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Abstract—The problem of computing modulo prime-power
sums is investigated in distributed source coding as well as
computation over Multiple-Access Channel (MAC). We build
upon the previous group coding schemes and present a new multi-
level group coding strategy. Using the new coding scheme, we
derived achievable rates for both settings and show that strict
improvements can be obtained.

I. INTRODUCTION

EVER since the seminal paper by Korner and Marton in
1979, structured codes played a key role in the study

of asymptotic performance of multi-terminal communications
[1]-[5]. In all of these works, algebraic structure of the codes is
exploited to derive new bounds on the asymptotic performance
limits of communication. These bounds are strictly better than
those derived using unstructured codes. Most of these works
concentrate on linear codes built on finite fields. Despite the
aforementioned benefits, the algebraic structure imposed by
linear codes has certain restrictions. Finite fields exist only
when the alphabet size is a prime power. Even when the
existence is not an issue, in certain problems, weaker algebraic
structures such as groups have better properties, [6]. Group
codes are a type of structured codes that are closed under
the group operation. These codes have been studied in [6]-
[9] for point-to-point (PtP) communication problems. Under
specific constraints in multi-terminal settings, compared to
linear codes, the structure of group codes matches better with
that of the channel or source. This results in achieving lower
transmission rates in certain distributed source coding prob-
lems [10] and higher transmission rates for certain broadcast
channels [2].

When the underlying group is not a field, there are non
trivial subgroups. Since group codes are closed under the group
addition, these subgroups put a penalty on the transmission
rates. Based on this observation, in our earlier attempt, we
introduced a class of structured codes called transversal group
codes [11]. These codes are built over cyclic groups. In contrast
to group codes, they are not closed under the group addition.
This allows the transversal group codes to compensate for the
penalty put by subgroups and achieve higher/lower transmis-
sion rates in channel/source coding problems. In particular,
these codes extend the asymptotic rate region achievable in
distributed source coding as well as computation over MAC.

In this paper, we extend the notion of transversal group
codes and introduce a new class of codes over groups called
Multi-Level Group Codes (MLGC). These codes are con-
structed by taking subsets of group codes. We restrict our-
selves to cyclic groups and provide a construction of the

subsets. We first study some basic properties of MLGC and
derive a packing and a covering bound for such codes. These
bounds indicate that the PtP channel capacity and optimal
rate-distortion function is achievable using MLGC. Next, we
use these results to explore the applications of MLGC in
multi-terminal communication problems. We derive achievable
rates using MLGC for certain distributed source coding and
computation over MAC problems. We show, through some
examples, that these codes give better achievable rates for both
settings. Due to space limitation in this paper, some proofs
have been omitted; a more complete version can be found in
[12].

The rest of this paper is organized as follows: Section
II provides the preliminaries and notations. In Section III
we propose MLGC and investigate some of their properties.
In Section IV and Section V, we discuss the applications
of MLGC in computation over MAC and distributed source
coding, respectively. Section VI concludes the paper.

II. PRELIMINARIES

Notations: We denote (i) vectors using lowercase bold
letters such as b,u, (ii) matrices using uppercase bold letters
such as A, (iii) random variables using capital letters such
as X,Y , (iv) numbers, realizations of random variables and
elements of sets using lower case letters such as a, x. Calli-
graphic letters such as C and U are used to represent sets. For
shorthand, we denote the set {1, 2, . . . ,m} by [1 : m].

Groups: A group is a set equipped with a binary
operation denoted by “+”. The focus of this paper is on
the cyclic groups. Given a prime power pr, the group of
integers modulo pr is denoted by Zpr , where the underlying
set is {0, 1, · · · , pr − 1} and the addition is modulo-pr. For
s ∈ {0, 1, · · · , r}, define

Gs = psZpr = {0, ps, 2ps, · · · , (pr−s − 1)ps},

and Ts = {0, 1, · · · , ps − 1}. Note, Gs is a subset of Zpr
that is closed under the modulo-pr addition. Given Gs and
Ts, each element a of Zpr can be represented uniquely as a
sum a = t + g, where g ∈ Gs and t ∈ Ts. We denote such t
by [a]s.

For any elements a, b ∈ Zpr , we define the multiplication
a · b by adding a with itself b times. Given the group Zpr
a positive integer n, we construct a larger group denoted by
Znpr =

⊗n
i=1 Zpr , whose addition is element-wise.



Group Codes: Let b ∈ Znpr and consider a k × n
matrix A with elements in Zpr , where k ≤ n. A group code
C over Zpr with length n is defined by

C = {uA+ b : u ∈ Zkpr}.

Group codes, in general, are defined over any group G. Sahebi,
et al, [9], characterized the ensemble of all group codes over
commutative groups.

Transversal Group Codes: Select b ∈ Znpr and for
each s ∈ [1 : r], let As be a ks × n matrix with elements
in Zpr . A transversal group code over Zpr with length n is
defined as

C = {
r∑
s=1

usAs + b : us ∈ T kss , s ∈ [1 : r]}.

A. Computation Over MAC

Consider a two user MAC whose input alphabets at each
terminal form a group G and its output alphabet is denoted by
Y .

Definition 1 (Codes for computation over MAC). A (θ1, θ2)-
code for computation over the above MAC consists of two
encoding functions and one decoding function. The encoding
functions are denoted by fi : [1 : θi] → Gn, for i = 1, 2 and
the decoding function is a map g : Yn → Gn.

Definition 2 (Achievable Rate). (R1, R2) is said to be achiev-
able if for any ε > 0, there exist a (θ1, θ2)-code such that

P{g(Y n) 6= f1(m1) + f2(m2)} ≤ ε, Ri ≤
1

n
log θi,

holds for all mi ∈ [1 : θi], i = 1, 2.

III. MULTI-LEVEL GROUP CODES

In this section, we propose Multi-level group codes that
are built upon group codes. It is known that a linear code
over a field Fp is a subspace of Fnp . This code can also be
viewed as the image of a linear transformation from Fkp into
Fnp . Similarly, as described in Section II, a group code over
Zpr , can be viewed as the image of a map from Zkpr into Znpr .
Such map is denoted as φ(u) = uA+ b, where b ∈ Znpr and
A is a matrix with elements belonging to Zpr . The idea to
create MLGC is to restrict the domain of this map to a subset
of Zkpr . We first discuss this idea for a special case, then we
describe a specific construction of this subset.

Suppose U is a random variable over Zpr . For some small
ε > 0, let U = A

(k)
ε (U). Consider a k × n matrix A with

elements in Zpr and let

C = {uA+ b : u ∈ U},

where b ∈ Znpr is an arbitrary translation. Note if U is uniform
over Zpr , then C will be a group code.

Next, we propose a more general construction of U .
Consider positive integers m, ki, i ∈ [1 : m]. For each i,
let Ai be a ki × n matrix with elements in Zpr . Consider
the map φ(u1,u2, . . . ,um) =

∑m
i=1 uiAi + b. Suppose

U1, U2, · · · , Um are independent random variables over Zpr .
For a small ε > 0, define the MLGC code as

C = {φ(u1,u2, . . . ,um) | ui ∈ A(ki)
ε (Ui), i ∈ [1 : m]}. (1)

Note, we consider U as a Cartesian product of the typical
sets of Ui, i.e.,

U =

m⊗
i=1

A(ki)
ε (Ui).

We restrict ourselves to this construction of U , due to tractabil-
ity in analyzing the performance of the code.

Definition 3. An (n,m, k1, k2, . . . , km) MLGC over Zpr is
characterized by a translation b ∈ Znpr , random variables Ui
over Zpr and ki × n matrices Ai, where i ∈ [1 : m].

Remark 1. Any group code and transversal group code over
Zpr is a multi-level group code.

Fix n,m, k1, k2, . . . , km and random variables Ui, i ∈
[1 : m]. We create an ensemble by taking the collection of
all (n, k1, k2, . . . , km) multi-level group codes with random
variables Ui, for all matrices Ai and translations b. A random
codebook C, from this ensemble, is chosen by selecting the
elements of Ai, i ∈ [1 : m] and b randomly and uniformly
from Zpr . For large enough n, with probability one the rate
of this code is

R =
1

n
log2 |C| ≈

m∑
i=1

ki
n
H(Ui).

Note, we have assumed that the map induced by b and the
matrices Ai is injective. This conditions is satisfied with high
probability if

m∑
i=1

ki
n
H(Ui|[Ui]s) ≤ (r − s) log2 p, for 0 ≤ s ≤ r − 1.

In the next subsection, we discuss the properties of multi-
level group codes and derive a packing and a covering bound
for these codes.

A. Properties of Multi-Level Group Codes

When the underlying group is Zpr for r ≥ 2, there are
several nontrivial subgroups. These subgroups cause a penalty
on the rate of a group code. This results in lower transmission
rates in channel coding and higher transmission rates in source
coding. However, when the structure of the group codes match
with that of a multi-terminal channel/source coding problem,
higher/lower transmission rates are obtained. One reason is that
as group codes are closed under the addition, |C+ C| is small.
This brings about higher transmission rates in multi-terminal
channel coding where the sum of two transmitted codewords
are decoded.

Transversal group codes remove the penalty for the sub-
groups by paying the price for larger |C+C|. multi-level group
codes, on the other hand, balance the trade off between the
penalty for subgroups and |C + C|. This results in a more
flexible algebraic structure to match better with the structure
of the channel or source. The following lemma shows such
tradeoff.



Lemma 1. Suppose C and C′ are two (n,m, k1, . . . , km)
MLGC with random variables Ui and U ′i , i ∈ [1 : m],
respectively. If C and C′ have identical matrices and translation
with elements chosen randomly and uniformly from Zpr , then
with probability one the followings hold:

1) C + lC′ is a (n,m, k1, . . . , km) multi-level group code
with random variable Ui + lU ′i ,

2) max{|C|, |lC′|} ≤ |C + lC′| ≤ min{prn, |C| · |lC′| − 1},

where l ∈ Zpr is an arbitrary element.

Proof: The complete proof is given in [12].

In what follows, we prove a covering and a packing
bound for multi-level group codes. These bounds are useful
in analyzing the asymptotic performance of MLGC’s.

Lemma 2 (Packing). Let C be a (n,m, k1, k2, . . . , km) MLGC
with translation b, random variables Ui and matrices Ai, i ∈
[1 : m]. Let (X,Y ) ∼ p(x, y), where X takes values from Zpr .
Suppose the elements of Ai and b are chosen randomly and
uniformly from Zpr . Then for an arbitrary sequence y,

P{(x,y) ∈ A(n)
ε (X,Y ) for some x ∈ C} → 0, as n→∞,

if

R ≤ min
0≤s≤r−1

∑m
i=1 kiH(Ui)∑m

i=1 kiH(Ui|[Ui]s)
(
log2 p

r−s −H(X|Y [X]s)
)
.

(2)

Proof: For the proof refer to [12]

Lemma 3 (Covering). Let C be a (n,m, k1, k2, . . . , km)
MLGC with translation b, random variables Ui and matrices
Ai, i ∈ [1 : m]. Let (X, X̂) ∼ p(x, x̂), where X̂ is uniform
over Zpr . Suppose the elements of Ai and b are chosen
randomly and uniformly from Zpr . Then for any x ∈ A(n)

ε (X),

P{(x, x̂) ∈ A(n)
ε (X, X̂) for some x̂ ∈ C} → 1, as n→∞,

if

R ≥ max
1≤s≤r

∑m
i=1 kiH(Ui)∑m
i=1 kiH([Ui]s)

(
log2 p

s −H([X̂]s|X)
)
. (3)

Proof: The proof is given in [12].
Remark 2. MLGC codes achieve the symmetric channel ca-
pacity and symmetric rate-distortion function. To see this, set
m = 1 and U1 uniform over {0, 1}.

Lemma 1, 2 and Lemma 3 provide a tool to derive inner
bounds for achievable rates using multi-level group codes
in multi-terminal channel coding and source coding. In the
next two sections, we study applications of multi-level group
codes in distributed source coding and computation over MAC.
We will show that multi-level group code improves upon
previously known schemes. But, before that let us describe
another ensemble of codes based on multi-level group codes.

B. Unionized Multi-Level Group Codes

Note that a randomly generated MLGC has uniform distri-
bution over the group Zpr . However, in many communication
setups we require application of codes with non-uniform
distributions. In the case of group codes, this problem is
resolved by constructing a group code first, then the union
of different shifts of this group code is considered as the
codebook. In other words, a large codebook is binned, where
the bins themselves are required to possess a group structure
[9]. This new codebook is called a unionized group code.
Dual to this codebook construction method, we design a new
ensemble of codes. The new codes are called Unionized Multi-
Level Group Codes (UMLGC).

A UMLGC consists of an inner code and an outer code.
Suppose Cin is a (n,m, k1, . . . , km) MLGC with translation
b, random variables Ui and matrices Ai, i ∈ [1 : m]. We use
Cin as the inner code. Given a positive integer l, consider a
map t : [1 : l]→ Znpr . Define the outer code as

Cout =
⋃

j∈[1:l]
(Cin + t(j))

Definition 4. An (n,m, l, k1, k2, . . . , km) UMLGC over Zpr
is characterized by a mapping t : [1 : l]→ Znpr , a translation
b ∈ Znpr and ki × n matrices Ai, i ∈ [1 : m] with elements in
Zpr .

One application of UMLGC is in PtP source coding and
channel coding.

Lemma 4. UMLGC achieve the PtP channel capacity and
rate-distortion function for any channel and source with finite
alphabet size.

Proof: The proof follows from Remark 2 and is provided
in [12].

IV. DISTRIBUTED SOURCE CODING

We study a two-user distributed source coding and derive
an achievable region. Suppose X1 and X2 are sources over
Zpr with joint PMF p(x1, x2). The jth encoder compress
Xj and sends it to a central decoder. The decoder wishes
to reconstruct X1 + X2 losslessly. We propose a coding
scheme using unionized multi-level group codes and derive
an achievable region. Then we show that this region strictly
extends the previously know achievable regions.

Definition 5. A pair (R1, R2) belongs to Rs, if there exist
m ∈ N, qi ∈ Q and random variables Vi, V ′i , i ∈ [1 : m] over
Zpr , such that

R1 +

m∑
i=1

qiH(Vi) = r log2 p, R2 +

m∑
i=1

qiH(V ′i ) = r log2 p,

where 1) qi > 0, 2) Vi, V
′
i , i ∈ [1 : m] are mutually

independent, 3) For any s ∈ [0 : r − 1]

m∑
i=1

qiH(Wi|[Wi]s) ≤ r log2 p−H(X|[X]s),

where Wi = Vi + V ′i , X = X1 +X2.



Theorem 1. Rs is achievable for lossless reconstruction of
X1 + X2, where X1 and X2 are a pair of sources over the
group Zpr .

Outline of the proof: Consider any pair of rates
(R1, R2) ∈ Rs. Let m, qi, Vi, V ′i , i ∈ [1 : m] are as in
Definition 5 and correspond to (R1, R2). Assume qi = ki/n,
where ki and n are positive integers. For each i, generate
a ki × n matrix Ai whose elements are chosen randomly
and uniformly from Zpr . Select b,b′ ∈ Znpr randomly and
uniformly. Let t : [1 : 2nR1 ]→ Znpr and t′ : [1 : 2nR2 ]→ Znpr
be two maps selected randomly.

Codebook Generation: We use three UMLGC, one for
each encoder and one for the decoder. We first build the inner
codes. Let Cin and C′in be two (n,m, k1, . . . , km) multi-level
group codes with identical matrices Ai. Let b and Vi, i ∈
[1 : m] be the corresponding translation and random variables
of Cin, respectively. Assign b′ and V ′i , i ∈ [1 : m] as the
translation and random variables associated with C′in. Define
Cin,d = Cin + C′in.

Let the outer code for the first and the second encoder be
denoted by Cout and C′out, respectively. These two codebooks
are given as follows:

Cout =
⋃

j∈[1:2nR1 ]

(Cin + t(j)),

C′out =
⋃

j′∈[1:2nR2 ]

(C′in + t′(j′)).

Encoding: Given a typical sequence x1 ∈ Anε (X1),
encoder 1 first finds j ∈ [1 : 2nR1 ] and c ∈ Cin such that
x1 = c + t(j); then it sends j. If no such j was found, an
error event E1 will be declared.

Similarly, upon receiving x2 ∈ Anε (X2), the second
encoder finds j′ ∈ [1 : 2nR2 ] and c′ ∈ C′in such that
x2 = c′ + t′(j) and sends j′. If no such j′ was found, an
error event E2 will be declared. If more than one index were
found at each encoder, select one randomly.

Decoding: Assume there is no encoding error. The
decoder wishes to reconstruct x1 + x2. Upon receiving j and
j′, the decoder takes t(j) and t′(j′); then finds cd ∈ Cin,d such
that cd + t(j) + t′(j′) ∈ A(n)

ε (X1 +X2). If such cd is found,
then z̃ = cd + t(j) + t′(j′) is declared as a reconstruction of
x1 + x2. An error event Ed occurs if z̃ 6= x1 + x2.

We show in [12] that for large enough n the probability of
E1 ∪ E2 ∪ Ed approaches zero.
Remark 3. When X1 and X2 are distributed over the field Zp,
Rs is equivalent to

Rj ≥ H(X1 +X2).

This is the achievable rate region using linear codes.

In general, Rs extends the achievable regions using linear
codes, group codes and transversal group codes. We show,
through an example, that this extension is strict.

Example 1. We consider a distributed source coding problem
in which X1 and X2 are sources over Z4 and lossless recon-
struction of X1 +X2 is required at the decoder. Assume X1

is uniform over Z4. X2 is related to X1 via X2 = N − X1,
where N is independent of X1. The distribution of N is given
in Table I.

TABLE I. DISTRIBUTION OF N

N 0 1 2 3
PN 0.1δN 0.9δN 0.1(1− δN ) 0.9(1− δN )

It is known that group codes in this example outperform
linear codes, [9]. The largest achievable region using group
codes is

Rj ≥ max{H(Z), 2H(Z|[Z]1)}, j = 1, 2,

where Z = X1+X2. We showed in [11] that transversal group
codes outperform group codes and the following is achievable

Rj ≥ max{H(Z), 1/2H(Z) +H(Z|[Z]1)}.

Using Theorem 1, an inner bound for Rs is obtained as

Rj ≥ 2−min{0.6(2−H(Z)), 5.7(2− 2H(Z|[Z]1)}.

This is verified by setting m = 1, P (V1 = 0) = P (V ′1 = 0) =
0.95 and P (V1 = 1) = P (V ′1 = 1) = 0.05.

Now, let δN = 0.6. In this case, using group codes the rate
Ri ≈ 1.94 is achievable, using transveral group codes Ri ≈
1.69 is achievable and lastly UMLGC achieves Ri ≈ 1.67.

V. COMPUTATION OVER MAC

Through a variation from the standard computation over
MAC problems, in this section, we explore distributed com-
putation of the inputs of a MAC. Consider a two-user MAC
in which a central receiver wishes to compute the sum of
the inputs the channel. Figure 1 depicts a schematic of this
setup. Suppose the channel’s inputs, X1 and X2, take values
from Zpr . Two distributed encoders map their messages to
Xn

1 and Xn
2 . Upon receiving the channels output the decoder

wishes to decode Xn
1 +Xn

2 with no loss. Applications of this
problem are in various multui-user communication setups such
as interference and broadcast channels.

WY |X1,X2

X1

X2

Decoder
Y

Z = X1 +X2

Fig. 1. The diagram of computation over MAC.

For the above setup, we use multi-level group codes to
derive an achievable region which extends the previously
known regions. Our scheme consists of two multi-level group
codes, one for each encoder. We use identical matrices for each
code but different translations and random variables. At the
decoder, as a codebook, we consider the sum of the codebooks
used at each encoder. Using the packing bound in Lemma 2
we show that the following set of rates is achievable.

Definition 6. The pair (R1, R2) belongs to Rc, if there exist
m ∈ N, qi ∈ Q and random variables Vi and V ′i , for i ∈ [1 :



m], such that

R1 =

m∑
i=1

qiH(Vi), R2 =

m∑
i=1

qiH(V ′i ),

where qi ≥ 0 and 1)Vi, V ′i , i ∈ [1 : m] are mutually
independent, , 2) for any s ∈ [0 : r − 1],

m∑
i=1

qiH(Wi|[Wi]s) ≤ r log2 p−H(X|Y, [X]s), (4)

where Wi = Vi + V ′i , X = X1 + X2 and X1 and X2 are
uniform over Zpr .

Theorem 2. Rc is achievable for computation over any MAC
with input-alphabets Zpr .

Outline of the proof: Consider a pair (R1, R2) ∈ Rc.
Suppose m and qi, Vi, V

′
i , i ∈ [1 : m] are as in Definition 6

and correspond to (R1, R2). We can find positive integers n
and ki such that for each i, qi = ki/n.

For each i, generate a ki×n matrix Ai whose elements are
chosen randomly and uniformly from Zpr . Select b, b′ ∈ Znpr
randomly and uniformly.

Codebook Generation: Let C and C′ be two
(n,m, k1, k2, . . . , km) MLGC with identical matrices
Ai. Let the translation and random variables corresponding
to C be b and Vi, i ∈ [1 : m]. Assign b′ and V ′i , i ∈ [1 : m]
as the translation and random variables associated with C′.
Lastly, set Cd = C + C′. By Lemma 1, Cd is a MLGC with
translation b + b′ and random variable Vi + V ′i . Index all the
codwords in each codebooks C, C′ and Cd.

Encoding: Encoder one upon receiving a message index θ
sends the corresponding codeword in C. The second encoder,
similarly, upon receiving θ′ sends the corresponding codeword
in C′. Suppose the output of encoder j is xj , j = 1, 2.

Decoding: Upon receiving y from the channel, the decoder
wishes to decode x = x1+x2. It finds x̃ ∈ Cd such that x̃ and
y are jointly typical with respect to the distribution PX1+X2,Y ,
where X1 and X2 are uniform over Zpr . An error occurs if
no unique x̃ is found.

This is a packing problem for the effective channel
PY |X1+X2

. Denote the rate of Cd by R. Then by Lemma
2, the probability of error is small enough, if (2) holds for
Ui = Vi + V ′i and X = X1 +X2. This bound is equivalent to
(4). Note that the rate of C and C′ are R1 and R2, respectively.
So (R1, R2) is achievable.
Remark 4. Assume that the underlying group is Zp, i.e., the
case where r = 1. Then Rc is simplified to

Rj ≤ I(X1 +X2;Y ), j = 1, 2,

where X1 and X2 are independent and uniform over Zpr . It
is known that this region is achievable by linear codes.

In what follows, we show by an example that Rc strictly
extends the achievable region of unstructured codes, group
codes and transversal group codes.

Example 2. Consider the following MAC:

Y = X1 ⊕X2 ⊕N,

where X1 and X2 are the channel inputs with alphabet Z4.
N is independent of X1 and X2 with the distribution given in
Table I, where 0 ≤ δN ≤ 1.

It is shown in [9] that the largest achievable region for
group codes is

Rj ≤ min{I(Z;Y ), 2I(Z;Y |[Z]1)},

where Z = X1 +X2 and X1 and X2 are uniform over Z4. In
[11], we showed transversal group codes achieve,

Rj ≤ min{I(Z;Y ), 0.5I(Z;Y ) + I(Z;Y |[Z]1)}.

From Theorem 2, multi-level group codes achieve

Rj ≤ min{0.6I(Z;Y ), 5.7I(Z;Y |[Z]1)}.

Now, by setting δN = 0.6, the rate Ri ≈ 0.06 is achievable us-
ing group codes and Ri ≈ 0.31 is achievable using transversal
group codes. Whereas, Ri ≈ 0.33 is achievable using MLGC.

VI. CONCLUSION

The problem of computing modulo prime-power was con-
sidered. A new layered ensemble of structured codes called
MLGC was introduced. We investigated the performance limits
of these codes in distributed source coding and computation
over MAC. Achievablility results using these codes were
provided for both settings. We showed that the application of
MLGC for these problems results in improvements in terms
of transmission rates.
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