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Abstract— Domestic robots could eventually transform our
lives, but safely operating in home environments requires a rich
understanding of indoor scenes. Learning-based techniques for
scene segmentation require large-scale, pixel-level annotations,
which are laborious and expensive to collect. We propose
an automatic method for pixel-wise semantic annotation of
video sequences, that gathers cues from object detectors and
indoor 3D room-layout estimation and then annotates all the
image pixels in an energy minimization framework. Extensive
experiments on a publicly available video dataset (SUN3D)
evaluate the approach and demonstrate its effectiveness.

I. INTRODUCTION

Service robots may soon be ubiquitous: according to a
report from the International Federation of Robotics (IFR),
there could be an estimated 31 million domestic robots de-
ployed around the world by the year 2019, with functionality
ranging from helping in household chores, to providing en-
tertainment, to assisting people with physical disabilities [1],
[2]. Most of these service robots will stay in a relatively
closed, indoor setting, without needing to go outside [3].
Understanding this indoor setting will therefore play a critical
role in the reliable functionality of these robots.

An important ingredient for understanding indoor set-
tings is semantic segmentation — simultaneously identifying
meaningful pixel regions in an image and assigning object
or material labels to each of them. Existing solutions for
semantic segmentation are mostly dominated by Deep Neural
Network (DNN) based approaches [4]–[6]. For better or
worse, large quantities of training labels are required to
learn the millions of parameters of a DNN, which raises the
question of how to obtain those ground truth labels in the first
place. Typically, these images must be manually annotated
by humans, which is time-consuming and expensive.

In this paper, we explore the possibility of densely annotat-
ing the images in an indoor video without the need for human
annotations at all. This work builds on previous approaches
that have asked humans to label a few key frames, and
then propagate these annotations across the entire video [7]–
[9]. Instead of requiring human annotation, we rely on
signals from an object detector [10] applied to various object
categories (e.g., bed, tv, etc.). To account for the remaining
regions that are not explained by the object detectors, we
automatically estimate the 3D layout of the scene, which
helps to identify background regions. We then introduce a
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Fig. 1: We automatically annotate indoor scenes for training
semantic segmentation models. Images (left) are automati-
cally annotated (right) based on off-the-shelf object detectors
and a 3D room layout estimator.

novel energy minimization-based formulation for solving for
dense pixel-level annotations over an entire video.

We make the following contributions:
• First, we propose a novel method to densely annotate

pixels of an indoor scene for semantic segmentation.
Our method combines masks from pre-trained object de-
tectors with the estimated indoor scene layout to explain
all the pixels in an image including the background.
We formulate the pixel-level annotation in a Conditional
Random Field (CRF) energy minimization framework,
to use the regularities between successive video frames
to produce a consistent annotation over the entire video.

• Second, our method serves as an alternative source for
generating large quantities of automatically annotated
labels for an entire video.

• Finally, we demonstrate that our automatic annotations
can be used to train a data-hungry Deep Neural Network
for semantic segmentation on SUN3D.

II. RELATED WORK

Semantic Segmentation: Before the advent of Deep
Convolutional Neural Networks (DCNNs), semantic seg-
mentation was usually performed bottom-up using hand-
engineered features [11]. Deep neural networks have since
surpassed these earlier approaches in accuracy.One suc-
cessful application of an end-to-end trainable convolutional
network for semantic segmentation is the Fully Convolution
Network (FCN) of Long et al. [4]. This idea was further
refined by SegNet [5]. To mitigate the cost of pixel-level
annotation, Dong et al. [12] recently proposed a few-shot
semantic segmentation approach that learns a DCNN model
from very few annotated images.

Annotation: Castrejon et al. [13] learned a Recurrent
Neural Network (RNN) model that could predict the polyg-
onal vertices encompassing an object inside a cropped RGB



Fig. 2: For each video frame, we identify candidate object masks using pre-trained object detectors (top branch). The pixels
not explained by the detector are estimated from 3d scene layout (bottom branch). This evidence is combined in an energy
minimization framework to estimate our final annotation.

image. This method includes an interactive tool to correct
prediction errors. EasyLabel [14] is a semi-automatic method
for annotating objects on the RGB-D table-top setting. Label-
Fusion [15] is another semi-automatic method for generating
large quantities of semantic labels from RGB-D videos. This
method receives user annotation on the 3D reconstruction of
the environment, which is then leveraged to propagate the
labels across the frames in the RGB-D video. Unlike these
methods, we propose a fully automatic method for labeling
all pixels – covering a range of categories from small objects
to large furniture and background – for all the images in an
RGB-D video.

Video Label Propagation: Most semantic label propa-
gation methods in a video start with manually annotations of
a few keyframes, and then propagate those annotations across
the remaining frames using cues such as spatial proximity,
optical flow, or 3D reconstruction [7]–[9], [16], [17].

Object Detection: Detection tackles the problem of
identifying objects in an image along with their locations
(typically in the form of bounding boxes). SSD [19],
YOLO [20], and Mask R-CNN [10] are popular choices. For
example, Mask R-CNN [10] detects objects by first creating
regions of interest, performing classification on each region,
and then using per-class non-maximal suppression to avoid
duplicate bounding boxes. Here we use Mask R-CNN, since
it also provides segmentation masks for detected objects.

Indoor Scene 3D Layout Estimation: Mallya et al. [21]
introduced the use of edge-based features to recover 3D
layout, while Dasgupta et al. [22] use a Fully Convolutional
Network along with a novel optimization framework. Room-
Net et al. [23] proposed a faster DNN-based solution by
estimating corner points of a layout along with classifying
its layout-type from a fixed set of categories. These RGB
only learning-based approaches rely heavily on the training

data, and experimentally we found they perform poorly on
images from a novel environment. This weakness could be
addressed with the effective exploitation of the depth-channel
in an RGB-D setting. Taylor et al. [18] proposed a layout
estimation problem from an indoor RGB-D image. Their
approach finds planar candidates directly by utilizing the
depth data, then formulates layout estimation as a dynamic
programming problem to find Manhattan structure.

Synthetic Data: A strategy for dealing with limited
training data is to generate synthetic data [24], [25], but a
caveat is that deep neural networks trained with synthetic
data may not perform well when applied on real world
images. A more effective approach may be to generate
annotated data directly from natural images. In this paper,
we address this problem and propose an automatic method
for generating annotation from frames of video sequences.

III. APPROACH

We address the problem of automatically annotating all the
pixels in an indoor image from a video sequence without any
human annotation. Most pixels in an indoor scene belong
to one of two broad categories: object or background. To
automatically annotate all the pixels in an image, we need to
find labels for these two different categories. Object detectors
allow us to incorporate annotation information for the various
specific object categories, such as “bed,” “chair,” “tv,” etc.
But a large fraction of the pixels in an indoor scene consist
of background categories such as “wall,” “ceiling,” “floor,”
“window,” etc. In order to annotate the pixels for these
background categories not explained by an object detector,
we resort to 3D layout estimation of the scene. Information
from these two complementary sources is fused together by
solving an energy minimization problem in a Conditional
Random Field (CRF) framework. Figure 2 shows the pipeline



Fig. 3: Visualization of our energy minimization formulation. (a) For each frame, we (b) identify candidate object
segmentation masks from pre-trained object detectors [10]. (d) The remaining pixels are estimated from the layout of
the scene [18]. These are combined via energy minimization to estimate our final annotation (h). In addition to a unary term
(e) from the current frame, we incorporate a second unary (g) that encodes evidence from previous frames, using optical
flow as shown in (f).

of our methodology. We now describe these components in
detail.

A. Object Detection

Object detection [19], [20] identifies the objects present
in an image along with their locations in the form of
rectangular bounding boxes. To find a coarse segmentation
mask of each detected object, we use the object segmentation
method of Mask-RCNN [10]. Figure 4 (top row) shows
detection results on images from two different scenes in
our experiments. Notice that while the object identifications
and boundaries are generally accurate, a large fraction of
pixels that are in the background are not labeled. We find the
annotation information for these image pixels by estimating
the structural layout of the scene.

B. 3D Scene Layout Estimation

The approximate structure of a typical indoor scene con-
sists of a set of 3D planes intersecting with each other.
Individual components of these planar structures can typi-
cally be labeled as “wall,” “floor,” “ceiling,” etc. Finding and
identifying these planes is relatively straightforward if there
are not many objects in the scene, but is much more difficult
if the planes are occluded with multiple objects. Various
methods have been proposed to solve the scene layout
estimation problem [18], [21], [26]. After experimenting with
various of these, we settled on the approach of Taylor et
al. [18], which estimates the structure of the scene by first
finding 3D planes utilizing the depth channel from an RGB-
D image, and then assigns labels to each plane based on its
estimated normal. The plane aligned to the gravity direction
is labeled as “floor,” the plane orthogonal to the “floor” is
labeled “wall,” and the remaining portion of the layout is

Fig. 4: Sample detection and 3D room layout results
from two different scenes: Studyroom (Left) and MIT-32
(Right) from SUN3D [17]. Detector outputs (top) from
Mask RCNN [10] provide an initial coarse segmentation
around detected objects, while 3D layout estimation (below)
explains background categories including “wall,” “floor,” and
“ceiling.”

labeled as “ceiling.” Figure 4 shows the estimated scene
layout components for two sample images.

C. Superpixels

An image superpixel is a set of contiguous pixels that
share homogeneity in appearance, texture, etc. [27]–[29].
A superpixel generation algorithm partitions the image into
a reduced number of segments, thereby speeding up the



work of subsequent processing which can process partitions
instead of individual pixels. Reza et al. [7] generated high-
quality superpixels, but relied on an expensive image-contour
generation process that can take several minutes per image.
In contrast, we follow a simpler and more efficient alterna-
tive, SLIC (Simple Linear Iterative Clustering) [28], which
can generate superpixels in less than a second. Figure 3(b)
shows superpixel boundaries overlaid on an image from our
experiments. We use our superpixels as atomic units to incor-
porate annotation information from our two complementary
sources of evidence, object detection and 3d scene layout
estimation.

D. Pixelwise Annotation

We assume that we are given a video sequence consisting
of frames {I1, I2, ..., IN}. For a given unannotated frame Ik,
we would like to minimize,

E(Xk|Ik, Ik−1, Ik−2, Ik−3) =
∑
i∈V

θi(xi; Ik)

+
∑
i∈V

φi(xi; Ik−1, Ik−2, Ik−3)

+
∑

(i,j)∈ζ

ψij(xi, xj ; Ik),

(1)

where θi(.) and φi(.) are the unary energy functions and
ψij(.) is the pairwise function. The CRF graph G = (V, ζ)
is defined over the pixels in the image Ik and 4-connected
neighbors. We use the 3 frames immediately preceding Ik,
namely Ik−1, Ik−2, and Ik−3, and exploit their unaries
computed earlier by transferring them into the current frame
using optical flow. This ensures temporal smoothness in
finding the annotation for the current frame.

Unary Terms: From the detector output, we obtain a
set of detected object masks along with their labels. For the
background category, the predicted layout mask intersects
with almost the entire image. We assign a fixed score to
all the pixels that overlap with our various background
categories (such as “wall,” “floor,” “ceiling,” etc.). Figure 4
shows detection masks in different colors along with their
label on the top-left corner of each bounding box. We find
the intersection of a mask with a superpixel, and within each
superpixel distribute the same score to all the pixels.

More specifically, we compute our first unary term,

θi(xi; Ik) = −f(xi; Ik), (2)

where f(.) is a score for the pixel i computed by the
superpixel that engulfs it. For each superpixel, we count
the fraction of pixels that overlap with the detection mask
of object aj . As an example, if a detection mask from the
“chair” category completely overlaps with a superpixel, then
f(.) assigns a score of 1.0 for “chair” category. Figure 3(b)
shows an example of our unary energy term for different
annotation categories.

Fig. 5: Detection masks on three successive frames in a video
sequence. Notice that the detector fires inconsistently on the
same instance of “chair” object category. Our formulation
can handle this noise with a unary term φ(.) that encourages
temporal consistency across frames.

Our second unary term is,

φi(xi; Ik−1, Ik−2, Ik−3) = −g(xi; Ik−1, Ik−2, Ik−3), (3)

where g(.) is another scoring function based on the unary
energy terms for the three frames immediately preceding
frame Ik, in particular taking the average of the unary energy
terms from the frames Ik−1, Ik−2, and Ik−3 by transferring
them into frame Ik using optical flow. Figure 5 shows a
situation that demands this temporal consistency for finding
the correct annotation.

Pairwise Term: To encourage smoothness, we adopted
a simple Potts model for our pairwise energy function, which
penalizes adjacent pixels having different annotations by a
constant factor,

ψij(xi, xj ; Ik) =

{
0, xi = xj
b, xi 6= xj

(4)

where b was empirically set to 0.5 for all our experiments.
Equation (1) is minimized using Graph Cuts [30] infer-

ence. A summary of the steps for finding the automatic
annotation for an image is shown in Figure 3.

IV. EXPERIMENTS

We experimented on the eight RGB-D video sequences
from SUN3D [17] to validate our automatic annotation
approach. Table II shows statistics for the eight video se-
quences. Each video consists of thousands of frames captured
across various indoor locations in university campuses and
dormitories. Only a fraction of these frames have been
manually annotated. We validate the automatically generated
annotations from our approach on these frames.

We used 10 categories, including both fine-grained (Bed,
Chair, Table, TV, Floor, Ceiling) and generic categories
(Props, Furniture, Structure). We conform to this selection
based on the labeling criteria laid out by the popular indoor
scene understanding dataset NYUD-V2 [31].

We used an open-source implementation of Mask-
RCNN [32] pretrained on MS COCO [33] as our object
detector. MS COCO consists of 80 categories commonly
found in both indoor and outdoor scenes; we selected only
the indoor object categories. We mapped categories of MS
COCO to categories used in our experiments, as shown in
Table IV.

For 3D scene layout estimation, we used the implementa-
tion by the author of [18]. The estimated layout provides



Video Bed Ceiling Chair Floor Furniture Props Structure Table TV Mean across
category

hotel-umd 81.9 / 60.0 60.6 / 33.6 51.3 / 39.0 56.7 / 37.3 12.9 / 05.6 21.9 / 10.6 66.6 / 59.1 — 54.4 / 52.7 50.8 / 37.2
hv-c5 — 0 / 0 77.6 / 66.9 83.8 / 49.9 0 / 0 64.0 / 05.7 81.7 / 76.4 84.8 / 80.2 — 56.0 / 39.9
studyroom — 0 / 0 74.8 / 64.8 74.2 / 59.6 36.0 / 31.0 23.9 / 07.5 87.5 / 70.9 48.0 / 45.4 — 49.2 / 39.9
mit-32 — — 72.4 / 66.0 91.5 / 73.5 — 35.6 / 09.6 69.9 / 62.1 59.6 / 55.4 — 65.9 / 53.3
hv-c6 — — 77.5 / 68.0 70.2 / 39.7 0 / 0 23.9 / 04.3 87.5/ 84.2 84.4 / 76.8 — 57.2 / 45.5
hv-c8 — 18.5 / 10.9 79.5 / 10.9 95.7 / 68.6 0 / 0 70.5 / 07.1 74.9 / 73.4 77.0 / 74.4 — 59.4 / 44.3
dorm 85.7 / 84.0 49.9 / 42.6 96.8 / 73.4 89.7 / 06.9 14.9 / 08.6 47.1 / 35.5 69.3 / 58.5 47.7 / 44.5 — 62.6 / 44.3
mit-lab — 0 / 0 99.2 / 75.3 78.2 / 68.9 99.8 / 54.4 18.1 / 15.9 80.5 / 77.0 88.9 / 38.5 — 66.4 / 47.1

Mean across
video sequence 83.8 / 72 21.5 / 14.5 78.6 / 58.0 80 / 50.6 23.4 / 14.2 38.1 / 12.0 77.2 / 70.2 70.1 / 59.3 54.4 / 52.7 —

TABLE I: Quantitative evaluation of our proposed automatic annotation method. First and second items in each entry denote
evaluation metrics average per-class and average IoU respectively. The last column reports mean across the categories in
each video (row wise). The bottom row shows the mean across video sequences for each category (column wise).

# of Human-
Scene # Frames annotated Frames

hotel-umd 1869 82
hv-c5 2063 24
studyroom 3322 49
mit-32 5444 109
hv-c6 961 36
hv-c8 1003 23
dorm 2675 58
mit-lab 1906 14

TABLE II: Statistics of 8 video sequences in SUN3D [17].

a single mask for floor and ceiling categories, and the
remaining layout is represented as series of other masks such
as Wall, Office-partition, Door, etc. We map these categories
to a generic Structure category as in NYUD-V2 [31].

To measure the performance of our automatic annotation,
we used two metrics: per-class accuracy: for each class, find
the proportion of correctly-labeled pixels, and per-class IoU:
for each class, compute the ratio of the size of the intersection
of ground truth label and estimated label regions, and the size
of the union between the ground truth and estimated label.

A. Automatic Annotation Results

We validated the annotations generated automatically by
our method against the ground truth labels manually pre-
pared by a human in each video sequence. As the manual
annotation is laborious and expensive, each video sequence
has only a small fraction of the frames manually labeled
(as shown in Table II). This is exactly the motivation for
our work: we can generate automatic annotations for all the
frames in a video sequence, allowing a larger quantity of
annotations with minimal human effort.

The results of our evaluation using the two metrics defined
above are shown in Table I. The table evaluates for each
individual category as well as the average across categories
(last column). To evaluate the category specific performance
across all the videos, we also report an aggregated mean in
the last row. Each entry in the table lists two numbers: i) per-
class accuracy and ii) per-class IoU respectively. A missing
entry signifies that that object is not present in that video
(e.g., TV is present only in hotel-umd).

Our automatic annotation method performs well on object
categories such as Chair, Table, and Bed, presumably because
Mask-RCNN trained on MS COCO [33] has modeled these
categories well. Some qualitative visualizations are shown
in Figure 6. As we notice, our method can reliably annotate
chair, table, bed categories in most cases. Our method had
weaker performance on the generic object categories such
as Props and Furniture. Our method solely relies on the
signals from our object detectors to capture the annotation
information; when a detector consistently fails to detect an
object across a video sequence, our method fails to annotate
that object. Our method also captures the annotations for
Floor and Structure categories since our layout estimation
can retrieve the structure of almost all of the scenes from
the RGB-D images.

B. Semantic Segmentation with Automatic Annotations

Since our goal is to generate automatic annotations that
would be useful for training deep semantic segmentation
models, we evaluated our technique as a means of generating
ground truth labels for FCN [4] for the 10 object categories
mentioned above. We partitioned the 8 videos of SUN3D into
4 for training and 4 for testing. The training video sequences
include hotel-umd, hv-c5, studyroom, mit-32 which have a
total of 264 human-annotated keyframes. Our test partition,
hv-c6, hv-c8, dorm, mit-lab, has 131 human-annotated frames
in total. We use all the 264 training frames along with their
ground truth labels to train a FCN model, which we refer to
as GT. We then automatically generated annotations for these
frames using our method, and used them to train another
FCN model, which we call Auto. Both models were trained
for 60,000 iterations with learning rate 1e−5 and cross-
entropy loss.

Quantitative results are shown in Table III (excluding TV
which is absent in the test partition), with the first value
in each entry indicating per-class accuracy and the second
indicating IoU accuracy. Qualitative results are shown in
Figure 7. The average per-class accuracy for GT is 56.4%
and average IoU accuracy is 42.0%. The average per-class ac-
curacy of the model Auto is 35.1% and average IoU accuracy
is 20.1%. Of course, this is to be expected: GT was trained on
laboriously hand-labeled training data, whereas Auto required



Train Set Bed Ceiling Chair Floor Furniture Props Structure Table Average value

GT 39.3 / 33.6 68.5 / 54.7 73.3 / 40.2 66.3 / 39.4 16.0 / 10.5 15.4 / 12.0 84.2 / 71.8 88.3 / 74.2 56.4/42.0
Auto 1.2 / 1.0 11.3 / 9.5 53.1 / 21.8 72.0 / 15.7 0.9 / 0.7 4.0 / 2.9 70.8 / 53.9 67.6 / 55.3 35.1/20.1
GT + Auto-sample 15.1 / 13.4 33.8 / 30.7 81.0 / 38.1 73.3 / 22.9 10.5 / 7.0 6.4 / 5.4 78.3 / 61.9 89.6 / 60.2 48.5/30.0

TABLE III: Semantic segmentation performance comparison. First and second items in each table entry denote metrics
average per-class and average IoU respectively. Last column shows the aggregated performance across all 8 classes.

Fig. 6: Qualitative results for automatic annotation experi-
ment on different video sequences from SUN3D [17]. From
left to right we show the RGB image, the ground truth, and
the automatic annotations from our method.

no human annotation whatsoever. Auto performs well on
categories such as chair, floor, structure and table, although
not as well as the GT model. Additionally, we observe
that both models do not perform well on categories such
as furniture, and props, as SUN3D has very few instances
of these categories, making it difficult for the segmentation
network to learn a reasonable model even with perfect ground
truth annotations.

To further understand the effectiveness of our auto-
matically generated annotation, we trained another model
GT+Auto-sample (last row in Table III) by adding more
samples of automatic annotated frames to the existing 264

Fig. 7: Qualitative comparison for semantic segmentation on
the images on test set (left) when trained on human annotated
(middle) vs automatic annotated (right).

training human-annotated frames. More specifically, Auto-
sample was prepared by sampling the automatic annotation
of every 15-th image in each training video, resulting in a
total 838 automatic annotated frames. Although the overall
performance of GT+Auto-sample is inferior compared to
GT (average per-class and IoU are 48.5% and 30.0% re-
spectively), we observe performance improvements for some
categories such as Chair, Table, and Floor. These three
belong to the classes for which our automatic annotation
method performed well (as reported in Table II and also
discussed in Section IV-A).

V. CONCLUSION

In this work, we presented a method for generating an-
notations for indoor images from a video sequence without
any human intervention. In order to produce the annotations
automatically, our method relies on two complementary
sources: object detectors and scene layout estimators. Our
method offers an alternative source for generating a large
quantity of dense pixel-level annotations. These annotations
are effective for training a deep neural network for the se-
mantic segmentation task. In the future, we plan to augment
the method to generate annotations for large number of fine-
grained indoor object categories.
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TABLE IV: Mapping of different MS COCO [33] categories to different indoor scene categories for our automatic annotation
approach.
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