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Abstract—Understanding and predicting microelectronic fail-
ures is important for ensuring the reliability of modern electronic
devices. In this paper, we develop a set of computer vision
algorithms for modeling device failure due to electromigration,
in which metal atoms are displaced due to current flow. The
experimental setup contains a series of optical and thermal
images of aluminum interconnects. We propose deep neural
networks for two specific problems: predicting where in the
device a failure will occur, and estimating the remaining lifespan
before failure. We pose the former as a segmentation problem
and solve it with a convolutional neural network (CNN) trained
on multi-scale optical images. We pose the latter as a regression
problem for which we designed a convolutional neural network
augmented with a recurrent module (RNN) to model the temporal
dimension. We compare against two baseline networks, finding
that our model can predict the age of the aluminum more
accurately from the optical images instead of the thermal ones.
This work is the first that pursues a deep neural network-based
modeling to predict electromigration failures from experimental
optical and thermal images.

I. INTRODUCTION

The modern world relies on the correct operation of innu-
merable electronic systems that are the backbone of everything
from consumer devices to critical government and military
infrastructure. The reliability of these systems, in turn, depends
on the dependability of countless integrated circuits and other
microelectronic devices. Detecting potential failures in these
devices before they happen, and predicting their remaining
lifespan before failure, is thus of critical importance.

Electromigration (EM), the process of displacing atoms in
metals due to current flow [1], [2], causes interconnect failures
in electronic circuits and is a major reliability concern as
devices become smaller and electrical current densities in
chip interconnects continue to rise. This EM phenomenon
causes the metal to transport in the direction of charge-
carrier (electrons) flow. This leads to migration of the metallic
ions from the cathode (negative terminal) towards the anode
(positive) terminal. Voids start to form near the cathode,
eventually leading to an open circuit. While ion accumulations
(hillocks) happen near the anode, which may lead to shorts
with neighbouring interconnects. An example of the voids can
be seen in Figure 1 (most apparent in top-right image). While
EM has been studied for decades [1], [3], [4], [5], it is a
complex process to model or test: finite element modeling of

Fig. 1: Sample pairs of optical (top) and thermal (bottom)
images for an aluminium device during EM. The first column
shows the image pairs at the beginning of the current flow, and
the second column shows the image pairs after device failure.
EM creates a hole in the metal (visible in the optical image
on top-right) that grows over time and eventually creates a
failure. Our goal is to predict the failure location and time of
failure from a single image before the failure occurs.

EM turns out to be so computationally expensive that it is
practically infeasible.

In this paper, we explore the alternative approach of using
Deep Neural Networks (DNNs) to model EM, which could
offer significantly reduced test times, permit proactive hard-
ware replacements, and potentially yield important insights
into the physics of the EM process. While our long-term
goal is to predict failures in arbitrary microelectronic devices,
here we take the first step by considering aluminium (Al)
interconnects that fail after a certain number of hours of
continuous current flow. We systemically capture multimodal
imagery (optical and thermal) during the entire duration of
the flow until failure, creating a dataset of images of the
device with paired known remaining lifespan as ground truth.
Then, we propose two deep neural network models for solving
the failure location identification and failure time prediction
problems. We formulate the problem of finding the failure
location of a device as an image segmentation problem, which
we solve using a convolutional neural network (CNN). Finally,
we cast the device age prediction task as a regression problem
and solve it using a combination of convolutional neural
network (CNN) and recurrent neural network (RNN).

To the best of our knowledge, our work is the first that
pursues a machine learning-based approach for predicting EM
failures from experimental optical and thermal images. EM
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is a complex process to model or test. We exploited two
existing powerful paradigms, convolutional neural network and
recurrent neural network, and showed how they can learn
from optical and thermal images to model failure location and
lifespan.

II. RELATED WORK

Object detection and segmentation have been extensively
studied in computer vision, and have particularly benefited
from the rise of deep neural networks. Object detection iden-
tifies objects and their locations, typically in terms of bounding
boxes. Popular deep learning-based object detection methods
include SSD [6], YOLO [7], and Mask R-CNN [8].

In contrast to detection, the goal of semantic segmentation
is to precisely localize regions of interest with detailed pixel-
wise annotations. FCN [9] is one of the most popular end-
to-end trainable convolutional neural network for semantic
segmentation, and inspired other methods such as SegNet [10].
U-Net, proposed for segmenting medical images, introduced
several architectural innovations [11]. Others were inspired by
U-Net’s encoder-decoder architecture, including UNet++ [12]
and 3D-DenseUNet [13]. 3D-DenseNet embedded a recurrent
module – Convolutional LSTMs – at the bottleneck layer to
capture the inter-slice continuity of a 3D volume. A combi-
nation of the convolutional and recurrent modules was also
found beneficial in other tasks. For autonomous driving, Sen
et al. [14] proposed a CNN + LSTM-based model to predict
the angle of the steering wheel from images. De Fauw et
al. [15] learned a tissue segmentation method for diagnosing
retinal diseases, matching or even exceeding the performance
of medical experts.

Deep learning methods are also being used in sensing
modalities other than visible spectrum, including X-ray, MRI
(Magnetic Resonance Imaging), and Lidar (Light Detection
And Ranging) [16], [17], [18]. Wang et al. [16] classified
X-ray scattering images with CNN and Convolutional au-
toencoders. Although visually very different from the visible
spectrum, these X-ray scattering images are useful for ma-
terial discovery and analysis. Guan et el. [19] introduced a
CNN model for automatically annotating large-scale X-ray
scattering images. Luo et al. [20] proposed a hybrid spatial
and temporal neural network architecture to detect defects in
infrared thermal images.

More directly related to our work, deep learning-based
techniques have been adopted for EM analysis. Lin et al. [21]
used neural networks to analyze the interconnect reliability
of complicated integrated circuits (ICs) by modeling power
amplifier circuits. The authors argued that the use of neural
networks combined with existing reliability simulations sig-
nificantly sped up the analysis. Their neural network model
could help designers find the optimal transistor size and
working conditions given a specific atomic flux divergence – a
fundamental factor causing EM – while the sensitivity analysis
can identify sensitive variables which can improve reliability.
Kim et al. [22] proposed a novel cross-layer approach to
optimizing the energy of a data center subject to long-term
reliability and performance constraints. They proposed a novel

Fig. 2: Optical image (top) and corresponding binary seg-
mentation map (bottom). A magnification of the segmentation
(right) shows fragmentation caused by EM.

physics-based EM model for a more accurate EM assessment
of power grid networks at the chip level. An adaptive Q-
learning-based reinforcement learning method was proposed in
order to optimize the energy and reliability of the data center.

III. METHOD

We propose a deep neural network-based model for finding
the location of a device failure and predicting the remaining
lifespan from images of the microelectronic device. A simple
solution would be designing a single network that shares
early layers for feature extraction but then separates into
two task-specific branches. However, training such a network
jointly in a supervised setting would require dense annotations
— a single number for lifespan but pixel-by-pixel labels
for segmentation — for each training image in both tasks.
While device age or lifespan is straightforward to obtain from
controlled lab experiments, it is very tedious and expensive to
obtain pixel-level annotations for all training images.

Instead of jointly solving both tasks together, we thus
propose separate deep neural network-based models for the
two problems. Both networks are built on the top of a common
convolutional neural network backbone. We also observed that
the two problems require different amounts of supervision:
the regression problem – the age of the device – requires
more image-level annotations (which are easy to obtain), while
solving the segmentation problem – finding the failure location
– requires fewer images, but they must be annotated at the
pixel-level (each image has around 100,000 pixels and labeling
a few images results in sufficient labels to update the network
parameters). We now discuss the two components of our
approach, the Segmentation Network and the Age Prediction
Network.

A. Segmentation Network

We pose our failure localization problem as a binary im-
age segmentation problem, in which we separate pixels into
foreground (conductive metal) and background, and solved
it with a convolutional neural network. We used the Optical
(visual spectrum) images (Figure 2) to train our segmentation
network. We defined foreground to be the region of current-
conductive material (aluminium), as shown in the top image
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Fig. 3: Our segmentation network with multiscale encoder-decoder architecture.

of Figure 2 (the middle region in yellow color). The remaining
region is denoted as background. We manually annotated
some optical images at the pixel-level to prepare our ground
truth, using the ‘Object Labeling Tool’ from Hoiem [23].
Figure 2 shows a sample annotated image, where darker pixels
are background and lighter pixels are foreground. Notice the
fragmentation due to EM that occurs in the bottleneck: we
want to identify these voids because they will eventually lead
to device failure.

We followed the encoder-decoder architecture of Lim et
al. [24] to segment the image into foreground and background
pixels. An image is fed through a series of convolutional
layers at three different scales. The response maps are then
concatenated together and transferred through another series
of transposed-convolutional layers to recover the segmentation
map. Figure 3 demonstrates an overview of the network
architecture. The details of the two modules along with the
network parameters are described in Table I. These convo-
lutional blocks are also part of our device age prediction
network (described below), so the two networks share common
convolutional blocks that are beneficial for both tasks. We
generate three different scales of the input image using a
Gaussian pyramid with a sigma factor of 2. These images at
multiple scales are passed through the convolutional modules.
The weights of the convolutional blocks are shared among
the inputs. The first three convolutional blocks are initialized
with the pre-trained weights of VGG16 [25] and their weights
are not updated during backpropagation. The weights of the
remaining convolutional blocks along with the deconvolutional
layers are learned from scratch.

B. Device Age Prediction Network

Our next goal is to predict the age (percentage of elapsed
lifespan) given an image of a device. We formulate this as a
regression problem, and our network architecture consists of
a combination of a convolutional neural network (CNN) to
extract spatial features and a recurrent neural network (RNN)
to model the temporal dependencies between the frames. The
architecture is shown in Figure 4. The convolutional network
consists of the subset of convolutional blocks (first four blocks)

Layer Description

Conv Block 1 Conv(64)-Conv(64) -Maxpool(64)
Conv Block 2 Conv(128)-Conv(128)-Maxpool(64)
Conv Block 3 Conv(256)-Conv(256)-Maxpool(256)
Conv Block 4 Conv(512)-Conv(512)-Conv(512)

Deconv Block 1 TrConv(64)-TrConv(64)-TrConv(512)
Deconv Block 2 TrConv(64)-TrConv(64)-TrConv(256)
Deconv Block 3 TrConv(64)-TrConv(64)-TrConv(128)
Deconv Block 4 TrConv(64)
Deconv Block 5 TrConv(1)

TABLE I: Our encoder-decoder style segmentation network
architecture consisting of the convolutional blocks (encoder)
followed by deconvolutional blocks. We used ReLU nonlin-
earities after each convolution or transposed-convolution layer
and Dropout layers between the convolutional layers in Conv
Block 4.

that were used in our segmentation network. We added a fifth
convolutional block with 32 convolutional layers followed by
a ReLU nonlinearity layer. These convolutional blocks were
followed by a series of fully connected layers, which we
call our regression module. We appended our recurrent neural
network within the regression module to encode our temporal
features, and in particular gated recurrent units (GRUs) [26].
long short-term memory (LSTM) is a popular choice but
we experimentally found that gated recurrent unit (GRU)
performed better for the device age prediction task.

For a sequence of images I1, I2, ..., IT , assume the features
from the convolutional module are denoted as f1, f1, ..., fT .
The sequence of output hidden states corresponding to these
features is denoted as h1, h1, ..., hT . For each t ∈ T , the GRU
cell updates are given by,

zt = σ(Wzft + Uzht−1)

rt = σ(Wrft + Urht−1)

ht = tanh(Whft + rt · Uhht−1)

ht = zt · ht + (1− zt) · ht ,

(1)

where W,U are learnable hidden layer parameters and · is
element-wise matrix product. zt, rt, ht , and ht are the update
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Fig. 4: Device age prediction network combining convolutional neural network (CNN) and recurrent neural network (RNN) to
estimate the age of the aluminium Al line.

gate, reset gate, new memory content gate, and hidden state,
respectively.

IV. EXPERIMENTS

A. Dataset

In the laboratory setting, we have captured a series of
optical and thermal images of aluminum (Al) lines. In a
typical experimental run, the Al line is excited with a fixed
electrical current that generates heat due to Joule heating.
The wire undergoes EM and eventually breaks. Thermal and
optical image pairs are saved every minute until the device
failure, thus systematically recording the time evolution of
temperature fields and defect generation around the failure
region. The images were captured using thermoreflectance
(TR) thermal imaging technique — a non-contact optical
technique that generates high-resolution thermal images (spa-
tial temperature distributions of the specimen’s top surface).
The technique uses visible light to generate thermal images
with ∼10x the spatial resolution of infra-red (IR) thermal
imaging. In this specific experiment, a 100× (NA=0.80) air
objective was used under λ=780 nm illumination, yielding
∼400 nm of spatial resolution. Thermal image resolution was
∼0.1K (the setup is capable of achieving 1mK resolution
with longer time-averaging). The detailed experimental setting,
and an overview of the TR technique, are described in [27].
Moreover, a detailed finite element model that highlights our
Al lines complex EM physics can be found in [28]. Though
TR imaging provides the surface’s temperature distribution,
buried interconnects can also be studied as long as their
heating can create a surface temperature rise of a fraction of
a degree. Since thermoreflectance technique can characterize
transient heating with 50 ns time resolution, it is possible
to study localized heating at different depths. For example,
defects in different metallization layers in an IC chip have
been characterized as they show distinct transient heating
profile [29].

Here, we study three aging experiments. In each one, the
electrical current excitation for the Al line was fixed, but the
overall environment (ambient) temperature was varied. The
ambient temperatures are 69°C, 55°C, and 33°C for the video
sequences EM 1, EM 2, and EM 3 respectively (in Table II).
The higher the ambient temperature, the quicker the device
fails. Failure times ranged from 2.6 hours for video sequence
EM 1 to 8.2 hours for video sequence EM 3 (in Table II).
Each experiment has 133 to 420 pairs of optical and thermal
images. We report the total number of image-pairs in Table II.
Instead of predicting the failure time directly, we estimate the

# frames

Video Sequence Train Val Test Total Hours to failure

EM 1 80 13 40 133 2.58
EM 2 124 21 61 206 3.97
EM 3 252 42 126 420 8.18

TABLE II: Statistics of video sequences in our dataset.

age of the Al line, in terms of percentage of lifespan. For a
frame t ∈ T , this percentage of age is at = 100 ∗ t/T where
at is the variable we want to estimate for the tth frame and
T is the frame number in which failure occurs, e.g., 133 for
EM 1 video sequence.

B. Segmentation

We trained our segmentation network using the eight
randomly-selected annotated images from the video sequence
EM 1. The size of each image is 1401x701 pixels. We
implemented our network in PyTorch, and trained it for 30
epochs using binary cross-entropy loss. RMSProp solver was
used for the optimization of the network parameters with an
initial learning rate of 0.0001 and a batch size of 1. The
learning rate was decayed by a factor of 0.1 with every 6
epochs.

Segmentation was evaluated using the same trained model
on all three video sequences. Since we have a two class
labeling problem in our segmentation task, we evaluated
using the standard metrics used for semantic segmentation: 1)
per-class accuracy, which measures the fraction of correctly
predicted pixels for each class, and 2) intersection over union
(IoU), which computes the ratio of the size of the intersection
of ground truth label and estimated label regions to the size
of the union between the ground truth and the estimated
label. To obtain a quantitative measure of our segmentation
performance, we additionally annotated 8, 9 and 8 test images
from videos EM 1, EM 2, and EM 3 respectively.

We evaluated our segmentation using both metrics and
report the numbers in Table III. Our segmentation can predict
correctly the background region, which includes the ‘void’
regions due to EM – our region of interest. Figure 5 shows
visualizations of the results on the EM 3 test samples. We
notice that our approach can segment the input optical test
image progressively, predicting more of the ‘void’ regions as
the experiment reaches towards total failure. Our segmentation
method tends to predict more accurate locations towards the
end of the device’s lifespan, whereas sparse tiny ‘void’ regions
that occur long before the actual breakdown are ore difficult.
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Fig. 5: Finding the device failure locations from our segmentation network (best viewed in color). Input optical (visual-spectrum)
images (first column) are fed through our network which in turn predicts the binary foreground vs background segmentation
(third column). The ground-truth maps are shown in the middle column. Each row shows a separate image in a video sequence
(EM 3).

This problem can be partly attributed to the annotation process
which can be improved to capture more precise boundaries on
those sparse ‘void’ regions.

C. Device Age Prediction Network

We trained our device age prediction network for each video
sequence separately. Each video sequence consists of pairs
of optical and thermal images. The image dimensions are
301x301 pixels. We partitioned the frames in a video sequence
into train/val/test splits as shown in Table II. This regression
network measures prediction accuracy in terms of two metrics:
1) Root Mean Square Error (RMSE), and 2) Mean Average
Error (MAE). These two metrics are computed for a given

video sequence from the individual frame’s predicted and
ground truth age,

RMSE =

√√√√ 1

T

T∑
i=1

(Y g
i − Y

p
i )

2 (2)

MAE =
1

T

T∑
i=1

|Y g
i − Y

p
i |, (3)

where Y g
i and Y p

i are the ground truth and predicted age of
the ith frame and these values are computed for all the frames
i ∈ T .
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Per-class (↑) IoU (↑)

BG FG Avg BG FG Avg Global Acc

EM 1 0.989 0.989 0.989 0.979 0.979 0.979 0.989
EM 2 0.991 0.978 0.985 0.979 0.964 0.971 0.986
EM 3 0.993 0.968 0.981 0.983 0.950 0.966 0.987

TABLE III: Evaluation of failure location prediction via our segmentation network.

RMSE (↓) MAE (↓)

Image Modality Recurrent Module EM 1 EM 2 EM 3 Average EM 1 EM 2 EM 3 Average

Thermal LSTM 8.00 15.87 6.61 10.16 6.33 9.20 4.92 6.82
GRU 11.09 17.86 6.74 11.90 8.59 8.53 5.39 7.50

Optical LSTM 7.07 5.76 3.83 5.55 5.17 4.30 2.79 4.09
GRU 5.83 5.14 3.98 4.98 4.62 4.28 2.99 3.96

TABLE IV: Results of our device age prediction network in RMSE and MAE metrics (lower is better). We analyzed the
network with either optical or thermal images for all three video sequences separately. Our model with the GRU recurrent
module on optical images achieved the best performance on average in both metrics.

EM 1 EM 2 EM 3

Method Image Modality RMSE (↓) MAE (↓) RMSE (↓) MAE (↓) RMSE (↓) MAE (↓)

CNN baseline Thermal 13.59 8.95 12.85 8.82 12.43 10.86
Optical 8.77 7.14 8.49 7.79 9.66 8.89

Fusion baseline (concat) Optical + Thermal 21.87 19.25 20.78 18.97 16.27 14.81
Fusion baseline (add) Optical + Thermal 10.5 7.99 12.0 10.58 12.35 11.25

Our method (GRU) Optical 5.83 4.62 5.14 4.28 3.98 2.99

TABLE V: Comparison of our device age prediction network’s performance in RMSE and MAE metrics against two other
baselines. We separately trained the CNN baseline with optical or thermal images for all three video sequences separately.
Our fusion baseline learns jointly from both modalities where the weights of network parameters are randomly initialized. Our
model with the GRU recurrent module on optical images performs better than two baselines in all video sequences.

As mentioned in Section III-B, the Age Prediction Network
contains a series of convolutional blocks followed by three
fully connected layers. After this last fully connected layer,
we insert our recurrent GRU module. We used a unidirectional
GRU with one hidden layer of size 512. This GRU module is
connected with another 32 dimensional fully connected layer
with ReLU non-linearity. A dropout layer is also added after
this layer. Finally, we add another single fully-connected node
to predict the age of the device. The complete network is
shown in Figure 4. We compute the smoothed L1 loss between
the predicted age and the ground truth age. The loss gradients
are computed and backpropagated to update the weights of the
network, and the Adam solver was used for the optimization
with an initial learning rate of 10−5. We trained our network
for a maximum of 4000 epochs.

1) Finding the Right Predictive Modality: In our first exper-
iment, we explored the predictive power of optical images and
thermal images separately. We trained our network for each
video sequence separately on the optical training images and
measured error metrics on the test partition using Equations 2
and 3. The errors are reported in the last two rows of Table IV.
Similarly, we trained our network from the thermal images on
the three video sequences and computed the error metrics as
reported in the first two rows in Table IV. Our GRU-based
failure prediction network achieved RMSE values of 5.83,

5.14, and 3.98 on the three video sequences with optical
images, which is far better than RMSE values of 11.09,
17.86, and 6.74 for the thermal images. Overall, the optical
images are more predictive than thermal images, with an
average error of 4.98 in comparison to 11.9. Similar trends
have been observed for the MAE error metric. As expected,
we see that training on the dataset with more images creates
a more accurate model.

We were surprised that the approach applied to thermal
imagery worked significantly worse than with the optical
imagery, despite the fact that heat is what causes the circuit
failure. One possible reason is that the thermal images do
not accurately reflect the true temperature; we normalize the
thermal images to scale the pixel values to the range 0.0-
1.0 using device-specific minimum and maximum temperature
values. Another possible reason is that due to the device
physics, only the temperature of the aluminum metal can be
measured accurately, while the measured temperatures of the
micro-voids forming in a stressed aluminium line are often not
accurate.

We also experimented with replacing our recurrent module
with a long short-term memory (LSTM) recurrent unit and
trained the modified network. We maintained a similar number
of parameters as used in our GRU recurrent module. The errors
are reported in rows 1 and 3 for thermal images and optical im-



7

Fig. 6: Individual predictions from our GRU-based model on the test images for three video sequences. The ground truth ages
are plotted in blue and predictions are in red (best viewed in color).

Fig. 7: The network architecture of our CNN baseline for
failure prediction.

Fig. 8: The network architecture of our fusion baseline for
failure prediction.

ages, respectively, in Table IV. For optical images, our GRU-
based model reported an average error of 4.98 in comparison
to 5.55 for the LSTM model in the RMSE metric. A similar
trend has been observed for MAE metric, confirming that
the GRU is the better choice. We also visualized individual
predictions on the test partition for all three video sequences
in Figure 6.

2) Comparison with Other Baselines: Now we turn our
attention to comparing the performance of our device age
prediction network with other baselines. To the best of our
knowledge, ours is first in the domain of DNN-based EM
failure analysis, so we devised other CNN-based baselines to
compare the performance. We use two baseline architectures:

CNN Baseline: Our convolutional neural network (CNN)
baseline is a model where we used only five convolutional
blocks along with four fully connected layers sequentially. We
train the network with the two image modalities, i.e., optical
and thermal, separately using the smoothed L1 loss function.
The network architecture is depicted in Figure 7.

Fusion Baseline: Built on top of our CNN-based ar-
chitecture, we designed a fusion of two CNN subnetworks,
where the features are fused at a later stage benefiting the
learning from both image modalities jointly during training.

The network architecture is shown in Figure 8 and consists of
two separate CNN-based subnetworks. The top branch receives
optical images, while the bottom branch takes thermal images.
We fuse the fully connected layers with a fusion operation.
We experimented with different fusion operations between
two feature vectors such as ‘add’, ‘concat’, etc. The fusion
feature is fed through another series of fully-connected layers
to predict the failure time. We train the network with the same
loss function as used in our CNN baseline.

Discussion: The results of our baselines are reported
in Table V. We consistently found that optical images are
more useful in device age prediction, as our CNN baseline
yields less RMSE errors with optical images obtaining 8.77,
8.49, and 9.66 for EM1, EM2, and EM3 video sequence,
respectively. The RMSE errors are beyond 10 in all three
experiments for thermal images. Our fusion baseline was
designed in the hope of obtaining complementary signals from
the two modalities. During experimentation, it did not result
in improved performance compared to our CNN baseline that
uses a single modality. The RMSE errors on the three video
sequences are 10.5, 12, and 12.35 respectively, which is more
than what our CNN baseline could predict. Moreover, we also
experimented with different operations to find the right feature
fusion. Our experiments revealed that the ‘add’ operation was
the best choice. In contrast, our model could reduce the RMSE
errors significantly in all three video sequences, as shown in
Table V (last row).

V. CONCLUSION

In this work, we demonstrated a deep neural network-based
approach for understanding the EM phenomenon which is a
fatal cause for interconnect failures in electronic circuits. Our
approach provides an image-based machine learnable model
for gaining important insights into the physics of the EM
process which is otherwise a complex process to model. We
developed an encoder-decoder style CNN model to accurately
predict the failure location of a device. We also developed
a recurrent neural network model to predict the age and
remaining lifespan of the device. From our findings, we
concluded that optical images are more useful in finding the
failure location as well as predicting the age of the device
during EM.
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