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Abstract— The goal of the Amazon Robotics Challenge
is to automate pick and place operations in unstructured
environments by applying the state of the art in robotics.
The two areas of complexity that were expanded relative to
previous competitions are in storage density and the presence
of unknown objects prior to the competition. To deal with
these two factors, we use two contact-exploitative modes of
manipulation along with the use of a soft GelSight [1]-inspired
elastomer used to prevent possible toppling of objects. We
present an overview of our approach to the picking task of
the Amazon Robotics Challenge as follows: We begin with our
choice of hardware, and then discuss our deep learning based
vision approach. We then go into our modes of operation along
with the situations they are used in and conclude with the
limitations of our chosen approach.

I. HARDWARE

Our choice of robot is the Baxter Research Robot along
with a Dataspeed Inc. mobile base. Two RGB-D cameras
are attached to each wrist, enabling a multitude of opposing
viewpoints for each bin. Unlike the vast majority of most
other teams, our choice of end effector is the Allegro Hand,
a 20 DOF Allegro Hand capable of grasping every single
object available in the known dataset.

A. Storage System
Our customized storage system is unique in that every

horizontal surface of the shelf is coated with a soft, GelSight-
inspired elastomer capable of transmitting tactile images.
Our elastomer of choice is a simple 3:2 ratio of TPE
(Thermoplastic Elastomer) to Toluene, along with a thin
coating of gray pigment particles on the surface. Tactile
images, along with their RGB and Depth correspondences
are shown in Figure 1.

While the elastomer can be made softer by increasing
the volume of toluene, we choose for a stiffer Shore 00-30
hardness value such that while the resting state of the objects
does not transmit any clear images (the dumbell being the
exception), the robot exerting a force on an object against
the elastomer transmits a clear tactile image. This is to avoid
the object instability that comes with a near-viscous layer.

II. OBJECT DETECTION

We follow the latest trends in object detection and employ
a Deep Convolutional Neural Network (DCNN) for localiz-
ing and recognizing the objects in the bins and tote. Recently,

1 Computer Science Department, George Mason University 4400 Uni-
versity Drive, VA, USA

2Electrical and Computer Engineering Department, George Mason Uni-
versity 4400 University Drive, VA, USA

3Mechanical Engineering Department, Ben-Gurion University of the
Negev, Be’er Sheva, 8499000, Israel

Fig. 1: Tactile imaging for four of the known ARC objects,
along with their rgb and depth equivalents. As seen above,
tactile imaging is fully capable of transmitting detail unavail-
able to traditional time-of-flight depth sensors.

models such as Faster R-CNN [5] produced state-of-the-art
results on popular benchmarks and last year’s challenge [8].
This model employed an end-to-end training where both the
localization and the classification of the objects is considered
by the loss function. One of the shortcomings of these
approaches is the fact that they require large amount of
bounding box annotations for training. For the competition,
only a few cropped images of each object are available which
is not sufficient to train the entire model end-to-end. We plan
to address this issue by first training a model with a large
synthetic dataset of objects superimposed in real background
scenes at informatively chosen positions and scales, and then
fine-tuning the model with a small number of manually
annotated images of the competition objects inside the bins
and tote. For the generation of the synthetic dataset, we
plan to use 2D images of object models from BigBird [2],
previous Amazon competitions [4], and background scenes
from the NYU-V2 dataset [3]. Details on how the synthetic
dataset is generated can be found in [6]. Example images
from the dataset are shown in Figure 3.

III. MANIPULATION

After localizing each of the target objects in the chosen
bin, the swept volume of each object over the depth of
the bin is collected. This swept volume represents a linear
retraction of each object over the depth of the bin. Collision
checks are counted between each of the swept volumes, and
the target object that prevents the highest number of linear
retractions of the surrounding objects is chosen for grasping.
Naturally, it is objects near the brim of the bin that will first
be chosen for grasping as they are most likely to offend



Fig. 2: The slide to edge manipulation process is illustrated above. After the object is dragged past the brim of the shelf,
the hand is retracted and a pre-selected hand template is moved a set distance away from the brim of the shelf such that a
compliant grasp will successfully grasp any object slightly portruding from the brim.

Fig. 3: Example images from the generated synthetic dataset.
The superimposed objects are marked with red bounding
boxes.

the retraction of objects behind them. Rather than resort
to a static grasp planner, we draw from the work of [10]
and utilize Surface Constrained Grasping and Slide to Edge
Grasping. The mode of operation to choose is determined
by fitting a plane bounded by the size of the 3 fingers of the
Allegro Hand to the surface of the mesh of the target object
using RANSAC [9].

When a plane is found, a line is drawn perpendicular to
the center of the plane: should the line be longer than a
threshold that prevents the thumb of the hand from grasping
the opposing side, the plane is rejected. In our case, the
maximum allowable threshold for the Allegro Hand is 5 cm.
Additionally, this threshold filters the sliding of any physi-
cally unstable objects as the objects chosen for sliding are
likely to be extremely flat. Otherwise, the search continues.
When a plane is found, a Slide to Edge Grasp is executed.
Otherwise, a Surface Constrained Grasp against the support
surface the target object is lying on is executed.

A. Reach

The reaching step is comprised of two steps: The execution
of a Constrained BiDirectional RRT (CBiRRT) [7] when
the hand is approaching the relevant bin and a local Jacobi
controller when the hand is operating from within the bin.
The search space of the CBiRRT is the configuration space
of the arm before contact is made. When exerting a force on
any object for initializing a Slide to Edge Grasp, the Jacobi

controller is executed in force control against the surface of
the wall.

B. Surface Constrained Grasp

The compliant finger-tip placement grasp is executed with
a compliant grasp against the surface the target object is
lying against. Initially, the support surface the object is
lying against is identified. Unoccluded regions of the support
surface are segmented, and the placement of the thumb is
sampled in this unoccluded region surrounding the target
object. The placement of the thumb is executed using a stored
hand template, and a compliant grasp with the opposing three
fingers is executed as their fingertip trajectories traverse the
support surface until the object is fully enclosed within the
aperture of the hand.

C. Slide to edge Grasping

Slide to edge grasping is a form of hand closing after the
robot has moved the object over the brim of the shelf, effec-
tively exposing an additional side of the object for grasping.
Figure 2 illustrates this process. After identifying where to
put the fingers for sliding, a reach is executed. Using the
local Jacobi controller, a force is executed perpendicular to
the support surface such that the center of friction of the
object is pulled towards the wall, enabling easier sliding. A
slow linear retraction of the object against the wall using
the Jacobi controller is performed, until the Allegro Hand
is completely out of the shelf, or until the object begins to
topple as detected by the tactile feedback from the shelf,
explained in IV.

However, only the horizontal support surfaces of the shelf
are coated with the elastomer, meaning tactile images are
only available when a downward force is exerted against
the gel. While tactile images are always available when
sliding against the horizontal support surfaces, slide-to-edge
manipulation will require a slight downward force vector
when sliding across vertical support surfaces such that the
elastomer can track the tactile images of the target object.

D. Extract Out of Bin

After grasping the target object with a surface constrained
grasp, the simulation of a slow linear retraction is simulated
by the combined swept volume of the hand and object
over the depth of the bin. When iterating over 6D pose
re-orientations of the hand, each iteration is checked for
a swept volume that avoids collision with the shelf and



Fig. 4: Tactile images collected from a prototype elastomer.
It is shown that as the object is pressed against a planar
surface, a clear tactile image is transmitted. During peaks of
instability as the object begins to tip, the tactile image reverts
to its default.

the surrounding clutter. When a collision-free swept volume
is found, the arm checks for kinematic feasibility of the
pose re-orientation. If successful, the arm joint commands
are executed and the mobile base moves in a -z direction,
extracting the object out of the bin in a collision free manner.

IV. FEEDBACK

The slide to edge manipulation step performed open-loop
can prove very dangerous, as a slight tip between the object
and the brim of the shelf can lead to the robot mistakenly
throwing the object outside the storage system, with no
direct means of retrieval. The presence of a tactile tracking
system successfully closes this loop. The transition from a
full projection of the face during the sliding process to an
empty tactile image during unstable transitions is shown in
Figure 4. Simple edge detection suffices to determine the
stability of the dragged object. It was because of the need
for a high FPS tactile tracking system that we opted for
responsive 2D imaging as opposed to a drastically reduced
FPS rate that comes with using photometric stereo for 3D
imaging.

V. LIMITATIONS

While our approach to the challenge is robust to clutter
and occlusions, there are several rules to how the objects
must be stowed inside the bins.

• Planar objects to be slid must be near parallel to the
support surface they are lying against.

• Planar objects to be slid must be present at the front
of each surface of the bin, and all other objects must
be on top of these planar objects or at the back of the
shelf.

• Careful placement of the objects must be performed
such that the robot can grasp the objects and without
necessary whole-arm movement, extract the object out
of the bin with the movement of the mobile base.

VI. CONCLUSION

In this paper we have discussed the use of a tactile
sensing shelf along with the use of two contact-rich modes of
manipulation. Our approach to the ARC has multiple future
avenues of exploration. One future direction we are excited
towards is the use of optical flow tracking from the tactile
imaging to detect possible slippage between the hand and the
object. We look forward to participating in the 2017 ARC
event.
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