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Abstract—Modern electronic devices consist of a wide range of
integrated circuits (ICs) from various manufacturers. Ensuring
that an electronic device functions correctly requires verifying
that its ICs and other component parts are correct and legitimate.
Towards this goal, we investigate using machine learning and
computer vision to identify and verify integrated circuit packages
using visual features alone. We propose a deep metric learning
approach to learn a feature embedding to capture important
visual features of the external packages of ICs. We explore
several variations of Siamese networks for this task, and learn an
embedding using a joint loss function. To evaluate our approach,
we collected and manually annotated a large dataset of 6,387 IC
images, and tested our embedding on three challenging tasks:
(1) fine-grained retrieval, (2) fine-grained IC recognition, and (3)
verification. We believe this to be among the first papers targeting
the novel application of fine-grained IC visual recognition and
retrieval, and hope it establishes baselines to advance research
in this area.

I. INTRODUCTION

Recent reports in the popular press [1], [2] have highlighted
the rising threat of hardware-based trojans in the devices
that we rely on everyday. While much attention has been
paid to software vulnerabilities, electronic devices that include
counterfeit or defective integrated circuits could cause our
digital devices, from cell phones to electric power stations
to national defense systems, to fail prematurely or even to be
subverted by malicious actors. Developing automatic systems
that can help identify suspicious hardware components is thus
critical for ensuring the safety and security of our electronic
infrastructure.

One might assume that simply ordering integrated circuits
(ICs) from a trusted supplier would ensure that the devices
are legitimate. Unfortunately, ICs traverse a complex global
supply chain between when they are manufactured and when
they reach a customer [3]. For an example of what can go
wrong, SparkFun [4], a popular and well-respected supplier
of electronic parts for hobbyists, started receiving complaints
about one of the microcontrollers they were selling. After
much investigation [5]–[7], including inspecting the silicon of
the IC with an electron microscope, they discovered that they
had inadvertently bought a batch of counterfeit ICs: it appeared
that someone had bought or found cheap, discarded ICs,

Fig. 1: We propose to learn deep embeddings from images
of integrated circuits to retrieve, recognize, and verify them.
Some instances from our dataset are shown.

removed the markings from the packaging, and then re-labeled
and sold them as a much more expensive microcontroller.
These fake parts could have been injected into the supply chain
at numerous points: the highly distributed nature of the modern
supply chain makes it efficient and resilient, but also makes
it increasingly difficult to trace the provenance of any given
part.

In lieu of somehow changing the supply chain, one viable
option to reduce the threat of counterfeit parts is to develop
automated systems that analyze the visual appearance of
critical components such as integrated circuits (ICs) and verify
that they appear as expected. Ideally, such algorithms would
cue on subtle variations in the appearance of an IC that could
indicate a counterfeit part: uneven silk screening, unexpected
or missing markings, incorrect manufacturer logo, etc. [3] A
challenge in doing this is that most of the recent success
in computer vision, including image recognition [8], image
detection [9], semantic segmentation [10], etc., considers
relatively coarse-grained recognition problems in consumer
images, whereas spotting counterfeit parts requires spotting
subtle cues. Moreover, unlike consumer images and other
popular applications, training data for counterfeit products is978-1-7281-8243-8/20/$31.00 ©2020 IEEE



severely limited.
In this paper, we propose computer vision techniques

for microelectronics security applications. In particular, we
propose a deep neural network for learning an embedding
from the images of Integrated Circuit (IC) chips commonly
found in microelectronic devices. The learned representation
enables image matching between pairs of images, and thus
can be generalized for image matching in other domains.
Unfortunately, it is extremely difficult to collect training data
of images of actual counterfeit parts; some public repositories
exist [11] but they are small in scale. We thus learn our feature
representations using a proxy task for which we can readily
collect training and testing data: identifying the manufacturer
of an IC. This task is useful in and of itself as a means of
automatically organizing large-scale collections of ICs. For
the counterfeit detection problem, we expect that our dataset,
techniques, and learned representations will be useful once
suitable training datasets exist, just as models initialized with
ImageNet [12] but fine-tuned on smaller-scale, domain-specific
datasets have been useful for innumerable applications (e.g.,
through transfer learning).

In summary, the main contributions of this paper are three-
fold. First, we explore different variations of Siamese networks
and learn an embedding using a combined contrastive and
classification loss for the problem of microelectronics imagery
analysis. Second, in order to evaluate our approach, we col-
lected and manually annotated a large dataset of 6,387 IC
chip images from a diverse set of manufacturers. Finally, we
show the effectiveness of our learned embedding on three
challenging computer vision tasks in the microelectronics
domain: 1) fine-grained retrieval, 2) fine-grained recognition,
and 3) image verification.

II. RELATED WORK

Our work is most related to two general threads of research.
One is in learning embeddings for image matching, which has
become a popular topic in recent years. The other is work
specifically targeting recognition and analysis of microelec-
tronic imagery.

A. Representation learning for image matching

Bell et al. [13] proposed a convolutional neural network
(CNN) to learn the visual similarity between a product image
and its real counterpart in natural images. Household products
such as chairs, lightbulbs, tables, etc. are sold on commercial
websites and have very different, often idealized appearances
compared to real images. Bell et al.’s method learns an
embedding that can accurately retrieve product images even
across image types. OPNet [14] follows a similar approach
to learn a view-manifold of images for the task of novel
object recognition. Their method creates a distance metric
learned from a CNN. They experiment on a synthetic dataset
formed by rendering many views of 3D object models against
clean backgrounds. Both methods apply a Siamese network
architecture to learn a distance metric on image similarity.
Inspired by these papers, we propose a similar distance metric

framework to learn the embedding of microelectronic images,
and demonstrate the effectiveness of the learned embedding to
solve recognition, retrieval, and verification tasks.

Schroff et al. [15] developed FaceNet, a triplet network for
face recognition. Their method uses a novel triplet sampling
algorithm that improves the learning of the distance metric. Yi
et al. [16] developed a deep representation for face images and
address both identification and verification. Song et al. [17]
learned a deep metric by lifting the structure of distances
between a pair of images. They demonstrated that their learned
embedding is useful for retrieval on a diverse set of real-world
images. Wu et al. [18] showed that the learned deep embedding
is affected by how pairs of images are sampled during training
time.

In the domain of video analysis, Fan et al. [19] proposed
a method for mapping between first-person (egocentric) and
third-person camera views by learning a joint embedding
space. Xu et al. [20] extended this to segment people common
across different views. Both of these papers employed an em-
bedding learning framework to learn common representations
from two different camera views.

B. Microelectronics image analysis

In the specific domain of microelectronics image analysis,
computer vision techniques have long been used to inspect
integrated circuits and other electronic parts for defects [21],
[22]. In a supply chain context, Chen et al. [23] highlight some
of the challenges and opportunities of using computer vision
for improving the security of the microelectronics supply
chain. They also investigate integrated circuit image matching
and clustering. Wu et al. [24] consider the task of microelec-
tronic component detection (localization and segmentation) in
cluttered printed circuit board (PCB) images using a graph em-
bedding network, pointing out that the problem is much harder
than one might expect. Reza et al. [25] present techniques
for overcoming these challenges. Their paper also conducted
preliminary studies of deep learning-based representations for
verifying if two IC images correspond to the same part or not;
our paper builds on that work. Dhanuskodi et al. [26] explored
an alternative approach to IC verification by extracting a
“fingerprint” unique to each specific integrated circuit package
based on extremely fine-grained analysis of the texture pattern
in the plastic package molding. These fingerprints can be
enrolled in a database and then verified later even after
traversing an untrusted supply chain.

We study the recognition, retrieval, and verification of
cropped microelectronic integrated circuit images. The above
papers are thus complementary to ours: theirs could be used
for detecting and isolating ICs in PCB images, or for tracking
individual IC packages, for example, whereas our goal is to
perform fine-grained matching and identification of parts with-
out requiring them to be explicitly enrolled at manufacturing
time.



Fig. 2: IC-ChipNet architectural layout. Pairs of images are fed through the convolutional filters (shared weights) to extract
feature maps in blue. These feature maps go through the inner-product layer (shared weights) to reach a latent representation
(orange). A combination of contrastive and cross-entropy loss allows us to learn the embedding from a large number of input
images.

III. METHOD

To work towards developing a system that can assist mi-
croelectronics security applications, we propose a deep neural
network for learning an embedding for IC chip images. We
are interested in solving three different tasks: retrieval (given
a target IC image, finding the most similar IC in a library of
other images), recognition (given a target IC image, identify
properties of that IC), and verification (given a target IC image,
confirm that it is similar to another).

We adopt a Siamese Network framework that can address all
of these goals in a unified, principled manner. For IC retrieval,
the goal is to find a representation that clusters images of a
particular IC type close together while pushing apart others.
We achieve this goal by using a Contrastive loss function [27].
For IC image recognition, we encourage a representation
that can accurately classify using a Cross Entropy loss. For
verification, the design of the Siamese Network naturally
supports this task: comparing two image representations and
calculating a measure of their agreement or disagreement.

In more detail, our proposed network is comprised of two
copies of the same convolutional neural network (CNN) that
share weights between them. Figure 2 shows the layout of
the architecture, which we call IC-ChipNet. During training,
the Siamese network is presented with pairs of images, one
per CNN copy. Let Ip and Iq be two images fed into our
network, p and q are the embedded representations from the
shared network, and y is an indicator denoting whether the two
images come from the same or different classes. IC-ChipNet
can be trained to learn an embedding using a loss function
consisting of three terms: a contrastive loss between the two
images, and two classification losses for each image in the
pair.

The contrastive loss is a distance-based loss function that

maps semantically similar examples close together in the
learned manifold. For a batch of m images, the contrastive
loss function is computed as follows,

Lcontrastive =
∑
i∈m

yi||pi − qi||2+

+(1− yi)max(0, α− ||pi − qi||)2,
(1)

where α denotes the margin hyper-parameter of the Siamese
network.

The cross-entropy losses Lp and Lq encourage the classifi-
cation capability of the network for the two input images. We
use standard cross-entropy. The entire network is then trained
jointly using the combined loss function,

LICChipNet = Lp + Lcontrastive + Lq, (2)

where Lp comes from the top branch in Figure 2, Lq comes
from the bottom branch, and Lcontrastive is from the middle.

Once the network is trained, the learned embedding for a
new image can be found by passing it through either of the
two subnetworks and extracting the representation (shown in
orange in Figure 2).

IV. DATASET

Deep machine learning requires large-scale training data in
order to produce reasonable learned models. Unfortunately,
collecting large-scale datasets of counterfeit and defective ICs
is inherently difficult, and entities that have these datasets have
little incentive to share them with the public. We are aware
of one such effort to collect images of defective or counter-
feit ICs and make them public, but the dataset is relatively
small-scale due to the inherent difficulties of collecting this
imagery [11]. Thus we do not restrict ourselves to images of
counterfeit ICs nor the problem of distinguishing legitimate



Fig. 3: Annotation process to crop out and rectify IC images.
The left shows four manually-annotated points in yellow on a
selected IC. The rectified image is shown on the right.

Fig. 4: Frequency of images across different manufacturers in
our dataset.

and counterfeit parts, but instead consider proxy problems for
which large-scale data can be collected, such as identifying the
manufacturer of an IC. Several papers have collected datasets
for problems related to computer vision on microelectronics
images, such as Kuo et al. [24] and Reza et al [25] who
collected printed circuit board (PCB) images from the Internet
for the task of PCB component detection, but these were not
of sufficient size for learning our task.

We thus collected a dataset of 6,387 high-resolution IC im-
ages collected from the Internet. We manually crawled through
a variety of websites of electronics retailers, manufacturers,
and wholesalers, such as www.ebay.com, www.amazon.com,
and www.digchip.com, and collected over 10,000 raw images
of ICs. The lighting conditions, presence of noise, watermarks,
viewpoint, resolution differences, duplicate images, etc. made
it very challenging to use these images directly for further
analysis. Some images also contained multiple ICs, or ICs
along with other image content. To address these issues, we
first manually annotated the quadrilateral region around each
IC according to its four corners, cropped it out from the source
image, and then applied a perspective transformation to rectify
it. Figure 3(left) shows the annotation process for a sample
image.

For quality control of the cropped and rectified images,
we cross-checked and inspected over multiple iterations and
discarded duplicate images. Our final collection contains 6,387
cropped and rectified IC images at various resolutions ranging
from hundreds to thousands of pixels. We resized all images
to 64x64 pixels for our experiments. We also annotated each
IC image with the manufacturer by looking for logos, text, or
other markings. In total there were 27 different manufacturers
in the dataset, with between about 40 and 650 images per
manufacturer. Figure 4 shows the distribution of images across
manufacturers.

Split # Frames

Image for train 4470
Image for validation 642
Image for test 1275
Pairs of images for train 8886
Pairs of images for validation 1230

TABLE I: Statistics of images used in our experiments.

V. EXPERIMENTS

To evaluate our techniques, we partitioned our dataset
of 6,387 images into 70% training images, 10% validation
images, and 20% test images (see Table I). For recognition
experiments, we used the 27 manufacturer classes described
above. In training, we sampled pairs of positive and negative
images according to these labels to train our network; a
pair is labeled as positive if the two images have the same
manufacturer, and negative otherwise. From the train and
validation partition of our images, we generated a random col-
lection of training and validation pairs of positive and negative
images. To ensure a balance in training, we sampled an equal
number of positive and negative pairs in both partitions [17],
[18]. Rather than exhaustively generating all permutations of
positive pairs within images of a particular manufacturer, we
sampled pairs of adjacent images in an ordered list within a
particular manufacturer. For each of the positive images in
that pair, we randomly selected another negative image from
a different manufacturer selected at random. This generated
8,886 pairs of training images and 1,230 pairs of validation
images. As is customary, the validation images were used to
select the optimal model after training.

A. Network Details

We evaluated our IC-ChipNet using three widely-used con-
volutional neural networks as the backbone: AlexNet [28],
VGG [29], and ResNet [30]. The last layer in all the backbone
networks is replaced with an inner-product layer. The dimen-
sion of this inner-product layer defines the size of our learned
embedding, and in all the experiments it is 4096. Additionally,
in our ResNet backbone architecture, an inner-product layer
of dimension 1000 is added just before the final inner-product
layer. We applied transfer learning by using the pre-trained
weights of the backbone networks trained on Imagenet [12]
prior to training IC-ChipNet. We trained six variations of IC-
ChipNet:

• IC-ChipNetv1: All inner-product layers of the backbone
AlexNet [28] and embedding layer are fine-tuned.

• IC-ChipNetv2: All the layers of the backbone
AlexNet [28] are fine-tuned.

• IC-ChipNetv3: All inner-product layers of the backbone
VGG16 [29] and embedding layer are fine-tuned.

• IC-ChipNetv4: All the layers of the backbone
VGG16 [29] are fine-tuned.

• IC-ChipNetv5: All the layers of the backbone ResNet-
50 [30] are fine-tuned.



Fig. 5: Visualization of the learned embedding of the train-
ing instances for IC-ChipNetv5 (best viewed in color). The
embedding is visualized using t-SNE [32].

• IC-ChipNetv6: All the layers of the backbone ResNet-
101 [30] are fine-tuned.

We implemented our method in PyTorch. Our networks are
trained in mini-batches using the Adam [31] optimizer using
a mini-batch of size m = 4 in all experiments. The maximum
epoch used in our experiments is 300. We tried two different
values of the margin hyper-parameter for the contrastive loss
function, α = {0.447, 1.0}, and finally selected a value of
0.447 for all our experiments. We also tried different values
for learning rates and selected the optimum. For all the
experiments, an initial learning rate of lr = {10−6} was used.

B. Baselines

To put our results into context, we compared against three
baseline methods:
• AlexNet: We utilized a pre-trained AlexNet [28] model

as our first baseline. We used the “fc7” feature — the last
inner-product layer before the classification layer — as
the representation. The dimension of this feature is 4096.

• Variational Autoencoder (VAE): We trained our VAE
from scratch using the images in the training set for the
task of reconstruction [33]. The latent representation of
VAE was used as the final representation.

• Siamese Network with Contrastive Loss: We also com-
pared against three other baseline Siamese Networks and
trained them with only contrastive losses [27]. The back-
bone networks used in this setting were AlexNet [28],
VGG-16 [29], and ResNet-50 [30]. We refer to these
three baselines as Siamese-baseline1, Siamese-baseline2,
and Siamese-baseline3 respectively.

C. Results

The learned embeddings on the training set are visualized
in Figure 5 using t-SNE [32]. Notice how well the embed-
dings are clustered around each manufacturer’s image group,

Method Accuracy Recall@1 Recall@7

AlexNet [28] 60.08% 60.08% 83.06%
VAE [33] 19.84% 9.41% 43.06%
Siamese-baseline1 31.92% 24.24% 60.31%
Siamese-baseline2 21.80% 17.18% 57.33%
Siamese-baseline3 37.88% 30.27% 63.61%

IC-ChipNetv1 73.02% 73.02% 83.22%
IC-ChipNetv2 78.35% 76.94% 83.69%
IC-ChipNetv3 72.39% 70.59% 74.67%
IC-ChipNetv4 82.75% 81.49% 83.84%
IC-ChipNetv5 83.69% 83.22% 86.59%
IC-ChipNetv6 80.94% 80.24% 85.57%

TABLE II: Evaluation for the IC image recognition task
(column 2) and retrieval task (column 3 and 4) using the
proposed IC-ChipNets and other baselines (top five rows).

thus suggesting that the network has learned a reasonable
representation. We evaluated the performance of our learned
embedding in solving three different tasks: (1) retrieval of
images of the same manufacturer, (2) recognition of the
manufacturer, and (3) verification of whether two images have
the same manufacturer.

1) Retrieval: In this experiment we investigated the effec-
tiveness of the embedding for finding similar IC images. Fig-
ure 6 shows some sample retrieved images from the training
set, when we use a test image as a query. Additional retrieval
results are shown in Figures 11 and 12. For a quantitative
analysis, we report the retrieval performance in Table II
(columns 3 and 4) using the Recall@K metric. Based on the
learned embedding, we first retrieve the K closest images from
the training set. For each test image, the recall will be 1 if
an image from the same manufacturer appears in the pool
of closest K, and 0 otherwise. Then, we average this value
across all the test images to find the overall Recall@K number.
Similarity in the ranking is based on cosine distance.

The best performance was achieved by IC-ChipNetv5 (with
a ResNet-50 [30] backbone) with a Recall@7 value of 86.59%.
The progression of the recall metric for various K values
is shown in Figure 7. The best performing IC-ChipNetv5 is
shown with a blue dashed curve. As the neighbor count (value
of K) increases, so does the chance of randomly retrieving
images of a similar type. Recall@K is a weaker metric than
accuracy in this regard. In order to correctly classify an
example, the majority of the retrieved samples have to come
into an agreement. Recall@K, on the other hand, will count a
retrieval successful if any one of the retrieved images is from
the same manufacturer.

2) Recognition: To measure recognition performance, we
compute accuracy, which is the total number of correctly
predicted images divided by the total number of images in
the test set. For recognition, we retrieved the top@K closest
images to the target from the training set using the cosine
distance, and if the majority of the retrieved images have the
same label as the target’s ground truth, then it is considered
correct.



Fig. 6: The retrieved top@7 examples from the training set. In each row, the query image is shown in first column, and the
seven images to the right show the query results.

Fig. 7: Recall@K curve for the retrieval task (best viewed in
color). The learned embedding retrieves images from the same
manufacturers. As the K value increases, the baseline method
catches up.

The performances for the recognition task are reported in
Table II (column 2). Each entry denotes the best accuracy

Fig. 8: Accuracy curve for the recognition task for various
values of K (the number of nearest neighbors).

found for any value of K in the nearest-neighbor search. The
overall curve for all possible values of K is shown in Figure 8.
The best performing model on the test set is IC-ChipNetv5
(with ResNet50 [30] backbone) with 83.69% accuracy. It



Fig. 9: Accuracy vs threshold curves for the verification task
(best viewed in color).

Fig. 10: Sample images from our verification experiment. In
each row, the left image is the source from which a pair of IC
images were cropped. The cropped image pairs are shown in
the second and third columns.

performs better than IC-ChipNetv2 (AlexNet [28] backbone)
by 5.34%. IC-ChipNetv4 (with VGG16 [29] backbone) also
performs well with an accuracy of 82.75%.

In general, we observed a trend of improving performance
with deeper networks. Relearning all the layers of the back-
bone helps to improve the performance. Our VAE baseline
has poor performance. We analyzed the reconstruction output
of this network on the test set; although the reconstruction
nicely finds the overall appearance of an image, it fails to
reconstruct the finer details. Our findings are in agreement
with the observations of Hou et al. [34].

3) Verification: Finally we conducted an experiment to test
how useful our learned embedding is in deciding whether two
IC images are from the same manufacturer or not. We set aside
a separate subset of 286 source images consisting of multiple
copies of an IC chip. During our dataset preparation, we only

Method Best Accuracy Threshold

IC-ChipNetv2 91.78% 0.02
IC-ChipNetv4 91.43% 0.04
IC-ChipNetv5 94.23% 0.03
IC-ChipNetv6 91.96% 0.04

TABLE III: Verification experiment results. The best accuracy
and corresponding threshold of correctly predicting a pair of
images are reported in 2nd and 3rd column respectively.

took one instance of that IC image at random if multiple copies
were present. A few sample source images are shown in the
first column of Figure 10. The other two columns in each row
show two copies of that IC that were cropped at random in
order to conduct our verification experiment.

We prepared 286 pairs of positive instances — pairs of ICs
that have the same manufacturer — for the verification experi-
ment. For each pair of positive instances, we randomly picked
another IC image from a different manufacturer to create a new
negative pair instance, resulting in an additional 286 negative
pairs. Thus our verification test set contains in total 572 pairs
of IC images from 16 different manufacturers.1 We extracted
the embedding from a subset of better performing models (IC-
ChipNetv2, IC-ChipNetv4, IC-ChipNetv5, IC-ChipNetv6) for
each of these pairs of images, then computed cosine distance
between each pair. If two IC images are very similar then the
distance between them should be very small.

We computed the verification accuracy as a function of
different threshold values as shown in Figure 9. IC-ChipNetv5
performed the best, achieving an accuracy of 94.23% at
threshold 0.03. As the verification-accuracy curve points out,
it was sufficient to pick a small threshold to correctly label
two similar-looking IC images. This experiment also confirms
the effectiveness of the learned embedding for the IC image
verification task. The best accuracy and the corresponding
threshold are also reported in Table III.

VI. CONCLUSION

In this paper, we learned an embedding using a deep metric
learning approach from a pair of IC images. Our learned
embedding was demonstrated to be very effective for the
recognition and retrieval of IC images. We also demonstrated
that an IC image can be compared with a known reference im-
age, to verify that it is the same device. Finally, we contributed
a large repository of 6,387 IC chip images to advance research
in problems related to microelectronic imagery. Our method
also establishes baselines for the three computer vision tasks
for microelectronic image analysis.
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Fig. 11: The retrieved top@7 examples from training set. In each row, the leftmost image is the query, and the seven images
to the right are the retrieved ICs.



Fig. 12: The retrieved top@7 examples from training set. In each row, the leftmost image is the query, and the seven images
to the right are the retrieved ICs.
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