3(R1 +R2) ≤ Cλ

holds for all λ1, λ2, λ3 ≥ 0, with λ1 + λ2 + λ3 = 1.

6.1.2 Notational Conventions

For more convenience, we denote a rate-pair (R1, R2) by (R1, R2, R3), where R3 =

R1 +R2. For a (X1,X2,Y , Q) MAC we use the following notational convenience

I1
L , IL(X1 → Y ||X2), (6.5)

I2
L , IL(X2 → Y ||X1), (6.6)

I3
L , IL(X1X2 → Y ). (6.7)

The Kullback–Leibler divergence for the MAC with transition probability matrix Q

is defined as

DQ(x1, x2||z1, z2) =
∑
y∈Y

Q(y|x1, x2) log2

Q(y|x1, x2)

Q(y|z1, z2)
,

where (x1, x2), (z1, z2) ∈ X1 ×X2. For notational convenience we denote

D1(x1, x2||z1, z2) = DQ(x1, x2||z1, x2)

D2(x1, x2||z1, z2) = DQ(x1, x2||x1, z2)

D3(x1, x2||z1, z2) = DQ(x1, x2||z1, z2).
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6.2 A Lower-Bound for the Reliability Function

We build upon Yamamoto-Itoh transmission scheme for PtP channel coding with

feedback [88]. The scheme sends the messages W1,W2 through blocks of length n.

The transmission process is performed in two stages: 1) The “data transmission”

stage taking up to n(1 − γ) channel uses, 2) The “confirmation” stage taking up to

nγ channel uses, where γ is a design parameter taking values from [0, 1].

Stage 1 For the first stage, we use any coding scheme that achieves the feedback-

capacity of the MAC. The length of this coding scheme is at most n(1 − γ). Let

Ŵ1, Ŵ2 denote the decoder’s estimation of the messages at the end of the first stage.

Define the following random variables:

Hi = 1{Ŵi 6= Wi}, i = 1, 2.

Because of the feedback, Ŵ1 and Ŵ2 are known at each transmitter. Therefore, at the

end of the first stage, transmitter i has access to Wi, Ŵ1, Ŵ2, and Hi, where i = 1, 2.

Stage 2 The objective of the second stage is to inform the receiver whether the

hypothesis Θ0 : (Ŵ1, Ŵ2) = (W1,W2) or Θ1 : (Ŵ1, Ŵ2) 6= (W1,W2) is correct. For

that, each transmitter employs a code of size two and length γn. The codewords of

such codebooks are denoted by two pairs of sequences (x1(0), x2(0)) and (x1(1), x2(1))

each with elements belonging to X1×X2. Fix a joint-type Pn defined over the set X1×

X2×X1×X2 and for sequences of length γn. The sequences (x1(0), x2(0), x1(1), x2(1))

are selected randomly among all the sequences with joint-type Pn. During this stage

and given H1, Transmitter 1 sends x1(H1). Similarly, Transmitter 2 sends x2(H2).

Decoding Upon receiving the channel output, the receiver estimates H1, H2. De-

note this estimation by Ĥ1, Ĥ2. If (Ĥ1, Ĥ2) = (0, 0), then the hypothesis Θ̂ = Θ0 is
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declared. Otherwise, Θ̂ = Θ1 is declared. Because of the feedback, Θ̂ is also available

at each encoders. If Θ̂ = Θ0, then transmission stops and a new data packet is trans-

mitted at the next block. Otherwise, the message is transmitted again at the next

block. The process continues until Θ̂ = Θ0 occurs.

The confirmation stage in the proposed scheme can be viewed as a decentralized

binary hypothesis problem in which a binary hypothesis {Θ0,Θ1} is observed partially

by two distributed agents and the objective is to convey the true hypothesis to a

central receiver. This problem is qualitatively different from the sequential binary

hypothesis testing problem as identified in [89] for PtP channel. Note also that

in the confirmation stage we use a different coding strategy than the one used in

Yamamoto-Itoh scheme [88]. Here, all four codewords have a joint-type Pn. It can

be shown that repetition codes, and more generally, constant composition codes are

strictly suboptimal in this problem.

Theorem VI.1. The following is a lower-bound for the reliability function of any

discrete memoryless MAC:

El(R1, R2) = min
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

Dl(1−
∑

i λiRi

Cλ
), (6.8)

where,

Dl , sup
PX1X2Z1Z2

min
i=1,2,3

E [Di(X1, X2||Z1, Z2)] , (6.9)

and the supremum is taken over all probability distributions PX1X2Z1Z2 defined over

X1 ×X2 ×X1 ×X2.

Proof. The proof is given in Appendix E.1.
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6.3 An Upper-bound for the Reliability Function

In this part of the paper, we establish an upper-bound for the reliability function

of any discrete memoryless MAC. Define

Di , max
x1,z1∈X1,
x2,z2∈X2

Di(x1, x2||z1, z2), i = 1, 2, 3. (6.10)

Theorem VI.2 (Upper-bound). For any (N,M1,M2) VLC with probability of error

Pe, and any ε > 0, there exists a function δ such that the following is an upper-bound

for the reliability function of the VLC

E(R1, R2) ≤ min
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

min
j∈{1,2,3}

Dj

(
1− λjRj

Cλ

)
+ δ(Pe,M1M2, ε), (6.11)

where (R1, R2) is the rate pair of the VLC and δ satisfies

lim
ε→0

lim
Pe→0

lim
M1M2→∞

δ(Pe,M1M2, ε) = 0.

Corollary 3. From Theorem VI.2, the following is an upper-bound for the error

exponent of a MAC:

Eu(R1, R2) = min
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

Du

(
1−

∑3
i=1 λiRi

Cλ

)
+ δ,

where Du = max{D1, D2, D3}, and δ is as in Theorem VI.2.

Proof. The proof is given in Appendix E.5.
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6.3.1 Proof of the Upper-Bound

Consider any (N,M1,M2) VLC with probability of error Pe, and stopping time

T . Suppose the message at Encoder 2, W2, is made available to all terminals. For

the new setup, as W2 is available at the Decoder, the average probability of error is

P 1
e , P{Ŵ1 6= W1}. Note that Pe ≥ P 1

e . We refer to such setup as W2-assisted MAC.

For a maximum a posteriori decoder, after n uses of the channel and assuming the

realization Y n = yn and W2 = w2, define

T δ1 , inf
{
n : max

1≤i≤M1

P (W1 = i|yn, w2) ≥ 1− δ
}
,

where δ > 0 is a fixed real number. Also, let τ1 , min{T, T δ1 }. Note that τ1 is a

stopping time w.r.t the filtration {FW2 × Ft}t>0. The following lemma provides a

lower-bound on the probability of error for such setup.

Lemma 17. The probability of error, Pe, for a hypothesis testing over a W2-assisted

MAC and variable length codes satisfies the following inequality

Pe ≥
min{P (H), P (Hc)}

4
e−D1E[T ],

where {H,Hc} are the two hypothesizes and T is the stopping time of the variable

length code.

Lemma 18. For a given MAC with finite D3 the following holds

ζp(w1, w2|yn−1) ≤ p(w1, w2|yn) ≤ p(w1, w2|yn−1)

ζ
,

where ζ , minx1,x2,yQ(y|x1, x2).

The above lemmas are extensions of Lemma 1 and Proposition 2 in [89] for MAC.

The proofs follow from similar arguments and are omitted.
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Lemma 19. Given a MAC with D3 <∞, and for any (N,M1,M2) VLC with prob-

ability of error Pe the following holds

Pe ≥
ζδ

4
e−D1E[T−τ1], (6.12)

where ζ , minx1,x2,yQ(y|x1, x2).

Proof. Suppose the VLC is used for aW2-assisted MAC. As discussed before, Pe ≥ P 1
e .

We modify the encoding and the decoding functions of the VLC used for the MAC.

Let H1 ⊆M1 be a subset of the message setM1. The subset H1 is to be determined

at time τ1. The new decoding function, at time T , decides whether the message

belongs to H1. The new encoding functions are the same as the original one until

the time τ1. Then, after τ1, the transmitters perform a VLC to resolve the binary

hypothesis {W1 ∈ H1} and {W1 /∈ H1}. This hypothesis problem is performed from

τ1 to T . With these modifications, the error probability of this binary hypothesis

problem is a lower-bound on Pe. In what follows, we present a construction for H1.

Then, we apply Lemma 17 to complete the proof.

Let P 1
e (yn, w2) , 1 −max1≤i≤M1 P (W1 = i|yn, w2). The quantity P 1

e (yτ1 , w2) can

be calculated at all terminals. By definition, at time τ1 − 1, the inequality P (W1 =

i|Y τ1−1,W2) < 1 − δ holds almost surely for all i ∈ [1 : M1]. This implies that

P 1
e (Y τ1−1,W2) > δ. Hence, by Lemma 18 at time τ1 the inequality P 1

e (Y τ1 ,W2) ≥ ζδ

holds almost surely. We consider two cases P 1
e (yτ1 , w2) ≤ δ and P 1

e (yτ1 , w2) > δ, where

δ is the constant used in the definition of T δ1 . For the first case, H1 is the set consisting

of the message with the highest a posteriori probability. Since P 1
e (yτ1 , w2) ≤ δ, then

P (H1) ≥ 1 − δ. In addition, as P 1
e (yτ1 , w2) ≥ ζδ, then P (Hc

1) > ζδ. For the second

case, set H1 to be a set of messages such that P (H1) > δ/2 and P (H1) < 1− δ. Such

set exists, since P (W1 = i|Y τ−1,W2) < 1− δ holds for all messages i ∈ [1 : M1].

Note that by the above construction, for each case, P (H1) ∈ [ζδ, 1 − ζδ]. Thus,
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from Lemma 17 and the argument above, the inequality

P{Ŵ1 6= W1|Y τ ,W2} ≥
ζδ

4
e−D1E[T−τ |Y τ ,W2]

holds almost surely. Next, we take the expectation of the above expression. The

lemma follows by the convexity of e−x and Jensen’s inequality.

Next, we apply the same argument for the case where W1 is available at all the

terminals. For that define

T δ2 , inf
{
n : max

1≤j≤M2

P (W2 = j|yn, w1) ≥ 1− δ
}
,

and let τ2 , min{T, T δ2 }. By symmetry, Lemma 19 holds for this case and we obtain

Pe ≥
ζδ

4
e−D2E[T−τ2]. (6.13)

Next, define the following stopping times:

T δ3 , inf
{
n : max

i,j
P (W1 = i,W2 = j|yn) ≥ 1− δ

}
.

Also, let τ3 = min{T, T δ3 }. using a similar argument as in the above, we can show

that

Pe ≥
ζδ

4
e−D3E[T−τ3]. (6.14)

For that, after time τ3, we formulate a binary hypothesis problem in which the trans-

mitters determine whether (W1,W2) ∈ H3 or not. Here, H3 is a subset which is

constructed using a similar method as for H1 in the proof of Lemma 19. We further

allow the transmitters to communicate with each other after τ3. The maximum of
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the right-hand sides of (6.12), (6.13) and (6.14) gives a lower-bound on Pe. The

lower-bound depends on the expectation of the stopping times τi, i = 1, 2, 3. In what

follows, we provide a lower-bound on E[τi]. Define the following random processes.

H1
t , H(W1| FW2 ×Ft),

H2
t , H(W2| FW1 ×Ft),

H3
t , H(W1,W2| Ft),

Lemma 20. Given a (M1,M2, N)-VLC, for any ε > 0 there exist L and a probability

distribution PXL
1 X

L
2 Y

L that factors as in (6.4) such that the following inequalities hold

almost surely for 1 ≤ t ≤ N

E[H1
t+1 −H1

t |FW2 ×Ft] ≥ −(I1
L + ε),

E[H2
t+1 −H2

t |FW1 ×Ft] ≥ −(I2
L + ε),

E[H3
t+1 −H3

t |Ft] ≥ −(I3
L + ε).

where i = 1, 2, 3, and I iL is defined as in (6.5)-(6.7).

Proof. The proof is provided in Appendix E.2.

We need the following lemma to proceed. The lemma is a result of Lemma 4

in [42], and we omit its proof.

Lemma 21. For any t ≥ 1 and i = 1, 2, 3, the following inequality holds almost surely

w.r.t FW1 ×FW2 ×Ft

logH i
t − logH i

t+1 ≤ max
j,l∈[1:M1]
k,m∈[1:M2]

max
y∈Y

Q̂j,k(y)

Q̂l,m(y)
.

From Lemma 20 and the fact that H i
t ≤ log2Mi < ∞, the processes {H i

t +

(I1
L + ε)t}t>0 are submartingales for i = 1, 2, 3. In addition, from Lemma 21 and the
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inequalities E[τi] ≤ E[T ] ≤ N <∞, we can apply Doob’s Optional Stopping Theorem

for each submartingale {H i
t + (I1

L + ε)t}t>0. Then, we get:

logMi ≤ E[H i
τi

] + E[τi](I
i
L + ε) (6.15)

where M3 = M1M2.

Lemma 22. The following inequality holds for each i = 1, 2, 3

E[H i
τi

] ≤ hb(δ) + (δ +
Pe
δ

) log2Mi.

Proof. We prove the lemma for the case i = 1. The proof for i = 2, 3 follows from a

similar argument. For i = 1, we obtain

E[H1
τ1

] = P{Pe(Y τ1 ,W2) > δ}E[H i
τ1
|Pe(Y τ1 ,W2) > δ]

+ P{Pe(Y τ1 ,W2) ≤ δ}E[H1
τ1
|Pe(Y τ1 ,W2) ≤ δ] (6.16)

≤ P{Pe(Y τ1 ,W2) > δ} log2M1 + P{Pe(Y τ1 ,W2) ≤ δ}E[H i
τ1
|Pe(Y τ1 ,W2) ≤ δ].

(6.17)

Note that the event {Pe(Y τ1 ,W2) > δ} implies that τ1 = T , and Pe(y
τ1 ,W2) > δ

for all 0 ≤ n ≤ T . Hence, this event is included in the event {Pe(Y T ,W2) > δ}. Thus,

applying Markov inequality gives

P{Pe(Y τ1 ,W2) > δ} ≤ P{Pe(Y T ,W2) > δ} ≤ Pe
δ
.

As a result of the above argument, the right-hand side of (6.17) does not exceed the

following

Pe
δ

log2M1 + E[H1
τ1
|Pe(Y τ1 ,W2) ≤ δ].
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From Fano’s inequality we obtain

E[H1
τ1
|Pe(Y τ1 ,W2) ≤ δ] ≤ hb(δ) + δ log2M1.

The proof is complete from the above inequality.

As a result of the above lemma and (6.15), the inequality E[τi] ≥ logMi

IiL+ε
− hb(δ)

IiL+ε

holds. Finally, combining this inequality with (6.12)-(6.14) completes the proof of

the theorem.

6.3.2 An Alternative Proof for the Upper-Bound

In this part of the paper, we provide a series of Lemmas that are used to prove

the Theorem. Define the following random processes.

Lemma 23. For an (M1,M2, N)-VLC with probability of error Pe the following in-

equality holds

E[H i
T ] ≤ hb(Pe) + Pe log2(M1M2 − 1), for i = 1, 2, 3.

Proof. The proof follows from Fano’s Lemma as in [42].

Lemma 24. There exists ε > 0 such that, if H i
t ≤ ε, then

E[logH1
t+1 − logH1

t |FW2 ×Ft] ≥ −(D1 + ε),

E[logH2
t+1 − logH2

t |FW1 ×Ft] ≥ −(D2 + ε),

E[logH3
t+1 − logH3

t |Ft] ≥ −(D3 + ε)

holds almost surely, where Di, i = 1, 2, 3 are defined in (6.10).

Proof. The proof is given in Appendix E.3.
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Lemma 25. For i = 1, 2, 3, define random process {Z(i)
t }t≥1 as

Z
(i)
t =

(
logH i

t − log ε

Di

+ t+ fi(log
H i
t

ε
)

)
1{H i

t ≤ ε}

+

(
H i
t − ε
I iL

+ t

)
1{H i

t ≥ ε} (6.18)

where the function fi is defined as fi(y) = 1−e−µiy
Diµi

. Then, there exists µi > 0 such that

Z
(i)
t is a submartingale w.r.t FW1 ×FW2 ×Ft.

Outline of the proof. Suppose W2 = m for some m ∈ [1 : M2]. Given this event and

using the same argument as in the proof of Theorem 1 in [42] we can show that

Z
(i)
t |W2 = m is a submartingale for all m. More precisely, the inequality

E{Z(i)
t − Z(i)

t+1|FW1 ×FW2} ≤ 0,

holds almost surely w.r.t FW1 ×FW2 . Taking the expectation of the both sides in the

above inequality gives

E{Z(i)
t − Z(i)

t+1} ≤ 0, ∀t ≥ 0, i = 1, 2, 3.

Thus, Z
(i)
t is a submartingale for i = 1, 2, 3 and w.r.t FW1 ×FW2 ×Ft.

Corollary 4. Suppose α1, α2, α3 are non-negative numbers such that α1+α2+α3 = 1.

Define Zt = α1Z
(1)
t +α2Z

(2)
t +α3Z

(3)
t . Then, Zt is a submartingale w.r.t FW1×FW2×

Ft.

The Theorem follows from the above lemma, and the proof is given in Appendix

E.4.
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6.4 The Shape of the Lower and Upper Bounds

In this Section, we point out a few remarks on Eu(R1, R2) and the lower-bound

El(R1, R2) defined in Theorem VI.1. Furthermore, we provide an alternative repre-

sentation for the bounds and show that the lower and upper-bounds match for a class

of MACs.

We first compare the lower bound in (6.8) and the upper-bound in Corollary 3.

For a given arbitrary rate pair (R1, R2) inside the feedback-capacity of a given MAC,

consider a sequence of VLCs with rates (R1, R2) and with average probability of error

approaching zero. Then, the following holds:

lim
ε→0

lim
Pe→0

lim
M1M2→∞

Eu(R1, R2)

El(R1, R2)
=
Du

Dl

As a result of the above remark, it is concluded that for small enough probability of

error, the bounds are different only in the constants Du and Dl.

Next, provide an alternative representation for the lower/upper-bound. For that,

suppose (R1, R2) is a point inside the capacity region C. By (||R||, θR) denote the

polar coordinate of (R1, R2) in R2. It is shown in the following Remark that the

optimum λ in Eu and El is independent of the Euclidean norm of (R1, R2), i.e., ‖R‖.

Remark 20. Given an arbitrary α > 0 and a rate pair (R1, R2) in the capacity region,

the optimum λ for El(R1, R2) is the same as the one for El(αR1, αR2).

Proof. Note that one can write El(R1, R2) as

El(R1, R2) = Dl

1− max
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

∑3
i=1 λiRi

Cλ

 ,

= Dl

(
1−

∑3
i=1 λ

∗
iRi

Cλ∗

)
,

where λ∗ is the optimum λ for El. Next, replace (R1, R2) with (αR1, αR2) for some
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constant α > 0. Then, we obtain

El(αR1, αR2) = Dl

1− α max
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

∑3
i=1 λiRi

Cλ

 ,

(a)
= Dl

(
1− α

∑3
i=1 λ

∗
iRi

Cλ∗

)
,

where (a) follows as the objective function for the maximization is the same as the

one in El(R1, R2). This implies that there is an identical λ∗ which optimizes the

expression in El(R1, R2) and El(αR1, αR2).

(R1; R2)

(R0

1
; R0

2
)

R2

R1

Figure 6.1: Given a rate pair (R1, R2) which is inside the capacity region, consider
the line passing (R1, R2) and the origin. Then, (R′1, R

′
2) is the point of

intersection of this line with the boundary of the capacity region.

Now, consider the line passing (R1, R2) and the origin. Let (R′1, R
′
2) denote the

point of intersection of this line with the boundary of the capacity region. Fig. 6.1

shows how (R′1, R
′
2) is determined. Since, R′i = αRi, i = 1, 2 for some α > 0, then the

optimum λ in El(R
′
1, R

′
2) is the same as the one in El(R1, R2). Therefore, from this
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argument and the fact that Ri =
R′i
α
, i = 1, 2, we can rewrite El(R1, R2) as

El(R1, R2) = min
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

Dl

(
1− 1

α

∑3
i=1 λiR

′
i

Cλ

)
,

(a)
= Dl

(
1− 1

α

)
,

where (a) follows, since (R′1, R
′
2) is on the capacity boundary. Note that α = ‖R‖

‖R′‖ .

Therefore, El(R1, R2) = Dl

(
1− ‖R‖

‖R′‖

)
. Moreover, note that ‖R′‖ depends on (R1, R2)

only through θR; in particular, it equals to C(θR) which is a function of θR. With

this notation, we can rewrite El as

El(R1, R2) = Dl

(
1− ‖R‖

C(θR)

)

Using a similar argument for Eu, we have

Eu(R1, R2) = Du

(
1− ‖R‖

C(θR)

)
+ δ.

As a conclusion of the above argument, the lower (upper) bound increases linearly

with respect to a specific Euclidean distance measure defined between the transmis-

sion rate pair and the capacity boundary. Fig. 6.2 shows the shape of a typical upper

(lower) bound as a function of the transmission rate pairs.

6.4.1 On the Tightness of the Bounds on the Error Exponent

In what follows, we provide examples of classes of channels for which the lower

and upper bound coincide.

Example 11. Consider a MAC in which the output is (Y1, Y2) and the transition

probability matrix is described by the product QY1|X1QY2|X2 . This MAC consists

of two parallel (independent) point-to-point channels. Suppose, C1 and C2 are the
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Figure 6.2: The conceptual shape of the lower/upper-bound on the error exponent of
a given MAC with respect to the transmission rate pair (R1, R2).

capacity of the first and the second parallel channel, respectively. For this MAC, one

can use two parallel Yamamoto-Itoh schemes, one for each channel. Based on the

results for the point-to-point case, it is not difficult to show that the error exponent

for such MAC satisfies

E(R1, R2) ≥ min{D1(1− R1

C1

), D2(1− R2

C2

)}, (6.19)

where C1 and C2 are the point-to-point capacity of the channel corresponding to

QY1|X1 and QY2|X2 , respectively. Note that this lower-bound is not covered by the

proposed coding strategy given in Section 6.2. For such MAC, the upper-bound

given in (6.11) is simplified to

E(R1, R2) ≤ min
λ1,λ2≥0

min
j∈{1,2}

Dj

(
1− λjRj

λ1C1 + λ2C2

)
+ δ.

The right-hand side of the above inequality is further upper-bounded by substituting
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(λ1, λ2) = (0, 1) or (λ1, λ2) = (1, 0). Therefore, we obtain

E(R1, R2) ≤ min
j∈{1,2}

Dj

(
1− Rj

Cj

)
+ δ

By letting δ → 0 as in Theorem VI.2, the above bound can be made arbitrary close

to the lower-bound given in (6.19).

Example 12. Consider a MAC with input alphabets X1 = X2 = {0, 1, 2}, and output

alphabet Y = {0, 1, 2}. The transition probability of the channel is described by the

following relation:

Y = X1 ⊕3 X2 ⊕3 Np,

where the additions are modulo-3 addition, and Np is a random variable with P (Np =

1) = P (Np = 2) = p, and P (Np = 0) = 1− 2p, where 0 ≤ p ≤ 1/2. It can be shown

that for this channel Dl = Du = (1−3p) log 1−2p
p
. Hence, the upper-bound in Corollary

3 can be made arbitrary close to the lower-bound in Theorem VI.1.

The argument in the above example can be extended to m-ary additive MACs for

m > 2, where the transition probability of the channel is described by

Y = X1 ⊕m X2 ⊕m Np,

where all the random variables take values from Zm, and Np is a random variable

with P (Np = i) = p for any i ∈ Zm, i 6= 0 and P (Np = 0) = 1− (m− 1)p. It can be

shown that for this channel

Dl = Du = (1−mp) log
1− (m− 1)p

p
.
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APPENDIX A

Proofs for Chapter II

A.1 Proof of Lemma 1

Proof. Using (2.3) we get Un =
⊗

q∈QA
(kq,n)
ε (Uq), where kq,n = PQ(q)kn, and the

distribution of Uq is the same as the conditional distribution of U given Q = q.

Using well-known results on the size of ε-typical sets we can provide a bound on

|A(kq,n)
ε (Uq)|. More precisely, there exists Nq such that for all kq,n > cNq, we have

| 1
kq,n

log2 |A(kq,n)
ε (Uq)| −H(Uq)| ≤ 2ε′q, where using the same argument as in [3]

ε′q = − ε

pr

∑
a∈Zpr ,P (Uq=a)>0

log2 P (Uq = a).

Therefore,

1

kn
log2 |Un| =

1

kn

∑
q∈Q

log2 |A(kq,n)
ε (Uq)|

≤
∑
q∈Q

kq,n
kn

(H(Uq) + 2ε′q)

(a)
= H(U |Q) +

∑
q∈Q

PQ(q)2ε′q ≤ H(U |Q) + ε′,
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where ε′ , 2 maxq∈Q ε′q. Note that (a) holds as PQ(q) = kq,n/kn. Using a similar

argument we can show that 1
kn

log2 |Un| ≥ H(U |Q) − ε′. Finally, by setting N =

maxqNq, and combining the bounds on 1
kn

log2 |Un| the proof is completed.

A.2 Proof of Lemma 2

Proof. For any u ∈ Un, define

θ(u) ,
∑
u′∈Un
u′ 6=u

1{Φn(u′) = Φn(u)}.

Note that θ(u) is the number of vectors u′ ∈ Un that have the same output as for

u, i.e., Φn(u′) = Φn(u). Let A , {u ∈ Un : θ(u) = 0}. Note that A is a subset

over which Φn is injective. We show that |Ac| ≤ δ |Un| with high probability. Using

Markov inequality:

P{|Ac| ≥ δ|Un|} ≤
E[|Ac|]
δ|Un|

,

where the expectation is taken with respect to the distribution on random mapping

Φn. Note that

|Ac| =
∑
u∈Un

1{θ(u) > 0} ≤
∑
u∈Un

θ(u)

Hence,

P{|Ac| ≥ δ|Un|} ≤
1

δ|Un|
∑
u∈Un

E[θ(u)]. (A.1)

By definition, E[θ(u)] =
∑

u′ 6=u P{Φn(u′) = Φn(u)}. We provide an upper bound on

E[θ(u)].
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Let Hs = psZpr be a subgroup of Zpr , where s ∈ [0 : r− 1]. If a ∈ Zpr −{0}, then

there exits a maximum s ∈ [0 : r − 1] such that a ∈ Hs. That is a ∈ Hs and a /∈ Ht

for all t > s. As a result, for any u′ ∈ Un there are r cases for the maximum s such

that u− u′ ∈ Hkn
s . Considering these cases, we obtain

∑
u′∈Un
u′ 6=u

P{Φn(u′) = Φn(u)} =
r−1∑
s=0

∑
u′∈Un

u′−u∈Hkn
s \Hkn

s+1

P{Φn(u′) = Φn(u)} (A.2)

Since Φn is a linear map, we have P{Φn(u′) = Φn(u)} = P{Φn(u′ − u) = 0}. Next,

we use Lemma 29 (see Appendix A.9). Since u′−u ∈ Hkn
s \Hkn

s+1, then P{Φn(u′−u) =

0} = p−n(r−s). Therefore, using (A.2) and the expression for E[θ(u)], we get

E[θ(u)] ≤
r−1∑
s=0

∑
u′∈Un

u′−u∈Hkn
s

p−n(r−s) (A.3)

Next, we replace the summation over u′ with the size of the set Un
⋂

(u+Hkn
s ). Since

Un is a Cartesian product of typical sets, we use Lemma 30 (see Appendix A.9) to

obtain the following bound

|Un
⋂

(u +Hkn
s )| ≤

∏
q

2kq,n(H(Uq |[Uq ]s)+ε′q),

where kq,n = PQ(q)kn. Therefore, the following bound holds:

E[θ(u)] ≤
r−1∑
s=0

2kn(H(U |Q[U ]s)+ε′)p−n(r−s) (A.4)

By assumption, H(U |[U ]s, Q) ≤ 1
c
(r − s) log2 p − ε,∀s ∈ [0 : r − 1]. Therefore, for

appropriate choice of ε and for sufficiently large n, the right-hand side of (A.4) can

be made arbitrary small (say smaller than δγ). Therefore, from Markov inequality
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given in (A.1), we obtain

P{|Ac| ≥ δ|Un|} ≤
1

δ|Un|
∑
u∈Un

γδ = γ.

A.3 Proof of Lemma 4

Proof. Let Cn be the random (n, kn)-QGC as in Lemma 4. For shorthand, for any

u ∈ Un, denote Φn(u) = uGn, where Gn is the random matrix corresponding to

Cn. Fix u0 ∈ Un. Without loss of generality assume c(θ) = Φn(u0) + B, where B

is the translation associated with Cn. Define the event En(u) := {(Φn(u) + B, Ỹ) ∈

A
(n)
ε (X, Y )}, and let En be the event of interest as given in the lemma. Then En is

the union of En(u) for all u ∈ Un\{u0}. By the union bound, the probability of En is

bounded as

P (En) ≤
∑
u∈Un
u6=u0

P (En(u)) (A.5)

For any u ∈ Un, the probability of En(u), can be calculated as,

P (En(u)) =
∑

x0∈Znpr

∑
y∈Yn

P (Φn(u0) +B = x0, Ỹ = y, En(u)) (A.6)

=
∑

x0∈Znpr

∑
y∈A(n)

ε (Y )

∑
x:(x,y)∈A(n)

ε (X,Y )

P (Φn(u0) +B = x0, Ỹ = y,Φn(u) +B = x)

(A.7)

By assumption, conditioned on Φn(u0) +B, the random variable Ỹ is independent of
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Φn(u) +B. Therefore, the summand in (A.7) is simplified to

P (Φn(u0) +B = x0,Φn(u) +B = x)P n
Y |X(y|x0). (A.8)

Since B is uniform over Znpr , and is independent of other random variables,

P (Φn(u0) +B = x0,Φn(u) +B = x) = p−nrP (Φn(u− u0) = x− x0). (A.9)

Using Lemma 29 (in Appendix A.9), if u−u0 ∈ Hkn
s \Hkn

s+1, then P (Φn(u−u0) =

x−x0) = p−n(r−s)
1{x−x0 ∈ Hkn

s }. Therefore, using (A.7), and for u−u0 ∈ Hkn
s \Hkn

s+1

we obtain

P (En(u)) =
∑

x0∈Znpr

∑
y∈A(n)

ε (Y )

∑
x:

(x,y)∈A(n)
ε (X,Y )

x−x0∈Hn
s

p−nrP n
Y |X(y|x0)p−n(r−s)

Denote A , {x : (x,y) ∈ A
(n)
ε (X, Y ), x − x0 ∈ Hn

s }. Note that if ([x0]s,y) /∈

A
(n)
ε ([X]sY ), then A = ∅. Therefore,

P (En(u)) =
∑

(x0,y):

([x0]s,y)∈A(n)
ε ([X]sY )

∑
x∈A

p−nrP n
Y |X(y|x0)p−n(r−s) (A.10)

Next, we replace the summation over x with the size of the set A. We bound the
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size of A using Lemma 30. Therefore, an upper-bound on (A.10) is

P (En(u)) ≤

 ∑
(x0,y):

([x0]s,y)∈A(n)
ε ([X]sY )

p−nrP n
Y |X(y|x0)

 p−n(r−s)2n(H(X|Y,[X]s)+δ(4ε))

≤

 ∑
x0∈Znpr

∑
y∈Yn

p−nrP n
Y |X(y|x0)

 p−n(r−s)2n(H(X|Y,[X]s)+δ(4ε)) (A.11)

≤ p−n(r−s)2n(H(X|Y,[X]s)+δ(4ε)). (A.12)

Note that if a ∈ Zkpr , a 6= 0 then there exists s ∈ [0 : r − 1] such that a ∈ Hk
s \Hk

s+1.

Therefore, there are r different cases for each value of s. Using (A.12), and considering

these cases, we obtain

P (En) ≤
r−1∑
s=0

∑
u∈Un

u−u0∈Hkn
s \Hkn

s+1

P (En(u)) ≤
r−1∑
s=0

∑
u∈Un

u−u0∈Hkn
s \Hkn

s+1

2n(H(X|Y [X]s)+δ(4ε))p−n(r−s)

≤
r−1∑
s=0

|Un
⋂

(u0 +Hk
s )|2n(H(X|Y [X]s)+δ(4ε))p−n(r−s)

Note that Un is the Cartesian product of ε-typical sets A
(p(q)kn)
ε (Uq), q ∈ Q. For

each component q of Un, we can apply Lemma 30. Therefore,

|Un ∩ (u0 +Hk
s )| ≤ 2

∑
q p(q)kn(H(Uq |[Uq ]s)+δ(2ε)) = 2kn(H(U |[U ]s,Q)+δ(2ε)).

Finally,

P (En) ≤
r−1∑
s=0

2n
(
kn
n

(H(U |[U ]s,Q)+H(X|Y,[X]s)+
kn
n
δ(2ε)+δ(4ε)

)
p−n(r−s)
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As a result limn→∞ P (En) = 0, if the inequality

cH(U |[U ]s, Q) ≤ log2 p
r−s −H(X|Y, [X]s)− 2(2 + c)δ(ε),

holds for all 0 ≤ s ≤ r − 1. Multiply each side of this inequality by H(U |Q)
H(U |Q,[U ]s)

. This

gives the following bound

cH(U |Q) ≤ H(U |Q)

H(U |Q, [U ]s)
(log2 p

r−s −H(X|Y, [X]s)− 2(2 + c)δ(ε))

By definition Rn = 1
n

log2 |Cn| ≤ cH(U |Q) + ε′. Therefore,

Rn ≤
H(U |Q)

H(U |Q, [U ]s)
(log2 p

r−s −H(X|Y, [X]s)− 2(2 + c)δ(ε)),

and the proof is completed.

A.4 Proof of Lemma 5

Proof. We use the same notation as in the proof of Lemma 4. For any typical sequence

x define

λn(x) =
∑

x̂∈A(n)
ε (X̂|x)

∑
u∈Un

1{Φn(u) +B = x̂}.

Note λn(x) counts the number of codewords that are conditionally typical with x with

respect to p(x̂|x). We show that limn→∞ P (λn(x) = 0) = 0 for any ε-typical sequence

x. This implies that limn→∞ P (λn(Xn) = 0) = 0, where Xn ∼∏n
i=1 p(x). This proves

the statements of the Lemma. Hence, it suffices to show that limn→∞ P (λn(x) = 0) =
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0. We have,

P{λn(x) = 0} ≤ P
{
λn(x) ≤ 1

2
E(λn(x))

}
≤ P

{
|λn(x)− E(λn(x))| ≥ 1

2
E(λn(x))

}
(A.13)

Hence, by Chebyshev’s inequality, P{λn(x) = 0} ≤ 4V ar(λn(x))
E(λn(x))2 . Note that

E(λn(x)) =
∑

x̂∈A(n)
ε (X̂|x)

∑
u∈Un

P{Φ(u) +B = x̂} (A.14)

Since B is uniform over Znpr , we get

E(λn(x)) = |A(n)
ε (X|x̂)||Un|p−rn. (A.15)

Note 2kn(H(U |Q)−2ε′) ≤ |Un| ≤ 2kn(H(U |Q)+2ε′), where

ε′ = − ε

pr

∑
q∈Q

PQ(q)
∑

a∈Zpr :PU|Q(a|q)>0

logPU |Q(a|q).

Therefore,

2n(H(X̂|X)−2ε̃)2kn(H(U |Q)−2ε′)p−rn ≤ E(λn(x)) ≤ 2n(H(X̂|X)+2ε̃)2kn(H(U |Q)+2ε′)p−rn,

(A.16)

To calculate the variance, we start with

E(λn(x)2) =
∑

x̂,x̂′∈A(n)
ε (X̂|x)

∑
u,u′∈Un

P{Φ(u) +B = x̂,Φ(u′) +B = x̂′}.

Since B is independent of other random variables, the most inner term in the

above summations is simplified to p−nrP{Φ(u− u′) = x̂− x̂′}. Using Lemma 29 (in
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Appendix A.9), if u− u′ ∈ Hkn
s \Hkn

s+1, then

P{Φ(u− u′) = x̂− x̂′} = p−n(r−s)
1{x̂− x̂′ ∈ Hn

s }

Considering all the cases for the values of s, we get

E(λn(x)2) =
r∑
s=0

∑
u,u′∈Un

u−u′∈Hkn
s \Hkn

s+1

∑
x̂,x̂′∈A(n)

ε (X̂|x)
x̂−x̂′∈Hn

s

p−nrp−n(r−s)

Since the innermost terms in the above summations do not depend on the individual

values of x, x̂,u,u′, the corresponding summations can be replaced by the size of the

associated sets. Moreover, we provide an upper bound on the summation over u,u′

by replacing Hkn
s \Hkn

s+1 with Hkn
s . Using Lemma 30 for x, x̂, we get

E(λn(x)2) ≤
r∑
s=0

∑
u∈Un

∑
u′∈Un

u−u′∈Hkn
s

2n(H(X̂|X)+ε̃+H(X̂|X,[X̂]s)+δ(4ε))p−nrp−n(r−s)

For any u ∈ Un, by applying Lemma 30 we get |Un
⋂

(u+Hkn
s )| ≤ 2kn(H(U |Q,[U ]s)+δ(4ε)).

As a result,

E(λn(x)2) ≤
r∑
s=0

2kn(H(U |Q,[U ]s)+δ(4ε))2kn(H(U |Q)+ε′)2n(H(X̂|X)+ε̃+H(X̂|X,[X̂]s)+δ(4ε))p−nrp−n(r−s).

Note that the case s = 0 gives E2(λn(x)). Therefore,

V ar(λn(x)2) ≤ p−nr
r∑
s=1

2kn(H(U |Q)+H(U |Q,[U ]s))2n(H(X̂|X)+H(X̂|X,[X̂]s))2n(1+c)(ε+δ(4ε))p−n(r−s)

(A.17)

Finally, using (A.16), (A.17) and the Chebyshev’s inequality as argued before, we
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get

P{λn(x) = 0} ≤ 4
r∑
s=1

2kn(−H(U |Q)+H(U |Q,[U ]s))2n(−H(X̂|X)+H(X̂|X,[X̂]s))2n(1+c)(ε+δ(4ε))pnrp−n(r−s)

= 4 2n(1+c)(ε+δ(4ε))

r∑
s=1

2−knH([U ]s|Q)2−nH([X̂]s|X)pns.

The second equality follows, because H(V |W ) − H(V |[V ]s,W ) = H([V ]s|W ) holds

for any random variables V and W . Therefore, P{λn(x)} approaches zero, as n→∞,

if

cH([U ]s|Q) ≥ log2 p
s −H([X̂]s|X) + (1 + c)(ε+ δ(4ε)), for 1 ≤ s ≤ r.

By the definition of rate and the above inequalities the proof is completed.

A.5 Proof of Theorem II.2

Fix a positive integer n, and define l1 , c1n, l2 , c2n, and k , c̃n, where c̃, c1 and

c2 are positive real numbers such that l1, l2 and k are integers.

Codebook Generation We use two nested QGC’s, one for each encoder. The

codebook for Encoder 1 is an (n, k, l1) nested QGC (as in Definition 5) with random

variables (W1, V1, Q). Let CI,1, C̄1, and CO,1 denote the corresponding inner code, shift

code and the outer code (as in Definition 5), respectively. The codebook for Encoder

2 is an (n, k, l2) nested QGC with random variables (W2, V2, Q), inner code CI,2, shift

code C̄2, and outer code CO,2. The codebook at the decoder is denoted by Cd which is

an (n, k) QGC with random variables (W1 +W2, Q).

Conditioned on Q, the random variables (W1,W2, V1, V2) are mutually indepen-
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dent. The random variable Vi is uniform over {0, 1}, and is independent of Q.

The nested QGCs and Cd have identical generator matrices but different trans-

lations and index random variables. Note that each nested QGC has two generator

matrices/translations, one for the inner code and one for the shift code as in Defini-

tion 5. The generator matrix and the translation for the inner codes CI,i, i = 1, 2, are

denoted by G and b, respectively. The generator matrix and the translation used for

shift code CI,i, are denoted by Ḡ and b̄i, respectively, where i = 1, 2. The elements

of G, Ḡ,b, and b̄i, i = 1, 2 are generated randomly and independently from Zpr .

By RO,i and RI,i denote the rate of the inner code and outer code defined for the

ith nested QGC. Define Ri , RO,i −RI,i, i = 1, 2.

Encoding Suppose (x1,x2) is a realization of (Xn
1 , X

n
2 ). The first encoder checks if

x1 is ε-typical and x1 ∈ CO,1. If not, an encoding error E1 is declared. In the case of

no encoding error, by Definition 5, x1 = cI,1 + c̄1, where cI,1 ∈ CI,1 and c̄1 ∈ C̄1. The

first encoder sends the index of c̄1. Note c̄1 determines the index of the bin which

contains x1. Similarly, if x2 ∈ A(n)
ε (X2) and x2 ∈ CO,2, the second encoder sends finds

cI,2 ∈ CI,2 and c̄2 ∈ C̄2 such that x2 = cI,2 + c̄2. Then it sends the index of c̄2. If no

such cI,2 and c̄2 are found, an error event E2 is declared.

Decoding The decoder wishes to reconstruct x1 +x2. Assume there is no encoding

error. Upon receiving the bin numbers from the encoders, the decoder calculates c̄1

and c̄2. Then, it finds c̃ ∈ Cd such that c̃ + c̄1 + c̄2 ∈ A(n)
ε (X1 + X2). If c̃ is unique,

then c̃ + c̄1 + c̄2 is declared as a reconstruction of x1 + x2. An error event Ed occurs,

if no unique c̃ was found.

We need to find conditions for which the probability of the error events E1, E2

and Ed approach zero. By Wi denote the index set of CI,i, and let Vi be the index set

of C̄i, i = 1, 2.
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Error Let (f1(·), f2(·)) and g(·, ·) denote the encoding and decoding functions cor-

responding to the above coding scheme. The overall error event is defined as

E , {Xn
1 + Xn

2 6= g(f1(Xn
1 ), f2(Xn

2 ))}

For the achievability, we need to show that P (E) can be made arbitrary small for

sufficiently large n. For that, using the aforementioned encoding and decoding error

events we have

P (E) ≤ P (E1 ∪ E2 ∪ Ed) + P (E|Ec
1 ∩ Ec

2 ∩ Ec
d)

Using standard arguments for typical sequences, we can show that when there is no

encoding and decoding error (i.e., Ec
1∩Ec

2∩Ec
d) the error probability P (E|Ec

1∩Ec
2∩Ec

d)

approaches 0 as n → ∞. As a result, the second term above is sufficiently small for

large enough n. Therefore, for sufficiently large n and from the union bound on the

first term we obtain,

P (E) ≤ P (E1) + P (E2) + P (Ed) + ε

A.5.1 Analysis of E1, E2

In what follows, we apply the covering lemma (Lemma 5) to bound the probability

of the encoding errors. For that the outer code CO,i is used to “cover” the source

Xi. Note that CO,i is the outer code for the (n, k, l) nested QGC used at Encoder

i, i = 1, 2. Therefore, CO,i is a (n, k + l) QGC with appropriately defined index

random variables (as is defined in Lemma 3). The random variables defined for CO,i
are (Ui, (Q, Ji)), where given Ji = 1 we have Ui = Wi, and given Ji = 2 we get
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Ui = Vi. In addition, P (Ji = 0) = k
li+k

, and P (Ji = 1) = li
li+k

. We apply Lemma 5

to bound the probability of Ei. In this lemma set X̂ = X = Xi with probability one,

Cn = CO,i, and Rn = RO,i, i = 1, 2. Using Lemma 5, P (Ei) is sufficiently small for

large blocklength n if

RO,i ≥ max
1≤s≤r

H(Ui|Q, Ji)
H([Ui]s|Q, Ji)

(log2 p
s + o(ε)).

Using Remark 3, and the above bound we get k+li
n
H([Ui]s|Q, Ji) ≥ log2 p

s + o(ε)

for s ∈ [1 : r]. Therefore, by the definition of Ui and Ji, we get

k

n
H([Wi]s|Q) +

li
n
H(Vi|Q) ≥ log2 p

s + o(ε), 1 ≤ s ≤ r.

Note that in this bound we use the equality H([Vi]s) = H(Vi). This equality holds

because Vi takes values from {0, 1}. Again using Remark 3, we get |Ri− li
n
H(Vi|Q)| ≤

o(ε). Hence, if the following holds

k

n
H([Wi]s|Q) +Ri ≥ log2 p

s + o(ε), 1 ≤ s ≤ r, i = 1, 2, (A.18)

then P (Ei)→ 0 as n→∞.

A.5.2 Analysis of Ed

Upon receiving the bin numbers, the decoder calculates c̄1 and c̄2. The decoding

error consists of two events: 1) no typical sequence z̃ was found, and 2) multiple

typical sequences z̃ were found. Using standard arguments, one can show that the

probability of the first event is sufficiently small for large enough n. In what follows,

we bound the probability of the second event, i.e., Ed,2. This event occurs, if there

exist more than one c̃ ∈ CI,1 + CI,2 such that c̃ + c̄1 + c̄2 is ε-typical with respect to

PX1+X2 .

128



To bound P (Ed,2) we need to take into account whether there is an encoding error

or not. For that, first we provide an alternative representation for the encoding errors.

For any sequence xi ∈ Znpr define

λi(xi) =
∑

wi∈Wi

∑
vi∈Vi

1{xi = wiG + viḠ + b + b̄i},

where i = 1, 2 and (G, Ḡ,b, b̄i) are the generator matrices and translations defined

for the ith nested QGC. With this notation, Ei occurs if λi(xi) = 0, where (x1,x2) is

a realization of the sources. Next, we define a super-set of the encoding error events

as

E ′i , {λi(xi) <
1

2
E(λi(xi))}, i = 1, 2, (A.19)

where E(λi(xi)) is the expected value of λi(xi). Note that Ei ⊆ E ′i, i = 1, 2.

For the modified encoding error events (E ′1, E
′
2) given in (A.19) we have

P (Ed,2) ≤ P (E ′1 ∪ E ′2) + P (Ed,2 ∩ E
′c
1 ∩ E

′c
2 )

≤ P (E ′1) + P (E ′2) + P (Ed,2 ∩ E
′c
1 ∩ E

′c
2 )

For the first two terms above, based on the proof of Lemma 5, we can showed that

P (E ′i) → 0 as n → ∞. Note that P (E ′i) is the same as the second term in (A.13)

in the proof of the covering. In fact, for the proof of the covering bound, we showed

that such probability approaches 0 as n→∞.

In what follow, we show that the second probability in the above approaches 0 as

n→∞.

Analysis of P(Ed,2|E′c1 ∩E
′c
2 ) Note that E ′1

c∩E ′2c implies that there is no encoding

error; because λi(xi) > 1/2E(λi(xi)). Since there is no error at the encoding stage,
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xi ∈ CO,i, i = 1, 2. By Definition 5, every codeword in CO,i is characterized by a

pair (vi,wi), where vi ∈ Vi,wi ∈ Wi, i = 1, 2. Given xi, if more than one pair was

found at the ith encoder, select one randomly and uniformly. By P (vi,wi|xi) denote

the probability that (vi,wi) is selected at the ith encoder. Then, P (vi,wi|xi) =

1
λi(xi)

1{wiG + viḠ + b + b̄i = xi}. Fix G, G̃i,b and b̄i, i = 1, 2. Suppose x1 and

x2 are the realizations of the sources X1 and X2, respectively. Moreover, suppose

(x1,x2) ∈ A(n)
ε (X1, X2). Therefore,

P (Ed,2 ∩ E ′1c ∩ E ′2c|x1,x2) = 1

{
λi(xi) ≥

1

2
E(λi(xi)), i = 1, 2

} 2∏
j=1

∑
vj∈Vj

∑
wj∈Wj

P (vj,wj|xj)


P (Ed,2|xi,vi,wi, i = 1, 2)

In what follows, we bound P (Ed,2|xi,vi,wi, i = 1, 2), P (v1,w1|x1), and P (v2,w2|x2).

For the first conditional probability we have

P (Ed,2|xi,vi,wi, i = 1, 2) = 1{∃z̃ ∈ A(n)
ε (X1 +X2) : z̃ 6= x1 + x2, z̃ ∈ CI,1 + CI,2 + c̄1 + c̄2}

where, c̄i = viḠ + b̄i, i = 1, 2. Let W = W1 +W2, and define Z , X1 + X2. Using

the union bound, we have

P (Ed,2|xi,vi,wi, i = 1, 2)

≤
∑
w̃∈W

∑
z̃∈A(n)

ε (Z)
z̃6=x1+x2

1{w̃G + (v1 + v2)Ḡ + 2b + b̄1 + b̄2 = z̃}

≤
∑
w̃∈W

w̃ 6=w1+w2

∑
z̃∈A(n)

ε (Z)

1{w̃G + (v1 + v2)Ḡ + 2b + b̄1 + b̄2 = z̃} (A.20)

The second inequality follows, because the condition w̃ 6= w1+w2 is less restrictive

than z̃ 6= x1 + x2. This is due to the fact that G is not injective necessarily.

Next, we provide an upper-bound on P (vi,wi|xi), i = 1, 2. Since E ′1
c ∩ E ′2c is in
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the conditioning, λi(xi) ≥ 1
2
E(λi(xi)). As a result,

P (vi,wi|xi) ≤
2

E(λi(xi))
1{wiG + viḠ + b + b̄i = xi} (A.21)

Using the bounds given in (A.20) and (A.21), we get

P (Ed,2 ∩ E ′1c ∩ E ′2c|x1,x2) ≤

 2∏
j=1

∑
vj∈Vj
wj∈Wj

2

E(λj(xj))
1{wjG + vjḠ + b + b̄j = xj}


∑
w̃∈W

w̃ 6=w1+w2

∑
z̃∈A(n)

ε (Z)

1{w̃G + (v1 + v2)Ḡ + 2b + b̄1 + b̄2 = z̃}

Next, we average P (Ed,2∩E ′1c∩E ′2c|x1,x2) over all possible choices of G, Ḡ,b, b̄1,

and b̄2. We obtain

E{P (Ed,2 ∩ E ′1c ∩ E ′2c|x1,x2)} ≤
∑
v1∈V1
w1∈W1

2

E(λ1(x1))

∑
v2∈V2
w2∈W2

2

E(λ2(x2))

∑
w̃∈W

w̃ 6=w1+w2

∑
z̃∈A(n)

ε (Z)

P{w̃G + (v1 + v2)Ḡ + 2B + B̄1 + B̄2 = z̃,wiG + viḠ + B + B̄i = xi, i = 1, 2}

Note B̄1 and B̄2 are independent random variables with uniformly distributed over

Znpr . Therefore, the innermost term in the above summations equals

p−2nrP{(w̃ −w1 −w2)G = z̃− x1 − x2}. (A.22)

We apply Lemma 29 (in Appendix A.9), to calculate the above probability. If w̃ −

w1 −w2 ∈ Hk
s \Hk

s+1, then (A.22) equals to

p−2nrp−n(r−s)
1{z̃− x1 − x2 ∈ Hk

s }. (A.23)
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As a result, we have

E{P (Ed,2 ∩ E ′1c ∩ E ′2c|x1,x2)} ≤
∑
v1∈V1
w1∈W1

2

E(λ1(x1))

∑
v2∈V2
w2∈W2

2

E(λ2(x2))

r−1∑
s=0

∑
w̃∈W

w̃−w1−w2∈Hk
s \Hk

s+1

∑
z̃∈A(n)

ε (Z)
z̃−x1−x2∈Hn

s

p−2nrp−n(r−s)

Since the innermost terms in the above summations depend only on s, we can replace

the summations over w̃ and z̃ with the size of the associated sets. We apply Lemma

30 to bound the size of these sets. Also, we can replace the summations over vi and

wi, i = 1, 2 with the size of the related sets. Define W , W1 +W2, we get,

E{P (Ed,2 ∩ E ′1c ∩ E ′2c|x1,x2)} ≤ |W1||V1|
2

E(λ1(x1))
|W2||V2|

2

E(λ2(x2))
r−1∑
s=0

2n(H(Z|[Z]s)+o(ε))2k(H(W |Q,[W ]s)+o(ε))p−2nrp−n(r−s).

Note that from (A.15) in the proof of Lemma 5, E(λi(xi)) = |Wi||Vi|p−nr, i = 1, 2.

Therefore, we have

E{P (Ed,2 ∩ E ′1c ∩ E ′2c|x1,x2)} ≤ 4
r−1∑
s=0

2n(H(Z|[Z]s)+o(ε))2k(H(W |Q,[W ]s)+o(ε))p−n(r−s).

Note that the above bound does not depend on ε-typical sequences x1 and x2. Using

standard arguments for ε-typical sets, the probability that (Xn
1 ,X

n
2 ) /∈ A(n)

ε (X1, X2)

is upper-bounded by c
nε2

, where c = p6r

4
. Hence, we have

E{P (Ed,2 ∩ E ′1c ∩ E ′2c)} ≤
c

nε2
+ 4(1− c

nε2
)
r−1∑
s=0

2n(H(Z|[Z]s)+o(ε))2k(H(W |Q,[W ]s)+o(ε))p−n(r−s).
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Therefore, E{P (Ed,2 ∩ E ′1c ∩ E ′2c)} tends to zero as n→∞, if for all s ∈ [0 : r − 1],

k

n
H(W |Q, [W ]s) < log2 p

(r−s) −H(Z|[Z]s)− o(ε). (A.24)

Next, we use (A.24) to show that the bounds in (A.18) are redundant except the

following:

Ri +
k

n
H(Wi|Q) = log2 p

r. (A.25)

For that, we compare (A.25) with the bounds in (A.18) for different values of s.

Noting that H(Wi|Q) = H([Wi]s|Q) + H(Wi|Q[Wi]s), it is sufficient to show that

k
n
H(Wi|Q, [Wi]s) ≤ log2 p

r−s. To show this inequality, we first prove that

H(Wi|Q, [Wi]s) ≤ H(W1 +W2|Q, [W1 +W2]s), i = 1, 2, 0 ≤ s ≤ r. (A.26)

Then, using (A.24), we get k
n
H(Wi|Q, [Wi]s) ≤ log2 p

r−s. In what follows, we prove

(A.26). We have

H(W1 +W2|Q,[W1 +W2]s) = H(W1 +W2|Q, [[W1]s + [W2]s]s)

≥ H(W1 +W2|Q, [W1]s, [W2]s)

= H(W1,W2|Q, [W1]s, [W2]s)−H(W1|Q, [W1]s, [W2]s,W1 +W2)

(a)
= H(W2|Q, [W2]s) +H(W1|Q, [W1]s)−H(W1|Q, [W1]s, [W2]s,W1 +W2)

(b)
= H(W2|Q, [W2]s) + I(W1;W1 +W2|Q, [W1]s, [W2])

≥ H(W2|Q, [W2]s),

where (a) and (b) hold because of the Markov chain W1 ↔ Q ↔ W2. Similarly, we

can show that H(W1 +W2|Q, [W1 +W2]s) ≥ H(W1|Q, [W1]s).
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Finally, using (A.25) and (A.24) the following holds

Ri ≥ log2 p
r − min

0≤s≤r−1

H(Wi|Q)

H(W1 +W2|Q, [W1 +W2]s)
(log2 p

(r−s) −H(Z|[Z]s)), (A.27)

where we minimize the above bound over all PMFs of the form

PQW1V1W2V2 = PQ
∏
i

(
PVi|QPWi|Q

)
,

such that p(q) is a rational number for all q ∈ Q. Since rational numbers are dense

in R, one can consider arbitrary PMF p(q). Lastly, in the next lemma, we show that

the cardinality bound |Q| ≤ r is sufficient to optimize (A.27).

Lemma 26. The cardinality of Q is bounded by |Q| ≤ r.

Proof. Note that (A.24) and (A.25) give an alternative characterization of the achiev-

able region. Using these equations, observe that this region is convex in R2. As a

result, we can characterize the achievable region by its supporting hyper-planes. Let

R̄i := log2 p
r − Ri, i = 1, 2. Using (A.27) for any 0 ≤ α ≤ 1 the corresponding

supporting hyper-plane is characterized by

(
αR̄1 + (1− α)R̄2

)
H(W |Q, [W ]s)

−
(
αH(W1|Q) + (1− α)H(W2|Q)

)(
log2 p

(r−s) −H(Z|[Z]s)
)
≤ 0,

(A.28)

where s ∈ [0, r−1]. We use the support lemma for the above inequalities to bound |Q|.

To this end, we first show that the left-hand side of these inequalities are continuous

functions of conditional PMF’s of W1 and W2 given Q. Let Pr denote the set of

all product PMF’s on Zpr × Zpr . Note Pr is a compact set. Fix q ∈ Q. Denote

f(p(w1|q)p(w2|q)) = αH(W1|Q = q) + (1−α)H(W2|Q = q) and gs(p(w1|q)p(w2|q)) =

H(W1 +W2|Q = q, [W1 +W2]s), where s ∈ [0 : r−1]. We show that f(·), gs(·) are real
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valued continuous functions of Pr. Since the entropy function is continuous then so

is f . We can write gs(p(w1|q)p(w2|q)) = H(W1 +W2|Q = q)−H([W1 +W2]s|Q = q).

Note that [·]s is a continuous function from Pr to Pr. This implies that H([·]s) is

also continuous. So gs is continuous. As a result, the left-hand side of the bounds

in (A.28) are real valued continuous functions of Pr. Therefore, we can apply the

support lemma [5]. Since there are r bounds for different values of s, then |Q| ≤ r.

A.6 Proof of Theorem II.3

Fix positive integer n, and define l , cn, and k , c̃n, where c̃ and c are positive

real numbers such that l and k are integers.

Codebook Generation We use two nested QGC’s, one for each encoder. The

codebook for Encoder 1 is an (n, k, l) nested QGC (as in Definition 5) with random

variables (W1, V1, Q). Let CI,1, C̄1, and CO,1 denote the corresponding inner code, shift

code and the outer code (as in Definition 5), respectively. The codebook for Encoder

2 is an (n, k, l) nested QGC with random variables (W2, V2, Q), inner code CI,2, shift

code C̄2, and outer code CO,2. For the decoder, we use CO,1 + CO,2 as a codebook.

Conditioned on Q, the random variables (W1,W2, V1, V2) are mutually independent.

The nested QGCs and Cd have identical generator matrices but different trans-

lations and index random variables. Note that each nested QGC has two generator

matrices/translations, one for the inner code and one for the shift code as in Defini-

tion 5. The generator matrix and the translation for the inner codes CI,i, i = 1, 2, are

denoted by G and b, respectively. The generator matrix and the translation used for

shift code CI,i, are denoted by Ḡ and b̄i, respectively, where i = 1, 2. The elements

of G, Ḡ,b, and b̄i, i = 1, 2 are generated randomly and independently from Zpr . By

Ri denote the rate of C̄i, and let RI,i be the rate of CI,i, where i = 1, 2.

Codebook Generation: We use two nested QGC’s, one for each encoder. The
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codebook used for the ith encoder is (CO,i, CI,i). With this notation, the random

variables corresponding to CO,i are (Wi, Vi, Q), i = 1, 2. For the decoder, we use

CO,1 + CO,2 as a codebook.

Encoding: Index the codewords of C̄i, i = 1, 2. Upon receiving a message index

θi, the ith encoder finds the codeword ci ∈ C̄i with that index. Then it finds cI,i ∈ CI,i
such that ci + cI,i is ε-typical with respect to PXi . If such codeword was found, the

encoder i sends xi = ci + cI,i, i = 1, 2. Otherwise, an error event Ei, i = 1, 2 is

declared.

Decoding: The channel takes x1 and x2 and produces y. Upon receiving y from

the channel, the decoder wishes to decode x = x1 + x2. It finds x̃ ∈ CO,1 + CO,2 such

that x̃ and y are jointly ε̃-typical with respect to the distribution PX1+X2,Y . An error

event Ed is declared, if no unique x̃ was found.

Probability of Error: Let (f1(·), f2(·)) and g(·, ·) denote the encoding and de-

coding functions corresponding to the above coding scheme. The overall error event

is defined as

E , {g(Y n) 6= f1(M1) + f2(M2)}

For the achievability, we need to show that P (E) can be made arbitrary small for suf-

ficiently large n. If (Xn
1 , X

n
2 ) denote the outputs of the encoders, define an error event

Ec as the event in which (Xn
1 , X

n
2 ) /∈ A(n)

ε (X1, X2). Next, using the aforementioned

encoding and decoding error events we have

P (E) ≤ P (E1 ∪ E2 ∪ Ed ∪ Ec) + P (E|Ec
1 ∩ Ec

2 ∩ Ec
d ∩ Ec

c)

Using standard arguments for typical sequences, we can show that when there is no

encoding and decoding error (i.e., Ec
1 ∩Ec

2 ∩Ec
d ∩Ec

c) the error probability P (E|Ec
1 ∩

Ec
2∩Ec

d∩Ec
c) approaches 0 as n→∞. As a result, the second term above is sufficiently

small for large enough n. Therefore, for sufficiently large n and from the union bound
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on the first term we obtain,

P (E) ≤ P (E1) + P (E2) + P (Ed) + P (Ec) + ε

We need to find conditions for which the probability of the error events E1, E2, Ed

and Ec approach zero. For any a ∈ Zkpr and ā ∈ Zlpr define the map φ(a, ā) =

aG + āḠ. By Φ(·, ·) denote the map φ whose matrices are selected randomly and

uniformly.

A.6.1 Analysis of E1, E2

For any sequence vi ∈ Vi define

λi(vi) =
∑

wi∈Wi

∑
xi∈A(n)

ε (Xi)

1{xi = φ(wi,vi) + b + b̄i},

where i = 1, 2. Therefore, Ei occurs if λi(vi) = 0. For more convenience, we weaken

the definition of event Ei. We say Ei occurs, if λi(vi) <
1
2
E(λi(vi)). Using Lemma 5

we can show that P (Ei)→ 0 as n→∞, if

k

n
H([Wi]t|Q) ≥ log2 p

t −H([Xi]t) + γ(ε), i = 1, 2, 1 ≤ t ≤ r, (A.29)

where limε→0 γ(ε) = 0.

A.6.2 Analysis of Ec

Define the set

E , {(x1,x2) ∈ A(n)
ε (X1)× A(n)

ε (X2) : (x1,x2) /∈ A(n)
ε (X1, X2)}.
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Therefore, probability of Ec can be written as

P (Ec|Ec
1 ∩ Ec

2) =
∑

(x1,x2)∈E
P (e1(Θ1) = x1, e2(Θ2) = x2),

where ei is the output of the ith encoder, and Θi is the random message to be

transmitted by encoder i, where i = 1, 2. By P (vi,wi,xi) denote the probability that

(vi,wi,xi) is selected at the ith encoder. Then, P (vi,wi,xi) = 1
|Vi|

1
λi(vi)

1{φ(wi,vi)+

b + b̄i = xi}. By the definition of φ1(·) and φ2(·), we have

P (Ec|Ec
1 ∩ Ec

2) =
∑

(x1,x2)∈E

2∏
i=1

[ ∑
vi∈Vi

∑
wi∈Wi

1

|Vi|
1

λi(vi)
1

{
xi = φi(wi,vi) + b + b̄i

}]

Since there is no encoding error (for the modified version), then λi(vi) ≥ 1
2
E[λi(vi)], i =

1, 2. Therefore, replacing λi(vi) in the above expression with 1
2
E[λi(vi)] gives an up-

per bound on P (Ec|Ec
1 ∩ Ec

2). Next, we take expectation over all φ1 and φ2. We

have

E{P (Ec|Ec
1 ∩ Ec

2)} ≤
∑

(x1,x2)∈E

∑
vi∈Vi,i=1,2

∑
wi∈Wi,i=1,2

[ 2∏
j=1

4

|Vj|E[λj(vj)]

]
P{xi = Φi(wi,vi) + B + B̄i, i = 1, 2}

(a)
=

∑
(x1,x2)∈E

∑
vi∈Vi,i=1,2

∑
wi∈Wi,i=1,2

[ 2∏
j=1

4

|Vj|E[λj(vj)]

]
p−2nr

=
∑

(x1,x2)∈E
|W1||W2|

4

E[λ1(v1)]E[λ2(v2)]
p−2nr. (A.30)

Note that (a) is because B1 and B2 are independent random vectors with uniform

distribution over Znpr . From the definition of λj(vj), j = 1, 2, we have

E[λj(vj)] = |Wj||A(n)
ε (Xi)|p−nr
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As a result of the above equation and (A.30),

E{P (Ec|Ec
1 ∩ Ec

2)} ≤
∑

(x1,x2)∈E
4|A(n)

ε (X1)|−1|A(n)
ε (X2)|−1

There exists a continuous function δ(ε) > 0 with δ(0) = 0 such that for any xi ∈

A
(n)
ε (Xi), we have P n

Xi
(xi) ≥ |A(n)

ε (Xi)|−12−δ(ε). Thus,

E{P (Ec ∩ Ec
1 ∩ Ec

2)} ≤
∑

(x1,x2)∈E
P n
X1

(x1)P n
X2

(x2)2n2δ(ε) = 2n2δ(ε)P n
X1X2

(E).

Thus, E{P (Ec|Ec
1 ∩ Ec

2)} → 0 as n→∞.

A.6.3 Analysis of Ed

In what follows, to make the analysis tractable, we define an alternative decoding

error. Upon receiving y, the decoder finds w̃ ∈ A(n)
ε (W1 +W2) and ṽ ∈ A(n)

ε (V1 +V2)

such that φ(w̃, ṽ)+2b+b̄1+b̄2 is jointly typical with y with respect to PX1+X2,Y . For

the alternative decoder, we define a new decoding error. A decoding error E ′d occurs,

if (w̃, ṽ) is not unique. With this definition Ed ⊆ E ′d. Because, the the mapping

xi = φ(wi,vi) + b + b̄i is not necessarily injective. Note that the new decoder is

required to decode w1 + w2 and v1 + v2. This is a more restrictive condition than

decoding x1 + x2. Therefore, it is sufficient to show that P (E ′d) → 0 as n → ∞. In

what follows, we provide an upper bound on P (E ′d).

Since the the probability of the encoding errors E1, E2 and Ec are sufficiently

small, then P (E ′d) ≈ P (E ′d∩Ec
1∩Ec

2∩Ec
c). We show that this probability approaches

zero as n → ∞. Fix φ,b and b̄i, i = 1, 2. Note that By P (vi,wi,xi) denote the

probability that (vi,wi,xi) is selected at the ith encoder. Then, P (vi,wi,xi) =

1
|Vi|

1
λi(vi)

1{φ(wi,vi) + b + b̄i = xi}.
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Then the probability of E ′d ∩ Ec
1 ∩ Ec

2 ∩ Ec
c equals

P (E ′d ∩ Ec
1 ∩ Ec

2 ∩ Ec
c) =

 2∏
j=1

∑
vj∈Vj

∑
wj∈Wj

1

{
λi(vi) ≥ 1/2 E(λi(vi)), i = 1, 2

}
∑

(x1,x2)∈A(n)
ε (X1,X2)

∑
y∈Yn

P (vi,wi,xi, i = 1, 2)

P n
Y |X1X2

(y|x1,x2)P (Ed | Ec
1 ∩ Ec

2 ∩ Ec
c ,y,xi,vi,wi, i = 1, 2)

Next, we bound P (E ′d | Ec
1 ∩ Ec

2 ∩ Ec
c ,y,xi,vi,wi, i = 1, 2), and P (viwi,xi, i = 1, 2).

P (E ′d | Ec
1 ∩ Ec

2 ∩ Ec
c ,y,xi,vi,wi, i = 1, 2) =

1{∃ (w̃, ṽ) ∈ W × V : (w̃, ṽ) 6= (w1 + w2,v1 + v2), φ(w̃, ṽ) + 2b + b̄1 + b̄2 ∈ Anε′(Z|y)},

where W , A
(n)
ε (W1 + W2),V , A

(n)
ε (V1 + V2), and Z , X1 + X2. Using the union

bound, we have

P (E ′d | Ec
1 ∩ Ec

2 ∩ Ec
c ,y,xi,vi,wi, i = 1, 2) ≤ (A.31)∑

w̃∈W
w̃ 6=w1+w2

∑
ṽ∈V

ṽ 6=v1+v2

∑
z̃∈A(n)

ε′ (Z|y)

1{φ(w̃, ṽ) + 2b + b̄1 + b̄2 = z̃}

Note that P (vi,wi,xi, i = 1, 2) =
∏

i=1,2 P (vi,wi,xi). Since there is no encoding

error, λi(vi) ≥ 1
2
E(λi(vi)). As a result,

P (vi,wi,xi) ≤
1

|Vi|
2

E(λi(vi))
1{φ(wi,vi) + b + b̄i = xi} (A.32)
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Therefore, using (A.32), we have

P (E ′d∩Ec
1 ∩ Ec

2 ∩ Ec
c) ≤

∑
(x1,x2)∈A(n)

ε (X1,X2)

[ 2∏
j=1

∑
vj∈Vj

∑
wj∈Wj

1

{
λj(vj) ≥ 1/2 E(λj(vj))

}
1

|Vj|
2

E(λi(vj))
1{φ(wj,vj) + b + b̄j = xj}

]
∑
y∈Yn

P n
Y |X1X2

(y|x1,x2)P (E ′d | Ec
1 ∩ Ec

2 ∩ Ec
c ,y,xi,vi,wi, i = 1, 2)

≤
∑

(x1,x2)∈A(n)
ε (X1,X2)

 2∏
j=1

∑
vj∈Vj

∑
wj∈Wj

1

|Vj|
2

E(λi(vj))
1{φ(wj,vj) + b + b̄j = xj}


∑
y∈Yn

P n
Y |X1X2

(y|x1,x2)P (E ′d | Ec
1 ∩ Ec

2 ∩ Ec
c ,y,xi,vi,wi, i = 1, 2) (A.33)

The last inequality follows by eliminating the indicator function on {λi(vi) ≥

1/2 E(λi(vi)), i = 1, 2
}

. Note that for jointly ε-typical sequences x1,x2 and large

enough n, we have P (Yn /∈ A(n)
ε̃ (Y |x1,x2)) ≤ c

nε̃2
, where c is a constant. This follows

from the standard arguments on typical sets. Thus, using (A.33) and (A.31) we get

P (E ′d ∩ Ec
1 ∩ Ec

2 ∩ Ec
c) ≤

c

nε̃2
+

∑
(x1,x2)∈A(n)

ε (X1,X2)

 2∏
j=1

∑
vj∈Vj

∑
wj∈Wj

1

|Vj|
2

E(λi(vj))
1{φ(wj,vj) + b + b̄j = xj}


∑

y∈Anε̃ (Y |x1,x2)

P n
Y |X1X2

(y|x1,x2)
∑
w̃∈W

w̃ 6=w1+w2

∑
ṽ∈V

ṽ 6=v1+v2

∑
z̃∈A(n)

ε′ (Z|y)

1{φ(w̃, ṽ) + 2b + b̄1 + b̄2 = z̃}

Next, we take the average of the above expression over all maps φ, and all vectors
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b, b̄i, i = 1, 2.

E{P (E ′d∩Ec
1 ∩ Ec

2 ∩ Ec
c)} ≤

c

nε̃2
+

 2∏
j=1

∑
vj∈Vj

∑
wj∈Wj

1

|Vj|
2

E(λj(vj))


∑

(x1,x2,y)∈A(n)
ε̄ (X1,X2,Y )

P n
Y |X1X2

(y|x1,x2)
∑
w̃∈W

w̃ 6=w1+w2

∑
ṽ∈V

ṽ 6=v1+v2

∑
z̃∈A(n)

ε′ (Z|y)

P{z̃ = Φ(w̃, ṽ) + 2B + B̄1 + B̄1, x1 = Φ(w1,v1) + B + B̄1, x2 = Φ(w2,v2) + B + B̄1}

Notice that B, B̄1, and are B̄1 are uniform over Znpr and independent of other

random variables. Hence, the innermost term in the above summations is simplified

to

p−2nrP{z̃− x1 − x2 = Φ(w̃ − (w1 + w2), ṽ − (v1 + v2))} (A.34)

Using Lemma 29, if w̃−(w1 + w2), ṽ−(v1 + v2) ∈ Hk
s \Hk

s+1 the expression in (A.34)

equals

p−2nrp−n(r−s)
1{z̃ − x1 − x2 ∈ Hn

s },

where 0 ≤ s ≤ r − 1. Therefore, E{P (E ′d ∩ Ec
1 ∩ Ec

2 ∩ Ec
c)} is upper-bounded as

E{P (E ′d∩Ec
1 ∩ Ec

2 ∩ Ec
c)} ≤

c

nε̃2
+ 2∏

j=1

∑
vj∈Vj

∑
wj∈Wj

1

|Vj|
2

E(λj(vj))

 ∑
(x1,x2,y)∈A(n)

ε̄ (X1,X2,Y )

P n
Y |X1X2

(y|x1,x2)

r−1∑
s=0

∑
w̃∈W

w̃−(w1+w2)∈Hk
s

∑
ṽ∈V

ṽ−(v1+v2)∈Hk
s

∑
z̃∈Anε (Z|y)

z̃−x1−x2∈Hn
s

p−2nrp−n(r−s) (A.35)

Note the most inner term in the above summations does not depend on the value

of z̃, ṽ and w̃. Hence, we replace those summations by the size of the corresponding

subsets. Using Lemma 30 we can bound the size of these subsets and get the following
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bound on the probability of error

E{P (E ′d∩Ec
1 ∩ Ec

2 ∩ Ec
c)} ≤

c

nε̃2
+ 2∏

j=1

∑
vj∈Vj

∑
wj∈Wj

1

|Vj|
2

E(λj(vj))

 ∑
(x1,x2,y)∈A(n)

ε̄ (X1,X2,Y )

P n
Y |X1X2

(y|x1,x2)

r−1∑
s=0

2k(H(W |Q,[W ]s)+η1(ε))2l(H(V |Q,[V ]s)+η2(ε)) 2n(H(Z|Y [Z]s)+η3(ε))p−2nrp−n(r−s),

where W = W1 + W2, V = V1 + V2, and limε→0 ηi(ε) = 0, i = 1, 2, 3. Note that

E(λi(vi)) = |Wi||A(n)
ε (Xi)|p−nr, i = 1, 2. As the terms in the above expression do not

depend on the values of wi,vi,xi, i = 1, 2 and y, we can replace the summations over

them with the corresponding sets. As a result, we have

E{P (E ′d ∩ Ec
1 ∩ Ec

2 ∩ Ec
c)} ≤

c

nε2
+ 4

r−1∑
s=0

p−n(r−s)2kH(W |Q,[W ]s)2lH(V |Q,[V ]s) 2n(H(Z|Y,[Z]s)+δ′(ε)),

where limε→0 δ
′(ε) = 0. Therefore, the right-hand side of the above inequality ap-

proaches zero as n→∞, if the following bounds hold:

k

n
H(W |Q, [W ]s) +

l

n
H(V |Q, [V ]s) ≤ log2 p

r−s −H(Z|Y [Z]s)− δ(ε), for 0 ≤ s ≤ r − 1.

(A.36)

Next, we apply the Fourier-Motzkin technique [5] to eliminate k
n

from (A.29) and

(A.36). We get

l

n
H(V |Q, [V ]s) ≤ log2 p

r−s −H(Z|Y [Z]s)−
H(W |Q, [W ]s)

H([Wi]t|Q)
(log2 p

t −H([Xi]t))− o(ε),

where i = 1, 2, 0 ≤ s ≤ r − 1, and 1 ≤ t ≤ r. Note by definition

Ri =
1

n
log2 |C̄i| ≤

1

n
log2 |Vi| ≤

l

n
H(Vi|Q).
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Therefore, we obtain the bounds in the theorem. Using the same argument as in

Lemma 26, we can bound the cardinality of Q by |Q| ≤ r2. This completes the

proof.

A.7 Proof of Lemma 7

Proof. Consider the bound on the sum-rate given in (2.16). The set of all (R1, R2)

satisfying only this bound is an outer-bound for RGP . The time-sharing random

variable Q is trivial for this outer-bound, because there is only one inequality on the

rates, and because of the cost constraints E{ci(Xi)} = 0, i = 1, 2. For any distribution

P ∈PGP , we obtain

R1 +R2 ≤ I(U1, U2;Y )− I(U1;S1)− I(U2;S2)

= H(Y )−H(Y |U1, U2)−H(S1) +H(S1|U1)−H(S2) +H(S2|U2)

≤ H(S1|U1) +H(S2|U2)−H(Y |U1, U2)− 2

= max
P∈PGP

∑
u1∈U1

∑
u2∈U2

p(u1, u2)
(
H(S1|u1) +H(S2|u2)−H(Y |u1, u2)− 2

)
(A.37)

where the second inequality holds, as H(Y ) ≤ 2, and H(Si) = 2 for i = 1, 2. In the

next step, we relax the conditions in PGP , and provide an upper-bound on (A.37).

For i = 1, 2, and any ui ∈ Ui, define Pui as the collection of all conditional PMFs

p(si, xi|ui) on Z2
4 such that

1. Xi = fi(Si, ui) for some function fi,

2. E(ci(Xi)|ui) = 0.

In the first condition, given ui, fi(si, ui) can be thought as a function gui of si. For

different ui’s we have different functions gui(si). The second condition is implied

from the cost constraint E(ci(Xi)) = 0, because without loss of generality we assume
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p(ui) > 0 for all ui ∈ Ui. Also, note that we removed the condition that Si is

uniform over Z4. Hence, PGP is a subset of the set of all PMFs of the form P =∏2
i=1 p(ui)p(si, xi|ui), where p(si, xi|ui) ∈Pui , i = 1, 2.

As a result, (A.37) is upper-bounded by

R1 +R2 (A.38)

≤ max
p(u1),p(u2)

max
p(si,xi|ui)∈Pui

i=1,2

∑
u1∈U1

∑
u2∈U2

p(u1, u2)
(
H(S1|u1) +H(S2|u2)−H(Y |u1, u2)− 2

)
(A.39)

≤ max
u1∈U1,u2∈U2

max
p(si,xi|ui)∈Pui

i=1,2

(
H(S1|u1) +H(S2|u2)−H(Y |u1, u2)− 2

)
(A.40)

Fix u2 ∈ U2 and p(s2, x2|u2) ∈Pu2 . We maximize over all u1 ∈ U1 and p(s1, x1|u1) ∈

Pu1 . Let N = X2 + S2, where X2 and S2 are distributed according to p(s2, x2|u2).

For fixed u2 ∈ U2, by Qu2 ∈ Pu2 denote the PMF p(s2, x2|u2). This maximization

problem is equivalent to finding

R(u2, Qu2) , H(S2|u2) + max
u1∈U1

max
p(s1,x1|u1)∈Pu1

H(S1|u1)−H(X1 + S1 +N |u1)− 2.

(A.41)

Consider the problem of PtP channel with state, where the channel is Y = X1+S1+N .

It can be shown that R(u2, Qu2)−H(S2|u2) is an upper-bound on the capacity of this

problem. We proceed by the following lemma.

Lemma 27. The following bound holds R(u2, Qu2) < 1 for all u2 ∈ U2 and Qu2 ∈Pu2

.

Proof. The proof is given in Appendix A.8.

Finally, as a result of the above lemma the proof is completed.
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A.8 Proof of Lemma 27

Proof. Note that for any fixed u2 ∈ U2, the distribution of N depends on the condi-

tional PMF p(s1|u1), and the function x1 = f1(s1, u1). For any u ∈ U2 define

Lu := {f2(u, s) + s : s ∈ Z4}.

For any given i ∈ {1, 2, 3, 4}, define

Bi , {u ∈ U2 : |Lu| = i}.

Note that Bi’s are disjoint and U2 =
⋃
i Bi. Depending on u2, we consider four

cases. In what follows, for each case, we derive an upper bound on (A.41). Con-

sider the PMF p(ω) on Z4. For brevity, we represent this PMF by the vector

p := (p(0), p(1), p(2), p(3)).

Case 1: u2 ∈ B1

Since |Lu2| = 1, then for all s2 ∈ Z4 the equality s2 + f2(s2, u2) = a holds, where

a ∈ Z4 is a constant that only depends on u2. This implies that conditioned on u2,

X2 + S2 equals to a constant a, with probability one. Therefore,

H(X1 + S1 +X2 + S2|u2u1) = H(X1 + S1 + a|u1, u2) = H(X1 + S1|u1)

Moreover,

H(S2|u2) = H(a	X2|u2) = H(X2|u2).

By assumption p(u2) > 0. Therefore, the cost constraint E(c2(X2)) = 0 implies that

E(c2(X2)|U2 = u2) = 0. Hence, given U2 = u2, the random variable X2 takes at

most two values with positive probabilities. As a result, H(X2|u2) ≤ 1. Given this
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inequality, we obtain

R(u2, Qu2) ≤ H(S1|u1)−H(X1 + S1|u1)− 1 ≤ 0

where the last inequality follows by Lemma 32 in Appendix A.9.

Case 2: u2 ∈ B2

For any fixed u2 ∈ B2, f2(s2, u2) + s2 takes two values for all s2 ∈ Z4. Assume

these values are a, b ∈ Z4, where a 6= b. Given u2 the random variable X2 + S2 is

distributed over {a, b}. Therefore, X2 + S2 	 a is distributed over {0, b	 a}, and

H(X1 + S1 +X2 + S2|u2, u1) = H(X1 + S1 +X2 + S2 	 a|u2, u1).

As a result, the case {a, b} gives the same bound as {0, b 	 a}, and we need to

consider only the case in which a = 0. For the case in which a = 0, and b = 3,

consider X2 + S2 + 1. Using a similar argument as above, we can show that when

b = 3, we get the same bound when b = 1. Therefore, we only need to consider the

cases in which a = 0, and b ∈ {1, 2}. We address these cases in the next Claim.

Claim 1. Let P (X2 + S2 = 0|u1) = p0. The following holds:

1) If b = 2, then

R(u2, Qu2) ≤ β(H(S1|u1)−H(X1 + S1 +N(2/3,0,1/3,0)|u1))

+ (1− β)(H(S1|u1)−H(X1 + S1 +N(1/3,0,2/3,0)|u1)) +H(S2|u2)− 2

2) If b = 1, then

R(u2, Qu2) ≤ β(H(S1|u1)−H(X1 + S1 +N(2/3,1/3,0,0)|u1))

+ (1− β)(H(S1|u1)−H(X1 + S1 +N(1/3,2/3,0,0)|u1)) +H(S2|u2)− 2
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Proof. The proof is given in Appendix A.10.

Using the claim and applying Lemma 32, we have

R(u2, Qu2) < 1 +H(S2|u2)− 2 ≤ 1.

Case 3: u2 ∈ B3

We need only to consider the case when p = (p0, p1, p2, 0). We proceed by the

following claim.

Claim 2. If u2 ∈ B3, the following bound holds

R(u2, Qu2) ≤ β0(H(S1|u1)−H(X1 + S1 +N(2/4,1/4,1/4,0)|u1))

+ β1(H(S1|u1)−H(X1 + S1 +N(1/4,2/4,1/4,0)|u1))

+ β2(H(S1|u1)−H(X1 + S1 +N(1/4,1/4,2/4,0)|u1)) +H(S2|u2)− 2,

where βi = 4pi − 1, i = 0, 1, 2.

Proof. Similar to Claim 1, we can write p as a linear combination of three distributions

of the form

p = β0(2/4, 1/4, 1/4, 0) + β1(1/4, 2/4, 1/4, 0) + β2(1/4, 1/4, 2/4, 0),

where βi = 4pi − 1, i = 0, 1, 2. The proof then follows from the concavity of the

entropy.

Therefore, by Lemma 32, we obtain

R(u2, Qu2) < 1 +H(S2|u2)− 2 ≤ 1.
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Case 4: u2 ∈ B4

In this case, there is a 1-1 correspondence between x2(s2, u2)+s2 and s2. Therefore

H(S2|u1, u2) = H(S2 +X2|u1, u2), and we obtain

H(S2|u1, u2)−H(X1 + S1 +X2 + S2|u1, u2) = H(S2 +X2|u1, u2)−H(X1 + S1 +X2 + S2|u1, u2)

≤ 0

Therefore H(S1|u1) +H(S2|u2)−H(Y |u1u2)− 2 ≤ H(S1|u1)− 2 ≤ 0.

Finally, considering all four cases R(u2, Qu2) < 1 for all u2 ∈ U2. This completes

the proof.

A.9 Useful Lemmas

Lemma 28. Let X and Y be independent random variables with marginal distri-

butions PX and PY , respectively. Suppose X and Y take values from a group Zm.

Then

1. A
(n)
ε/2(X + Y ) ⊆ A

(n)
ε (X) + A

(n)
ε (Y ),

2. there exists a function δ(·) with limε→0 δ(ε) = 0 such that

∣∣A(n)
δ(ε)(X, Y )

∣∣∣∣A(n)
ε (X)

∣∣∣∣A(n)
ε (Y )

∣∣ ≥ 1− 2−n
ε
m .

Proof. For the first statement take an arbitrary element z ∈ A(n)
ε/2(X + Y ). We show

that such an element can be written as z = x + y for some element x ∈ A
(n)
ε (X)

and y ∈ A
(n)
ε (Y ). For that, select an arbitrary y ∈ A

(n)
ε/2(Y |z). From standard

arguments on typical sequences, y is ε/2- typical with respect to PY . In addition,

(z,y) ∈ A(n)
ε (X + Y, Y ). As a result, (z− y,y) ∈ A(n)

ε (X, Y ). Set x = z − y. We
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showed that, (x,y) ∈ A(n)
ε (X, Y ), and x + y = z. Since x and y are jointly ε-typical,

then x ∈ A(n)
ε (X) and y ∈ A(n)

ε (Y ). This completes the proof for the first statement.

For the second statement, given ε̃ > 0 we have

1−
∣∣A(n)

ε̃ (X, Y )
∣∣∣∣A(n)

ε (X)
∣∣∣∣A(n)

ε (Y )
∣∣ ≤

∣∣A(n)
ε̃ (X, Y )c

∣∣∣∣A(n)
ε (X)

∣∣∣∣A(n)
ε (Y )

∣∣ =
∑

(x,y)/∈A(n)
ε̃ (X,Y )

1∣∣A(n)
ε (X)

∣∣∣∣A(n)
ε (Y )

∣∣
Let P n

X,Y =
∏n

i=1 PXPY . From standard arguments for ε-typical sequences the above

expression does not exceed

∑
(x,y)/∈A(n)

ε̃ (X,Y )

2nε
α
mP n

X,Y (x,y) = P n
X,Y {A(n)

ε̃ (X, Y )c}2nε αm ≤ 2nε
α
m2−

ε̃2n
m2 ln 4

where

α = − 3

m

∑
a,b∈Zm

PX,Y (a,b)>0

logPX,Y (a, b).

The last inequality holds as (X, Y ) are independent. Define the function δ(ε) =,

[mε(1 + α) ln 4]1/2 and set ε̃ = δ(ε). As a result, the right-hand side of the above

inequality is simplified to 2−n
ε
m . Thus, the second statement of the lemma is estab-

lished.

Lemma 29 ( [67]). Suppose that G is a k×n matrix with elements generated randomly

and uniformly from Zpr . If u ∈ Hk
s \Hk

s+1, then

P{uGi = x} = p−n(r−s)
1{x ∈ Hn

s }.

Lemma 30. Given (X, Y ) ∼ PXY , and sequences x,y such that ([x]s,y) ∈ A(n)
ε ([X]s, Y ),

let A = {x′ | (x′,y) ∈ Anε (XY ),x′ − x ∈ Hn
s }. Then

A(n)
c1ε

(X|[x]s,y) ⊆A ⊆ A(n)
c2ε

(X|[x]s,y),
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and we have,

(1− c1ε)2
n(H(X|Y [X]s)−c1δ(ε)) ≤|A| ≤ 2n(H(X|Y [X]s)+c2δ(ε)),

where δ(ε) = ε
|Y|
∑

a∈X
∑

b∈Y:p(b|a)>0 log2 p(b|a), c1 = 1
|X |+|Y| , and c2 = pr−s |X |+1

|Y| .

Proof. Suppose x′ ∈ A. Then x′ − x ∈ Hn
s , which implies [x′]s = [x]s. In ad-

dition, (x′,y) ∈ A
(n)
ε (X, Y ). Therefore, (x′, [x]s,y) ∈ A

(n)
ε′ (X, [X], Y ), where ε′ =

εpr−s. Thus, x′ ∈ A
(n)
ε′′ (X|[x]s,y), where ε′′ = |X |+1

|Y| ε
′. On the other hand, if

x′ ∈ A(n)
ε̃ (X|[x]sy), then [x′]s = [x]s, and x′ ∈ A(n)

ε (X|y), where ε = ε̃(|X |+ |Y|).

Lemma 31. Let X and Y be two independent random variables over Zm with distribu-

tions p = (p0, p1, ..., pm−1) and q = (q0, q1, ..., qm−1), respectively. Then H(X⊕mY ) =

H(Y ) if and only if there exists i ∈ [1 : m] such that p ~m q = πi(q), where ~m is

the circular convolution and is defined as

(p ~m q)(a) ,
∑
b∈Zm

pbqa	b, ∀a ∈ Zm,

π((q0, q1, ..., qm−1)) = (qm−1, q0, q1, ..., qm−2), and πi is the composition of the function

π with itself for i times.

Proof. First note that as X is independent of Y , we have H(X ⊕m Y ) − H(Y ) =

I(X;X ⊕m Y ) ≥ 0. We want to find all distributions p and q for which the right-

hand side equals zero. We first fix a distribution q and find all p such that the equality

holds. This is equivalent to the solution of the following minimization problem:

min
p∈∆m

H(p ~m q)−H(q), (A.42)

where ∆m , {(q0, q1, ..., qm−1) ∈ Rm :
∑m−1

i=0 qi = 1, qi ≥ 0, i ∈ [0 : m−1]}. Note that

∆m is a m− 1-dimensional simplex in Rm. Define the map ϕq : ∆m 7→ ∆m, ϕq(p) =
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p ~m q for all p,q ∈ ∆m. Note that ϕq is a linear map. Let ϕq(∆m) denote the

image of ∆m under ϕq. Since ϕq is a linear map, ϕq(∆m) is a simplex. Therefore,

(A.42) is equivalent to minp′∈ϕq(∆m) H(p′)−H(q). It is well-known that the entropy

function is strictly concave. Hence, the minimum points are the extreme points of

the simplex ϕq(∆m). Extreme points of ϕq(∆m) are the image of the extreme points

of ∆m. Define the map π : ∆m 7→ ∆m as in the statement of the lemma. Extreme

points of ϕq(∆m) are characterized by πi(q), i ∈ [1 : m], where πi is the composition

of π with itself for i times. Therefore, the minimum points of (A.42) are described

as
⋃m
i=1 ϕ

−1
q (πi(q)), where ϕ−1(a) is the pre-image of a,∀a ∈ ∆m.

Next, we range over all q ∈ ∆m. Define the set

Ai , {(p,q) ∈ ∆m ×∆m : p ~m q = πi(q)}.

Then, the set of all (p,q) such that H(p ~m q) = H(q) is characterized by the set⋃m
i=1Ai. This is equivalent to the statement of the lemma.

Lemma 32. Suppose S and Np are independent random variables over Z4, where p

is the distribution of Np. Let f : Z4 7→ Z4 be a function of S, and denote X , f(S).

Suppose for the cost functions (c1, c2) given in Example 4, the equality E{c1(X)} = 0

holds. Then the following bounds hold:

H(S)−H(X + S) ≤ 1

H(S)−H(X + S +Np) < 1,

where p ∈ {(1/3, 0, 2/3, 0), (1/3, 2/3, 0, 0), (1/4, 1/4, 1/2, 0)}.
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Proof. For the first equality, we start with the following relations

H(X + S) = H(X,S)−H(X|X + S)

= H(S)−H(X|X + S).

Therefore, we obtain

H(S)−H(X + S) = H(X|X + S) ≤ H(X)
(a)

≤ 1.

Note (a) is true, because X takes at most two values with positive probabilities.

For the second inequality we have

H(S)−H(X + S +Np) = H(S)−H(X + S) +H(X + S)−H(X + S +Np)

≤ 1− (H(X + S +Np)−H(X + S)) ≤ 1. (A.43)

Let q be the distribution of X + S. We find the conditions on p and q for which

H(X + S + Np) − H(X + S) = 0. Since Np is independent of X + S, we can use

Lemma 31 in which Y = Np and X = X+S. Therefore, H(X+S+Np) = H(X+S),

if and only if p~4 q = πi(q) for some i ∈ [1 : 4]. For fixed i and p, the map defined by

q 7→ p~4q−πi(q) is a linear map. In addition, the null space of this map characterizes

the set of all q that satisfies the equality in Lemma 31. For p = (1/3, 0, 2/3, 0) this

map can be represented by the matrix

Ai,(1/3,0,2/3,0) =



−2
3

0 2
3

0

0 −2
3

0 2
3

2
3

0 −2
3

0

0 2
3

0 −2
3
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The null space of Ai,(1/3,0,2/3,0) is the subspace spanned by (1/2, 0, 1/2, 0) and (1/4, 1/4, 1/4, 1/4).

Using the same approach, we can show that for any i ∈ [1 : 4] and

p ∈ {(1/3, 0, 2/3, 0), (1/3, 2/3, 0, 0), (1/4, 1/4, 1/2, 0)},

the null space of Ai,p is contained in the subspace spanned by (1/2, 0, 1/2, 0) and

(1/4, 1/4, 1/4, 1/4). This implies that q0 = q2 and q1 = q3.

Table A.1: The conditions on x(·) and S.
X + S 0 1 2 3

(s, x(s)) (0, 0), (2, 2) (1, 0), (3, 2) (0, 2), (2, 0) (1, 2), (3, 0)

Note q is the distribution of x(S)+S. Next, we find all functions x(·) and random

variables S such that q0 = q2 and q1 = q3. For each a ∈ Z4, we characterize (s, x(s))

such that x(s) + s = a, where x(s) ∈ {0, 2}. We present such a characterization

in Table A.1. Using Table A.1, if q0 > 0, then p(S = 0) = p(S = 2) = q0 and

x(0) = x(2). Similarly, if q1 > 0, then p(S = 1) = p(S = 3) = q1 and x(1) = x(3).

Therefore, if q0, q1 > 0, the distribution of S equals to q = (q0, q1, q0, q1). If q0 = 0,

then q1 = 1/2. This implies p(S = 1) = p(S = 3) = 1/2. Similarly, If q1 = 0,

then p(S = 0) = p(S = 2) = q1 = 1/2. As a result of this argument, H(S) =

H(X + S). Also by Lemma 31, the equality H(X + S) = H(X + S + Np) holds.

Therefore, in this case, H(S) − H(X + S + Np) = 0. To sum-up, we proved that

if p ∈ {(1/3, 0, 2/3, 0), (1/3, 2/3, 0, 0), (1/4, 1/4, 1/2, 0)} and H(X + S) = H(X +

S + Np), then H(S) − H(X + S + Np) = 0. Therefore, using this argument and

(A.43), we proved that if p ∈ {(1/3, 0, 2/3, 0), (1/3, 2/3, 0, 0), (1/4, 1/4, 1/2, 0)}, then

H(X + S)−H(X + S +Np) < 1.
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A.10 Proof of Claim 1

1) Let a = 0, b = 2, and P (X2+S2 = 0|u1) = p0, and P (X2+S2 = 2|u1) = 1−p0. We

represent this PMF by the vector p = (p0, 0, 1− p0, 0). This probability distribution

is a linear combination of the form

p = β(2/3, 0, 1/3, 0) + (1− β)(1/3, 0, 2/3, 0), (A.44)

where β = 3p0 − 1.

Remark 21. Let Z = X + Y , where the PMF of X is p = (p0, p1, p2, p3), and the

PMF of Y is q = (q0, q1, q2, q3). If t is the PMF of Z, then t = p ~4 q, where ~4 is

the circular convolution in Z4. In addition, the map (p,q) 7−→ p ~4 q is a bi-linear

map.

Let ti = p(X1 + S1 +X2 + S2 = i|u1u2) and qi = p(X1 + S1 = i|u1) for all i ∈ Z4.

Also denote q = (q0, q1, q2, q3), and t = (t0, t1, t2, t3). Using Remark 21 and equation

(A.44) we obtain

t = β
(
(2/3, 0, 1/3, 0) ~4 q

)
+ (1− β)

(
(1/3, 0, 2/3, 0) ~4 q

)
.

This implies that, t is also a linear combination of two PMFs. From the concavity of

entropy, we get the following lower-bound:

H(X1 + S1 +X2 + S2|u1u2) = H(t)

= H(β
(
(2/3, 0, 1/3, 0) ~4 q

)
+ (1− β)

(
(1/3, 0, 2/3, 0) ~4 q

)
)

≥ βH((2/3, 0, 1/3, 0) ~4 q) + (1− β)H((1/3, 0, 2/3, 0) ~4 q)

= βH(X1 + S1 +N(2/3,0,1/3,0)|u1) + (1− β)H(X1 + S1 +N(1/3,0,2/3,0)|u1),
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where in the last equality, N(λ0,λ1,λ2,λ3) denotes a random variable with PMF (λ0, λ1, λ2, λ3)

that is also independent of u1 and X1+S1. As a result of the above argument, equation

(A.37) is bounded by

H(S1|u1) +H(S2|u2)−H(Y |u1u2)− 2

≤ H(S1|u1) +H(S2|u2)− βH(X1 + S1 +N(2/3,0,1/3,0)|u1)

− (1− β)H(X1 + S1 +N(1/3,0,2/3,0)|u1)− 2

= β(H(S1|u1)−H(X1 + S1 +N(2/3,0,1/3,0)|u1))

+ (1− β)(H(S1|u1)−H(X1 + S1 +N(1/3,0,2/3,0)|u1)) +H(S2|u2)− 2

2) Let a = 0, b = 2, and P (X2 + S2 = 0|u1) = p0, and P (X2 + S2 = 1|u1) = 1− p0.

In this case p = (p0, 1− p0, 0, 0). Also,

p = β(2/3, 1/3, 0, 0) + (1− β)(1/3, 2/3, 0, 0),

where β = 3p0 − 1. Similar to case 1), we use Remark 21 and the concavity of the

entropy to get,

H(S1|u1) +H(S2|u2)−H(Y |u1u2)− 2

≤ β(H(S1|u1)−H(X1 + S1 +N(2/3,1/3,0,0)|u1))

+ (1− β)(H(S1|u1)−H(X1 + S1 +N(1/3,2/3,0,0)|u1)) +H(S2|u2)− 2
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APPENDIX B

Proofs for Chapter III

B.1 Proof of Theorem III.1

Proof. There are two error events, E0 and E1. E0 occurs if no s̃ was found. E1 is

declared if s̃ 6= s. To show that E0 is small, we need the next lemma. Suppose vi()

and vi() are a realization of random functions generated as in the outline of the proof

of Theorem III.1.

Lemma 33. Suppose si, i = 1, 2, 3 are jointly typical with respect to PS. Then

(
v1(s1), v2(s2), v3(s3), x1(s1, v1(s1)), x2(s2, v2(s2)), x3(s3, v3(s3))

)
∈ A(n)

ε (V1V2V3X1X2X3|s1s2s3).

Proof. The proof is straightforward.

As a result, the sequences si,vi,xi, i = 1, 2, 3 are jointly typical with y with respect

to PS,V,X,Y . This implies that P (E0) approaches 0 as n → ∞. Next, we calculate

P (E1 ∩ Ec
0). For a given s ∈ Aε(S), using the definition of E1 and the union bound
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we obtain,

P (E1 ∩ Ec
0|s) ≤

∑
(v,x)∈Aε(V,X|s)

1{vi = vi(si),xi = xi(si,vi), i = 1, 2, 3}
∑

y∈Aε(Y |x)

p(y|x)

∑
(̃s,ṽ,x̃)∈Aε(S,V ,X|y)

s̃ 6=s

1{ṽj = vj(s̃j), x̃j = xj(s̃j, ṽj), j = 1, 2, 3}

Taking expectation over random functions Xi(, ) and Vi() gives,

pe(s) = E{P (E1|s)} ≤
∑

(v,x,y)∈Aε(V ,X,Y |s)
p(y|x)

∑
(̃s,ṽ,x̃)∈Aε(S,V ,X|y)

s̃6=s

(B.1)

P{vl = Vl(sl),xl = Xl(sl,vl), ṽl = Vl(s̃l), x̃l = Xl(s̃l, ṽl) for l = 1, 2, 3}

Note that Vi() and Xi( , ) are generated independently. So the most inner term

in (B.1) is simplified to

P{vj = Vj(sj), ṽj = Vj(s̃j) j = 1, 2}P{xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl) l = 1, 2, 3}.

(B.2)

Note j = 3 is redundant because, v3 = v1 ⊕q v2 and ṽ3 = ṽ1 ⊕q ṽ2. By definition,

Vj(sj) = sjG + Bj, j = 1, 2, where B1, B2 are uniform and independent of G. Then

P{vj = Φj(sj), ṽj = Φj(s̃j) j = 1, 2} =
1

q2n
P{(s̃j − sj)G = ṽj − vj, j = 1, 2}

(B.3)

The following lemma determines the above term.

Lemma 34. Suppose elements of G are generated randomly and uniformly from Fq.
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If s1 or s2 is nonzero, the following holds:

P{sjG = vj, j = 1, 2} =


q−n1{vj = 0}, if sj = 0

q−n1{v1 = v2}, if s1 6= 0, s2 6= 0, s1 = s2.

q−2n, if otherwise.

Outline of the proof. We can write sjG =
∑n

i=1 sjiGi, where sji is the ith component

of sj and Gi is the ith row of G. Not that Gi are independent random variables

with uniform distribution over Fnq . Hence, if sj 6= 0, then sjG is uniform over Fnq . If

s1 6= s2, one can show that s1G is independent of s2G. The proof follows by arguing

that if a random variables X is independent of Y and is uniform over Fq, then X⊕q Y

is also uniform over Fq and is independent of Y .

Finally, we are ready to characterize the conditions in which pe → 0. We divide

the last summation in (B.1) into the following cases:

Case 1, s̃1 6= s1, s̃2 = s2 In this case, using Lemma 34, (B.3) equals to q−3n
1{ṽ2 =

v2}. Therefore, (B.1) is simplified to

pe1(s) :=
∑

(v,x,y)∈Aε(V ,X,Y |s)
p(y|x)

∑
(̃s,ṽ,x̃)∈Aε(S,V ,X|y)
s̃6=s,̃s2=s2,ṽ2=v2

q−3nP{xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl) l = 1, 2, 3}.

Note that Xl(sl,vl) is independent of Xk(s̃k, ṽk), if l 6= k or sl 6= s̃l or vl 6=

ṽl. Moreover, P{xl = Xl(sl,vl)} ≈ 2nH(Xl|SlVl)). As s2 = s̃2 and v2 = ṽ2, then

X2(s̃2, ṽ2) = X2(s2,v2). Therefore,

P{xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl) l = 1, 2, 3} = 2−n[2H(X1|S1V1)+H(X2|S2V2)+2H(X3|S3V3)]
1{x̃2 = x2}.
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Hence, we have:

pe1(s) ≈ 2nH(V ,X|S)2nH(S1,V1,X1,S3,V3,X3|Y S2V2X2) 1

q3n
2−n[2H(X1|S1V1)+H(X2|S2V2)+2H(X3|S3V3)].

Note that H(V ,X|S) = 2 log2 q +
∑3

i=1H(Xi|Si, Vi). Therefore, pe1 → 0, if

H(S1, V1, X1, S3, V3, X3|Y S2V2X2) ≤ log2 q +H(X1|S1V1) +H(X3|S3V3) (B.4)

The right-hand side in the above inequality equals to H(X1X3V1V3|S1S2S3X2V2). We

simplify the left-hand side. Observe that

H(S1, V1, X1, S3, V3, X3|Y S2V2X2) = H(V1, X1, V3, X3|Y S2V2X2) +H(S1|S2V X),

where Y is removed from the second term, because conditioned on X, Y is indepen-

dent of S1. Note that

H(S1|S2V X) = H(S1|S2X2V2)− I(S1;X1V1X3V3|S2V2X2)

= H(S1|S2)− I(S1;X1V1X3V3|S2V2X2).

Therefore, using the above argument the inequality in (B.4) is simplified to

H(S1|S2) ≤ I(S1;X1V1X3V3|S2V2X2)−H(V1, X1, V3, X3|Y S2V2X2)

+H(X1X3V1V3|S1S2S3X2V2)

= I(X1V1X3V3;Y |S2V2X2)

= I(X1X3;Y |S2V2X2.)

Case 2, s̃1 = s1, s̃2 6= s2 A similar argument as in the first case gives H(S2|S1) ≤

I(X2X3;Y |S1V1X1).
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Case 3, s̃1 6= s1, s̃2 6= s2, s̃1 ⊕q s̃2 = s1 ⊕q s2 Using Lemma 34,

P{vj = Φj(sj), ṽj = Φj(s̃j) j = 1, 2} = q−3n
1{ṽ1 ⊕q ṽ2 = v1 ⊕q v2}

Therefore, the above probability is nonzero only when ṽ3 = v3. Hence, as s3 = s̃3,

we get X3(s̃3, ṽ3) = X3(s3,v3). This implies that,

P{xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl) l = 1, 2, 3} = 2−n[2H(X1|S1V1)+2H(X2|S2V2)+H(X3|S3V3)]
1{x̃3 = x3}.

As a result, (B.1), in this case, is simplified to :

pe3(s) ≈ 2nH(S1,V1,X1,S2,V2,X2|Y S3V3X3)q−n2−n[H(X1|S1V1)+H(X2|S2V2)].

Therefore, pe3 → 0, ifH(S1, V1, X1, S2, V2, X2|Y S3V3X3) ≤ H(X1, X2, V1, V2|S1S2S3V3X3).

Using a similar argument as in the first case, this inequality is equivalent toH(S1S2|S3) ≤

I(X1, X2;Y |S3V3X3).

Case 4, s̃i 6= si, i = 1, 2, 3 Observe that,

P{vj = Φj(sj), ṽj = Φj(s̃j) j = 1, 2} = q−4n

P{xl = Xl(sl,vl), x̃l = Xl(s̃l, ṽl) l = 1, 2, 3} = 2−2n
∑3
l=1 H(Xl|SlVl).

Therefore, (B.1), in this case, is simplified to pe4(s) ≈ q−2n2nH(S,V ,X|Y )2−n
∑3
l=1 H(Xl|SlVl).

As a result, one can show that Pe4 → 0, if H(S1S2S3) ≤ I(X1X2X3;Y ).

Finally, note that Pe(s) ≤∑4
i=1 Pei(s). Moreover, Pei(s) depends on s only through

its PMF. Therefore, for any typical s, Pe approaches zero as n→∞, if the following
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bounds are satisfied:

H(S1|S2) ≤ I(X1X3;Y |S2V2X2)

H(S2|S1) ≤ I(X2X3;Y |S1V1X1)

H(S1S2|S1 ⊕q S2) ≤ I(X1X2;Y |S1 ⊕q S2, V3X3)

H(S1, S2) ≤ I(X1X2X3;Y ).

B.2 Proof of Lemma 12

Proof. For the setup in Example 9, the bounds given in Theorem III.1 are simplified

to

h(γ) ≤ I(X2X3;Y |X1S1V1) (B.5)

h(σ) ≤ I(X1X2;Y |X3S3V3) (B.6)

h(γ) + h(σ)− h(σ ∗ γ) ≤ I(X1X3;Y |X2S2V2) (B.7)

h(γ) + h(σ) ≤ I(X1X2X3;Y ). (B.8)

Set Xi = Vi, i = 1, 2, 3, where the distribution of these random variables are given

in Theorem III.1. One can verify that the source corresponding to σ = 0 and γ = γ∗

satisfies the above inequalities and therefore can be transmitted.

No that all the terms in (B.5)-(B.8) are entropy functions and mutual information.

Therefore, they are continuous with respect to conditional density p(x|s, v). Hence,
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one can show that ∀ε0 > 0, there exist a conditional density p(x|s, v) such that

I(X2X3;Y |X1S1V1) ≥ 2−H(N)− η(ε0)

I(X1X2;Y |X3S3V3) ≥ ε0

I(X1X3;Y |X2S2V2) ≥ 2−H(N)− η(ε0)

I(X1X2X3;Y ) ≥ 2−H(N)− η(ε0),

where η() is function of ε such that η(ε)→ 0 as ε→ 0.

Note also that the left-hand sides in (B.5)-(B.8) are continuous in σ and γ. Hence

∃ε′ > 0 such that when σ ≤ ε′, |γ − γ∗| ≤ ε′, we have

h(γ) ≤ 2−H(N)− η(ε0)

h(σ) ≤ ε0

h(γ) + h(σ)− h(σ ∗ γ) ≤ 2−H(N)− η(ε0)

h(γ) + h(σ) ≤ 2−H(N)− η(ε0)

This implies that the source corresponding to σ ≤ ε′, γ ≤ γ∗−ε′ can be transmitted

reliably and the proof is complete.
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APPENDIX C

Proofs for Chapter IV

C.1 Proof of Theorem IV.1

Proof. We build upon QLCs and propose a new coding scheme. Let Wi be a random

variable with distribution PWi
. Fix integer k and n. Consider the set of all ε-typical

sequences W k
i . Without loss of generality assume that the new message at the ith

encoder is a sequence wki which is selected randomly and uniformly from A
(k)
ε (Wi).

In this case Mi = |A(k)
ε (Wi)|.

Define L[l−2] as the list of highly likely messages corresponding to the block l−2

at the decoder. This list is defined as

L[l − 2] , {(ŵ1, ŵ2, ŵ3) ∈ A(n)
ε (W1,W2,W3) : (Y[l−2], U[l−2], S1,[l−2], S2,[l−2], S3,[l−2]) ∈ A(n)

ε (Ỹ , Ũ , S̃1, S̃2, S̃3)}

Codebook Construction: For each 1 ≤ l ≤ L generate M0,[l] sequences U[l,m],

each according to P n
U , where 1 ≤ m ≤M0,[l]. For any vector wki ∈ Fk2, denote

ti(w
k
i ) , wki G + bni , i = 1, 2, 3,
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where G is a k × n matrix with elements chosen randomly and uniformly from F2,

and bni is a vector selected randomly and uniformly from Fn2 .

For each un ∈ Un and tn, vn ∈ Fn2 generate Mi sequences Xn
i,[l,m] randomly with

conditional distribution
∏n

j=1 P (·|uj, tj, vj), where m ∈ [1 : Mi]. Denote such se-

quences by xi(u
n, tn, vn,mi).

Initialization: For block l = 0, set M0,[0] = 1, U[0,1] = 0 and . For block l = 1,

set M0,[1] = 1, U[1,1] = 0,vi,[1] = 0.

Encoding

Block l = 1 At block l = 1, given a message wi,[1] ∈ A
(k)
ε (Wi), the ith encoder

calculates ti(wi,[1]). This sequence is denoted by ti,[1]. Next the encoder i calculates

xi(u[0,1], ti,[1], vi,[1],wi,[1]). Denote such sequence by xi,[1]. Finally, the i′s encoder sends

xi,[1].

Block l = 2 At the beginning of the block l = 2, each encoder i receives Y[1] as a

feedback from the channel. The encoder i wishes to decode sum of the messages of

the other two encoders. The first encoder finds unique ŵ23 ∈ A
(k)
ε (W2 + W3) such

that

(ŵ23G + b2 + b3, Y[0]) ∈ A(n)
ε (T2 + T3, Y |u[0]t1,[0], x1,[l]).

Otherwise an encoding error will be declared. If ŵ23 was unique, the encoder sets

v1,[2] = ŵ23G + b2 + b3. Similarly encoder 2 finds unique ŵ13 and determines v2,[2].

Also encoder 3 finds unique ŵ12, and determines v3,[2].

Block l > 2 At the beginning of the block l > 2, each encoder i receives Y[l−1] as a

feedback from the channel. The encoder i wishes to decode sum of the messages of

the other two encoders from block l− 1. Next, given Y[l−2], the encoder i decodes the

messages of the other two encoders from block l − 2.

The first decoding process is the same as the decoding process in block l = 2.
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Suppose ŵjk and vi,[l] are the outputs of this decoding process at the encoder i.

The next stage of the decoding process is as follows. The first encoder finds unique

ŵ2,[l−2] ∈ A(k)
ε (W2) and ŵ3,[l−2] ∈ A(k)

ε (W3) such that

1) ŵ2,[l−2] + ŵ3,[l−2] = ŵ23.

2)

(
t2(ŵ2,[l−2]), x2

(
un, t2(ŵ2,[l−2]), v2,[l−2], ŵ2,[l−2]

)
,

t3(ŵ3,[l−2]), x3

(
un, t3(ŵ3,[l−2]), v3,[l−2], ŵ3,[l−2]

)
, Y[l−2]

)
∈ A(n)

ε (T̃2X̃2T̃3X̃3Ỹ |s1,[l−2]v2,[l−2], v3,[l−2])

3) (v̂2,[l−1], v̂2,[l−1], Y[l−1]) ∈ A(n)
ε (V2V3Y |u[l−1]s1[l−1])),

where vi,[l−2] is known at the encoder from the previous blocks, and v̂2,[l−1], v̂3,[l−1]

are defined as

v̂2,[l−1] = (w1,[l−2] + ŵ3,[l−2])G + b1 + b3

v̂3,[l−1] = (w1,[l−2] + ŵ2,[l−2])G + b1 + b2.

If the messages are not unique, an error will be declared.

The next step, the encoder creates the list L[l − 2] as defined in the above. If

(w1,[l−2], ŵ2,[l−2], ŵ3,[l−2]) ∈ L[l − 2], then the first encoder finds the index m corre-

sponding to (w1,[l−2], ŵ2,[l−2], ŵ3,[l−2]). Then the encoder calculates the corresponding

u[l−2,m. Denote such sequence by u[l]. This sequence is used for transmission of new

messages at block l. If the decoding processes are successful, then the sequences v1,[l]

and u[l] are determined. The next step is the encoding process, which is the same as

in the block l = 1.

Decoding at block l The decoder knows the list of highly likely messages . This

list is L[l−2] as defined in the above. Given Y[l] the decoder wishes to decode U[l]. Note

that U[l] determines the index of the messages in L[l − 2] which were transmitted at

166



block l−2. This decoding process is performed by finding unique index m ∈ [1 : M0,[l]]

such that

(U[l,m], Y[l]) ∈ A(n)
ε (U, Y |u[l−1], y[l−1])

Error Analysis There are three types of decoding errors: 1) error in decoding sum

of the messages of the other two encoders, i.e., ŵjk is not unique at the encoder i. 2)

error in the decoding of the individual messages of the other encoders, i.e., ŵj,[l], ŵk,[l]

are not unique at the encoder i. 3) error at the decoder, i.e. the index m is not

unique. Using standard arguments for each type of the errors we get the following

bounds:

The probability of the first type of the errors approaches zero, if fro any distinct

i, j, k ∈ {1, 2, 3} the following bound holds:

k

n
H(Wj +Wk) ≤ I(Tj + Tk;Y |UTkVkXk). (C.1)

The probability of the second type of the errors approaches zero, if

k

n
H(Wi|Wj +Wk) ≤ I(X̃iX̃j; Ỹ |Ũ S̃kṼ1Ṽ2Ṽ3) (C.2)

Note that the third type of error occurs with high probability, if |L[l]| > 2nI(U ;Y |Ũ ,Ỹ ).

It can be shown that for sufficiently large n,

P{|L[l]| < 2nmaxA⊆{1,2,3} FA+o(ε)} > 1− ε,

where

FA ,
k

n
H(WA)− I(XA;Y |USAcṼ1, Ṽ2, Ṽ3)

Therefore, the probability of third type of the errors approaches zero, if the following
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bounds hold:

FA ≤ I(U ;Y |Ũ , Ỹ ),

Using the definition of FA and the above bound, we can get the following bound:

k

n
H(WA) ≤ I(XA;Y |USAcṼ1, Ṽ2, Ṽ3) + I(U ;Y |Ũ , Ỹ ) (C.3)

Note that the effective rate of our coding scheme is Ri , 1
n

log2Mi = k
n
H(Wi) for

i = 1, 2, 3. Finally, it can be shown that using this equation and the bounds in (C.1),

(C.2), and (C.3), the following bounds are achievable

RA ≤ I(XA;Y |USAcṼ1Ṽ2Ṽ3) + I(U ;Y |Ũ Ỹ )

Ri +Rj ≤ I(Ti ⊕ Tj;Y |UTkXkṼ1Ṽ2Ṽ3)

+ I(X̃iX̃j; Ỹ |Ũ S̃kṼ1Ṽ2Ṽ3Vk)

+ I(X̃iX̃j;Y |Ũ S̃kṼ1Ṽ2Ṽ3USkỸ )

Ri +Rj ≤
H(Wi) +H(Wj)

H(Wi ⊕Wj)
I(Ti ⊕ Tj;Y |UTkXk).

C.2 Proof of Lemma 13

Outline of the proof. We start by proposing a coding scheme. There are L blocks

of transmissions in this scheme, with new messages available at each user at the

beginning of each block. The scheme sends the messages with n uses of the channel.

Let Wk
i,[l] denotes the message of the ith transmitter at the lth block, where i = 1, 2, 3,

and 1 ≤ l ≤ L. Let Wk
i,[l] take values randomly and uniformly from Fk2. In this case,

the transmission rate of each user is Ri = k
n
, i = 1, 2, 3. The first and the second
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outputs of the ith encoder in block l is denoted by Xn
i1,[l] and Xn

i2,[l], respectively.

Codebook Construction: Select a k×n matrix G randomly and uniformly from

Fk×n2 . This matrix is used as the generator matrix of a linear code. Each encoder is

given the matrix G. Therefore, the encoders use an identical linear code generated

by G.

Encoder 1 and 2: For the first block set Xn
i2,[1] = 0, for i = 1, 2, 3. For the block

l, encoder 1 sends Xn
11,[l] = Wk

1,[l]G through its first output. For the second output,

encoder 1 sends Xn
11,[l−1] from block l − 1, that is Xn

12,[l] = Xn
11,[l−1]. Similarly, the

outputs of the second encoder are Xn
21,[l] = Wk

2,[l]G, and Xn
22,[l] = Xn

21,[l−1].

Encoder 3: The third encoder sends Xn
31,[l] = Wk

3,[l]G though its first output.

This encoder receives the feedback from the block l− 1 of the channel. This encoder

wishes to decode Wk
1,[l−1] ⊕Wk

2,[l−1] using Yn
1,[l−1]. For this purpose, it subtracts

Xn
31,[l−1] from Yn

1,[l−1]. Denote the resulting vector by Zn. Then, it finds a unique

vector w̃k ∈ Fk2 such that (w̃kG,Zn) is ε-typical with respect to PXZ , where X is

uniform over F2 , and Z = X ⊕ Ñδ. If the decoding process is successful, the third

encoder sends Xn
32,[l] = w̃k

[l−1]G. Otherwise, an event E1,[l] is declared.

Decoder: The decoder receives the outputs of the channel from the lth block, that

is Yn
1,[l] and Yn

2,[l]. The decoding is performed in three steps. First, the decoder uses

Yn
2,[l] to decode Wk

1,[l−1], and Wk
2,[l−1]. In particular, it finds unique w̃k

1 , w̃
k
2 ∈ Fk2 such

that (w̃k
1G, w̃k

2G,Yn
2,[l]) are jointly ε-typical with respect to PX12X22Y2 . Otherwise, an

error event E2,[l] will be declared.

Suppose the first part of the decoding process is successful. At the second step,

the decoder calculates Xn
11,[l−1], and Xn

21,[l−1]. This is possible, because Xn
11,[l−1], and

Xn
21,[l−1] are functions of the messages. The decoder, then, subtracts Xn

11,[l−1]⊕Xn
21,[l−1]

from Y1,[l−1]. The resulting vector is

Ỹn = Xn
31,[l−1] ⊕ Ñn

δ .
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In this situation, the channel from X31 to Ỹ is a binary additive channel with δ as

the bias of the noise. At the third step, the decoder uses Ỹn to decode the message

of the third user, i.e., Wk
3,[l−1]. In particular, the decoder finds unique w̃k

3 ∈ Fk2 such

that (w̃k
3G, Ỹn) are jointly ε-typical with respect to PX31Ỹ

. Otherwise, an error event

E3,[l] is declared.

Error Analysis: We can show that this problem is equivalent to a point-to-point

channel coding problem, where the channel is described by Z = X⊕ Ñδ. The average

probability of error approaches zero, if k
n
≤ 1− h(δ).

Suppose there is no error in the decoding process of the third user. That is

Ec
1,[l] occurs. Therefore, Xn

32,[l] = Xn
22,[l] ⊕ Xn

12,[l] with probability one. As a result,

the channel in Fig. 4.4 is in the first state. This implies that the corresponding

channel consists of two parallel binary additive channel with independent noises and

bias δ. Similar to the argument for E1, it can be shown that P (E2,[l]|E1,[l]) → 0, if

k
n
≤ 1−h(δ). Lastly, we can show that conditioned on Ec

1,[l] and Ec
2,[l], the probability

of E3,[l] approaches zero, if k
n
≤ 1− h(δ).

As a result of the above argument, the average probability of error approaches 0,

if k
n
≤ 1 − h(δ). This implies that the rates Ri = 1 − h(δ), i = 1, 2, 3 are achievable,

and the proof is completed.

C.3 Proof of Lemma 14

Proof. Let Ri be the rate of the ith encoder. We have Ri ≥ 1− h(δ)− ε. We apply

the generalized Fano’s inequality (Lemma 4.3 in [47]) for decoding of the messages.

More precisely, as P̄ ≤ ε, we have

1

M1M2M3

H(Θ1,Θ2,Θ3|YN) ≤ h(P̄ ) ≤ h(ε)
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By the definition of the rate we have

R1 +R2 +R3 =
1

N
H(Θ1,Θ2,Θ3)

≤ 1

N
I(Θ1,Θ2,Θ3; Yn) + o(ε)

(a)

≤ 1

N
I(Xn

1 ,X
n
2 ,X

n
3 ; YN) + o(ε)

(b)

≤ 3− 1

N
H(Yn|Xn) + o(ε), (C.4)

where (a) is because of (6.2), and for (b) we use the fact that Y is a vector of three

binary random variables, which implies 1
N
H(Y N) ≤ 3. As the channel is memoryless,

and since (6.2) holds, we have

1

N
H(Yn|Xn) =

1

N

N∑
l=1

H(Yl|X1,lX2,lX3,l).

Let P (X32,l 6= X12,l ⊕ X12,l) = ql, for l ∈ [1 : N ]. Denote q̄l = 1 − ql. We can show

that,

H(Yl|X1,lX2,lX3,l) = (1 + 2q̄l)h(δ) + 2ql.

We use the above argument, and the last inequality in (C.4) to give the following

bound

R1 +R2 +R3 ≤ 3− 1

N

N∑
l=1

[(1 + 2q̄l)h(δ) + 2ql] + o(ε)

= 3− 3h(δ) +
1

N
2(1− h(δ))

N∑
l=1

ql + o(ε)

By assumption R1 +R2 +R3 ≥ 3(1− h(δ)− ε). Therefore, using the above bound we
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obtain,

3ε+ o(ε)

2(1− h(δ))
≥ 1

N

N∑
l=1

ql
(a)

≥ 1

N

∑
l∈INc

ql,

where (a) holds, because we remove the summation over all l /∈ INc . We defined INc
as in the statement of this Lemma. Note that if l ∈ INc , then ql ≥ c. Finally, we

obtain

|INc |
N
≤ 3ε+ o(ε)

2c(1− h(δ))

C.4 Proof of Lemma 15

Proof. Let INc be as in Lemma 14. The average probability of error for decoding

XN
12 ⊕XN

22 is bounded as

P̄e =
1

N

N∑
l=1

P (X32,l 6= X12,l ⊕X22,l)

=
1

N

∑
l∈INc

P (X32,l 6= X12,l ⊕X22,l) +
1

N

∑
l /∈LNc

P (X32,l 6= X12,l ⊕X22,l)

≤ |I
N
c |
N

+ c(1− |I
N
c |
N

)

= (1− c) |I
N
c |
N

+ c

≤ (1− c) η(ε)

2c(1− h(δ))
+ c

As a result as ε→ 0, then P̄e → c. Since c > 0 is arbitrary, P̄e can be made arbitrary

small. Hence, for any ε′ > 0, and there exist ε > 0 and large enough N such that

P̄e < ε′. Note that XN
32 is a function of M3, Y

N
1 , Y N

12 and Y N
22 . Next we argue that

to get P̄e < ε′, it is enough for XN
32 to be a function of M3, Y

N
1 . More precisely,
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given X32,l, the random variables Y12,l and Y22,l are independent of X12,l ⊕X22,l. To

see this, we need to consider two cases. If X32,l = X12,l ⊕ X22,l then the argument

follows trivially. Otherwise, Y12,l = X12,l ⊕ N1/2, where N1/2 ∼ Ber(1/2), and it is

independent of X12,l. Hence in this case, Y12,l is independent of X12,l. Similarly, Y22,l

is independent of X22,l.

By subtracting XN
31 from Y N

1 , we get ZN := XN
11 ⊕ XN

21 ⊕ NN
δ . Next, we argue

that the third encoder uses ZN to decode XN
12 ⊕XN

22. Since M3 is independent of M1

and M2, it is independent of XN
1j , X

N
j2 for j = 1, 2. Therefore ZN is independent of

M3. Hence, XN
32 is function of ZN . Intuitively, we convert the problem of decoding

XN
11 ⊕XN

21 to a point to point channel coding problem. The channel in this case is a

binary additive channel with noise Nδ ∼ Ber(δ). In this channel coding problem the

codebook at the encoder is C12 ⊕ C22. The capacity of this channel equals 1− hb(δ).

Since the average probability of error is small, we can use the generalized Fano’s

inequality to bound the rate of the encoder. As a result, it can be shown that

1

N
log2 ||C12 ⊕ C22|| ≤ 1− hb(δ) + η(ε), (C.5)

where η(ε)→ 0 as ε→ 0.

Claim 3. The following bound holds

1

N
log2 ||Cj2|| ≥ 1− hb(δ)− γj(ε), (C.6)

where j = 1, 2 and γj(ε)→ 0 as ε→ 0.

Outline of the proof. First, we show that the decoder must decode M3 from Y N
1 . We

argued in the above that XN
32 is independent of M3. Hence, the message M3 is encoded

only to XN
31. Since XN

31 is sent though the first channel in Example 1, the decoder must

decode M3 from Y N
1 . Next, we argue that the receiver must decode M1 and M2 from
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Y N
21 and Y N

22 , respectively. Note that the rate of the third encoder is 1− hb(δ), which

equals to the capacity of the first channel given XN
11 ⊕ XN

21. Therefore, the decoder

can decode M3, if it has XN
11 ⊕XN

21. Hence, the decoder must reconstruct XN
11 ⊕XN

21

from the second channel. It can be shown that this is possible, if the decoder can

decode M1 and M2 from the second channel. As a result, from Fano’s inequality, the

bounds in the Claim hold.

Finally, using (7) and (C.6) we get

0 ≤ 1

N
log2 ||C12 ⊕ C22|| −

1

N
log2 ||Cj2|| ≤ η(ε) + γj(ε), j = 1, 2.

This completes the proof.
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APPENDIX D

Proofs for Chapter V

D.1 Proof of Theorem V.2

Proof. The pair of the nested linear codes are denoted by (Ci, Co) and (C ′i, C ′o). For

any ε-typical sequence x ∈ X n with respect to PX , define

θ(x) ,
∑

u∈Co,v∈C′o

1{(u,v) ∈ Anε (U, V |x)}

Note that θ(x) equals the number of codewords (u,v) selected from the two nested

linear codes such that (u,v,x) are jointly ε-typical with respect to PU,V,X . Assume

the generator matrices and the dither for (Ci, Co) are denoted by (G,∆G) and b,

respectively. Also, let (G,∆G′) and b′ denote the generator matrices and the dither

of (C ′i, C ′o), respectively. Note that the inner codes share the same generator matrix.

With this notation δ(x) can be written as

θ(x) =
∑

m∈Flq ,m′∈Fl′q

∑
a,a′∈Fkq

∑
(u,v)∈Anε (U,V |x)

1{aG + m∆G + b = u, aG + m′∆G + b′ = v}
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Suppose the elements of the generator matrices and the dithers are selected randomly

independently and uniformly from Fq. Then the following lemma holds.

Lemma 35. For any a ∈ Fkq and m ∈ Flq, define g(a,m) , aG + m∆G + b.

Similarly define g′(a′,m′) , a′G + m′∆G′ + b′ where a′ ∈ Fkq and m′ ∈ Flq. Suppose

the elements of the matrices and the dithers are selected randomly independently and

uniformly from Fq. Then the followings hold:

1. g(a,m) and g′(b,m′) are uniform over Fnq .

2. g(a,m) is independent of g(ã,m) when a 6= ã.

3. g′(b,m′) is independent of g′(b̃, m′) when b 6= b̃.

4. g(a,m) and g′(a,m) are independent.

Proof. Follows from [67] Lemma III.2 and III.3 and the fact that b,b′ are independent

and uniform.

The theorem follows by showing that θ(x) = 0 with probability sufficiently close

to one. In what follows we prove a stronger statement. We show that θ(x) ≥ 1
2
E[θ(x)]

with probability approaching one. For that applying Chebyshev’s inequality gives

P
{
θ(x) ≤ 1

2
E[θ(x)]

}
≤ P

{∣∣θ(x)− E[θ(x)]
∣∣ ≥ 1

2
E[θ(x)]

}
≤ 4var[θ(x)]

E[θ(x)]2

The expectation of θ(x) equals

E{θ(x)} =
∑

m∈Flq ,m′∈Fl′q

∑
a,a′∈Fkq

∑
(u,v)∈Anε (U,V |x)

P{g(a,m) = u, g′(a′,m′) = v}

=
∑

m∈Flq ,m′∈Fl′q

∑
a,a′∈Fkq

∑
(u,v)∈Anε (U,V |x)

1

q2n

≤ ql+l
′
q2k

q2n
2n(H(U,V |X)+O(ε))
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where the first equality follows by Lemma 35. Next, we calculate E[θ(x)2]. For that

we have

E[θ(x)2] =
∑

m,m̃∈Flq ,
m′,m̃′∈Fl′q

∑
a,ã∈Fkq ,
a′,ã′∈Fkq

∑
(u,v)∈Anε (U,V |x)
(ũ,ṽ)∈Anε (U,V |x)

P{g(a,m) = u, g′(a′,m′) = v, g(ã, m̃) = ũ, g′(ã′, m̃′) = ṽ}

Note that from Lemma 35, the probability above equals

1

q2n
P{g0(a− ã,m− m̃) = u− ũ, g′0(a′ − ã′,m′ − m̃′) = v − ṽ}

where g0(a,m) = aG + m∆G, g′0(a′,m′) = a′G + m′∆G′. The following cases can

be considered regarding the value of the above probability

Cases 1: m = m̃,m′ = m̃′ :

Case 1.1 a = ã, a′ = ã′ ⇒ P = 1
q2n1{u = ũ, v = ṽ}

Case 1.2 a = ã, a′ 6= ã′ ⇒ P = 1
q3n1{u = ũ}

Case 1.3 a 6= ã, a′ = ã′ ⇒ P = 1
q3n1{v = ṽ}

Case 1.4 a 6= ã, a′ 6= ã′, (a − ã) = i(a′ − ã′), i ∈ Fq − {0} ⇒ P = 1
q3n1{(u − ũ) =

(iv − ṽ)}

Case 1.5 a 6= ã, a′ 6= ã′, (a− ã) 6= i(a′ − ã′)∀i ∈ Fq ⇒ P = 1
q4n

Cases 2: m 6= m̃,m′ = m̃′:

Case 2.1 a = ã, a′ = ã′ ⇒ P = 1
q3n1{v = ṽ}

Case 2.2 a = ã, a′ 6= ã′ ⇒ P = 1
q4n

Case 2.3 a 6= ã, a′ = ã′ ⇒ P = 1
q3n1{v = ṽ}

Case 2.4 a 6= ã, a′ 6= ã′ ⇒ P = 1
q4n
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Cases when m = m̃,m′ 6= m̃′ and m 6= m̃,m′ 6= m̃′ are very similar and will be

discussed shortly. Considering the above cases when m = m̃,m′ = m̃′ it gives:

E{θ(X)2|m = m̃,m′ = m̃′} =∑
m,m′

[∑
a=ã

∑
b=b̃

∑
(u,v)∈Anε (U,V |x)

1

q2n
+
∑
a=ã

∑
b 6=b̃

∑
(u,v),(u,ṽ)∈Anε (U,V |x)

1

q3n

+
∑
a6=ã

∑
b=b̃

∑
(u,v),(ũ,v)∈Anε (U,V |x)

1

q3n
+

∑
i∈Fq−{0}

∑
a6=ã

∑
b6=b̃

b−b̃=i(a−ã)

∑
(u,v),(ũ,ṽ)∈Anε (V |x)

v−ṽ=i(u−ũ)

1

q3n

+
∑
a6=ã

∑
b6=b̃

b−b̃ 6=i(a−ã)
∀i∈Fq−0

∑
(u,v),(ũ,ṽ)∈Anε (V |x)

v−ṽ 6=i(u−ũ)

1

q4n

]

Consequently

E{θ(X)2|m = m̃,m′ = m̃′} ≤ ql+l
′
q2k

q2n
2n(H(U,V |X)+O(ε)) +

ql+l
′
q3k

q3n
2n(H(U,V |X)+H(V |X,U)+O(ε))

+
ql+l

′
q3k

q3n
2n(H(U,V |X)+H(U |X,V )+O(ε))

+
ql+l

′
q3k

q3n
2n(H(U,V |X)+maxi 6=0 H(U,V |X,V+iU)+O(ε))

+
ql+l

′
q4k

q4n
22n(H(U,V |X)+O(ε))

For the case where (m 6= m̃,m′ = m̃′) using a similar argument we obtain

E{θ(X)2|m 6= m̃,m′ = m̃′} ≤ q2l+l′q2k

q3n
2n(H(U,V |X)+H(U |X,V )+O(ε))

+
q2l+l′q3k

q4n
2n(2H(U,V |X)+O(ε))

+
q2l+l′q4k

q4n
2n(2H(U,V |X)+O(ε))
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Similarly for the case (m = m̃,m′ 6= m̃′) we have

E{θ(X)2|m = m̃,m′ 6= m̃′} ≤ ql+2l′q2k

q3n
2n(H(U,V |X)+H(V |X,U)+O(ε))

+
ql+2l′q3k

q4n
2n(2H(U,V |X)+O(ε))

+
ql+2l′q4k

q4n
2n(2H(U,V |X)+O(ε))

When (m 6= m̃,m′ 6= m̃′), for any value of a, ã, b, b̃ we have P = 1
q4n . The reason is

that (m−m̃)∆G and (m′−m̃′)∆G′ are independent and uniform over Fnq . Therefore,

for this case we have:

E{θ(X)2|m = m̃,m′ 6= m̃′} ≤ q2l+2l′q4k

q4n
2n(2H(U,V |X)+O(ε))

Finally we have:

var{θ(x)}
E{θ(x)}2

≤ q2n

ql+l′q2k
2−n(H(U,V |X)+O(ε)) +

qn

ql+l′qk
2−n(H(U |X)+O(ε))

+
qn

ql+l′qk
2−n(H(V |X)+O(ε))

+
qn

ql+l′qk
2−n(H(U,V |X)−maxi 6=0H(U,V |X,V+iU)+O(ε))

+
qn

qlqk
2−n(H(U |X)+O(ε)) +

qn

ql′qk
2−n(H(V |X)+O(ε))

+
1

ql
+

1

ql′
+

1

ql+l′
+

1

ql+k
+

1

ql′+k

Let ro, r
′
o denote the rate of Co and C ′o, respectively. Also let ri, r

′
i denote the rate

of the inner-codes Ci and C ′i, respectively. Then P{θ(x) = 0} → 0 as n → ∞ if the
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following bounds are satisfied

ro + r′o ≥ 2 log p−H(U, V |X),

ro + r′o − ri ≥ log p−H(U |X)

ro + r′o − ri ≥ log p−H(V |X)

ro + r′o − ri ≥ log p−H(U, V |X) + max
i 6=0

H(U, V |X, V + iU)

ro ≥ log p−H(U |X), ro ≥ ri, ro ≥ 0

r′o ≥ log p−H(V |X), r′o ≥ ri, r′o ≥ 0

Observe that

H(U, V |X, V + iU) = H(U, V, V + iU |X)−H(V + iU |X)

= H(U, V |X)−H(V + iU |X)

Note that the second and third inequalities are redundant. This is because ro ≥ ri

and r′o ≥ ri. As a result, the above bounds are simplified to the set of bounds given

in the statement of the theorem.
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APPENDIX E

Proofs for Chapter VI

E.1 Proof of Theorem VI.1

Proof. At each block a re-transmission occurs with probability q, an error occurs with

probability Peb and a correct decoding process happens with probability 1− q − Peb.

The probability of a re-transmission at each block is

q = P (Θ̂ = Θ1).

The probability of error at each block is

Peb = P (Θ1)P (Θ̂ = Θ0|Θ1).

Therefore, with this setting the total probability of error for the transmission of a

message is

Pe =
∞∑
k=0

qkPeb =
Peb

1− q . (E.1)
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The number of blocks required to complete the transmission of one message is

a geometric random variable with probability of success 1 − q. Thus, the expected

number of blocks for transmission of a message is 1
1−q .

Next, we derive an upper-bound for q and Peb. For shorthand, denote H12 =

(H1, H2), Ĥ12 = (Ĥ1, Ĥ2). Then

Peb = P
(
Ĥ12 = 00, H12 6= 00

)
=

∑
a∈{01,10,11}

P (H12 = a)P (Ĥ12 = 00|H12 = a).

Note that the effective rates of this transmission scheme are ( R1

1−γ ,
R2

1−γ ). Suppose

( R1

1−γ ,
R2

1−γ ) is inside the feedback-capacity region of the channel. Then, from the

definition of the capacity region, there exist a sequence ζn, n ≥ 1 with ζn → 0 such

that after the first stage

P ((Ŵ1, Ŵ2) 6= (W1,W2)) ≤ ζn.

Equivalently, the effective rates are inside the capacity region, if the following in-

equality holds for any λi ≥ 0, i = 1, 2, 3:

1

1− γ (λ1R1 + λ2R2 + λ3(R1 +R2)) < Cλ, (E.2)

where Cλ is given in Definition 42. Denote R3 = R1 +R2 and define

γ∗ = min
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

(1−
∑

i λiRi

Cλ
). (E.3)
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Then, (E.2) implies that γ < γ∗. The probability of error is therefore bounded by

Peb ≤
∑

a∈{01,10,11}
P (Ĥ12 = 00|H12 = a) (E.4)

Suppose (X1(0), X1(1), X2(0), X2(1)) are random variables with joint distribution

Pn. Then for i, j ∈ {0, 1} define

D̄Pn(00||ij) = EPn

[
DQ

(
X1(0), X2(0)||X1(i), X2(j)

)]
.

From the description of the transmission scheme, the codewords for the confirmation

stage are selected with joint-type Pn. In addition, the decoding process is performed

using ML decoding. Therefore, the following bounds hold for a ∈ {01, 10, 11}:

P (Ĥ12 = 00|H12 = a) ≤ 2−nγD̄Pn (00||a).

Thus, from (E.4), the probability of error is upper bounded by

Peb ≤ 3× 2−nγDl,n (E.5)

Where Dl,n = maxPn mina∈{01,10,11} D̄Pn(00||a).

Next we derive an upper bound for q. We have

q = P (Θ̂ = Θ1)

= P (Θ0)P (Θ̂ = Θ1|Θ0) + P (Θ1)P (Θ̂ = Θ1|Θ1)

≤ P (Θ̂ = Θ1|Θ0) + ζn,

where the last inequality holds because of the following inequalities 1) P (Θ1) ≤ ζn,
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and 2) P (Θ0), P (Θ̂ = Θ1|Θ1) ≤ 1. Note that

P (Θ̂ = Θ1|Θ0) =
∑

a∈{01,10,11}
P (Ĥ12 = a|H12 = 00)

≤
∑

a∈{01,10,11}
2−nγD̄Pn (a||00)

≤ 3× 2−nγD̃l,n ,

where D̃l,n = mina∈{01,10,11} D̄Pn(a||00). Therefore, there exists a sequence {qn}n≥1

with qn → 0 such that q < qn + ζn. Using this inequality and the inequality at (E.5),

we derive the following upper-bound for the total probability of error given in (E.1)

Pe ≤
3

1− qn − ζn
2−nγDl,n .

Therefore, the error exponent is bounded from below as

− log2 Pe
E[T ]

≥ sup
γDl,n

(1− qn − ζn)
+ ξn

where ξn = 1
n

log2( 1−qn−ζn
3

)

1−qn−ζn . Note that for any ε > 0 there exists large enough n such

that qn + ζn < ε,Dl,n > Dl − ε, ξn < ε. Set γ = γ∗ − ε. Then

− log2 Pe
E[T ]

≥ γ∗Dl − σ(ε)

where σ is a function of ε such that limε→0 σ(ε) = 0. Finally, the proof is complete

by replacing γ∗ from (E.3).
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E.2 Proof of Lemma 20

Proof. Given Y t = yt,W1 = m1,W2 = m2, we obtain

E[H1
t+1 −H1

t |m2, y
t]

= −I(W1;Yt+1|m2, y
t)

= −I(W1;Yt+1|m2, x
t+1
2 , yt)

= −H(Yt+1|m2, x
t+1
2 , yt) +H(Yt+1|m2, x

t+1
2 ,W1, y

t)

= −H(Yt+1|m2, x
t+1
2 , yt)

+H(Yt+1|m2, x
t+1
2 ,W1, X

t+1
1 , yt)

(a)
= −H(Yt+1|m2, x

t+1
2 , yt) +H(Yt+1|xt+1

2 , X t+1
1 , yt)

, −J1
t+1(m2, x

t+1
2 , yt) (E.6)

where (a) follows because condition on the channel inputs X1,t+1, X2,t+1, the output

Yt+1 is independent of W1,W2. We denote the right-hand side of (a) by J1
t+1(.) as in

(E.6). Similarly for the case when i = 2 the following lower-bound holds

E[H2
t+1 −H2

t |m1, y
t]

= −H(Yt+1|m1, x
t+1
1 , yt) +H(Yt+1|X t+1

2 , xt+1
1 , yt)

, −J2
t+1(m1, x

t+1
1 , yt). (E.7)

Using a similar argument for the case when i = 3, we can show that the following

inequality holds

E[H3
t+1 −H3

t |yt] ≥ −I(X t+1
1 , X t+1

2 ;Yt+1|yt)

, −J3
t+1(yt). (E.8)
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Consider the quantities at the right-hand side of (E.6), (E.7) and (E.8), i.e., the

functions J1
t+1, J

2
t+1, J

3
t+1. We proceed by the following lemma.

Lemma 36. The vector (J1
t+1, J

2
t+1, J

3
t+1) is inside the feedback-capacity region C al-

most surely.

Proof. We use the alternative representation for C which is given in Fact 1. For any

non-negative numbers λ1, λ2, λ3, let

Jλ(m1,m2, x
t+1
1 , xt+1

2 , yt) = λ1J
1
t+1(m2, x

t+1
2 , yt) + λ2J

2
t+1(m1, x

t+1
1 , yt) + λ3J

3
t+1(yt)

Note that

Jλ(m1,m2, x
t+1
1 , xt+1

2 , yt) ≤ sup
P
W1W2X

t+1
1 Xt+1

2 |Y t+1

E{Jλ(W1,W2, X
t+1
1 , X t+1

2 , yt)}, (E.9)

where the supremum is taken over all PXt+1
1 Xt+1

2 |Y t+1 that factors as in (6.4). The

right-hand side of the above inequality equals
∑

i E[λiJ
i
t+1]. Each expectation inside

the summation can be bounded as follows

E{J1
t+1(W2, X

t+1
2 , yt)} = H(Yt+1|W2, X

t+1
2 , yt)−H(Yt+1|X t+1

2 , X t+1
1 , yt)

≤ H(Yt+1|X t+1
2 , yt)−H(Yt+1|X t+1

2 , X t+1
1 , yt)

= I(X1,t+1, Yt+1|X t+1
2 , yt)

Similarly,

E{J2
t+1(W1, X

t+1
1 , yt)} ≤ I(X2,t+1;Yt+1|X t+1

1 yt)

E{J3
t+1(yt)} ≤ I(X1,t+1, X2,t+1;Yt+1|yt)
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Therefore, since the channel is memoryless using the above bounds we have

E{Jλ(W1,W2, X
t+1
1 , X t+1

2 , yt)}

≤ λ1I(X1,t+1, Yt+1|X t+1
2 , yt) + λ2I(X2,t+1;Yt+1|X t+1

1 yt) + λ3I(X1,t+1, X2,t+1;Yt+1|yt)

≤ Cλ

Since the vector (J1
t+1, J

2
t+1, J

3
t+1) is inside the capacity for all 1 ≤ t ≤ N , then, by

definition, ∀ε > 0 there exist L and PXL
1 X

L
2 Y

L factoring as in (6.4) such that

J it+1 ≤ I iL + ε, i = 1, 2, 3

holds for all 1 ≤ t ≤ N . This implies the statement of the lemma.

E.3 Proof of Lemma 24

Proof. We prove the first statement of the lemma. The second and the third state-

ments follow by a similar argument. Given Y t = yt,W2 = m, define the following

quantities

fi|m = P (W1 = i|Y t = yt,W2 = m)

fi|m(yt+1) = P (W1 = i|Y t = yt,W2 = m,Yt+1 = yt+1)

Qi,m(yt+1) = P (Yt+1 = yt+1|W1 = i,W2 = m,Y t = yt),

where i ∈ [1 : M1], yt+1 ∈ Y . Since H1
t < ε, then there exist ε′ (as a function of ε) and

an index l ∈ [1 : M1] such that fl|m ≥ 1− ε′ and fi|m ≤ ε′

M1−1
for all i ∈ [1 : M1], i 6= l.
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Denote

f̂i|m =
fi|m

1− fl|m
, i 6= l.

Using the grouping axiom we have

H1
t = H(W1|W2 = m, yt) = hb(fl|m) + (1− fl|m)H(X̂)

where X̂ is a random variable with probability distribution P (X̂ = i) = f̂i|m, i ∈ [1 :

M1], i 6= l. Note that

hb(fl|m) ≈ −(1− fl|m) log(1− fl|m).

Therefore,

H1
t ≈ −(1− fl|m)(log(1− fl|m)−H(X̂))

≈ (1− fl|m) log(1− fl|m) (E.10)

where the last approximation is due to the fact that − log(1− fl|m)� H(X̂). Next,

we derive an approximation for H1
t+1. Note that

fl|m(yt+1) =
fl|mQl,m(yt+1)∑
j fj|mQj,m(yt+1)

The denominator can be written as

fl|mQl,m(yt+1) + (1− fl|m)
∑
j 6=l

f̂j|mQj,m(yt+1).

188



The above quantity is approximately equals to Ql,m(y). Therefore,

(1− fl|m(yt+1)) = (1− fl|m)

∑
j 6=l f̂j|mQj,m(yt+1)∑
j fj|mQj,m(yt+1)

≈ (1− fl|m)

∑
j 6=l f̂j|mQj,m(yt+1)

Ql,m(yt+1)

This implies that fl|m(yt+1) ≈ 1. Therefore, using the same argument for H1
t we have

H1
t+1 ≈ −(1− fl|m(yt+1))(log(1− fl|m(yt+1))

= −(1− fl|m(yt+1))
[

log(1− fl|m) + log(

∑
j 6=l f̂j|mQj,m(yt+1)

Ql,m(yt+1)
)
]

≈ −(1− fl|m(yt+1)) log(1− fl|m). (E.11)

As a result of the approximations in (E.10) and (E.11), we obtain

H1
t+1

H1
t

≈ (1− fl|m(y)) log(1− fl|m)

(1− fl|m) log(1− fl|m)

=

∑
j 6=l f̂j|mQj,m(y)

Ql,m(y)

Note that

P (Yt+1 = y|W2 = m, yt) ≈ Ql,m(y)
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Therefore,

E{log
H1
t+1

H1
t

|yt} ≈ E{log

∑
j 6=l f̂j|mQj,m(Yt+1)

Ql,m(Yt+1)
}

=
∑
y

Ql,m(y) log

∑
j 6=l f̂j|mQj,m(y)

Ql,m(y)

(a)
= −D(Ql,m||

∑
j 6=l

f̂j|mQj,m)

(b)

≥ −
∑
j 6=l

f̂j|mD(Ql,m||Qj,m)

≥ −max
j 6=l

D(Ql,m||Qj,m)

(c)

≥ −(D1 + ε)

where (a) is due to the definition of Kullback–Leibler divergence, (b) is due to the

convexity of Kullback–Leibler divergence, and (c) is due to the definition of D1.

E.4 Proof of Theorem VI.2

Proof. Since {Zt} is a submartingale, then Z0 ≤ E[ZT ]. By the definition of {Zt} we

have E[ZT ] =
∑3

i=1 αiE[Zi
T ]. For any of processes {Zi

t}, the following hold:

E[Zi
T ] = E

[
H i
T − ε
I iL + ε

1{Hi
T≥ε}

]
+ E

[(
logH i

T − log ε

Di + ε
+ fi(log

H i
T

ε
)

)
1{Hi

T≤ε}

]
+ E[T ]

≤ E
[
H i
T − ε
I iL + ε

]
+ E

[
logH i

T − log ε

Di + ε
+ fi(log

H i
T

ε
)

]
+ E[T ]

(a)

≤ E
[
H i
T − ε
I iL + ε

]
+ E

[
logH i

T − log ε

Di + ε

]
+

1

µiDi

+ E[T ]

=
E[H i

T ]− ε
I iL + ε

+
E[logH i

T ]− log ε

Di + ε
+

1

µiDi

+ E[T ]

(b)

≤ E[H i
T ]− ε

I iL + ε
+

logE[H i
T ]− log ε

Di + ε
+

1

µiDi

+ E[T ] (E.12)
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where (a) follows from the inequality fi(y) ≤ 1
µiDi

, and (b) follows by applying Jensen’s

inequality for the function log(x).

Define η(Pe) = hb(Pe) + Pe log(M1M2). Using Lemma 23, the right-hand side of

(E.12) is upper bounded as

≤ η(Pe)− ε
(I iL + ε)

+
log(η(Pe))− log ε

Di + ε
+

1

µiDi

+ E[T ]

=
η(Pe)− ε
(I iL + ε)

+
logPe + log η(Pe)

Pe
− log ε

Di + ε
+

1

µiDi

+ E[T ]

≤ logPe
Di + ε

+ E[T ](1 + δi(Pe,M1M2, ε)), (E.13)

where the function δi is defined as

δi(Pe,M1M2, ε) = ‖ η(Pe)− ε
(I iL + ε) logM1M2

R
(3)
N

+
log η(Pe)

Pe
− log ε

(Di + ε) logM1M2

R
(3)
N

+
1

µiDi
logM1M2

R
(3)
N

‖

Note that we use the equation E[T ] = logM1M2

R
(3)
N

in the definition of δi. Observe that

lim
Pe→0

lim
M1M2→∞

δi(Pe,M1M2, ε) = 0.

Note that Zi
0 ≤ E[Zi

T ], i = 1, 2, 3, where Zi
0 = logMi−ε

IiL+ε
. Therefore,

logMi − ε
I iL + ε

≤ logPe
Di + ε

+ E[T ](1 + δi(Pe,M1M2, ε))

Multiplying both sides by Di+ε
E[T ]

and rearranging the terms give

− logPe
E[T ]

≤ (Di + ε)

(
1− R

(i)
N

I iL + ε

)

+
ε(Di + ε)

(I iL + ε)E[T ]
+ (Di + ε)δi(Pe,M1M2, ε),
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Define

δ̃(Pe,M1M2, ε) = max
i

(Di + ε) ε R
(3)
N

(I iL + ε′) logM1M2

+ (Di + ε)δi(Pe,M1M2, ε).

For any non-negative numbers λi, i = 1, 2, 3 the following inequality holds:

− logPe
E[T ]

≤ (Di + ε)

(
1− R

(i)
N

I iL + ε

)
+ δ̃, (E.14)

≤ (Di + ε)

(
1− λiR

(i)
N

λiI iL + ε

)
+ δ̃,

≤ (Di + ε)

(
1− λiR

(i)
N∑

j λjI
j
L + ε′

)
+ δ̃,

≤ (Di + ε)

(
1− λiR

(i)
N

sup
∑

j λjI
j
L + ε

)
+ δ̃,

= (Di + ε)

(
1− λiR

(i)
N

Cλ + ε

)
+ δ̃,

Since the transmission rates are inside the capacity region, λiR
(i)
N ≤ Cλ and we obtain

logPe
E[T ]

≤ Di

(
1− λiR

(i)
N

Cλ + ε

)
+ ε+ δ̃(Pe,M1M2, ε),

(a)
= Di

(
1− λiR

(i)
N

Cλ

)
+Di

λiR
(i)
N ε

Cλ(Cλ + ε)
+ ε+ δ̃(Pe,M1M2, ε),

(b)

≤ Di

(
1− λiR

(i)
N

Cλ

)
+Dmax

ε

Cλ
+ ε+ δ̃(Pe,M1M2, ε),

where Dmax = max{D1, D2, D3}, (a) follows by adding and subtracting the term

Di(
λiR

(i)
N

Cλ
), and (b) follows as

λiR
(i)
N

Cλ+ε
≤ 1. Define δ(Pe,M1M2, ε) = ε(1 + Dmax

Cλ
) +

δ̃(Pe,M1M2, ε). The theorem follows by taking the minimum over λi, i = 1, 2, 3 and
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the fact that the following condition is satisfied:

lim
ε→0

lim
Pe→0

lim
M1M2→∞

δ(Pe,M1M2, ε) = 0.

Note that in the above proof it is assumed that the capacity region is nonempty. This

assumption implies that Cλ > 0 for all λ 6= 0 with non-negative components.

E.5 Proof of Corollary 3

From (E.14) in the proof of Theorem VI.2, we obtain:

− logPe
E[T ]

≤ min
i∈{1,2,3}

(Di + ε)

(
1− R

(i)
N

I iL + ε

)
+ δ̃

≤ Dmax min
i∈{1,2,3}

(
1− R

(i)
N

I iL

)
+ δ

= Dmax min
α1,α2,α3≥0
α1+α2+α3=1

(
1−

3∑
i=1

αi
R

(i)
N

I iL

)
+ δ, (E.15)

where Dmax = max{D1, D2, D3}, and δ = δ̃ + ε sup(1 + Dmax

IiL
). For non-negative

λi, i = 1, 2, 3, set αi =
λiI

i
L∑

j λjI
j
L

. Next, replace αi, i = 1, 2, 3 in (E.15) with the above

term. Therefore, (E.15) does not exceed the following

Dmax min
λ1,λ2,λ3≥0
λ1+λ2+λ3=1

(
1−

∑
i λiR

(i)
N∑

j λjI
j
L

)
+ δ.

The proof is completed by noting that
∑

j λjI
j
L ≤ Cλ.
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