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ABSTRACT Deep neural networks have revolutionized many areas of computer vision, but they require
notoriously large amounts of labeled training data. For tasks such as semantic segmentation and monocular
3d scene layout estimation, collecting high-quality training data is extremely laborious because dense, pixel-
level ground truth is required and must be annotated by hand. In this paper, we present two techniques
for significantly reducing the manual annotation effort involved in collecting large training datasets. The
tools are designed to allow rapid annotation of entire videos collected by RGBD cameras, thus generating
thousands of ground-truth frames to use for training. First, we propose a fully-automatic approach to produce
dense pixel-level semantic segmentation maps. The technique uses noisy evidence from pre-trained object
detectors and scene layout estimators and incorporates spatial and temporal context in a conditional random
field formulation. Second, we propose a semi-automatic technique for dense annotation of 3d geometry, and
in particular, the 3d poses of planes in indoor scenes. This technique requires a human to quickly annotate
just a handful of keyframes per video, and then uses the camera poses and geometric reasoning to propagate
these labels through an entire video sequence. Experimental results indicate that the technique could be used
as an alternative or complementary source of training data, allowing large-scale data to be collected with
minimal human effort.

INDEX TERMS Scene understanding, 3D reconstruction, semi-supervised learning, computer vision.

I. INTRODUCTION
Understanding the semantic, three-dimensional structure of
the visual world is a fundamental problem in computer vision,
with innumerable applications ranging from automatic photo
retrieval to autonomous vehicles. A particularly difficult
problem is to understand scene content from a single image.
When a photograph is taken, the projective transformation
‘‘converts’’ a 3d scene into a 2d image, throwing away most
explicit cues about depths of points in the scene. Reversing
this process — understanding three-dimensional scenes from
two-dimensional images — is very difficult, and in fact is
mathematically ill-posed, because of the inherent ambiguity
in the task.
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However, humans are often able to infer 3d scene structure
from 2d photos, including the identity of objects and approx-
imate 3d layout, even when there is significant occlusion
between scene elements. To do this, we use a variety of
cues including perspective, relative object size and position,
shadows, etc., combined with intuition from a lifetime of
experience about the world [1]. Encoding this reasoning into
an automatic algorithm has been a long-standing goal of
computer vision, but has proven difficult: human-level perfor-
mance requires not just low-level image cues, but also higher-
level semantic cues: identifying objects, reasoning about their
typical relationships, applying the laws of nature, etc.

Understanding indoor scenes poses particular problems.
Indoor spaces have relatively textureless surfaces such as
walls, making it difficult to identify distinctive keypoints for
matching or analysis. Moreover, in indoor photos the distance
between the camera and scene is usually small, exacerbat-

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 1

https://orcid.org/0000-0001-7692-817X
https://orcid.org/0000-0003-2799-9689
https://orcid.org/0000-0002-5766-3556
https://orcid.org/0000-0002-5827-5344
https://orcid.org/0000-0003-2041-5222
https://orcid.org/0000-0003-1072-0792


M. A. Reza et al.: Automatic Dense Annotation for Monocular 3D Scene Understanding

ing problems with perspective distortion and lens artifacts.
On the other hand, reconstruction of indoor scenes can benefit
from strong prior information about the world: rooms usually
consist of prominent planar surfaces (walls, ceiling, floor)
that intersect at 90 degree angles, and rooms of specific
types usually contain common objects in certain canonical
configurations (e.g., living room with couches, kitchen with
table and chairs, etc.).

Recently, progress on problems related to scene under-
standing, including object recognition and 3d scene layout
estimation, has accelerated because of the dramatic suc-
cess of deep learning on many computer vision problems.
Although the exact mechanism for this success is not fully
understood, one common hypothesis is that modern deep
learningmodels – especially convolutional neural networks –
are particularly adept at capturing regularities of the visual
structure of the world. In the context of monocular 3d scene
reconstruction, for example, this means that deep neural
networks trained on large-scale scene datasets can provide
powerful models of the ‘‘prior distribution’’ of the real visual
world, allowing the networks to produce a plausible 3d model
despite the inherent ambiguity of the 2d-to-3d problem.

However, the major disadvantage of these techniques is
that they require large-scale training data, typically on the
order of tens of thousands to millions of images. Worse
than the quantity of imagery, though, is the density of labels
needed for many tasks. For example, two critical tasks for
understanding scenes are semantic segmentation [2]–[4] —
identifying meaningful pixel regions in an image and assign-
ing object or material labels to each of them—and estimating
the 3d structure of the scene [5]–[9]. Unfortunately, train-
ing modern machine learning-based algorithms for either of
these problems requires the extremely labor-intensive process
of densely annotating an image pixel-by-pixel, typically by
hand. This severely restricts the amount of training data
that can be collected for these methods, which means that
researchers tend to use training datasets that are convenient
instead of the ones that are best suited for a particular prob-
lem. This, in turn, limits the performance of these algorithms
in real-world applications.

In this paper, we explore how to collect large-scale training
data with minimal human interaction for these two tasks:
semantic segmentation and 3d room layout from single
images. Our approach is to develop a novel algorithm and tool
that allows people to provide quick, high-level annotations
about the content and geometry of an image. We increase
annotation speed by several orders of magnitude by doing
this annotation on video clips instead of single images. Video
is an attractive source of data because a single video may
have thousands of frames, showing an environment from
many different perspectives as the camera moves around
the environment. Moreover, because the frames of a video
are correlated, hand-labeled ground truth is less onerous to
collect, since annotations can be semi-automatically propa-
gated from one frame to the next. The end result is thou-
sands of individual images with high-quality annotations, but

with just a small amount of human labor. We assume that
we have RGBD data (from a depth camera) to assist this
annotation.

This work builds on previous approaches that have asked
humans to label a few keyframes, and then automatically
propagate these annotations across the entire video [10]–[12].
We first consider how to annotate semantic segmentation
maps. Instead of requiring human annotation, we rely on
signals from an object detector [13] applied to various object
categories (e.g., bed, tv, etc.). To account for the remain-
ing regions that are not explained by the object detectors,
we automatically estimate the 3D layout of the scene, which
helps to identify background regions. We then introduce a
novel energy minimization-based formulation for solving for
dense pixel-level annotations over an entire video. This work
is based on preliminary results that were presented at IROS
2019 [14].

We then turn to annotate training data for 3d room layout.
Unfortunately, this is not just a simple matter of scanning
scenes in 3d: there is a fundamental problem with collecting
data from range scanners and fitting 3d models to those
point clouds, because the data is sparse and errors are sim-
ply unavoidable. We propose a semi-automatic method of
estimating the 3d wire-frame or skeleton of an indoor scene.
The skeletal structure can be represented as a collection of 3d
lines that intersect with each other at junctions such as floor-
wall and ceiling-wall intersections. From these structures,
high-quality training data for our monocular depth estimation
model can be produced.

To summarize, we make the following contributions:
• First, we propose a novel method to densely annotate
pixels of an indoor scene for semantic segmentation. Our
method combines masks from pre-trained object detec-
tors with the estimated indoor scene layout to explain
all the pixels in an image including the background
(Figure 1). We formulate the pixel-level annotation in a
Conditional Random Field (CRF) energy minimization
framework, to use the regularities between successive
video frames to produce a consistent annotation over the
entire video.

• Second, we propose a novel method that allows human
annotators to quickly draw the rough 3d structure of an
indoor scene in a few keyframes, and then propagates
those layouts automatically across video frames. The
annotations required in each keyframe are very sparse
and easy to provide (e.g., 2d annotations of line segment
endpoints).

• Finally, we show that our automatic annotations can be
used to train data-hungry Deep Neural Networks.

II. RELATED WORK
Our semi-automatic annotation tools are tested on two crucial
tasks for 3d scene understanding: semantic segmentation, and
3d scene layout estimation. We briefly review work on these
two applications, as well as general work related to semi-
automatic video annotation.
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FIGURE 1. We automatically annotate indoor scenes for training semantic
segmentation models. Images (left) are automatically annotated (right)
based on off-the-shelf object detectors and a 3D room layout estimator.

A. SEMANTIC SEGMENTATION
Before the advent of Deep Convolutional Neural Networks
(DCNNs), semantic segmentation was usually performed
bottom-up using hand-engineered features [15]. Deep neural
networks have since surpassed these earlier approaches with
high accuracy. One successful application of an end-to-end
trainable convolutional network for semantic segmentation
is the Fully Convolution Network (FCN) of Long et al. [2].
This idea was further refined by SegNet [3]. To mitigate
the cost of pixel-level annotation, Dong et al. [16] recently
proposed a few-shot semantic segmentation approach that
learns a DCNN model from very few annotated images.

Semantic segmentation is closely related to object detec-
tion, which identifies objects in an image along with their
locations (typically in the form of bounding boxes). SSD [17],
YOLO [18], and Mask R-CNN [13] are popular choices.
For example, Mask R-CNN [13] detects objects by first cre-
ating regions of interest, performing classification on each
region and then using per-class non-maximal suppression
to avoid duplicate bounding boxes. For our work, we use
Mask R-CNN, since it also provides segmentation masks for
detected objects.

Of course, a key challenge with these models is how to col-
lect the densely-annotated training data to permit supervised
training. Castrejon et al. [19] learned a Recurrent Neural
Network (RNN) model that could predict the polygonal ver-
tices encompassing an object inside a cropped RGB image.
This method includes an interactive tool to correct predic-
tion errors. EasyLabel [20] is a semi-automatic method for
annotating objects on the RGB-D table-top setting. Label-
Fusion [21] is another semi-automatic method for generating
large quantities of semantic labels from RGB-D videos. This
method receives user annotations on the 3D reconstruction
of the environment, which are then used to propagate the
labels across the frames in the RGB-D video. Unlike these
methods, we propose a fully automatic method for labeling
all pixels— covering a range of categories from small objects
to large furniture and background — for all the images in an
RGB-D video, as well as annotating the 3d scene structure of
the indoor scenes.

B. MONOCULAR DEPTH ESTIMATION
As with semantic segmentation, deep learning has revolu-
tionized the study of reconstructing 3d from single RGB

frames: in fact, deep learning has arguably breathed new life
into a problem that was too difficult for the traditional tech-
niques that had been deployed before. Wang et al. [7] propose
an end-to-end deep learning architecture that estimates a 3D
shape in the form of a triangular mesh from a single color
image. Lee et al. [22] combine deep learning with inspira-
tion from traditional techniques based on Fourier analysis
for single-image depth estimation. Zhao et al. [23] propose
a simple feed-forward deep neural network that yields low
reconstruction errors when reconstructing 3d from a single
image of a 2D object. Laina et al. [24] introduces another end-
to-end trainable deeper neural network with a reverse Huber
loss function for depth estimation from a single RGB image.

While those techniques focus on reconstructing single
objects, other work has applied deep learning to reconstruct
the layout of an entire indoor scene. Mallya et al. [8] pro-
pose a box-shaped room layout prediction method by using
informative edge maps from an RGB image. Im2CAD [9]
was inspired by Roberts’ classic Block World [25] paper,
and attempts to infer a complete 3D interpretation of a
scene photo including the layout of the room by exploiting
deep neural network features and leveraging a rich database
of 3D CAD models to replicate various indoor objects
such as table, chair, bed, etc. LayoutNet [26] proposes a
generic framework for room layout estimation from a single
RGB image. The proposed architecture follows an encoder-
decoder architecture that receives 6-channel input (3-channel
RGB and 3-channel Manhattan constraint line-segments).
Lee et al. [27] propose RoomNet, an end-to-end network that
maps monocular RGB room images to keypoint-based room
structure images. Their model jointly predicts both scene type
and room layout in the form of keypoint (i.e., corners of a
room) positions.

Huang et al. [28] propose FrameNet, a model to learn
a canonical frame from a RGB image, where a canonical
frame is represented by three orthogonal directions, one
along the normal direction and two in the tangent plane.
Dasgupta et al. [29] propose a novelmethod calledDeLay for
room layout estimation from a single monocular RGB image
that uses a CNN model to generate an initial belief map,
which is then used by an optimization algorithm to predict
the final room layout. This model makes a strong Manhattan
World assumption — i.e., that the room is cuboid in shape.
Liu et al. [30] introduce PlaneNet, a Dilated Residual Net-
work (DRN) to predict plane parameters and corresponding
segmentation masks. They are able to produce piece-wise
planar and semantically meaningful structures from a single
RGB image. A major caveat of this work is the assumption
that the number of planes in a room is fixed. This hard
constraint has been eliminated in the follow-up work called
PlaneRCNN [5], where the detection module can detect any
arbitrary number of planes present in a scene.

Of course, deep learning is notoriously data-hungry, and so
progress in deep learning for 3d reconstruction has required
collecting large labeled datasets for training and testing.
Yi et al. [31] introduce a large-scale 3D shape understanding
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benchmark using data and annotations from the ShapeNet 3D
object database [32]. Sun et al. [6] introduced a large-scale
benchmark (Pix3D) of diverse image-shape pairs with pixel-
level 2D-3D alignment. Prior datasets typically contained
only synthetic data or lacked precise alignment between 2D
images and 3D shapes, but Pix3D has better dataset statis-
tics and better performance in quantitative evaluations. Raw
images were collected from web search engines and shapes
were collected from 3D repositories, and then the labeled
keypoints on the 2D images and 3D shapes were used for the
alignment.

Other datasets have been collected for whole scenes instead
of just objects, but these datasets typically have many images
but lower-quality annotations. For example, the Active Vision
Dataset (AVD) [33] contains diverse indoor environment
types across multiple geographic locations in the United
States. Each video was captured by a camera mounted on a
robot which was directed to roam through the rooms inside
various apartments. SUN3D [34] consists of thousands of
RGBD frames captured across various indoor locations in
university campuses and dormitories. Only a fraction of these
frames have been manually annotated. Our approach can be
applied to any of these RGBD video datasets, allowing us to
quickly annotate existing video data with rich annotations on
scene structure.

C. OTHER RELATED WORK
Our techniques are related to general work on semi-automatic
video labeling. Most of these techniques start with man-
ual annotations of a few keyframes, and then propagate
those annotations across the remaining frames using cues
such as spatial proximity, optical flow, or 3D reconstruction
[10]–[12], [34], [35]. Many of these techniques are similar in
nature to those used in object tracking.

Another strategy for dealing with limited training data is
to generate synthetic data [36], [37], but a caveat is that deep
neural networks trained with synthetic data may not perform
well when applied on real-world images. Tsutsui et al. [38]
found that synthetic training images actually hurt the perfor-
mance of fine-grained object recognition, but creating learned
mixtures of synthetic and real images was effective. How-
ever, the improvement was quite small and it still requires
large-scale labeled training data. While these techniques will
continue to improve, a more effective approach in the mean-
time may be to generate annotated data directly from natural
images. In this paper, we address this problem and propose
an automatic method for generating annotations from frames
of video sequences.

III. AUTOMATIC TRAINING DATA ANNOTATION FOR
SEMANTIC SEGMENTATION
We address the problem of automatically annotating all the
pixels in a frame from an indoor video without any human
annotation. Most pixels in an indoor scene belong to one of
two broad categories: object or background. To automatically
annotate all the pixels in an image, we need to find labels

for these two different categories. Object detectors allow us
to incorporate annotation information for the various specific
object categories, such as ‘‘bed,’’ ‘‘chair,’’ ‘‘tv,’’ etc. But a
large fraction of the pixels in an indoor scene consist of
background categories such as ‘‘wall,’’ ‘‘ceiling,’’ ‘‘floor,’’
‘‘window,’’ etc. In order to annotate the pixels for these
background categories not explained by an object detector,
we resort to 3D layout estimation of the scene. Information
from these two complementary sources is fused together by
solving an energy minimization problem in a Conditional
Random Field (CRF) framework. Figure 2 shows the pipeline
of our methodology. We now describe these components in
detail.

A. OBJECT DETECTION
Object detection [17], [18] identifies the objects present in an
image along with their locations in the form of rectangular
bounding boxes. To find a coarse segmentation mask of each
detected object, we use the object segmentation method of
Mask-RCNN [13]. Figure 3 (top row) shows detection results
on images from two different scenes in our experiments.
Notice that while the object identifications and boundaries
are generally accurate, a large fraction of pixels that are in the
background are not labeled. We find the annotation informa-
tion for these image pixels by estimating the structural layout
of the scene.

B. 3D SCENE LAYOUT ESTIMATION
The approximate structure of a typical indoor scene consists
of a set of 3D planes intersecting with each other. Individual
components of these planar structures can typically be labeled
as ‘‘wall,’’ ‘‘floor,’’ ‘‘ceiling,’’ etc. Finding and identifying
these planes is an open research question, of course — it
is part of the motivation behind this paper, since we need
to collect more high-quality training data to produce bet-
ter scene layout estimators. To break this chicken-and-egg
problem, we used a traditional technique not based on deep
learning, and thus less sensitive to shifts in application or
context. After experimenting with various of these, we settled
on the approach of Taylor et al. [39], which estimates the
structure of the scene by first finding 3D planes utilizing
the depth channel from an RGB-D image, and then assigns
labels to each plane based on its estimated normal. The
plane aligned to the gravity direction is labeled as ‘‘floor,’’
the plane orthogonal to the ‘‘floor’’ is labeled ‘‘wall,’’ and
the remaining portion of the layout is labeled as ‘‘ceiling.’’
Figure 3 shows the estimated scene layout components for
two sample images.

C. SUPERPIXELS
An image superpixel is a set of contiguous pixels that share
homogeneity in appearance, texture, etc. [40]–[42]. A super-
pixel generation algorithm partitions the image into a reduced
number of segments, thereby speeding up the work of sub-
sequent processing which can process partitions instead of
individual pixels. Reza et al. [10] generated high-quality
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FIGURE 2. For each video frame, we identify candidate object masks using pre-trained object detectors (top branch). The pixels not explained
by the detector are estimated from 3d scene layout (bottom branch). This evidence is combined in an energy minimization framework to
estimate our final annotation.

FIGURE 3. Sample detection and 3D room layout results from two
different scenes: Studyroom (Left) and MIT-32 (Right) from SUN3D [34].
Detector outputs (top) from Mask RCNN [13] provide an initial coarse
segmentation around detected objects, while 3D layout estimation
(below) explains background categories including ‘‘wall,’’ ‘‘floor,’’
and ‘‘ceiling.’’

superpixels, but relied on an expensive image-contour gen-
eration process that can take several minutes per image.
In contrast, we follow a simpler andmore efficient alternative,
SLIC (Simple Linear Iterative Clustering) [41], which can
generate superpixels in less than a second. Figure 4(b) shows
superpixel boundaries overlaid on an image from our experi-
ments. We use our superpixels as atomic units to incorporate
annotation information from our two complementary sources
of evidence, object detection and 3d scene layout estimation.

D. PIXELWISE ANNOTATION
We assume that we are given a video sequence consisting
of frames {I1, I2, . . . , IN }. For a given unannotated frame Ik ,

we would like to minimize,

E(Xk |Ik , Ik−1, Ik−2, Ik−3) =
∑
i∈V

θi(xi; Ik )

+

∑
i∈V

φi(xi; Ik−1, Ik−2, Ik−3)

+

∑
(i,j)∈ζ

ψij(xi, xj; Ik ), (1)

where θi(.) and φi(.) are the unary energy functions and
ψij(.) is the pairwise function. The CRF graph G = (V , ζ )
is defined over the pixels in the image Ik and 4-connected
neighbors. We use the 3 frames immediately preceding Ik ,
namely Ik−1, Ik−2, and Ik−3, and exploit their unaries com-
puted earlier by transferring them into the current frame using
optical flow. This ensures temporal smoothness in finding the
annotation for the current frame.

UNARY TERMS
From the detector output, we obtain a set of detected object
masks along with their labels. For the background category,
the predicted layout mask intersects with almost the entire
image. We assign a fixed score to all the pixels that overlap
with our various background categories (such as ‘‘wall,’’
‘‘floor,’’ ‘‘ceiling,’’ etc.). Figure 3 shows detection masks in
different colors along with their label on the top-left corner of
each bounding box. We find the intersection of a mask with
a superpixel, and within each superpixel distribute the same
score to all the pixels.
More specifically, we compute our first unary term,

θi(xi; Ik ) = −f (xi; Ik ), (2)

where f (.) is a score for the pixel i computed by the superpixel
that engulfs it. For each superpixel, we count the fraction of
pixels that overlap with the detection mask of object aj. As an
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FIGURE 4. Visualization of our energy minimization formulation. (a) For each frame, we (b) identify candidate object segmentation masks
from pre-trained object detectors [13]. (d) The remaining pixels are estimated from the layout of the scene [39]. These are combined via
energy minimization to estimate our final annotation (h). In addition to a unary term (e) from the current frame, we incorporate a second
unary (g) that encodes evidence from previous frames, using optical flow as shown in (f).

FIGURE 5. Detection masks on three successive frames in a video
sequence. Notice that the detector fires inconsistently on the same
instance of ‘‘chair’’ object category. Our formulation can handle this noise
with a unary term φ(.) that encourages temporal consistency across
frames.

example, if a detection mask from the ‘‘chair’’ category com-
pletely overlaps with a superpixel, then f (.) assigns a score
of 1.0 for ‘‘chair’’ category. Figure 4(b) shows an example of
our unary energy term for different annotation categories.

Our second unary term is,

φi(xi; Ik−1, Ik−2, Ik−3) = −g(xi; Ik−1, Ik−2, Ik−3), (3)

where g(.) is another scoring function based on the unary
energy terms for the three frames immediately preceding
frame Ik , in particular taking the average of the unary energy
terms from the frames Ik−1, Ik−2, and Ik−3 by transferring
them into frame Ik using optical flow. Figure 5 shows a
situation that demands this temporal consistency for finding
the correct annotation.

PAIRWISE TERM
To encourage smoothness, we adopt a simple Potts model for
our pairwise energy function, which penalizes adjacent pixels
having different annotations,

ψij(xi, xj; Ik ) =

{
0, xi = xj
b, xi 6= xj,

(4)

where b was empirically set to 0.5 for all our experiments.

Equation (1) isminimized usingGraphCuts [43] inference.
A summary of the steps for finding the automatic annotation
for an image is shown in Figure 4.

IV. VIDEO GEOMETRIC LABEL GENERATION
We now turn to generate data for our second problem of
key importance in scene understanding: automatic 3d lay-
out estimation from single 2d images. Our approach is to
develop a novel algorithm and tool that allows humans to
provide quick, high-level annotations about the geometry
of an image, and then use those annotations to fit a planar
room layout structure to noisy, 3d depth maps. When the
RGBD data is a video from a moving camera of a sta-
tionary scene, our approach is able to propagate the anno-
tations across time to unlabeled frames, thus reducing the
amount of human labor involved by several orders of mag-
nitude. We also assume that the camera poses of the indi-
vidual video frames are available as a prior, which could be
estimated from the standard Structure from Motion (SfM)
pipeline [44].

In particular, we propose a semi-automatic method of esti-
mating the 3D layout of indoor scenes, in the form of a
wire-frame or skeleton. The skeletal structure can be rep-
resented as a collection of 3d lines that intersect with each
other at junctions such as floor-wall and ceiling-wall intersec-
tions. Our goal is to semi-automatically estimate this wire-
frame structure of the indoor scene for all the frames in
an RGB-D video, in order to produce high-quality training
data for our monocular depth estimation model. We esti-
mate the 3D wire-frame structure of a scene in two stages:
(i) Corner point annotation in a few keyframes and ii) Lay-
out estimation for the entire video utilizing the annotated
keyframes.
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TABLE 1. Quantitative evaluation of our proposed automatic annotation method. First and second items in each entry denote evaluation metrics average
per-class and average IoU respectively. The last column reports mean across the categories in each video (row wise). The bottom row shows the mean
across video sequences for each category (column wise)

A. CORNER POINT ANNOTATION IN KEYFRAMES
Weneed hand-labeled annotations for just a fraction of frames
(less than 5 out of a thousand) for an RGB-D video, and
we design this annotation process in a way such that they
can be collected quickly and easily. We first ask the user to
watch a video clip of video collected from a moving camera
of an indoor scene, and to identify around 10-12 frames that
collectively (roughly) cover all parts of the scene. We then
ask the user to annotate each of these frames by clicking on
the two endpoints of all visible 2D lines. In particular, we ask
the user to (1) annotate horizontal and vertical line segments
in 2D image space that are part of the wire-frame skeleton
of the scene, and (2) verify that each line, when extended,
intersects with another line (vertically or horizontal) that is
part of the wire-frame skeleton.

Figure 6 shows a sample annotation of a scene from our
experiments. We utilize these partially-annotated keyframes
in the subsequent stage to estimate the layout of the
entire RGB-D video. Some scenes are heavily cluttered and
occluded, hence only a small 2D line segment might be
visible in the scene. We address these limitations by inferring
the extent of the entire line in the next stage of our layout
estimation algorithm.

B. CANDIDATE LAYOUT ESTIMATION IN THE KEYFRAMES
We estimate the initial layout on these partially-annotated
keyframes by extending the 2D line segments until they reach
either the boundary of the image or a visible intersection (e.g.,
corner point in the room). We then find the 2D line equations
associatedwith each 2D line-segment in image space and then
find all pairs of intersections between these 2D lines as our
initial hypothesis of the layout. Then for each line segment,
we extend it both directions to find the intersection that is
closest to the line. Since the depth channel is very noisy
and a portion of the space has missing depth information,
we need to infer missing 3D points and, as a consequence,
our algorithm needs to move back and forth from the 2D
line equation to the 3D line equation. Once the layouts are
estimated in the keyframes, we transfer these layouts to the
rest of the frames using the camera poses and 3D point clouds.

FIGURE 6. Annotated endpoints of small 2D line segments are visualized
as white ‘+’ signs in three manually-selected keyframes (best viewed in
color). These endpoints are annotated in pairs. Notice these annotations
are unlabeled, i.e., it is not known whether a line associated with a pair is
vertical or horizontal. RGB (left) and depth (right) images are shown for
each keyframe in each row.

C. LAYOUT PROPAGATION FROM THE
CANDIDATE LAYOUTS
The scene layout for each of these keyframes, represented as
3D lines, are projected into unlabeled contiguous frames in an
interactive process. The projections of these multiple layouts
are typically not aligned due to camera pose estimation errors
in the new frame. To address this problem, we first perform
some data association steps on individual 3D lines. Then,
the final layout is estimated by reasoning on 3D line to line
intersections on these resulting data associations.
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FIGURE 7. Initial layout in three keyframes from the 2D point manual annotations. The points corresponds to vertical 3D lines projected in 2D
image space.

In more detail, the process for generating the final layout
is described in the following several steps.

1) VERTICAL 3D LINE ASSOCIATION
The vertical 3D lines that form the initial layout in all the
annotated keyframes are transferred to the target frame for
which we need to estimate the scene layout. The 3D points
associated with these vertical 3D lines are projected into the
current frame’s camera coordinate space using the world-to-
camera transformation matrix.

To do this, we first find the groups of vertical 3D lines that
are close to each other.We construct a graphG = (V ,E), with
a vertex associated with each 3D line. We add an edge in this
graph if one 3D line is reachable from another. More pre-
cisely, we compute a form of adjacency matrix in this graph
which we refer to as the reachable matrix, R3d . Whether a
line is reachable from another is decided based on the average
distance between the two lines. For example, we compute the
distance (in 3D) from 3D line li to 3D line lj and vice versa.
If these two distances are within a threshold, we set R3dij to 1,
and otherwise set it to 0.

Once the reachable matrix R3d is computed, we find the
connected components on the graph G. Each component
represents the set of 3D lines that corresponds to the same 3D
line coming from the annotated keyframes. We accumulate
all the 3D points associated with each 3D line in a group,
and then estimate a single 3D line from these accumulated
3D points using a RANSAC-based line fitting algorithm. The
same process is repeated for all the components in the graph
G. This data association step allows us to find a final set of 3D
vertical lines, which is subsequently used to form the final
layout.

2) HORIZONTAL 3D LINE ASSOCIATION
Similar to the vertical case, the horizontal 3D lines that form
the initial layout in all the annotated keyframes are also
transferred to the current frame. The 3D points associated
with these horizontal 3D lines are projected into the current
frame’s camera coordinate space using the world-to-camera
transformation matrix.

We then adopted a similar data association approach in
finding the final set of horizontal 3D lines. Vertical lines,
in general, follow an orientation that is towards the gravity
direction in an indoor scene, e.g., vertical edges of a door,
vertical edges of a window, edges in between two wall inter-
sections, etc. Unlike the vertical 3D lines, the horizontal 3D
lines are oriented in several directions. We split the horizontal
3D lines data association in two steps instead of directly asso-
ciating them. First, we separate the horizontal 3D lines based
on their orientation so that those 3D lines that are oriented
towards the same direction are grouped together. Second,
we take all the horizontal 3D lines in each orientation-group
in turn, and then follow a 3D distance (from one line to
another) based association as used in the vertical 3D line data
association.

To illustrate the process, assume that the horizontal 3D
lines are oriented towards either the Z-axis or the X-axis in the
current frame’s camera coordinate space. Our algorithm sep-
arates the horizontal 3D lines in two different groups based
on their orientations in the scene. To separate the horizontal
3D lines based on their orientations, we adopt a similar graph
construction procedure as is used in the vertical 3D line asso-
ciation. For computing the edges in the graphG = (V ,E) that
encode adjacency information between the lines, we compute
the angular similarity instead of 3D distance between the
lines. We compute a form of adjacency matrix in this graph
which we refer to as Hangular . Once Hangular is computed,
we find the connected components from this matrix using
a Depth First Search (DFS). Each component identifies the
set of horizontal 3D lines that are oriented towards the same
direction.

For all the horizontal 3D lines in a single connected compo-
nent, we associate them using a 3D distance-based data asso-
ciation as used in our vertical data association. Assume there
areM connected components.We construct a set of adjacency
matrices {H3d

1 ,H3d
2 , . . . ,H3d

M }, where each H3d
k represents

the adjacency matrix for the 3D distance-based horizontal
3D line association. For each H3d

k , we again compute the
connected component, where each component represents all
the annotated horizontal 3D lines that come from different
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FIGURE 8. The process of the horizontal 3D lines association in a given frame (best viewed in color). The horizontal lines are shown
in a bird-eye view in two different XZ planes: i) ceiling XZ plane (in blue color) and ii) floor XZ plane (in green color). (a) shows the
original RGB image of a frame, (b) shows all the horizontal lines before they are associated together. In the left panel, blue represents
the horizontal lines on the ceiling XZ plane, and in the right panel, green denotes the horizontal line on the floor XZ plane, and (c) a
set of lines each fitted with RANSAC.

keyframes. Like the vertical 3D line data association method,
we accumulate all the 3D points associated with each hori-
zontal 3D line in a component computed from H3d

k . We esti-
mate a single 3D line from these accumulated 3D points using
a RANSAC-based line fitting algorithm. We execute our
horizontal 3D line association in the twoXZ planes: a) ceiling
XZ plane and b) floor XZ plane separately. We determine this
partitioning of horizontal 3D lines based on distance offset.
Figure 8(a) shows a sample frame in question in which we
want to propagate the layout. Figure 8(b) shows the horizontal
3D lines projected on the ceiling XZ plane (left) and on the
floor XZ plane (right). Finally, Figure 8(c) shows the set of
RANSAC-fitted lines after the data association.

These fitted horizontal lines – in conjunction with the
fitted vertical lines – are used to estimate the final scene
layout for the current frame. One advantage of partitioning
the horizontal lines using orientation first is that it permits
our algorithm to estimate the layout for a scene with arbitrary
shapes. In other words, our algorithm is not restricted to
environments that follow the ‘‘Manhattan-World’’ assump-
tion that the planes in a scene are oriented towards one of
the three orthogonal vanishing directions: our algorithm can
find the layout for a more general rooms layouts including
pentagonal, hexagonal, etc.

3) COMBINE THE 3D LINES FOR FINAL
LAYOUT ESTIMATION
Once we find the set of RANSAC-fitted horizontal and verti-
cal 3D lines in the current frame’s camera coordinate space,
we combine them to estimate our final scene layout for the
frame. We trace extensions of the layout in the ceiling XZ
plane and the floor XZ plane separately. The steps of find-
ing boundaries of the layout in the ceiling XZ plane are as
follows. First, we project the 3D horizontal lines pertaining
to the ceiling on the XZ plane as shown in Figure 9(a).
Then, we project all the vertical 3D lines in the XZ plane.
We find the mean of these projected vertical lines (shown by
the red dots in Figure 9(a)).We refer to these points as vertical
junctures.

We also compute all pairs of intersections among the
projected lines in the XZ plane (shown by the blue dots in

Figure 9(a)). For each intersection of a pair of horizontal lines,
we find the closest vertical junctures. These vertical junctures
act as boundaries for horizontal lines to limit their extensions.
We extend each horizontal line until its boundary limits if
both ends of the line have associated vertical junctures. If any
side of a horizontal line is not limited by a vertical juncture,
then we extend that horizontal line until it reaches the image
boundary.

Similarly, we project the 3D horizontal lines pertaining
to the floor on the XZ plane as shown in Figure 9(c), and
then trace their boundaries as shown in Figure 9(d). Once
we have the extensions of the horizontal lines in both floor
and ceiling XZ planes, we render their projections in the 2D
image space to define the final layout. The vertical lines are
extended in both directions until they reach the ceiling and
the floor. Figure 9 illustrates these steps of the final layout
estimation.

V. EXPERIMENTS
A. SEMANTIC LABEL GENERATION
We experimented on the eight RGB-D video sequences
from SUN3D [34] to validate our automatic annotation
approach. Table 2 shows statistics for the eight video
sequences. Each video consists of thousands of frames cap-
tured across various indoor locations in university campuses
and dormitories. Only a fraction of these frames have been
manually annotated. We validate the automatically generated
annotations from our approach on these frames.

We used 10 categories, including both fine-grained (Bed,
Chair, Table, TV, Floor, Ceiling) and generic categories
(Props, Furniture, Structure). We conform to this selection
based on the labeling criteria laid out by the popular indoor
scene understanding dataset NYUD-V2 [45].

We used an open-source implementation of Mask-
RCNN [46] pretrained on MS COCO [47] as our object
detector. MS COCO consists of 80 categories commonly
found in both indoor and outdoor scenes; we selected only
the indoor object categories. We mapped categories of MS
COCO to categories used in our experiments, as shown in
Table 5.
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FIGURE 9. An illustrative example of the final layout estimation (best viewed in color). (a) Projection of the horizontal lines in the
ceiling XZ plane. (b) Projected 2D points of the estimated ceiling boundaries of the layout. (c) Projection of the horizontal lines in
the floor XZ plane. (d) Projected 2D points of the estimated layout floor boundaries also augmented in the image space. (e) Final
layout including the vertical lines that are extended until they reach both XZ planes (ceiling and floor).

TABLE 2. Statistics of 8 video sequences in SUN3D [34]

For 3D scene layout estimation, we used the implementa-
tion by the author of [39]. The estimated layout provides a
single mask for floor and ceiling categories, and the remain-
ing layout is represented as series of other masks such as
Wall, Office-partition, Door, etc. We map these categories to
a generic Structure category as in NYUD-V2 [45].
To measure the performance of our automatic annotation,

we used two metrics: per-class accuracy: for each class, find
the proportion of correctly-labeled pixels, and per-class IoU:
for each class, compute the ratio of the size of the intersection
of ground truth label and estimated label regions, and the size
of the union between the ground truth and estimated label.

1) AUTOMATIC ANNOTATION RESULTS
We validated the annotations generated automatically by our
method against the ground truth labels manually prepared by
a human in each video sequence. As the manual annotation
is laborious and expensive, each video sequence has only
a small fraction of the frames manually labeled (as shown
in Table 2). This is exactly the motivation for our work: we
can generate automatic annotations for all the frames in a
video sequence, allowing a larger quantity of annotationswith
minimal human effort.

The results of our evaluation using the two metrics defined
above are shown in Table 1. The table evaluates for each
individual category as well as the average across categories
(last column). To evaluate the category specific performance
across all the videos, we also report an aggregated mean in
the last row. Each entry in the table lists two numbers: per-
class accuracy and per-class IoU. A missing entry signifies
that the object is not present in that video (e.g., TV is present
only in hotel-umd).

FIGURE 10. Qualitative results for automatic annotation experiment on
different video sequences from SUN3D [34]. From left to right we show
the RGB image, the ground truth, and the automatic annotations from our
method.

Our automatic annotation method performs well on object
categories such asChair, Table, and Bed, presumably because
Mask-RCNN trained on MS COCO [47] has modeled these
categories well. Some qualitative visualizations are shown
in Figure 10. As we notice, our method can reliably annotate
chair, table, bed categories in most cases. Our method had
weaker performance on the generic object categories such
as Props and Furniture. Our method solely relies on the
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TABLE 3. Semantic segmentation performance comparison. First and second items in each table entry denote metrics average per-class and average IoU
respectively. Last column shows the aggregated performance across all 8 classes

TABLE 4. Videos used in our experiments from Active Vision Dataset [33]

signals from our object detectors to capture the annotation
information; when a detector consistently fails to detect an
object across a video sequence, our method fails to annotate
that object. Our method also captures the annotations for
Floor and Structure categories since our layout estimation
can retrieve the structure of almost all of the scenes from the
RGB-D images.

2) SEMANTIC SEGMENTATION WITH AUTOMATIC
ANNOTATIONS
Since our goal is to generate automatic annotations that would
be useful for training deep semantic segmentation models,
we evaluated our technique as a means of generating ground
truth labels for FCN [2] for the 10 object categories men-
tioned above. We partitioned the 8 videos of SUN3D into
4 for training and 4 for testing. The training video sequences
include hotel-umd, hv-c5, studyroom, mit-32 which have a
total of 264 human-annotated keyframes. Our test partition,
hv-c6, hv-c8, dorm, mit-lab, has 131 human-annotated frames
in total. We use all the 264 training frames along with their
ground truth labels to train a FCN model, which we refer to
asGT. We then automatically generated annotations for these
frames using our method, and used them to train another FCN
model, which we call Auto. Both models were trained for
60,000 iterations with learning rate 1e−5 and cross-entropy
loss.

Quantitative results are shown in Table 3 (excluding TV
which is absent in the test partition), with the first value
in each entry indicating per-class accuracy and the second
indicating IoU accuracy. Qualitative results are shown in

FIGURE 11. Qualitative comparison for semantic segmentation on the
images on test set (left) when trained on human annotated (middle) vs
automatic annotated (right).

Figure 11. The average per-class accuracy for GT is 56.4%
and average IoU accuracy is 42.0%. The average per-class
accuracy of the model Auto is 35.1% and average IoU accu-
racy is 20.1%. Of course, this is to be expected: GT was
trained on laboriously hand-labeled training data, whereas
Auto required no human annotation whatsoever. Auto per-
forms well on categories such as chair, floor, structure and
table, although not as well as the GT model. Additionally,
we observe that both models do not perform well on cat-
egories such as furniture and props, as SUN3D has very
few instances of these categories, making it difficult for the
segmentation network to learn a reasonable model even with
perfect ground truth annotations.

To further understand the effectiveness of our
automatically-generated annotation, we trained another
model, GT + Auto-sample (last row in Table 3), by adding
more samples of automatically-annotated frames to the exist-
ing 264 human-annotated training frames. More specifically,
Auto-sample was prepared by sampling the automatic anno-
tation of every 15-th image in each training video, resulting
in a total of 838 automatic annotated frames. Although
the overall performance of GT + Auto-sample is inferior
compared to GT (average per-class and IoU are 48.5% and
30.0% respectively), we observe performance improvements
for some categories such as Chair, Table, and Floor. These
three belong to the classes for which our automatic annotation
method performed well (as reported in Table 2 and also
discussed in Section V-A.1).

B. VIDEO GEOMETRIC LABEL GENERATION RESULTS
We evaluated our semi-automatic geometric annotation algo-
rithm primarily on the Active Vision Dataset (AVD) [33],
which contains diverse indoor environment types across
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TABLE 5. Mapping of MS COCO [47] categories to indoor scene categories for our automatic annotation approach

FIGURE 12. Final estimated layout in three unannotated frames. The blue lines are vertical 3D lines projected in 2D image space, while the red
lines are similarly found vertical lines.

multiple geographic locations in the United States. Each
video was captured by a camera mounted on a robot that
was directed to roam through the rooms inside the apartment.
We experimented with 14 videos fromAVDwhere each video
contains between approximately 700 and 2500 frames, for a
total of 18780 frames. Table 4 reports the detailed statistics
of the videos that are used in our experiments. We per-
formed the manual point-level annotation for all 14 videos,
and so far have applied the annotation algorithm on ‘‘Home
001’’,‘‘Home 003’’, and ‘‘Home 011’’. We show sample final
layouts in some frames in Figure 12.
Our algorithm is flexible and applicable to generate anno-

tations from other indoor data sources such as the SUN3D
dataset [34] and the GMU Kitchen dataset [48]. There are
8 videos in SUN3D dataset containing 19243 frames in
total, and it is a suitable a dataset for our semi-automatic
annotation algorithm. GMU Kitchen contains 6735 frames
from 9 videos. These videos from SUN3D and GMU kitchen
datasets were captured in different types of indoor environ-
ments ranging from apartment, classroom, and office, and
thus could be additional sources of training data generation
using our algorithm.

VI. CONCLUSION
In this work, we presented a method for generating anno-
tations for creating training data for two indoor scene
understanding tasks, semantic object segmentation and 3d

room layout estimation, using minimal human interven-
tion. For semantic object segmentation, our method is fully-
automatic and relies on two complementary sources of
evidence: pre-trained object detectors and rough scene
layout estimators. For 3d room layout, we proposed a semi-
automated technique that requires a human operator to pro-
vide just a few key annotations for a handful of keyframes
of an RGBD video, and then the dense room layout is auto-
matically estimated and propagated across time to the unla-
beled frames. These methods offer an alternative technique
for generating a large quantity of dense pixel-level annota-
tions for training data-hungry deep neural network models.
In the future, we plan to augment the method to generate
annotations for a large number of fine-grained indoor object
categories. We also plan to explore the feasibility of our
approach in the outdoor setting.
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