
P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies

Ze Jin
1,3,2,†

, Luyi Xing
2,†,∗

,

Yiwei Fang
1,3,2

, Yan Jia
4
, Bin Yuan

5
, Qixu Liu

1,3,∗
1
Institute of Information Engineering, Chinese Academy of Sciences,

2
Indiana University Bloomington,

3
School of Cyber Security, University of Chinese Academy of Sciences,

4
College of Cyber Science, Nankai University,

5
School of Cyber Science and Engineering, Huazhong Univ. of Sci. & Tech.

ABSTRACT
Modern IoT device manufacturers are taking advantage of the man-

aged Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service

(IaaS) IoT clouds (e.g., AWS IoT, Azure IoT) for secure and con-

venient IoT development/deployment. The IoT access control is

achieved by manufacturer-specified, cloud-enforced IoT access poli-

cies (cloud-standard JSON documents, called IoT Policies) stating
which users can access which IoT devices/resources under what

constraints. In this paper, we performed a systematic study on the

security of cloud-based IoT access policies on modern PaaS/IaaS IoT

clouds. Our research shows that the complexity in the IoT semantics

and enforcement logic of the policies leaves tremendous space for

device manufacturers to program a flawed IoT access policy, intro-

ducing convoluted logic flaws which are non-trivial to reason about.

In addition to challenges/mistakes in the design space, it is aston-

ishing to find that mainstream device manufacturers also generally

make critical mistakes in deploying IoT Policies thanks to the flexibil-
ity offered by PaaS/IaaS clouds and the lack of standard practices for

doing so. Our assessment of 36 device manufacturers and 310 open-

source IoT projects highlights the pervasiveness and seriousness of

the problems, which once exploited, can have serious impacts on IoT

users’ security, safety, and privacy. To help manufacturers identify

and easily fix IoT Policy flaws, we introduce P-Verifier , a formal ver-

ification tool that can automatically verify cloud-based IoT Policies.
With evaluated high effectiveness and low performance overhead,

P-Verifier will contribute to elevating security assurance in modern

IoT deployments and access control. We responsibly reported all

findings to affected vendors and fixes were deployed or on the way.

CCS CONCEPTS
• Security and privacy → Access control; • Software and its
engineering → Formal software verification.

KEYWORDS
IoT, Formal Verification, Access Control Policy, Cloud.

†
The first two authors Ze Jin and Luyi Xing are ordered alphabetically.

∗
Corresponding authors: Luyi Xing, Qixu Liu.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9450-5/22/11.

https://doi.org/10.1145/3548606.3560680

ACM Reference Format:
Ze Jin, Luyi Xing, Yiwei Fang, Yan Jia, Bin Yuan, Qixu Liu. 2022. P-Verifier:

Understanding and Mitigating Security Risks in Cloud-based IoT Access

Policies. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’22), November 7–11, 2022, Los Angeles, CA,
USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3548606.

3560680

1 INTRODUCTION
The Internet of Things (IoT) cloud is one of the key pillars of the

foundation upon which modern IoT systems rest. Newer IoT de-

vices and their manufacturers take advantage of the much-less

studied, third-party, managed Platform-as-a-Service (PaaS) and

Infrastructure-as-a-Service (IaaS) IoT cloud services (e.g., AWS IoT

Core [9], Azure IoT Hub [32], and Tuya IoT Cloud [45]), which of-

fload much of the security responsibilities and deployment burden

to the public cloud providers. Such PaaS and/or IaaS IoT clouds (re-

ferred to as IoT clouds in this paper) must trust-manage hundreds of

millions of IoT devices and users, and provide device manufacturers

with reliable and usable tools for secure IoT deployments. In the IoT

cloud systems, compromised security or improper deployments can

cause hazardous and deadly consequences. Despite the importance,

the security of managed third-party IoT clouds was not fully under-

stood [7, 54, 60, 85]. In particular, it is imperative to systematically

explore whether and to what extent their PaaS and IaaS design and

practices effectively help device-manufacturers make secure IoT

development and deployment, which will be studied in this paper.

Cloud-based access policies and IoT access policies. In general,

the convenience of accessing resources in the cloud is made secure

by developer-specified access control policies. A cloud-based access
policy is an expressive specification of what resources can be ac-

cessed, using what actions (e.g., read/write/create), by whom, and

under what conditions. Cloud providers such as AWS and Azure

generally define a policy language (e.g., in the JSON format, called

IAM policies across all AWS services [37]) that lets developers gov-

ern access to resources in the cloud. A cloud-based IoT access policy

(or IoT Policy for short), taking AWS IoT as an example, inherits

the syntax of the service-agnostic AWS IAM policies and is an ex-

tension of IAM policy in the IoT context. An IoT Policy specifies

which users/clients can access which IoT devices/resources under

what constraints and can specify action/resource types in the IoT

context (e.g., publish an MQTT message — a type of action from

the popular IoT messaging protocol, see § 2).

Prior works [55, 56, 63, 110] studied the misconfiguration of

cloud-based access policies, in particular focusing on AWS IAM poli-

cies [55, 56, 63]. In themeantime, the IoT Policies introduce new chal-

lenges due to the IoT-unique, complicated semantics, syntax, and

https://doi.org/10.1145/3548606.3560680
https://doi.org/10.1145/3548606.3560680
https://doi.org/10.1145/3548606.3560680

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

constraints (see § 4) and, thus, could not be effectively analyzed by

prior cloud-based policy analysis tools (see the comparison in § 5.2).

Security analyses and attacks. To understand the error space and
real-world impact of flawed IoT Policies, we systematically studied

IoT Policies developed by mainstream device manufacturers on AWS

IoT. By analyzing the policy designs/practices of 36 mainstream

device manufacturers (e.g., Onelink, Belkin, Govee, Netvue) and 310

open-source IoT projects (on GitHub [29]), our study brings to light

the fundamental design challenges and tremendous error space for

device manufacturers to develop secure IoT Policies (see below). The
design challenges/flaws we found also highlight that PaaS and IaaS

IoT cloud providers (e.g., AWS, Azure) generally failed to provide an

IoT infrastructure with necessary tools that easily, and reliably helps

manufacturers secure modern IoT development and deployment.

Our analysis is guided by the theories of strings and automata [48]

and partially automated by P-Verifier , a formal verification tool to

verify cloud-based IoT access policies (see below).

Regarding the design-space challenges, above all, we found that

the semantic gap between IoT contexts and the cloud-general pol-

icy language (e.g., AWS IAM [37]) makes the development of IoT
Policy extremely error-prone (§ 3.1). In particular, the AWS-wide

policy enforcement mechanism can be abstracted as an automaton

model (a finite state acceptor for strings [49]): each policy essen-

tially defines a string-acceptor 𝑠𝑎 which decides, given an input

string 𝑟𝑒𝑠 that describes a resource to access (e.g., an S3 file path,

an IoT device/topic, see § 2), whether or not 𝑟𝑒𝑠 is accepted by the

𝑠𝑎, and, thus, the access is allowed. Although such a general en-

forcement model has long been successful in cloud computing, we

find that it fails to soundly restrict IoT resources whose semantics

are more complicated than common resources in cloud computing.

Specifically, in IoT, one string in a request can refer to multiple

IoT resources in the cloud; one IoT resource can be referred to by

multiple strings (§ 4) — we call such multiple strings IoT synonyms

(or ISes for short) of the IoT resource. Without a thorough semantic

analysis of IoT synonyms, we find that it is difficult for IoT device
manufacturers to soundly specify a string-acceptor-based automaton
model (i.e., an IoT Policy) that can fully deny all ISes of an IoT resource
to protect. This has led to serious over-privileges in the IoT policies of
many real vendors (§ 3.1).

Further, our research shows that the logical relations between

IAM policies and IoT Policies, and between AWS IoT’s authorization

logic and Cognito (the AWS-wide authorization service) are far

more complicated than expected. The actual complexity generally

failed to be understood and properly handled by real-world IoT

vendors/developers, leading to security-critical logic loopholes in

cloud-based IoT access-control policy development (§ 3.2). Also

alarming are the flawed practices of mainstream device manufac-

turers in deploying IoT Policies (§ 3.3). These mistakes are diverse

and non-trivial to avoid in the first place, highlighting the lack of

standard, adequate security practices with cloud-based IoT policy

deployment.

Measurement of impacts. To understand the impact and perva-

siveness of the problems, we studied devices/mobile-apps of 36

IoT manufacturers and 310 open-source AWS-IoT-based projects

from GitHub. 14 IoT vendors were confirmed to have 24 instances

of IoT Policy flaws, affecting at least 3.3 million users. IoT Policies

in 172/310 open-source projects suffered from the flaws we found.

The attack consequences (Appendix Table 1) are serious, impacting

safety, security, and privacy. For example, any users can control all

t2Fi users’ smart grills, with serious danger of fire/safety; any users

can collect all Biobeat users’ sensitive health/medical information

such as blood pressure, height, weight, and age. We reported all

problems to affected vendors and helped them fix the issues.

Logical encoding and automated reasoning for IoT policies.
To help manufacturers detect security flaws in IoT Policies, we de-
signed and implemented P-Verifier , a formal verification tool that

can effectively verify cloud-based IoT access policies (§ 4). P-Verifier
takes IoT Policies as input and develops formal models that seman-

tically, fully represent the policies; the models are encoded with

Satisfiability Modulo Theories (SMT) formulas, and we leverage the

state-of-the-art, off-the-shelf SMT solver Z3 and CVC4 to verify the

formulas with a set of generalized IoT-access properties. P-Verifier
reports counterexamples indicating security flaws in the IoT Policies.
In doing so, P-Verifier addressed a few fundamental, IoT-unique chal-

lenges. In particular, it is difficult to check whether a string-acceptor

model (the cloud-general policy enforcement model) fully denies ac-

cess to an IoT resource without thorough semantic analysis, and it is

difficult to reason about the actually allowed permissions by an IoT
Policy due to the semantic complexity/flexibility of IoT resources

(§ 4). To enable a thorough evaluation, we introduce IoT-Policy
Bench (§ 5.1), a new test suite (with 403 flawed and 303 secure IoT
Policies) that is designed to evaluate IoT Policy analysis tools. With a

thorough evaluation, P-Verifier shows high effectiveness (zero false

positives/negatives) and low performance overhead (see § 4.1).

Contributions. The contributions are outlined as follows:

• New understanding. We performed a new, systematic study on the

security of cloud-based IoT access policies on modern PaaS/IaaS

IoT clouds. Our research brings to light new categories of security-

critical vulnerabilities in the design and development of IoT Policies,
the serious consequences once the vulnerabilities are exploited, and

the fundamental challenges in addressing the problems. The lessons

learned will contribute to more secure design and practices in the

modern, cloud-based IoT development/deployment infrastructure.

• New techniques. Based upon the understanding, we developed a

formal verification tool P-Verifier that can effectively verify cloud-

based IoT Policies. P-Verifier can help IoT manufacturers automati-

cally identify policy flaws, elevating security assurance in modern

IoT deployments. We also introduced IoT-Policy Bench, a benchmark

designed to evaluate IoT Policy analysis tools. We open-sourced

P-Verifier and released IoT-Policy Bench [44].

2 THE CLOUD-BASED IOT ACCESS-CONTROL
INFRASTRUCTURE

Architecture of Cloud-based IoT Communication. A cloud-

based IoT system typically includes three components: the IoT cloud,
the IoT device, and the user’s management console (mobile apps in

particular) to control the device, as illustrated in Figure 1. Central to

the system is the cloud that facilitates/mediates the communication

between the device and the app, through which the app sends

control messages (commands) to the device (e.g., to lock a smart

door) and gets information back from the device (e.g., sensor values,

the status of a lock). To protect such interactions, the cloud enforces

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

IoT policyConfigure

Commands Commands

Information Information

Device
Manufacturer

Users
IoT Device

IoT cloud

Figure 1: Architecture of cloud-based IoT communication

Subscribe

ClientId: Client B

Topic: DeviceId/status

Connect
ClientId: Client A

Connect

Publish

Topic: DeviceId/status
Publish

Topic: DeviceId/cmd

Topic: DeviceId/cmd
Publish

Topic: DeviceId/status
Publish

Topic: DeviceId/cmd

Subscribe
DeviceId/cmd

DeviceId/status

Topics

IoT Cloud

Figure 2: MQTT-based IoT communication

security policies specified by the device manufacturer, and decides

whether a user should be allowed to control a device or receive

messages from it.

Message Queuing Telemetry Transport (MQTT). MQTT is ar-

guably the most popular messaging protocol in cloud-based IoT

communication. MQTT leverages a classical publish-subscribe pat-

tern [2]: the client publishes a message to a named topic hosted by

the server, which then relays the message to other clients that sub-

scribed to the topic; a topic is named similar to a file path with mul-

tiple/many levels separated by “/”, such as /[DeviceId]/status.
Figure 2 illustrates the communication. First, the client (a device or

app) connects with the cloud server. An IoT device subscribes to its

unique topic (e.g., /[DeviceId]/cmd) by sending a SUBSCRIBEmes-

sage (including the topic name) to the server. The server maintains

the subscription status. The user’s app can command the device, by

publishing messages with commands (e.g., start or stop) to the topic

the device subscribes to. Also, the device can publish messages (e.g.,

sensor values, activities, status) to its topic that the user app sub-

scribes to. A message can include commands or informational texts.
A client can use MQTT wildcards # (matching any number of

levels in a topic) or + (matching one level) to subscribe to multiple

topics. For example, by subscribing to the topic /a/#, one would
receive messages published to /a/b, /a/c, ..., /a/b/a, /a/b/b, etc.
By subscribing to /a/+, one would receive messages published to

/a/b, /a/c, etc.

AWS IoT Policy. An IoT Policy on AWS inherits the syntax of AWS

IAM policies. An IoT Policy is a JSON document that contains one or

more policy statements (see Figure 3), and is applied to a principle to

make access decisions against the principle’s request (to AWS IoT).

Each statement contains a tuple: (Effect, Action, Resource).
Effect is either Allow or Deny. By default, access to a resource is

denied.Allow statements override the default permissions, andDeny
statements override the permissions granted by Allow statements.

That is, to get access to a resource, there must be an allow statement

that grants the access and no deny statement that revokes that

access. The Action construct specifies the IoT-related action(s) that
are either allowed or denied on the corresponding resource, such

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"iot:Connect"
],
"Resource": "client/${iot:Connection.Thing.ThingName}"

},
{

"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": [

"topicfilter/a/*"
]

},
{

"Effect": "Allow",
"Action": [

"iot:Publish",
"iot:Receive"

],
"Resource": "topic/a/b/*"

}
]

}
Figure 3: An Example of IoT policy

as iot:Publish and iot:Subscribe (or simply referred to as Publish and

Subscribe). The Resource construct specifies the list of IoT resources

to which access is either granted or denied, such as an MQTT topic.

Like any AWS resource, an IoT resource is unique and identified by a

string value. String values can include the wildcard *whichmatches

any number of characters. An IoT policy does not include a principal

field, and is assigned to a principal/user by the developers (e.g.,

through theAWSAPI [17]).When the principal/usermakes requests

to AWS-IoT, the cloud enforces the policy against the principal/user.

Considering the potentially huge number of IoT end-users, in-

stead of creating a separate IoT policy (a JSON document) for each

user — AWS IoT supports/recommends a template-style IoT policy

with policy variables (Figure 3). With such an IoT policy, when a

client makes an API request to AWS IoT, the variable values are pop-

ulated, based on which an access decision can be made. In Figure 3,

for example, the variable ${iot:Connection.Thing.ThingName}
will be populated at runtime by AWS IoT to be the user-unique thing
name [13] (similar to the user identity). This template feature can

help device manufacturers avoid hard coding specific thing name
in the IoT policy, and, thus, use the same policy for many/all users.

3 ERROR SPACE IN CLOUD-BASED IOT
ACCESS POLICIES

To understand the error space and security challenges in cloud-

based IoT deployment, we studied the policy design and practices

of 36 mainstream IoT device manufacturers (e.g., WeMo, Govee,

Netvue) who deploy IoT devices leveraging the AWS IoT. Our sys-

tematic security analysis brings to light the fundamental, general

design challenges and tremendous error space for device manufac-

turers to program/deploy flawed IoT policies. To confirm the weak-

nesses we identified, we purchased 12 real devices of the affected

vendors (or used their mobile apps), and performed end-to-end

and/or proof-of-concept exploits. The exploits would have allowed

unauthorized users in the wild to control target devices or even

completely control all devices of the manufacturer deployed under

the cloud, or stealthily receive private personal information (e.g.,

name, ID, behavior habits, routines, and medical/health data such

as blood pressure, weight, and height, see measurement in § 3.4).

We also thoroughly inspected 310 open-source cloud-based IoT

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

projects on GitHub and 172 of them have different levels of logic

flaws in their IoT Policies.
Threat model. We consider realistic attack and application scenar-

ios. In particular, the adversary can open user accounts with IoT

devicemanufacturers and IoT clouds and is capable of collecting and

analyzing network traffic between the IoT cloud, the IoT device, and

the app under his control. On the other hand, he cannot eavesdrop

on or interfere with the communication of other users’ devices and

apps. He can read public (not proprietary) documentation of the IoT

clouds and public protocol specifications. We consider the IoT cloud

infrastructure and systems to be benign (the cloud, management

console, IoT hardware and firmware in the device).

3.1 Design-Space Flaw 1: Semantic Gap in IoT
Access Policies

In general, an access policy on AWS (concerning both IAM policy

and IoT policy) specifies the set of resources that a principle is al-

lowed and denied to access. The IoT policy of Hippokura X MyNavi
(called Hippokura for short, a popular IoT-based medical applica-

tion), for example, specifies that the user cannot subscribe to the

topic with a wildcard xmd/session/#. In a legitimate scenario, the

user will only subscribe to a topic such as xmd/session/[Session
ID] in which the last part in the topic is her confidential session ID

only known by herself or intended users. She can subscribe to such

an MQTT topic to receive private/confidential messages but cannot

subscribe to the wildcard topic which would otherwise effectively

subscribe her to all other users’ topics with different session IDs.

The AWS-general policy enforcement mechanism is that, given

a request to access a particular resource, abstracted by a string (e.g.,

the MQTT topic xmd/session/# or xmd/session/[a particular
session ID], AWS allows the request if the string matches the

string(s) defined in the allow statement(s) of the policy (notably the

wildcard “*” represents any strings on AWS, see Figure 3) and does

not match the string(s) in the deny statement(s). To facilitate the

reasoning of possible security gaps, we can abstract the AWS policy

enforcement mechanism as an automaton model (i.e., a finite state

acceptor for strings): regarding a type of action (e.g., subscribe),
each policy defines a string-acceptor 𝑠𝑎 which decides, given an

input string 𝑟𝑒𝑠 that describes a specific resource to access (e.g., an

MQTT topic), whether or not 𝑟𝑒𝑠 is accepted by the 𝑠𝑎, and, thus,

whether or not the access is allowed.

Although such a general enforcement model has long been suc-

cessful in cloud computing, our research shows that it cannot

soundly restrict IoT resources whose semantics and expressions are

more complicated than what was understood before with serious

implications to access control. In particular, it is fundamentally
difficult for a string-acceptor-based automaton model to deny all
synonyms of an IoT resource without thorough semantic analysis.
That is, if two inputs/strings share the same/similar semantic (e.g.,

referring to the same MQTT topic), the definition of the automa-

ton 𝑠𝑎 must be sound to exclude all related synonyms (strings)

that relate to the MQTT topic. Figuring out such synonyms relies

on the context of IoT and cannot be cloud-general. For example,

based on the MQTT protocol, subscribing to the topic xmd/# ef-

fectively subscribes the client to many topics including all under

xmd/session/[any string]. Without excluding the topic xmd/#

in the policy of Hippokura (using the deny statement), we found that

a malicious user could subscribe to the topic and receive all other

users’ messages under Hippokura. In our experiment, the leaked

messages to an attacker include doctor conversations and personal

information related to the patients (see PoC exploit below).

Difficulties for a policy fix. A sound policy fix can be difficult in

practice for IoT vendors who use AWS IoT. In the above example,

the policy flaw can be difficult for the vendors to notice since the

normal functionalities are not affected — a user normally only ac-

cesses the topic xmd/session/[his/her session ID], which is allowed

by the policy (allow xmd/session/*, deny xmd/session/#). Further,

adding a deny statement for topic xmd/# is insufficient and because

of the highly expressive, flexible syntax for describing the same

IoT resources, a malicious user can alternatively subscribe to # to
actually subscribe to all topics and receive all messages of the doc-

tors/patients under Hippokura (see our PoC exploit below). Actu-

ally, our study shows that the attackers may alternatively subscribe

to xmd/session/+ and potentially lots of other IoT-synonyms to

bypass IoT access control (see § 4.1).

The problem is general and potentially affects many IoT device
manufacturers (see measurement in § 3.4) and other IoT clouds

(see § 5). As also shown in the prior work [104], the leaked

MQTT messages can be highly privacy- and security-sensitive,

including SwitchMate users’ device IDs, private MQTT topics,

device activities, etc., or can be used to infer personal usage habits.

Notably, using the leaked device topics, combing a flaw discussed

in Section 3.3, we found that a malicious user could control (turn

on/off) any SwitchMate switches anytime (Section 3.4).

Further, we found that the policy of Govee smart plugs (Figure 4)

plausibly avoided the problem above although it actually failed

to do so. The policy intends to deny subscription to topics using

MQTT wildcards (#, +) and only allows subscription to particular,

known MQTT topics — in a format of GD/[MD5 of the device
ID]. Effectively, one cannot subscribe to topics such as GD/# or

GD/+ for subscribing to all/many users’ device topics. However, our

study (detailed in the measurement Section 3.4) shows that such a

policy, although likely carefully crafted, is still unsound and insecure
after more thorough reasoning (see our tool in § 4): the filtering

of wildcards is incomplete, and a malicious Govee user can still

subscribe to the topic +/ (and effectively subscribes to multiple

topics of Govee such as LWT/, detailed in Appendix § .1).

Notably, due to the potentially huge number of users, it can be ex-

tremely cumbersome for device manufacturers to create/maintain

separate policies for each individual IoT user, and, thus, device

manufacturers commonly develop a unified IoT policy — as also

recommended/supported by AWS IoT [16] — and apply it to many

users. The policy of Hippokura, for example, needs to be permissive

supporting many users (allow xmd/session/*) and thus should ex-

plicitly exclude/deny certain wildcard-topics (xmd/session/#) which

otherwise can subscribe one to other users’ topics.

PoC exploit. We conducted PoC experiments for the above prob-

lems using real devices of SwitchMate and Govee and the app of

Hippokura. We developed a script to connect to their public end-

points on AWS IoT (a7zl8evrsaz7q-ats.iot.us-east-1.amazonaws.com,

aqm3wd1qlc3dy-ats.iot.us-east-1.amazonaws.com, and a2qare4ca4-

lmz2-ats.iot.ap-northeast-1.amazonaws.com respectively), just as

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

their mobile apps could do. We used our own account credentials

(obtained by reverse engineering the apps) to authenticate the con-

nection. Our script could make requests to those endpoints in an

attempt to subscribe to intended topics, just like what real attackers

could do. We confirmed that the subscription to the aforementioned

topics could succeed and stopped the connection immediately with-

out impacts to other parties (see IRB approval, responsible exper-

iment design, and vendor acknowledgment in § 3.4). We reported

all findings to the vendors, discussed the possible consequences,

and helped them fix the issues, which were acknowledged by the

vendors.

((allow,
action : iot:Subscribe,
resource : *),

(deny,
action : iot:Subscribe,
resource : (*+, *#)))
Figure 4: IoT policy of Govee plugs

3.2 Design-Space Flaw 2: Flawed Cooperation
between IAM Policy and IoT Policy

In addition to the challenges with enforcing policies (Flaw 1), our

study shows that the highly-coupled but vaguely defined relations

between IoT policy and the AWS-general IAM policy make the

development of sound IoT access policies even more challenging

with serious real-world implications.

AWS IoT directly leverages two other AWS services, i.e., Cognito

and IAM, to help with authentication and authorization. As out-

lined in Figure 6, an IoT user/app logs in with AWS Cognito; based

on the user identity (called Cognito identity ID) already recorded

by the device manufacturer in an identity pool (Figure 6), Cog-

nito returns to the user/client a Cognito credential (a secret string
such as aws_access_key_id=ASIAR4BOIXWCSZG53UU5), referred

to as 𝑐𝑟𝑒𝑑_𝑎𝑢𝑡ℎ𝑒𝑑 . As defined by AWS, the identity pool (with

many/multiple identities in the pool) created by the manufacturer

is associatedwith one (or more) IAMpolicy (e.g., iam_p1 in Figure 6).
The user/client presenting the 𝑐𝑟𝑒𝑑_𝑎𝑢𝑡ℎ𝑒𝑑 can make API requests

to any AWS service (e.g., AWS IoT, S3, DynamoDB) as allowed

by the IAM policy. On receiving the request, the target AWS ser-

vice (e.g., AWS IoT, S3) queries Cognito based on the 𝑐𝑟𝑒𝑑_𝑎𝑢𝑡ℎ𝑒𝑑 ,

to obtain the user’s Cognito identity and associated IAM policy,

and based on the service-specific statements in the IAM policy,

enforces the policy by determining whether the particular action

in the request (e.g., s3:ListBucket, iot:Publish, iot:AttachPolicy) is

allowed. Interestingly, unlike common AWS services (e.g., S3) that

only use the IAM policies to authorize an API request, AWS IoT

additionally requires an IoT policy associated with the client. In

particular, a client/principle whose associated IAM policy allows

the “iot:AttachPolicy” action can attach a given IoT policy to a given

Cognito identity, by calling the AWS IoT API attach_policy [17].

Modeling the logical relation between IAM policy and IoT
policy. We observed that both the IAM policy and IoT policy associ-

ated with a client/principle can specify its allowed IoT actions (e.g.,

iot:Subscribe, iot:Publish) and IoT resources (e.g., MQTT topics). Al-

though poorly/not documented, we observed a few logical relations

between a client’s IAM policy and IoT policy: (1) The client must

have a permissive IAM policy to connect to/make API requests with

AWS IoT — the IAM policy should allow IoT-related actions (in con-

trast to those of other AWS services) such as iot:AttachPolicy
and iot:Subscribe. Such a requirement of AWS IoT is likely inher-

ited from all AWS services which generally rely on the AWS-wide

IAM policy evaluation engine to determine whether or not the AWS

service (i.e., AWS IoT here) should process the API requests [63].

(2) For the client to control/interact with an IoT device (by making

requests to AWS IoT, see Figure 6), the specific IoT actions (e.g.,

iot:Publish, iot:Subscribe) [15] and target resources must be

allowed in the IoT policy. (3) By default, an empty IoT policy is

associated with the client, nullifying any allowed actions and re-

sources in IAM policies related to IoT-device controls/interactions

(e.g., iot:Publish, iot:Subscribe) — the security principle of

“fail-safe default” [28]. To model and better reason about the logical

relations between IAM and IoT policies, we abstract the IoT-related

permissions (conceptually meaning the allowed IoT actions such as

iot:Subscribe and resources such as MQTT topics) allowed by

an IAM policy as 𝑃𝑖𝑎𝑚 and those allowed by an IoT policy as 𝑃𝑖𝑜𝑡 .

The effective IoT-related permissions of a client 𝑐 is

𝑃𝑐 = 𝑃𝑖𝑎𝑚 ∩ 𝑃𝑖𝑜𝑡 (1)

Simply put, from the device manufacturer’s perspective, for the

whole IoT application to function despite the complicated IAM/IoT

policy development, (1) an IAM policy must/can be highly permis-

sive, which otherwise prevents the clients from connecting to AWS

IoT or making any IoT related API requests; (2) security is achieved

as long as a proper, restrictive IoT policy is used. Indeed, based on

our study of 36 IoT vendors and 310 open-source GitHub projects,

we found that IoT vendors/developers generally bear the above (or

similar) understanding, by actually defining a highly permissive

IAM policy for IoT users (e.g., using iot:* to allow any IoT APIs

to be called to AWS IoT, see the policy in Figure 5) while striving to

use a restricted, secure IoT policy to achieve secure access control.

((allow,
action : iot:*
resource : *))

Figure 5: An overly permissive IAM policy

What logic can go wrong. However, our research shows that

the logical relations between IAM policy and IoT policy, and be-

tween AWS IoT’s authorization logic and Cognito (the AWS-wide

authorization service) are far more complicated than expected. The

actual complexity generally failed to be understood and properly

handled by real-world IoT vendors/developers, leading to security-

critical logic loopholes in cloud-based IoT access-control policy

development.

id_auth & cred_authed

App

API requests
with cred_authed

AWS IoT

Identity Pool

AWS Cognito

User Pool
Login authentication

iam_p1 Attached

MQTT
Broker

IoT Policies

Attached

Figure 6: Cognito auth flow

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

id_unauth & cred_unauth

App

API requests
with cred_unauth

Request without login
AWS IoT

Identity Pool

AWS Cognito

MQTT Broker

iam_p2
Attached

Figure 7: Cognito unauth flow

Specifically, although a highly permissive IAM policy may not

lead to a security violation, as backed by an IoT policy if prop-

erly developed (see Equation (1)), we found that this could fail

in certain circumstances. In particular, AWS allows unauthenti-

cated users (without login) to still use part of the services, for

example, to publish logs to AWS CloudWatch Logs [47] under

the manufacturers’ discretion. We found that a real example is

with Molekule, a manufacturer of high-end smart air purifiers [4]

(cleared by the Food and Drug Administration to kill bacteria

and viruses including the coronavirus [6]). Before a login, the

Molekule mobile app fetches a Cognito credential 𝑐𝑟𝑒𝑑_𝑢𝑛𝑎𝑢𝑡ℎ

representing an AWS-supported unauthenticated Cognito role (or
unauth role for short) and an anonymous/ephemeral Cognito iden-

tity 𝑖𝑑_𝑢𝑛𝑎𝑢𝑡ℎ for the user. As configured by Molekule, the unauth
role is associated with an IAM policy 𝑖𝑎𝑚_𝑝2 (see Figure 7) which

allows the unauthenticated user to access a few IoT-related func-

tionalities. In particular, 𝑖𝑎𝑚_𝑝2 allows the unauth role to per-

form an IoT action iot:AttachPolicy, so that when the user logs

in (obtaining an authenticated identity 𝑖𝑑_𝑎𝑢𝑡ℎ𝑒𝑑 and credential

𝑐𝑟𝑒𝑑_𝑎𝑢𝑡ℎ𝑒𝑑), the client by presenting the 𝑐𝑟𝑒𝑑_𝑢𝑛𝑎𝑢𝑡ℎ calls the

IoT API iot:AttachPolicy to attach an IoT policy to the authen-

ticated identity. The Molekule app will then leverage the authen-

ticated identity/credential (𝑖𝑑_𝑎𝑢𝑡ℎ𝑒𝑑 , 𝑐𝑟𝑒𝑑_𝑎𝑢𝑡ℎ𝑒𝑑) to make API

requests [19] to AWS IoT to control/operate the device.

Behind such complicated policy practices, we find that the man-

ufacturer strives to seek simplicity and sets the IAM policy 𝑖𝑎𝑚_𝑝2

(for the unauth role, see Figure 7) to be highly permissive (e.g., al-

lowing multiple IoT actions on multiple resources), relying on the

property that the default “empty” IoT policy (see above) will prevent

the unauthenticated users from sending IoT requests/commands

(e.g., iot:Publish, iot:Subscribe) to AWS IoT. We found that

such a property is partially invalidated, since AWS IoT does not

maintain IoT policies for anonymous/ephemeral Cognito identities

(not even maintaining an empty policy, see the design rationale be-

low). Hence, the actual permissions of the unauthenticated identity

𝑖𝑑_𝑢𝑛𝑎𝑢𝑡ℎ is calculated as:

𝑃𝑖𝑑_𝑢𝑛𝑎𝑢𝑡ℎ = 𝑃𝑖𝑎𝑚_𝑝2 (2)

Note that the cloud imposed convoluted/unclear relations and

cooperations between the cloud-general policies (IAM) and IoT poli-

cies. We found equation (2) reflects the true authorization logic for

the unauthenticated identity. This effectively gives the unauth role
all permissions in the 𝑖𝑎𝑚_𝑝2, which, thus, are overly permissive.

We find that an unauthenticated Molekule user can send any IoT

commands to any Molekule devices (e.g., iot:Subscribe to topic

to subscribe to all users’ device topics, and iot:Publish com-

mands to any users’ devices such as for turning on/off). In contrast,

an authenticated Molekule user, restricted by the IoT policy, has

fewer permissions.

Notably, we found that the design rationale under which AWS

IoT does not maintain IoT policies for anonymous/ephemeral Cog-

nito identities is that, AWS IoT does not manage Cognito identities

(which is the responsibility of the AWS Cognito service): when AWS

IoT receives a Cognito credential 𝑐𝑟𝑒𝑑_𝑎𝑢𝑡ℎ𝑒𝑑 that comes with a

request, AWS IoT queries the Cognito service to obtain the corre-

sponding Cognito identity 𝑖𝑑_𝑎𝑢𝑡ℎ𝑒𝑑 , and uses it to retrieve/index

the IoT policy. Since AWS IoT does not issue/manage Cognito iden-

tities, it is difficult should it maintain IoT policies for ephemeral

Cognito identities (e.g., difficult/costly to synchronously delete the

IoT policies once an ephemeral identity is gone).

Last but not least, we found that the problem is general and other

mainstream IoT vendors such as broil-king [23], sun-pro [43], and

Biobeat VitalDisplay [22] all come with the same problem in their

products, allowing unauthenticated users to control all other users’

devices with serious security, safety, and privacy implications (see

measurement in Section 3.4). Further, we discuss why AWS IoT

needs separate IoT policies besides IAM policies in Appendix § .2.

PoC exploit. We performed PoC experiments using our real de-

vices of Biobeat and Molekule and confirmed their all suffered from

the above problem. We reverse engineered the mobile apps of the

IoT vendors and without login in the IoT vendors’ mobile apps, we

obtained the Cognito credentials for the unauth role (by dynami-

cally instrumenting the app) after we opened each app. With the

Cognito credentials, our script could connect to the public end-

points of the vendors on AWS IoT, just like what their apps could

do. Our script (representing an unauthenticated app user) could

subscribe to the wildcard topic # (we filtered messages only related

to our own devices based on our device ID and dropped the rest)

and publish arbitrary commands to the “victim” devices (our own

devices). We reported all findings to the vendors, discussed the pos-

sible impacts/consequences and helped them fix the issues, which

were acknowledged by the vendors.

3.3 Implementation-Space Flaws: Chaotic
Practices of IoT Policy Deployments

Flaw 1 and Flaw 2 above highlight the design-space challenges/flaws

with IoT access policies. Further, our study shows that mainstream

device manufacturers use diverse practices with IoT Policy deploy-

ment, and generally make implementation-level, security-critical

mistakes. These mistakes are diverse, non-trivial to avoid in the

first place due to the disturbing lack of standard, adequate security

practices with cloud-based IoT policy deployment.

Flaw 3: Dilemmawith IoT policy templates. Based on the “DRY”
principle in the software industry (every piece of knowledge must

have a single representation [83]), developing template-based IoT

policy (using policy variables, see § 2) to reduce boilerplates (re-

dundant policies/codes for each individual user with substantial

maintenance burden and a higher chance of unintended inconsis-

tency) is intended. However, our research shows that problems

arise since the manufacturers commonly misuse policy variables.
For example, NetVue (a popular home-safety cam) has an IoT

Policy as Figure 8. The resource field cs/${ThingName} with a

variable ${ThingName} will be populated at runtime to be the

topic of a specific user (e.g., cs/58412338f7944fb0). This policy
applied to all NetVue users effectively/securely restricts that a

user can only subscribe to her own topic. Also, when a NetVue

cam publishes a message/status to its device-specific topic such

as dc/4047512672901241/control, based on internal forwarding

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

((allow,
action : iot:Publish,
resource : (topic/dc/*,

topic/sc/${iot:Connection.Thing.ThingName}_*),
(allow,
action : iot:Subscribe,
resource : (topicfilter/cs/${iot:Connection.Thing.ThingName}/*,

topicfilter/cd/${iot:Connection.Thing.ThingName}/*))

1
2
3
4
5
6
7
8

Figure 8: Part of NetVue’s IoT Policy

rules (with AWS IoT rules engine [40]), the message will be for-

warded to the legitimate user’s (e.g., device owner) topic (e.g.,

cs/58412338f7944fb0). That is, security is achieved both by an

IoT policy and the forwarding rules configured by the manufacturer.

We found that, although the usage of policy variables reduces
the burden of creating separate policies for each user, the semantics

and expressiveness of policy variables are insufficient to express

necessary IoT authorization requirements — a design limitation.

In particular, using a generic template-based policy for all/many

users, the manufacturer was incapable of expressing which are the

device topics that specific users can access (publish messages to).

This is because AWS policy variables are populated from the API

requester/user’s attributes (e.g., source ip, MQTT ClientId, a pre-
registered thing name [13]) to identify a user, and, likely for this

reason, no policy variables can be used to specify complicated rela-

tions, i.e., the list of allowed devices of the user which may quickly

change over time. Consequently, we observed that IoT vendors

likely have to resort to few functionality-working workarounds,

for example, commonly using a wildcard (e.g., dc/*, see line 3 in
Figure 8) to allow a user to publish to any device topics. We ob-

served such an insecure practice in using IoT policy template with

mainstream IoT vendors NetVue, Govee, Belkin, etc. (see the full list

in measurement § 3.4). The consequences are severe. For example,

a prior employee/Airbnb/hotel/guest user whose permission has

been revoked can operate the NetVue cam (by sending commands

to the device’s topic, see PoC below), turning its angle up to 360

degrees so it cannot monitor the owner-intended space.

Flaw 4: The constraint of IoT-policy mutual exclusion. An ac-

cess control system can be enhanced with the capability to establish

relations/constraints between permissions. For example, two roles

can be established as mutually exclusive, so the same user is not al-

lowed to take on both roles [92]. Such a constraint helped fulfill the

security principle “Privilege Separation” or increased the difficulty

of collusion among individuals [98]. Interestingly, in the IoT con-

text, our study shows that a similar principle is also required when

associating a “high-privilege” IoT policy (e.g., with “admin” permis-

sions for an IoT device) with users. We find that, for example, any

user who can temporarily physically touch a button on the Switch-

Bot device can pair with it and is assigned the same “admin” level

IoT policy to fully control the smart switch (turn on/off, factory-

reset, monitor device activities). Consequently, for example, an

ex-employee/Airbnb/hotel/guest user, once assigned the IoT policy

for the device, can fully control the device when it is serving other

users. Evenworse, we find that even if the new user resets the device

(by pressing a button both on the device and in the SwitchBot app),

the ex-user still bears the IoT policy and can control the device. Such

a practice comes with serious safety, security, and privacy implica-

tions considering, for example, home-safety, health-related devices

are connected with the SwitchBot switch. Hence, the same IoT pol-

icy for managing the same IoT device should not be assigned to dif-

ferent users without restrictions. Our study suggests the risks with-

out practice/adaption of “mutual exclusion” constraint in assigning

IoT policies, which was not mentioned in AWS IoT best practices [5].

We have reported the findings to the affected vendors and AWS IoT.

PoC exploit. We performed PoC experiments using our real de-

vices of NetVue, Govee, Beurer FreshHome, and FirstAlert Onelink

(Smoke and CO Detector, see all device types in Appendix Table 1)

for all the flaws above. Similar to PoC in the above sections, we had

a script that could connect to the public endpoints of the vendors

on AWS IoT. We obtained the AWS credential of our own accounts

by instrumenting the apps. Flaw 3: with our NetVue cam, our “ma-

licious” script, whose underlying credential/user did not have the

permission for the cam, could publish commands (MQTT messages

like {“payload" : “ptz":“x":-20,“y":0, “token" : “uewlylljoewbheek" ,

“clientId" : “957e9eb81b8e4fe5"}) to the target cam’s topic and con-

trol the cam’s angle arbitrarily. Flaw 4: We registered two user

accounts with SwitchBot, which could independently pair with

(after pressing a device button) and fully control our SwitchBot

smart switch without restriction. Each user account by using the

mobile app could not observe that the device was also granted to

the other account.

3.4 Measurement of Impact
To understand the impact and pervasiveness of the problems with

cloud-based IoT Policies, we studied devices/mobile-apps of 36 IoT

manufacturers and 310 open-source AWS-IoT-based projects from

GitHub. We purchased 12 real devices of 9 vendors for end-to-end

PoC experiments, and the study of the other vendors was through

analyzing their mobile apps (i.e., app behaviors and traffic).

Appendix Table 1 shows the overall results with real vendors

in our experiments: 13 IoT vendors were confirmed to have 17 in-

stances of IoT Policy flaws discussed in the above sections, affecting

potentially at least 3.3 million IoT users (based on the number of

app downloads on Google Play). All four types of IoT Policy flaws

are general, each affecting multiple vendors; some vendors suf-

fered from multiple flaws (see Appendix Table 1). For example, the

Govee plug and Belkin Wemo smart plug (each with more than one

million app downloads) have two different flaws in their policies.

The attack consequences (Appendix Table 1) are serious, impacting

safety, security, and privacy. For example, any users can control all

t2Fi users’ smart grills (e.g., control temperature), with serious dan-

ger of fire/safety; any users can collect all Biobeat users’ sensitive
health/medical information such as blood pressure, height, weight,

and age. We also searched (using keywords such as “AWS IoT”,

“IoT policy”) and downloaded 2,587 open-source cloud-based IoT

projects from GitHub; we filtered 310 projects involving IoT policies

and IAM policies, among which 172 projects have the flaws dis-

cussed above. Specifically, 147 projects involved flawed IoT policies

(related to § 3.1 and § 3.3), and 43 projects had overly permissive

IAM policies (related to § 3.2). Detailed device models and GitHub

repositories are presented online [44].

Vendor acknowledgments and responsible experiments. No-
tably, we confirmed the policy flaws and attack consequences based

on (1) PoC experiments (using our own devices/traffic, and we never

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

attacked/impacted other users’ security, safety, and privacy) and (2)

feedback from the IoT manufacturers. Additionally, our experiment

was approved by our university’s IRB. In particular, any data we

processed was encrypted in transit and at rest; we do not store

any personally identifiable information (PII), e.g., device ID, user

ID; as a preventative procedure, any PII if appearing in our experi-

ment was hashed through SHA-512 at runtime and again was never

stored. Notably, in case a potential PoC experiment might impact

other users, we did not fully conduct the experiment end-to-end;

we reported/discussed the projected issues with the vendors for

confirmation and helped them fix the problems. Our efforts to help

the vendors were well received and acknowledged through their

bug bounty programs. For PoC experiments that only affect our

own devices/accounts, we implemented full end-to-end PoC attacks.

We are also reporting the issues to affected GitHub project owners.

4 LOGICAL ENCODING AND FORMAL
VERIFICATION OF IOT ACCESS POLICIES

Given the semantic and logical complexity, manually reasoning

about security of IoT Policies is difficult and error-prone, especially

in large policies with multiple correlated statements, operators, and

multiple wildcards. To help IoT manufacturers automatically reason

about IoT Policies, identify the flaws, and conveniently fix the issues,
in this section, we elaborate on the design and implementation of

P-Verifier , a tool capable of formally defining and verifying security

properties for cloud-based IoT access policies.

4.1 Overview
Our security analysis (§ 3) suggests that IoT Policies developed by IoT
manufacturers failed to soundly protect intended IoT resources and

block requests from unintended parties. To reason about security

flaws in IoT Policies, our innovative approach is built on the generic

framework of ZELKOVA [56] (the state-of-the-art for verifying

the AWS-general IAM policies) and addresses the unique semantic

and logical challenges in IoT Policies (see design below and our

thorough, end-to-end comparison with ZELKOVA in § 5). P-Verifier
takes as input IoT Policies and develops formal models that fully, and

semantically represent IoT policies; the models are encoded with

Satisfiability Modulo Theories (SMT) formulas, and we leverage

the state-of-the-art SMT solvers Z3 and CVC4 to reason about the

formulas with respect to a set of generalized security properties

and report security flaws in the policies if any. We elaborate on the

design as follows and leave the implementation in Appendix § .5.

Capabilities of P-Verifier. P-Verifier reasons about all possible
IoT-related permissions allowed by an IoT Policy to verify properties
(properties are specified in the same policy language). While the

properties to be verified can be specified by developers for specific

needs, P-Verifier provides three built-in, generalized checks to help

eliminate all four types of flaws reported earlier (§ 3): (1) whether

an IoT Policy soundly excludes a permission as expected — Check
1, e.g., preventing the principle/user from accessing a target IoT

resource; (2) whether an IoT Policy is less-or-equally permissive

than a reference policy (a policy stating a security property or an

upper bound of permissiveness) — Check 2; (3) whether multiple

independent policies (intended to be assigned to independent users)

share permissions — Check 3.

Allow a/b/*, Deny a/b/x/y

a/b/x/+ a/b/# a/b/x/y

×

a/b/x/y

Topic Filter

IoT Policy

Topic

Stage1

Stage2

…

Figure 9: The two-stage trust management for IoT resources
on the cloud

Challenges for verifying IoT policies. To enable the above

checks in IoT, P-Verifier has to address a few key challenges. In

particular, IoT Policies on the cloud have a unique two-stage trust

management (TM) [53, 59, 62, 91, 96] mechanism (Figure 9). Given

a request (a dotted vertical arrow above Stage 1 in the figure), in

Stage 1 (policy enforcement stage), the cloud’s IoT policy engine

inspects the resource string in the request (e.g., a/b/#) based on the

IoT Policy. Inspection at this stage is based on the string-acceptor

automaton model [49]: each policy essentially specifies an automa-

ton that determines whether a request string (e.g., a/b/x/+, a/b/#,
and a/b/x/y) is allowed. A resource request string that has passed

Stage 1 goes through a resource reference stage (Stage 2); for exam-

ple, subscribing to a/b/x/+ or a/b/# (an MQTT topic with + or #
is an MQTT topic filter, see § 2) can actually subscribe to MQTT

topic a/b/x/y, for which the IoT Policy in Figure 9 intends to deny

access. Note that the resource reference is done by IoT message bro-

kers such as MQTT brokers [1, 85]. The string-acceptor automaton

model specified by the policy does not effectively restrict requested

resource strings like a/b/x/+ and a/b/#, which will actually access
the topic a/b/x/y, in violation of the security expectation.

Notably, prior approaches [55, 56, 63] could be adapted to model

Stage 1 automaton and reason about the allowed request strings:

the policy could be encoded as a logical formula or deterministic

finite automaton (DFA) and each satisfiable assignment represents

a unique request string that is accepted by the policy DFA and thus

can pass the policy check. Prior logical-reasoning that ensures a

policy to exclude a resource string will certainly deny any requests

to that resource. However, prior security guarantee of policy verifi-

cation is invalidated in IoT because an IoT-synonym (e.g., a/b/x/+)

can be the request string, which itself in nature is a DFA repre-

senting multiple resources (in prior models [55, 56, 63], a request

string represents a unique resource and thus is not a DFA in nature).

However, the policy check in Stage 1 (to identify whether a string

or IoT-synonym is accepted by the policy DFA) cannot directly

take the IoT-synonym as a DFA (thus representing the full seman-

tics of the IoT-synonym) because the IoT-synonym’s DFA is based

on an alphabet Σ𝐼𝑜𝑇−𝑠𝑦𝑛𝑛 different from the alphabet Σ𝑝𝑜𝑙𝑖𝑐𝑦 of

the policy DFA (i.e., Σ𝐼𝑜𝑇−𝑠𝑦𝑛𝑛 = Σ𝑝𝑜𝑙𝑖𝑐𝑦 − {+, #}). Hence, likely
based on state-of-the-art approaches [55, 56, 63], AWS IoT takes

the request string (even if being an IoT-synonym) as a literal string

(compared to taking it as a DFA) to compare with the policy DFA

and decides whether the request string is allowed or not. Such an

approach of security verification based on prior models/techniques

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

((allow,
action : iot:Subscribe,
resource : topicfilter/a/b/*),

(deny,
action : iot:Subscribe,
resource : topicfilter/a/b/x/y))

((allow,
action : iot:Subscribe,
resource : topicfilter/a/b/#))

(a) Policy X

(b) Policy Y

Figure 10: IoT policy X and Y (snippets)

1

#, +/#, +/+/#, +/+/+/#, +/+/+/+, +/+/+/y, +/+/x/#,
+/+/x/+, +/+/x/y, +/b/# , +/b/+/#, +/b/+/+, +/b/+/y,
+/b/x/#, +/b/x/+, +/b/x/y, a/#, a/+/#, a/+/+/#,
a/+/+/+, a/+/+/y, a/+/x/#, a/+/x/+, a/+/x/y, a/b/#,
a/b/+/#, a/b/+/+, a/b/+/y, a/b/x/#, a/b/x/+, a/b/x/y

Resource: a/b/x/y

a/b/, a/b/c, a/b/hello, a/b/c/d, a/b/c/d/e, .etc

String: a/b/#

Figure 11: The set of IS strings, denoted as 𝐼𝑆𝑒𝑠 (“𝑎/𝑏/𝑥/𝑦”),
that can refer to the IoT resource a/b/x/y.

((deny,
action : iot:Subscribe,
resource : topicfilter/a/b/x/y))

((allow,
action : iot:Subscribe,
resource : topicfilter/a/b/+))

Security property p1 for policy X

Security property p2 for policy Y

Figure 12: The security properties 𝑝1 and 𝑝2

is inadequate for handling IoT semantics, essentially leading to the

security risks.

Further, to model/encode the full permissions of a policy (e.g.,

to reason about permissions between policies to fulfill Check 2 and

3), we should precisely model the two-stage TM process (Figure 9)

to reason about all resources actually allowed by the cloud in each

of the consecutive stages. Notably, like prior works [55, 56, 63], we

can logically model the policy as a DFA encoded as an SMT formula

𝑓 (based on theories of strings, regular expressions, see § 4.2), de-

noting all “literal” request strings accepted by Stage 1. We consider

such a DFA as a Stage 1 DFA. However, to reason about actual

permissions (resources allowed to access), we should subsequently

encode and reason about Stage 2 DFA (IoT synonyms’ DFAs), which

effectively runs on a reduced alphabet than the policy DFA (see

above); for example, allowed strings by Stage 1 include a string

𝑎/𝑏/𝑥/+ (an IoT-synonym of a/b/x/y), which we should decompose

in Stage 2 to fully encode all MQTT topics it can reference/access, in-

cluding 𝑎/𝑏/𝑥/𝑎, 𝑎/𝑏/𝑥/𝑏, 𝑎/𝑏/𝑥/𝑐, ..., 𝑎/𝑏/𝑥/𝑎𝑎, Here, without
finding out and modeling all such IoT-synonym strings accepted

by Stage 1 DFA and decomposing their semantics, one is not able

to reason about all permissions allowed by the policy, which has

not been done in prior works (also see our thorough, end-to-end

comparison with state-of-the-art tools in §5).

4.2 Logical Encoding of IoT Access Policies
This section elaborates on P-Verifier’s semantic-based logical en-

coding of IoT Policies — a prerequisite to soundly verify the security

of IoT Policies using a theorem prover such as Z3. We first introduce

Figure 13: Basic SMT encoding of policy X

Figure 14: Basic SMT encoding of policy Y
a basic encoding built on the generic framework ZELKOVA [56]

(the resulting SMT formulas lack full IoT semantics), and then a

novel alphabet-reduced encoding based on the basic encoding to

fully encode IoT resources.

Modeling and a basic encoding. An IoT Policy is a list of state-

ments, and each statement consists of a tuple (Effect, Action, Re-

source) (see § 2). The encoding for a policy is a formula over two

variables 𝑎 and 𝑟 denoting the action and resource. The permissions

granted by the policy are encoded as all the permissions granted by

the allow statements and not revoked by deny statements. Figure 10

illustrates a policy X and Figure 13 presents its SMT encoding: pol-

icy X grants access if and only if 𝐹𝑥0 allows access and 𝐹𝑥1 does

not deny it: 𝐹𝑥0 ∧¬𝐹𝑥1. The formula 𝐹𝑥 evaluates to true (for an as-

signment given a request) when the policy grants access. Similarly,

Figure 14 shows the basic SMT encoding of policy Y.

Note that, with the wildcard * (see § 2), we are abusing the

notation in 𝐹𝑥0 to say 𝑟 = “𝑎/𝑏/∗”. Similar to ZELKOVA, P-Verifier
actually uses regular expressions to encode the semantic of the

cloud-general wildcards: with the traditional regular expression

pattern, “.” standards for any single character, and “*” is the Kleene

star operator representing zero or more occurrences of the previous

character set. Formula (3) illustrates the string encoding related to

policy X and Y:

“𝑎/𝑏” ↦→ 𝑉𝑎𝑟 𝑒𝑞𝑢𝑎𝑙𝑠 “𝑎/𝑏”
“𝑎/∗” ↦→ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/. ∗ ”

“𝑎/𝑏/#” ↦→ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/𝑏/#”
“𝑎/𝑏/+” ↦→ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/𝑏/+”

(3)

Alphabet-reduced encoding for IoT policies. The basic encod-
ing in Formula (3) essentially yields the automaton defined on an

alphabet Σ𝑠𝑡𝑔1 including characters + and #. As mentioned ear-

lier (§ 4.1), on this alphabet, request strings with + or # character

(MQTT topic filters in IoT contexts) only literally represent the

strings, losing the semantics to represent many IoT resources that

they actually reference/access (Figure 11). Hence, to encode all IoT

resources actually allowed by the policy, we should further decom-

pose Formula (3) and generate an automaton on a reduced alphabet

Σ𝑠𝑡𝑔2. To this end, P-Verifier has two steps. First, we decompose

a string with wildcard ∗ (essentially an automaton, such as “a/*”)

to a set of automata based on the positions of +, # (the characters
to remove from the alphabet) in the resulting automaton (see an

alphabet-reducing algorithm in Appendix § .4):

“𝑎/∗” ↦→ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/+”
∪ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/#”
∪ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/+/. ∗ ”
∪ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/+/#”
...

(4)

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

 Figure 15: SMT encoding of security properties 𝑝1 and 𝑝2

Second, for each generated automaton (the right side of each row

in Formula (4)after∪ or ↦→), we further encode the character + and #

based on Σ𝑠𝑡𝑔2. Based on their semantics (“#” matching any number

of levels within a topic and “+” matches one level [35]), we introduce

two sets: (1)𝑈𝑠 , which is the set of UTF-8 symbols (denoted as𝑈)

excluding the set of MQTT-reserved symbols/characters, such as “#”

and “+”, and MQTT-excluded symbols such as the null character; (2)

𝑈𝑝 , which is𝑈𝑠 excluding the MQTT topic separator “/”. Formula (5)

illustrates the alphabet-reduced SMT encoding for resource strings

with # and +:
“𝑎/𝑏/#” ↦→ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/𝑏/𝑈 ∗

𝑠 ”

“𝑎/𝑏/+” ↦→ 𝑉𝑎𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑎/𝑏/𝑈 ∗
𝑝 ”

(5)

Note that, 𝑈 ∗
𝑠 with the Kleene star, denotes all strings over the

alphabet𝑈𝑠 , which can include the empty string 𝜖 .

Discussion. We handle/encode policy variables (see § 2) based on

their semantics. A policy variable (populated by AWS IoT at run-

time for each client) is usually used to represent an attribute of the

client [11]. As discussed in the prior work [85], some policy vari-
ables are populated based on the untrusted information (e.g., the

${iot:ClientId} is populatedwith any value that the client claims [85]);

we simply encode such a policy variable as a wildcard “*”. In con-

trast, the policy variable ${iot:Connection.Thing.ThingName}
is based on trusted, user-specific value maintained by AWS IoT. We

encode such a policy variable with a random, unique string.

4.3 Formal Verification and Flaw Detection
With the logical encoding of IoT Policies, this section presents how

P-Verifier enables the three checks (§ 4.1) with respect to three

types of security properties. In general, the verification of P-Verifier
includes a few major steps: (1) translate the target policy into an

SMT formula 𝑓 , (2) check the validity/satisfiability of 𝑓 with the

security property 𝑝 as a constraint. If the result is not valid (or

satisfiable, depending on the property), P-Verifier reports that the
policy 𝑓 violates the property 𝑝 (e.g., at least some assignments for

𝑓 , intuitively meaning some IoT requests, will violate the property).

Check 1. Taking Policy X as an example (Figure 10), P-Verifier will
first translate the policy into an SMT formula 𝐹𝑥 (Figure 13). The

expected security property 𝑝1 (Figure 12) — Type 1 property for

excluding a permission — is translated into an SMT formula 𝐹𝑝1,

stating that the policy is expected to deny access to one particular

topic a/b/x/y. Then, P-Verifier leverages the SMT solver Z3 to check

the satisfiability of

𝐹𝑥 ∧ ¬𝐹𝑝1 (6)

A satisfiable assignment corresponds to an IoT request allowed by

𝐹𝑥 while violating the property. Indeed, P-Verifier reports (1) 𝐹𝑥
violates the security property and (2) the satisfiable assignment. In-

tuitively, for example, IoT requests to a/b/+/+ or a/b/# are allowed
by 𝐹𝑥 , and can be used to access/subscribe to the topic restricted
by property 𝑝1.

The challenge is to reason about and report all property-violating
assignments, so the manufacturer can soundly fix the policy (e.g., by

specifying literally all the strings in deny statements). Our insight is

that, an assignment that violates a Type 1 property is essentially an

IS of the target resource to deny access to. To address the challenge,
P-Verifier encodes 𝐹𝑝1 to include the set of all ISes of the target

resource, as illustrated in Figure 15. Note that 𝐼𝑆𝑒𝑠 (”𝑎/𝑏/𝑥/𝑦”) de-
notes the set of all ISes of the topic “a/b/x/y”, which can be easily

enumerated (Figure 11) based on MQTT semantics (Appendix § .3).

Check 2. Take policy Y (Figure 10) as an example with its SMT

encoding 𝐹𝑦 (Figure 14) and a property 𝑝2 (Figure 12), SMT-encoded

as 𝐹𝑝2 (Figure 15) stating a reference/upper-bound permission —

Type 2 property — which is to allow access (subscribe) to a/b/+.
To check if policy Y is less-or-equally permissive than the property

𝐹𝑝2, P-Verifier uses Z3 to prove formula 𝑓 :

𝐹𝑦 ⇒ 𝐹𝑝2 (7)

If the result was valid, it indicates that policy Y is less-or-equally per-

missive than 𝐹𝑝2. Actually, the result is not valid, and indeed 𝐹𝑦 is

more permissive than the upper-bound permission. Intuitively, sub-

scribing to topic a/b/# as allowed by policy Y effectively subscribes

to more resources such as the topic a/b/c/d than the reference 𝐹𝑝2.

For improved usability, P-Verifier reports examples such as a/b/c/d
to help IoT manufacturers easily understand the problem. This is

achieved by solving the formula ¬𝑓 , and Z3 will report “satisfiable”

and an example such as the above.

Check 3. P-Verifier can also check whether two policies share per-

missions (e.g., that independent users share permissions indicates a

security risk, see Flaw 4). Take the policies X and Y, encoded as 𝐹𝑥
and 𝐹𝑦 respectively, as an example: P-Verifier leverages Z3 to solve

the formula

𝐹𝑥 ∧ 𝐹𝑦 (8)

A result “unsat” (unsatisfiable) indicates that there are no shared

permissions between the two policies; a result “sat” (satisfiable)

means the two policies have overlapping permissions (with shared

IoT resources). To make the results more informative, in our im-

plementation, P-Verifier decomposes the policy and takes out each

“Allow” statement to check the overlapping with the other policy.

This helps IoT vendors easily identify which part of a complex

policy has the problem.

Discussion of usability. As mentioned above, the outputs of P-
Verifier are easy to understand and actionable for IoT vendors to

fix the policies. Further, P-Verifier features convenience for con-

structing security properties. Specifically, Type 1 property (denying

certain resources/permissions) can be easily obtained from the tar-

get policy to check (e.g., the property 𝑝1 for policy X). Also, IoT

vendors can integrate P-Verifier for necessary security checks in

the regular IoT lifecycle when there is a permission change. For

example, with Check 3 vendors can avoid Flaw 4: the vendors can

leverage P-Verifier to check whether an ex-user and the current

user share permissions when a device is reset or the ex-user’s per-

missions are revoked; unexpected, shared permissions indicates a

security flaw.

Discussion of generality and extensibility. The design of P-
Verifier enables its generality and potential extensibility to analyze

and detect more than the flaws discussed in § 3. Above all, one criti-

cal capability offered by P-Verifier is the full-semantic encoding and

modeling of an IoT policy (representing the complete permissions

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

((allow,
action : iot:Publish,
resource : topic/deviceId/lowpriv/*),

(allow,
action : iot:Subscribe,
resource : topicfilter/deviceId/lowpriv/*))

((allow,
action : iot:Publish,
resource : topic/deviceId/*),

(allow,
action : iot:Subscribe,
resource : topicfilter/deviceId/*))

Policy z1

Policy z2

Figure 16: Example IoT policies to manage an IoT lock

and resources allowed by the policy), a fundamental prerequisite

for developing sophisticated or flaw-specific detection logic. Based

on the modeling, our three check capabilities above can be used to

verify a variety of high-level security properties.

For example, to manage an IoT lock in a house/organization,

suppose the lock owner/administrator is assigned the policy z1

(Figure 16) and the less-privileged users (e.g., employees in the

organization or guest users such as an Airbnb/rental guest in the

house) is assigned the policy z2 (Figure 16). In such a scenario,

one may need to ensure a few high-level security properties: (1)

ensure unrestricted public access (e.g., access by guests) to the

MQTT topic deviceId/highpriv/reset is not allowed since send-
ing commands to this topic can factory-reset the device (least-

privilege [5, 38]); (2) ensure the guests’ permission is less than

(i.e., being a subset of) the owner/administrator permission (least-

privilege); (3) ensure the owner/administrator can publish to and

subscribe to MQTT topic deviceId/highpriv/reset (availabil-

ity property); (4) ensure the guests can publish to and subscribe

to MQTT topic deviceId/lowpriv/open (availability property).

These properties are described in the policy language in Appen-

dix Figure 21 (pr1 to pr4).

𝑅1 = ¬𝐹𝑝𝑟1 ∧ 𝐹𝑧2

𝑅2 = 𝐹𝑧2 ⇒ 𝐹𝑝𝑟2

𝑅3 = 𝐹𝑝𝑟3 ⇒ 𝐹𝑧1

𝑅4 = 𝐹𝑝𝑟4 ⇒ 𝐹𝑧2

(9)

We can leverage P-Verifier to verify these high-level security

properties. Specifically, using exactly the same encoding approach

as described in § 4.2, we first encode the two policies as 𝐹𝑧1 and

𝐹𝑧2 and four properties as 𝐹𝑝𝑟1, 𝐹𝑝𝑟2, 𝐹𝑝𝑟3, 𝐹𝑝𝑟4 (also see the full

details of the encoding in equation (10) and equation (11) in Ap-

pendix subsection .6), and then leverage the Check 1 and Check

2 to reason about these formulas and thus verify the properties

(see formulas (9)). More specifically, for property pr1, we directly

leverage Check 1 to check whether policy z2 excludes the target

permission (by reasoning about whether formula 𝑅1 in equation (9)

is satisfiable, similar to equation (6). For pr2, we directly leverage

Check 2 to check whether permission of policy z2 is a subset of pol-

icy z1’s permission (i.e., 𝑅2 in equation (9)) is valid); for pr3, we can

leverage Check 2 and verify whether policy z1 is more or equally

permissive than pr3 which encodes a lower-bound permission (i.e.,

𝑅3 is valid); pr4 is similar to pr3. We provide more examples for

checking other security properties in appendix §.7.

5 EVALUATION
We evaluated P-Verifier for its high effectiveness and low perfor-

mance overhead. To enable a thorough evaluation, we introduce

IoT-Policy Bench comprised of 706 policies, presenting a new test

suite that is designed to evaluate IoT Policy analysis tools. Our exper-
iment based on IoT-Policy Bench shows that P-Verifier significantly
outperforms the prior tools in precision and coverage on AWS IoT

policies. We released IoT-Policy Bench online [44].

5.1 New Benchmark: IoT-Policy Bench
IoT-Policy Bench (IPB) includes both secure and flawed IoT Poli-
cies that aim to best cover the error space (§ 3) in real-world de-

sign/development of IoT Policies. IPB covers all types of flaws in IoT
Policies discussed in § 3. For example, related to Flaw 1, IPB includes

a set of policies that failed to soundly excludes an expected permis-

sion. For diversity, IoT-Policy Bench includes (1) 146 hand-crafted

policies by our domain experts (44 flawed, 102 secure), (2) 560 poli-

cies we gathered from open-source IoT projects on GitHub (§ 3.4),

and (3) 10 flawed IoT policies likely used by real vendors (based

on real access-control behaviors of their products, see § 3.4). Our

hand-crafted policies are generated by mutating MQTT-topics (i.e.,

adding/using +/#/*) and statements (i.e., adding/removing) based

on policies from GitHub and those likely used by real devices.

For each policy in IPB, we leverage multiple domain experts

to manually construct its expected security property (similar to

Figure 12) and come up with a ground truth. Specifically, the secu-

rity properties can be constructed based on the scenarios in which

the IoT policies can be used. For example, a set of policies in IPB
gathered from GitHub and in our manually crafted policies include

statements to deny access to certain resources (similar to Figure 10

), and we can take their security properties as excluding a certain

resource/permission (corresponding to our Check 1, § 4.1). As an-

other example, in the real world, two IoT policies may be assigned

separately to two separate IoT owners or two independent groups

of users; a security property corresponding to our Check 3 (§ 4.1)

can be that the two policies do not have overlapped permissions or

shared resources to access.

Ground truth composition. As an established ground truth, IPB
includes 242 IoT policies with Flaw 1 and 40 IoT policies that are

secure regarding this flaw. Regarding Flaw 2, IPB includes 62 IAM

policies with the flaw and 46 secure IAM policies. Last, IPB includes

87 IoT policies with Flaw 3 accompanied with 179 confirmed secure

IoT policies, and 11 IoT policies with Flaw 4 accompanied with 39

secure IoT policies. Note that Flaw 2 concerns IAM policies used in

IoT contexts and all other flaws only concern IoT policies. The entire

IPB including all ground truth information is released online [44].

Complexity of the policies. On average, our policy has 2 state-

ments, 3 wildcards, and 26 lines. The largest policy has 109 lines.

IPB excluded overly lengthy policies with more than 2048 non-

whitespace characters, which were not allowed by AWS IoT [10, 41].

5.2 Effectiveness
We ran P-Verifier on IoT-Policy Bench showing a result of high

precision and coverage (zero false positive and false negative). No-

tably, although real-world manufacturers often did not release their

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

IoT policies, IoT-Policy Bench includes our manually crafted snip-

pets of IoT policies for ten IoT manufacturers (e.g., Govee, Belkin,

Molekule) based on the vulnerabilities confirmed thanks to our

white-hat reports to the manufacturers (following standard respon-

sible disclosure practices [80]) and communication with them. P-
Verifier shows zero false positive/negative on the entire dataset

(released online [44]).

Comparison with ZELKOVA/industry tools. Up to our knowl-

edge, AWS IoT Defender (Defender) [12] (backed by ZELKOVA [56]

based on Defender’s white paper [46]) is the state-of-the-art and

only tool known to be capable of security verification for IoT Poli-
cies. P-Verifier significantly outperforms Defender for the precision

and coverage based on functionalities described in their user manu-

als [12] and our thorough, end-to-end experiment on IPB (detailed

below). Note that AWS did not release the source code of ZELKOVA

and we may not directly compare it with P-Verifier .
In our comparison with Defender/ZELKOVA, for each of the

flaws separately (Flaw 1 to Flaw 4, see § 3), we assessed the tools’

false positive rate (FPR) and false negative rate (FNR) for verifying

IoT policies with and without the flaw. If the tool raised false alarms

for an actually secure policy (based on our ground truth, see § 5.1),

that indicated a false positive. If the tool failed to raise alarms for

an IoT policy that is indeed flawed, this indicated a false negative.

The detailed results are shown in Appendix Table 2. In particular,

while P-Verifier shows high precision and detection coverage (i.e.,

zero false positive and zero false negative), Defender suffers from a

low coverage (with FNR up to 100%, see Appendix Table 2) for its

inadequate capability to analyze and identify the flaws introduced

in this paper.

More specifically, regarding Flaw 1, Defender (with 21.1% FNR)

is not capable of analyzing whether a policy specifies sufficient

“IoT synonyms” of a resource to deny (in the “deny” statement);

the flawed IoT policies that Defender typically reported were those

with relatively simple patterns of wildcard “*” (see Figure 18 in

Appendix). In the meantime, Defender did not take user-provided

security properties as inputs (e.g., deny the access to resource x/y/z

as supported by P-Verifier), and hence, the detection semantic sup-

ported by Defender is much more coarse-grained, mainly focusing

on identifying whether the policy in general overly uses “*” in speci-

fying the resource fields. Note that IPB includes such simple policies

from GitHub, whose over-permission could thus be detected by

Defender. Also due to the lack of support for policy-specific secu-

rity properties and semantic/logic, Defender cannot handle Flaw 4

(with 100% FNR): our P-Verifier can compare whether two policies

unwittingly share permissions/resources, while Defender can only

check policies individually. Regarding Flaw 2, Defender is compara-

ble with P-Verifier because the detection needed here is to identify

overly permissive IAM policies (e.g., Figure 5), without complicated

IoT semantic analysis needed in handling Flaw 1. Regarding Flaw

3, Defender (37.9% FNR) failed to identify overly permissive poli-

cies that have a policy-specific or vendor-specific prefix prior to “*”

such as “dc/” in NetVue’s policy (Figure 8). Additionally, Defender

did not properly analyze the semantics of certain policy variables,

such as “${iot:Connection.Thing.ThingName}”, which effectively

will be populated at runtime to be a trusted, user-/client-specific

value (§ 3.3), and thus is not overly permissive (see an example

in Figure 19 in Appendix). Defender showed false positives in such

cases related to Flaw 3. Overall, Defender underperforms P-Verifier
for these properties due to two major disadvantages: (1) it lacked

the sophisticated semantics/logic analysis offered by P-Verifier ; (2)
it did not take expected security properties as inputs.

5.3 Performance Overhead
We evaluated the performance overhead of P-Verifier running on
the above dataset using a workstation with 3.40GHz Intel i7-6700

CPU, 15.6GB memory and 931.5GB hard drive. With an average of

ten runs, P-Verifier took 1.15 seconds and 43MB memory at most

to fully verify a policy (with Z3 as the prover). We did not observe

unusually complicated (with multiple wildcards in multiple levels

of the topics) policies that cannot be finished within 120 seconds

(the time threshold of P-Verifier) in our dataset and after a thorough

search of 560 open-source AWS-IoT-based IoT projects on GitHub.

We further evaluated P-Verifier using more complex policies (be-

yond the 2048-non-white-char limit of AWS IoT [10, 41]). For each

individual check (Check 1 to 3), we reuse the policy X or Y in the

original example (§ 4.1) and increase the policy complexity in two

separate settings: (1) increasing the number of “allow” statements

(each added statement having the similar complexity, i.e., the same

string length 20 and wildcard number 1), (2) increasing string length

(statement number and wildcard number remain unchanged). Ap-

pendix Figure 22 and Figure 23 show the result of the two settings

respectively (based on the average results of 20 trials). Specifically,

for Setting 1 of each check: we observed an approximately linear

correlation between the execution time and statement number (in

our implementation, P-Verifier reasons about each added “allow”

statement separately and thus is capable of reporting all individual

statements that violate the property — a fine-grained reporting ac-

tionable for IoT vendors); for Setting 2, the efficiency of analyzing

longer strings depends largely on the performance of the under-

lying solver (Z3 in our experiment). Note that the performance

overhead is based on end-to-end execution time (including the time

to read/encode the policy and reason with the property) and the

generated (more complex) statements and strings yielded “unsat”

result with the security properties (we released all generated poli-

cies online [44]). Further, we increased the wildcard number based

on policy X and Y (statement number and string length remain un-

changed) and observed a result similar to what was reported in [56]:

when the number of “*” wildcards is more than 5, Z3 may not ter-

minate (e.g., for the query “is topic/*/a/*/a/b/y less or equally
permissive than topic/*/a/*/a/*/y”). Still, 99% of policies with

less than 6 wildcards (600 policies in total, released online [44])

are solved within 0.6 seconds. Note that in all 560 IoT policies we

found on GitHub, we did not observe policy statements with more

than 3 wildcards in 1 string resource (policy with many wildcards

is hard for human to write/understand and thus can violate the

programming principles [33]).

6 DISCUSSION
Although our study primarily focuses on the IoT Policies on AWS

IoT, the problems we identified can generally affect device manufac-

turers on other IoT clouds (e.g., Azure, Tuya, Alibaba). We indeed

found that IoT policies on Azure IoT [39] also suffered from the

Flaw 1 (§ 3.1), sharing the same fundamental challenge with AWS

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

IoT as discussed in § 3.1. To fundamentally address the problems, we

expect multiple-level efforts: (1) improved verification techniques

and new level of formal guarantees (such as those offered by P-

Verifier), (2) improved, more open design of IoT clouds, (3) improved

developer guides/awareness.

Impacts of P-Verifier on othermessaging protocols. The design
of P-Verifier is built on the semantics of IoT resources, in particular

with MQTT in our current instantiation. Note that MQTT is the pri-

mary IoT messaging protocol on mainstream PaaS/IaaS IoT clouds

(e.g., those of AWS, Azure, Tuya, IBM, Alibaba). In the future work,

we plan to adapt P-Verifier to incorporate the semantics of other

IoT messaging protocols such as AMQP [30], CoAP [24]. Note that

the risk of Flaw 1 in § 3.1 impacts more than MQTT, potentially

impacting all messaging/access protocols whose request strings

can include wildcards, such as AMQP. As discussed earlier (§ 4.1),

when the request string is essentially/semantically a DFA, modern

cloud-general access-control only treats it as a literal string, failing

to account for its full semantics (all resources it refers to).

Wildcards in access policies. Mainstream policy languages (such

as XACML [50], APPEL [36], AWS IAM policy [31], Azure policy

[20], Kubernetes API [34]) and access control policies [18, 21, 25, 26]

are designed to support and leverage wildcards. Despite a set of

known kinds of security risks with wildcards [61, 84] (e.g., over per-

missiveness due to careless developers), wildcards are necessary in

describing resources at scale, e.g., in production/cloud environment

with hundreds or millions of resources [25, 63], bringing signifi-

cant efficiency in development and maintenance compared to, for

example, exhaustively listing all individual resources. More specif-

ically, in the IoT context, wildcards such as + and # are an inherent

part of the MQTT protocol, which help easily describe and access

multiple/many MQTT topics of a certain user/device/organization.

For example, making a single MQTT request to subscribe to de-

viceID/# effectively subscribes to deviceID/cmd, deviceID/states,

deviceID/configure, and more, compared to sending many requests

for individual resources; this is important for IoT devices which

may work on resource-constrained devices in low-bandwidth or

unreliable networks [85, 94]. Hence, wildcards still appear to be

part of the state-of-the-practice [18, 21, 25, 26] to develop access

policies, and can be hard to completely get rid of. Notably, state-

of-the-practices have warned developers to avoid a set of known

bad paradigms/practices in using wildcards [3, 8, 14, 42] (e.g., to

avoid coarse-grained * for an unbounded range of resources, and

use better crafted regular expressions for a finer-grained range of

resources).

Further, recent efforts from industry and academia [56, 63, 73]

have aimed at helping developers construct secure policies sup-

porting wildcards while elevating the security assurance with new

formal guarantees. Our work makes new contributions at least in

this line of efforts (by identifying new kinds of risks such as the

IoT-synonym and formally verifying the policies to provide security

guarantees against the new risks).

7 RELATEDWORK
Security of cloud-based IoT policies. Under the generic term
of “IoT policies,” prior works extensively the security, safety and

privacy implications of different IoT policies on diverse platforms.

[57, 66, 75, 95, 99, 102] studied IoT Trigger-Action platforms (TAP),

which suffered from over-privilege recipes (TAP apps), inter-rule

vulnerabilities, and privacy implications. On IoT application plat-

forms which support third-party applications (e.g., SmartThings

apps [74, 100]), prior works [64, 65, 74, 86, 100] studied their coarse-

grained access control model and security and privacy of IoT apps.

Voice-Controlled Platforms were also extensively studied [67, 78,

81, 89, 93, 97, 101, 106–108]. Prior works [70, 71] also studied IoT

policies that affect physical-channel interactions with safety im-

plications. [109] studied access control of the emerging “Mobile-

as-a-Gateway” IoT paradigm. [85] lightly discussed issues related

to wildcards, e.g., vendors missed restricting wildcards at all. We

systematically discussed wildcard-related issues using model-based

approaches and the fundamental challenges to deny/verify IoT-

synonyms for DFA. The prior work [7, 85] concerning IoT messag-

ing protocols only marginally relates to our focus.

Formal methods for analyzing access control policies. Prior
works proposed methods to formally reason about access control

policies [55, 56, 63, 79, 84, 103]. In the literature, policy languages

have been studied [27, 58, 69, 72, 76, 76, 77, 79, 82, 87, 88, 90, 90, 91].

[68] leveraged theorem proving to reason about trigger-action

rules in SmartThings apps, while we focus on access control pol-

icy (e.g., whether soundly denying a particular resource) entailing

novel approaches to fully encode the policy semantics, and design-

ing novel security properties and encoding them. Most related is

ZELKOVA [56, 63], which presents the state-of-the-art, being a

generic framework to formalize/model and analyze policies on pub-

lic clouds. Our innovative techniques P-Verifier is built on ZELKOVA
while addressing fundamental, new challenges in the IoT context,

such as how to reason about ISes, fully encode IoT semantics and

provide usable, actionable reasoning results for IoT vendors (§ 4).

8 CONCLUSION
We performed a systematic study on the security of cloud-based IoT

access policies. Our research shows that the complexity in the IoT

semantics and enforcement logic of IoT Policy leaves tremendous

space for device manufacturers to program a flawed IoT Policy, intro-
ducing convoluted logic flaws which are non-trivial to reason about.

The problems are general and pervasive, and serious. To help man-

ufacturers identify IoT Policy flaws, we introduce P-Verifier , a novel
formal verification tool that can automatically verify cloud-based

IoT Policies and is highly effective and efficient. Our work will con-

tribute to elevating security assurance of modern IoT deployments

for the cloud-based IoT infrastructure.

ACKNOWLEDGMENTS
Luyi Xing is supported in part by NSF CNS-2145675, CCF-2124225,

and Indiana University’s FRSP-SF, REF, and IAS Collaborative Re-

search Award. Ze Jin, Yiwei Fang, and Qixu Liu are supported in part

by the Youth Innovation Promotion Association CAS (No.2019163),

the Strategic Priority Research Program of Chinese Academy of

Sciences (No. XDC02040100), the Key Laboratory of Network As-

sessment Technology at Chinese Academy of Sciences and Beijing

Key Laboratory of Network security and Protection Technology.

Yan Jia is supported in part by National Natural Science Foundation

of China (No. 62102198) and China Postdoctoral Science Foundation

(No. 2021M691673).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

REFERENCES
[1] 2019. MQTT Version 5.0. https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-

v5.0.html.

[2] 2019. Publish–subscribe pattern. https://en.wikipedia.org/wiki/Publish-

subscribe_pattern. Accessed: 2019-07.

[3] 2020. Security Best Practices for Amazon S3. https://techcommunity.microsoft.

com/t5/azure-architecture-blog/azure-policy-prevent-the-use-of-wildcard-

for-source-in-azure/ba-p/1783844.

[4] 2021. Air Purifier official page. https://molekule.com/.

[5] 2021. AWS IoT official documentation about Security best practices in AWS

IoT Core. https://docs.aws.amazon.com/iot/latest/developerguide/security-best-

practices.html.

[6] 2021. Molekule Air Mini Receives FDA clearance to destroy viruses and bacteria.

https://molekule.science/molekule-air-mini-receives-fda-510k-clearance/.

[7] 2021. MPInspector: A Systematic and Automatic Approach for Evaluating

the Security of IoT Messaging Protocols. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association. https://www.usenix.org/conference/

usenixsecurity21/presentation/wan-qinying

[8] 2022. Avoiding wildcard permissions in IAM policies. https://docs.aws.amazon.

com/lambda/latest/operatorguide/wildcard-permissions-iam.html.

[9] 2022. AWS IoT Core. https://aws.amazon.com/en/iot-core/.

[10] 2022. AWS IoT Core endpoints and quotas. https://docs.aws.amazon.com/

general/latest/gr/iot-core.html#security-limits/.

[11] 2022. AWS IoT Core policy variables - AWS IoT Core. https://docs.aws.amazon.

com/iot/latest/developerguide/iot-policy-variables.html.

[12] 2022. AWS IoT Defender. https://docs.aws.amazon.com/iot/latest/

developerguide/device-defender.html.

[13] 2022. AWS IoT official documentation about thing registry. https://docs.aws.

amazon.com/iot/latest/developerguide/thing-registry.html.

[14] 2022. AWS IoT policies overly permissive. https://docs.aws.amazon.com/iot/

latest/developerguide/audit-chk-iot-policy-permissive.html.

[15] 2022. AWS IoT Policy actions. https://docs.aws.amazon.com/iot/latest/

developerguide/iot-policy-actions.html.

[16] 2022. AWS Publish/Subscribe IoT policy examples. https://docs.aws.amazon.

com/iot/latest/developerguide/pub-sub-policy.html.

[17] 2022. AWS python SDK boto3 IoT api attach policy. https:

//boto3.amazonaws.com/v1/documentation/api/latest/reference/services/

iot.html#IoT.Client.attach_policy.

[18] 2022. AWS S3 Policy Example. https://docs.aws.amazon.com/AmazonS3/latest/

userguide/example-policies-s3.html.

[19] 2022. AWS SDK for Android - 2.22.1. https://aws-amplify.github.io/aws-sdk-

android/docs/reference/.

[20] 2022. Azure Policy definition structure. https://docs.microsoft.com/en-us/azure/

governance/policy/concepts/definition-structure.

[21] 2022. Azure Policy Example. https://github.com/Azure/azure-policy.

[22] 2022. Biobeat official page. https://www.bio-beat.com/.

[23] 2022. Broiking official page. https://broilkingbbq.com/.

[24] 2022. CoAP — Constrained Application Protocol | Overview. https://coap.

technology/.

[25] 2022. Controlling access to a bucket with user policies. https://docs.aws.amazon.

com/AmazonS3/latest/userguide/walkthrough1.html.

[26] 2022. Dynamodb Policy Example. https://docs.aws.amazon.com/IAM/latest/

UserGuide/reference_policies_examples_dynamodb_specific-table.html.

[27] 2022. eXtensible Access Control Markup Language (XACML) Version 3.0. http:

//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[28] 2022. Failing Security|CISA. https://us-cert.cisa.gov/bsi/articles/knowledge/

principles/failing-securely.

[29] 2022. Github official page. https://github.com.

[30] 2022. Home |AMQP. https://www.amqp.org/.

[31] 2022. IAM JSON policy elements: Resource. https://docs.aws.amazon.com/IAM/

latest/UserGuide/reference_policies_elements_resource.html.

[32] 2022. IoT Hub | Microsoft Azure. https://azure.microsoft.com/en-us/services/iot-

hub/.

[33] 2022. KISS Principle. https://en.wikipedia.org/wiki/KISS_principle.

[34] 2022. Kubernetes’ ABAC access control. https://kubernetes.io/docs/reference/

access-authn-authz/abac/.

[35] 2022. MQTT Version 3.1.1 specification. http://docs.oasis-open.org/mqtt/mqtt/

v3.1.1/os/mqtt-v3.1.1-os.html.

[36] 2022. A P3P Preference Exchange Language 1.0. https://www.w3.org/TR/P3P-

preferences/.

[37] 2022. Policies and permissions in IAM. https://docs.aws.amazon.com/IAM/

latest/UserGuide/access_policies.html.

[38] 2022. Principle of least privilege. https://en.wikipedia.org/wiki/Principle_of_

least_privilege.

[39] 2022. Publish and subscribe with Azure IoT Edge | Microsoft Docs

. https://docs.microsoft.com/en-us/azure/iot-edge/how-to-publish-subscribe?

view=iotedge-2020-11.

[40] 2022. Rules for AWS IoT - AWS IoT Core. https://docs.aws.amazon.com/iot/

latest/developerguide/iot-rules.html.

[41] 2022. Scaling authorization policies with AWS IoT Core. https://aws.amazon.

com/blogs/iot/scaling-authorization-policies-with-aws-iot-core/.

[42] 2022. Security Best Practices for Amazon S3. https://docs.aws.amazon.com/

AmazonS3/latest/userguide/security-best-practices.html.

[43] 2022. Sun-Pro google play store page. https://play.google.com/store/apps/

details?id=com.SunProtection.

[44] 2022. Supporting website for P-Verifier. https://sites.google.com/view/p-verify/

home.

[45] 2022. Tuya IoT Cloud. https://www.tuya.com/.

[46] 2022. Using provable security to enhance IoT – An industry differentia-

tor. https://docs.aws.amazon.com/whitepapers/latest/securing-iot-with-aws/

using-provable-security-to-enhance-iot-an-industry-differentiator.html.

[47] 2022. What is Amazon CloudWatch Logs? https://docs.aws.amazon.com/

AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html.

[48] 2022. Wikipedia page Automata theory . https://en.wikipedia.org/wiki/

Automata_theory.

[49] 2022. Wikipedia page Deterministic finite automaton. https://en.wikipedia.org/

wiki/Deterministic_finite_automaton.

[50] 2022. XACML policy language OASIS standard. http://docs.oasis-open.org/

xacml/3.0/xacml-3.0-core-spec-os-en.html.

[51] 2022. Z3 String Constraint Solver. https://z3string.github.io/.

[52] 2022. Z3Py Guide. https://ericpony.github.io/z3py-tutorial/guide-examples.

htm.

[53] Ava Ahadipour and Martin Schanzenbach. 2017. A Survey on Authorization in

Distributed Systems: Information Storage, Data Retrieval and Trust Evaluation.

In 2017 IEEE Trustcom/BigDataSE/ICESS. 1016–1023. https://doi.org/10.1109/

Trustcom/BigDataSE/ICESS.2017.346

[54] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:

Security Evaluation of Home-Based IoT Deployments. In 2019 IEEE Symposium
on Security and Privacy (SP). 1362–1380. https://doi.org/10.1109/SP.2019.00013

[55] John Backes, Ulises Berrueco, Tyler Bray, Daniel Brim, Byron Cook, Andrew

Gacek, Ranjit Jhala, Kasper Luckow, Sean McLaughlin, Madhav Menon, et al.

2020. Stratified abstraction of access control policies. In International Conference
on Computer Aided Verification. Springer, 165–176.

[56] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,

Kasper Søe Luckow, Neha Rungta, Oksana Tkachuk, and Carsten Varming. 2018.

Semantic-based Automated Reasoning for AWS Access Policies using SMT. In

2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA,
October 30 - November 2, 2018, Nikolaj Bjørner and Arie Gurfinkel (Eds.). IEEE,

1–9. https://doi.org/10.23919/FMCAD.2018.8602994

[57] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If this then what?:

Controlling flows in IoT apps. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1102–1119.

[58] Moritz Y. Becker and Peter Sewell. 2004. Cassandra: Flexible Trust Management,

Applied to Electronic Health Records. In 17th IEEE Computer Security Founda-
tions Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA. IEEE
Computer Society, 139–154. https://doi.org/10.1109/CSFW.2004.7

[59] E. Bertino, E. Ferrari, and A. Squicciarini. 2004. Trust negotiations: concepts,

systems, and languages. Computing in Science Engineering 6, 4 (2004), 27–34.

https://doi.org/10.1109/MCSE.2004.22

[60] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. 2017. Access control model for

AWS internet of things. In International Conference on Network and System
Security. Springer, 721–736.

[61] Sandeep Bhatt and Prasad Rao. 2008. Enhancements to the vantage firewall
analyzer. Technical Report. Citeseer.

[62] M. Blaze, J. Feigenbaum, and J. Lacy. 1996. Decentralized trust management.

In Proceedings 1996 IEEE Symposium on Security and Privacy. 164–173. https:

//doi.org/10.1109/SECPRI.1996.502679

[63] Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek,

Liana Hadarean, Ranjit Jhala, Brad Marshall, Daniel Peebles, Neha Rungta, Cole

Schlesinger, Chriss Stephens, Carsten Varming, and Andy Warfield. 2020. Block

public access: trust safety verification of access control policies. In ESEC/FSE
’20: 28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Virtual Event, USA, November 8-13,
2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM,

281–291. https://doi.org/10.1145/3368089.3409728

[64] Z Berkay Celik, Leonardo Babun, Amit K Sikder, Hidayet Aksu, Gang Tan,

Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive Information Tracking

in Commodity IoT. arXiv preprint arXiv:1802.08307 (2018).

[65] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated

IoT Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 147–158. https://www.

usenix.org/conference/atc18/presentation/celik

[66] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. 2019. IoTGuard: Dynamic

Enforcement of Security and Safety Policy in Commodity IoT.. In NDSS.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://en.wikipedia.org/wiki/Publish-subscribe_pattern
https://en.wikipedia.org/wiki/Publish-subscribe_pattern
https://techcommunity.microsoft.com/t5/azure-architecture-blog/azure-policy-prevent-the-use-of-wildcard-for-source-in-azure/ba-p/1783844
https://techcommunity.microsoft.com/t5/azure-architecture-blog/azure-policy-prevent-the-use-of-wildcard-for-source-in-azure/ba-p/1783844
https://techcommunity.microsoft.com/t5/azure-architecture-blog/azure-policy-prevent-the-use-of-wildcard-for-source-in-azure/ba-p/1783844
https://molekule.com/
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html
https://molekule.science/molekule-air-mini-receives-fda-510k-clearance/
https://www.usenix.org/conference/usenixsecurity21/presentation/wan-qinying
https://www.usenix.org/conference/usenixsecurity21/presentation/wan-qinying
https://docs.aws.amazon.com/lambda/latest/operatorguide/wildcard-permissions-iam.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/wildcard-permissions-iam.html
https://aws.amazon.com/en/iot-core/
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#security-limits/
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#security-limits/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-variables.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-variables.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://docs.aws.amazon.com/iot/latest/developerguide/audit-chk-iot-policy-permissive.html
https://docs.aws.amazon.com/iot/latest/developerguide/audit-chk-iot-policy-permissive.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html
https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iot.html #IoT.Client.attach_policy
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iot.html #IoT.Client.attach_policy
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iot.html #IoT.Client.attach_policy
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html
https://aws-amplify.github.io/aws-sdk-android/docs/reference/
https://aws-amplify.github.io/aws-sdk-android/docs/reference/
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure
https://github.com/Azure/azure-policy
https://www.bio-beat.com/
https://broilkingbbq.com/
https://coap.technology/
https://coap.technology/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/walkthrough1.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/walkthrough1.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_dynamodb_specific-table.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_dynamodb_specific-table.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/failing-securely
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/failing-securely
https://github.com
https://www.amqp.org/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://en.wikipedia.org/wiki/KISS_principle
https://kubernetes.io/docs/reference/access-authn-authz/abac/
https://kubernetes.io/docs/reference/access-authn-authz/abac/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://www.w3.org/TR/P3P-preferences/
https://www.w3.org/TR/P3P-preferences/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-publish-subscribe?view=iotedge-2020-11
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-publish-subscribe?view=iotedge-2020-11
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://aws.amazon.com/blogs/iot/scaling-authorization-policies-with-aws-iot-core/
https://aws.amazon.com/blogs/iot/scaling-authorization-policies-with-aws-iot-core/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html
https://play.google.com/store/apps/details?id=com.SunProtection
https://play.google.com/store/apps/details?id=com.SunProtection
https://sites.google.com/view/p-verify/home
https://sites.google.com/view/p-verify/home
https://www.tuya.com/
https://docs.aws.amazon.com/whitepapers/latest/securing-iot-with-aws/using-provable-security-to-enhance-iot-an-industry-differentiator.html
https://docs.aws.amazon.com/whitepapers/latest/securing-iot-with-aws/using-provable-security-to-enhance-iot-an-industry-differentiator.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://z3string.github.io/
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.346
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.346
https://doi.org/10.1109/SP.2019.00013
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1109/CSFW.2004.7
https://doi.org/10.1109/MCSE.2004.22
https://doi.org/10.1109/SECPRI.1996.502679
https://doi.org/10.1109/SECPRI.1996.502679
https://doi.org/10.1145/3368089.3409728
https://www.usenix.org/conference/atc18/presentation/celik
https://www.usenix.org/conference/atc18/presentation/celik

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[67] Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and

Hongxin Hu. 2020. Dangerous Skills Got Certified: Measuring the Trustworthi-

ness of Skill Certification in Voice Personal Assistant Platforms. In CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020, Jay Ligatti, XinmingOu, Jonathan Katz, andGio-

vanni Vigna (Eds.). ACM, 1699–1716. https://doi.org/10.1145/3372297.3423339

[68] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping Yu. 2020. Cross-app in-

terference threats in smart homes: Categorization, detection and handling. In

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 411–423.

[69] J. DeTreville. 2002. Binder, a logic-based security language. In Proceedings 2002
IEEE Symposium on Security and Privacy. 105–113. https://doi.org/10.1109/

SECPRI.2002.1004365

[70] Wenbo Ding and Hongxin Hu. 2018. On the safety of iot device physical inter-

action control. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 832–846.

[71] Wenbo Ding, Hongxin Hu, and Long Cheng. 2021. IOTSAFE: Enforcing Safety

and Security Policy with Real IoT Physical Interaction Discovery. (2021).

[72] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. 2006. Speci-

fying and Reasoning About Dynamic Access-Control Policies. In Automated
Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA,
August 17-20, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 4130),
Ulrich Furbach and Natarajan Shankar (Eds.). Springer, 632–646. https:

//doi.org/10.1007/11814771_51

[73] William Eiers, Ganesh Sankaran, Albert Li, Emily O’Mahony, Benjamin Prince,

and Tevfik Bultan. 2022. Quantifying permissiveness of access control policies.

In 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE).
IEEE, 1805–1817.

[74] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis

of emerging smart home applications. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 636–654.

[75] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. 2018. De-

centralized Action Integrity for Trigger-Action IoT Platforms. In 22nd Network
and Distributed Security Symposium (NDSS 2018).

[76] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl

Tschantz. 2005. Verification and change-impact analysis of access-control poli-

cies. In 27th International Conference on Software Engineering (ICSE 2005), 15-21
May 2005, St. Louis, Missouri, USA, Gruia-Catalin Roman, William G. Griswold,

and Bashar Nuseibeh (Eds.). ACM, 196–205. https://doi.org/10.1145/1062455.

1062502

[77] Dimitar P. Guelev,Mark Ryan, and Pierre Yves Schobbens. 2004. Model-Checking

Access Control Policies. In Information Security, Kan Zhang and Yuliang Zheng

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 219–230.

[78] Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen. 2020. SkillExplorer: Understand-

ing the Behavior of Skills in Large Scale. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 2649–2666. https://www.usenix.

org/conference/usenixsecurity20/presentation/guo

[79] William T Hallahan, Ennan Zhai, and Ruzica Piskac. 2017. Automated repair

by example for firewalls. In 2017 Formal Methods in Computer Aided Design
(FMCAD). IEEE, 220–229.

[80] Allen D Householder, Garret Wassermann, Art Manion, and Chris King. 2017.

The cert guide to coordinated vulnerability disclosure. Technical Report. Carnegie-
Mellon Univ Pittsburgh Pa Pittsburgh United States.

[81] Hang Hu, Limin Yang, Shihan Lin, and Gang Wang. 2020. A Case Study of the

Security Vetting Process of Smart-home Assistant Applications. In 2020 IEEE
Security and Privacy Workshops, SP Workshops, San Francisco, CA, USA, May 21,
2020. IEEE, 76–81. https://doi.org/10.1109/SPW50608.2020.00029

[82] Graham Hughes and Tevfik Bultan. 2008. Automated verification of access

control policies using a SAT solver. Int. J. Softw. Tools Technol. Transf. 10, 6
(2008), 503–520. https://doi.org/10.1007/s10009-008-0087-9

[83] Andrew Hunt. 1900. The pragmatic programmer. Pearson Education India.

[84] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie Kaufman. 2014.

Automated analysis and debugging of network connectivity policies. Microsoft
Research (2014), 1–11.

[85] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru

Zhao, and Yuqing Zhang. 2020. Burglars’ IoT paradise: Understanding and

mitigating security risks of general messaging protocols on IoT clouds. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 465–481.

[86] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fer-

nandes, Zhuoqing Morley Mao, and Atul Prakash. 2017. ContexloT: To-

wards Providing Contextual Integrity to Appified IoT Platforms. In 24th
Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet So-

ciety. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/

contexlot-towards-providing-contextual-integrity-appified-iot-platforms/

[87] T. Jim. 2001. SD3: a trust management system with certified evaluation. In

Proceedings 2001 IEEE Symposium on Security and Privacy. S P 2001. 106–115.
https://doi.org/10.1109/SECPRI.2001.924291

[88] G. Kolaczek. 2003. Specification and verification of constraints in role based

access control. InWET ICE 2003. Proceedings. Twelfth IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003.
190–195. https://doi.org/10.1109/ENABL.2003.1231406

[89] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua

Mason, Adam Bates, and Michael Bailey. 2018. Skill Squatting Attacks

on Amazon Alexa. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 33–47. https://www.usenix.org/

conference/usenixsecurity18/presentation/kumar

[90] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. 2003. Delegation logic:

A logic-based approach to distributed authorization. ACM Trans. Inf. Syst. Secur.
6, 1 (2003), 128–171. https://doi.org/10.1145/605434.605438

[91] Ninghui Li and John C. Mitchell. 2003. Datalog with Constraints: A Foundation

for Trust Management Languages. In Practical Aspects of Declarative Languages,
Veronica Dahl and Philip Wadler (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 58–73.

[92] Ninghui Li, Mahesh V Tripunitara, and Ziad Bizri. 2007. On mutually exclusive

roles and separation-of-duty. ACM Transactions on Information and System
Security (TISSEC) 10, 2 (2007), 5–es.

[93] Song Liao, Christin Wilson, Long Cheng, Hongxin Hu, and Huixing Deng. 2020.

Measuring the Effectiveness of Privacy Policies for Voice Assistant Applications.

In ACSAC ’20: Annual Computer Security Applications Conference, Virtual Event /
Austin, TX, USA, 7-11 December, 2020. ACM, 856–869. https://doi.org/10.1145/

3427228.3427250

[94] Jorge E Luzuriaga, Miguel Perez, Pablo Boronat, Juan Carlos Cano, Carlos

Calafate, and Pietro Manzoni. 2015. A comparative evaluation of AMQP and

MQTT protocols over unstable and mobile networks. In 2015 12th Annual IEEE
Consumer Communications and Networking Conference (CCNC). IEEE, 931–936.

[95] Chandrakana Nandi and Michael D. Ernst. 2016. Automatic Trigger Generation

for Rule-based Smart Homes. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security, PLAS@CCS 2016, Vienna,
Austria, October 24, 2016, Toby C. Murray and Deian Stefan (Eds.). ACM, 97–102.

https://doi.org/10.1145/2993600.2993601

[96] K.E. Seamons, M. Winslett, Ting Yu, B. Smith, E. Child, J. Jacobson, H. Mills,

and Lina Yu. 2002. Requirements for policy languages for trust negotiation. In

Proceedings Third International Workshop on Policies for Distributed Systems and
Networks. 68–79. https://doi.org/10.1109/POLICY.2002.1011295

[97] Faysal Hossain Shezan, Hang Hu, Gang Wang, and Yuan Tian. 2020. VerHealth:

Vetting Medical Voice Applications through Policy Enforcement. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 4, 4 (2020), 153:1–153:21. https:

//doi.org/10.1145/3432233

[98] William Stallings, Lawrie Brown, Michael D Bauer, and Arup Kumar Bhattachar-

jee. 2012. Computer security: principles and practice. Pearson Education Upper

Saddle River, NJ, USA.

[99] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin

Jia. 2017. Some Recipes Can Do More Than Spoil Your Appetite: Analyzing

the Security and Privacy Risks of IFTTT Recipes. In Proceedings of the 26th
International Conference on World Wide Web (WWW). International World Wide

Web Conferences Steering Committee, 1501–1510. https://doi.org/10.1145/

3038912.3052709

[100] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng

Guo, and Patrick Tague. 2017. SmartAuth: User-Centered Authorization for

the Internet of Things. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 361–378. https://www.usenix.org/

conference/usenixsecurity17/technical-sessions/presentation/tian

[101] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. 2015. Cocaine

Noodles: Exploiting the Gap between Human and Machine Speech Recognition.

In 9th USENIX Workshop on Offensive Technologies (WOOT 15). USENIX Associa-

tion, Washington, D.C. https://www.usenix.org/conference/woot15/workshop-

program/presentation/vaidya

[102] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A. Gunter. 2019.

Charting the Attack Surface of Trigger-Action IoT Platforms. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 1439–1453. https://doi.org/10.

1145/3319535.3345662

[103] Moosa Yahyazadeh, Proyash Podder, Endadul Hoque, and Omar Chowdhury.

2019. Expat: Expectation-based policy analysis and enforcement for appified

smart-home platforms. In Proceedings of the 24th ACM Symposium on Access
Control Models and Technologies. 61–72.

[104] Yuqing Zhang Yan Jia, Luyi Xing. 2019. Sneak into Your Room: Security Holes

in the Integration and Management of Messaging Protocols on Commercial IoT

Clouds. Accessed: 2020-08.

[105] Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, XiaoFeng Wang, and Yuqing

Zhang. 2020. Shattered chain of trust: Understanding security risks in cross-

cloud iot access delegation. In 29th {USENIX} Security Symposium ({USENIX}
Security 20). 1183–1200.

https://doi.org/10.1145/3372297.3423339
https://doi.org/10.1109/SECPRI.2002.1004365
https://doi.org/10.1109/SECPRI.2002.1004365
https://doi.org/10.1007/11814771_51
https://doi.org/10.1007/11814771_51
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1145/1062455.1062502
https://www.usenix.org/conference/usenixsecurity20/presentation/guo
https://www.usenix.org/conference/usenixsecurity20/presentation/guo
https://doi.org/10.1109/SPW50608.2020.00029
https://doi.org/10.1007/s10009-008-0087-9
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/contexlot-towards-providing-contextual-integrity-appified-iot-platforms/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/contexlot-towards-providing-contextual-integrity-appified-iot-platforms/
https://doi.org/10.1109/SECPRI.2001.924291
https://doi.org/10.1109/ENABL.2003.1231406
https://www.usenix.org/conference/usenixsecurity18/presentation/kumar
https://www.usenix.org/conference/usenixsecurity18/presentation/kumar
https://doi.org/10.1145/605434.605438
https://doi.org/10.1145/3427228.3427250
https://doi.org/10.1145/3427228.3427250
https://doi.org/10.1145/2993600.2993601
https://doi.org/10.1109/POLICY.2002.1011295
https://doi.org/10.1145/3432233
https://doi.org/10.1145/3432233
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1145/3038912.3052709
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tian
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tian
https://www.usenix.org/conference/woot15/workshop-program/presentation/vaidya
https://www.usenix.org/conference/woot15/workshop-program/presentation/vaidya
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1145/3319535.3345662

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

[106] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai

Chen, Shengzhi Zhang, Heqing Huang, XiaoFeng Wang, and Carl A. Gunter.

2018. CommanderSong: A Systematic Approach for Practical Adversarial

Voice Recognition. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 49–64. https://www.usenix.org/

conference/usenixsecurity18/presentation/yuan-xuejing

[107] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and Feng

Qian. 2019. Dangerous Skills: Understanding and Mitigating Security Risks of

Voice-Controlled Third-Party Functions on Virtual Personal Assistant Systems.

In 2019 IEEE Symposium on Security and Privacy (SP). 1381–1396. https://doi.

org/10.1109/SP.2019.00016

[108] Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang Yang, Phakpoom Chin-

prutthiwong, and Guofei Gu. 2019. Life after Speech Recognition: Fuzzing

Semantic Misinterpretation for Voice Assistant Applications. In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society.

[109] Xinan Zhou, Luyi Xing Jiale Guan, and Zhi Qian. 2022. Perils and Mitigation of

Security Risks of Cooperation in Mobile-as-a-Gateway IoT. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security.

[110] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why Does Your Data

Leak? Uncovering the Data Leakage in Cloud from Mobile Apps. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. IEEE, 1296–1310. https://doi.org/10.1109/SP.2019.00009

APPENDIX
.1 Additional Technical Details for A Few

Flawed IoT Policies
Issues with the IoT policy of Govee smart plugs. We found

two problems with the Govee policy (Figure 4): (1) The filtering of

wildcards specified in the policy is incomplete, and being complete

is practically difficult for the manufacturer. Specifically, a mali-

cious Govee user can still subscribe to the topic +/, and effectively

subscribes to multiple topics of Govee such as LWT/, allowing the
adversary to receive sensitive messages (e.g., device mac, device

name) of all Govee plug users. (2) Once a malicious user obtains

the topic 𝑡𝑝𝑐 (or device ID) of the victim’s device, subscribing to

𝑡𝑝𝑐 or GD/[md5 of device ID] satisfies the policy specification.

Notably, obtaining IoT device information such as device ID and its

topic is entirely practical, for example, an Airbnb/hotel guest, home

visitor, or virtually any user who had at least temporary access to

the device — this is also evidenced by the prior research [85, 105].

In our PoC experiment, we confirmed that a (guest) user who ever

uses the Govee device can easily obtain the device ID and MQTT

topic from the traffic or internal program states of his Govee mobile

app.

.2 Discussion of Relation between IAM Policy
and IoT Policy

Due to the complicated logical relations between IoT policies and

the Cognito and IAM policies (§ 3.2), it is natural to ask why AWS

IoT needs separate IoT policies (while other AWS services such as

S3, EC2 just leverage the IAM policy). Although never documented

by AWS, we found a few key reasons. First, AWS IoT supports three

types of identity principles for device or client authentication: (1)

X.509 certificate, (2) IAM users, groups, and roles, and (3) Cognito

identities. The X.509 certificate is an AWS IoT feature (typically

used by IoT devices for authentication to AWS IoT) and is not

supported by Cognito/IAM for authentication purposes. That is,

Cognito cannot maintain the IAM policy for an X.509 certificate

based identity. Second, IAM policies are not designed to support

Table 1: Measurement of impact

Vendor
Device
Type

Flaw
Type

App
Downloads

Security
& Safety
Impact1

Privacy Impact
and

Information Leak
Govee plug, light 1 1000K+ C, M, F device id, user id

Onelink

smoke

detector
1, 2 10K+ M, F

device id

user id,

device status,

wifi name,

device mac,

pmesh key

Beurer air purifier 1 1K+ C, M, F

device id,

in-door air quality,

power, fan speed,

temperature

Belkin

WeMo
plug,light 1 1000K+ M, F

device id, device mac,

device type,

device serial number,

device status

SwitchMate plug, light 1 100K+ C, M

device mac,

device version,

device status

sun-pro
3

awning 1, 2 500+ C, M, H

device id,

device status,

temperature

broil-king
4

grill 1, 2 5K+ C, M, H

wifi name, lan ip,

wan ip, wifi mac,

barbecue temperature,

fan status,

motor status

biobeat medical 1, 2 700+ C, M, H

Personal medical

/health information
2
,

device id,

device mac, app mac,

mobile system version

Molekule air purifier 1, 2 10K+ C, M, H in-door air quality

NetVue camera 3 100K+ C N/A

singlecue TV 1 5K+ C, M

alexa topic,

device mac,

control command,

serial number

Hippokura medical 1 5K+ C, M user id, chat message

SwitchBot plug 4 100K+ C, M

device id,

hardware password

Dyson

air purifier,

vacuum
4 1000K+ C, M

device status,

control command,

in-door air quality

1 Security & Safety Impact: C: Control the device; M: Monitor device activities/status;

F: Fake device messages to users; H: Control the vendor’s AWS IoT developer account.

2 Personal health information leaked: blood pressure, height, weight, age, calories,
steps walked, sleep status (whether the user is sleeping).

3,4 Sun-pro and broil-king: Both broil-king and sun-pro are developed by t2Fi, and

they share the same endpoint.

the potentially huge number of IoT end-users of an IoT manufac-

turer. In particular, under an IoT manufacturer’s AWS account, one

cannot create more than one thousand different IAM policies [10],

considering that the IoT manufacturer may actually want to assign

different IAM policies for different users. In contrast, AWS IoT does

not have such a limit and allows the IoT manufacturer to create

different IoT policies for each IoT user.

((allow,
action : (iot:AttachPolicy,

iot:AttachPrinciplePolicy),
resource : *))

Figure 17: IAM policy that allow user to attach IoT policy

.3 Algorithm to Enumerate ISes
P-Verifier uses a simple algorithm to get all ISes of a topic (see

§ 4.2). A basic idea is to convert a string problem into a numerical

sequence problem, and the syntax of topic (“/” is the delimiter) gives

https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-xuejing
https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-xuejing
https://doi.org/10.1109/SP.2019.00016
https://doi.org/10.1109/SP.2019.00016
https://doi.org/10.1109/SP.2019.00009

P-Verifier: Understanding and Mitigating Security Risks in
Cloud-based IoT Access Policies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"iot:Connect",
"iot:Subscribe",
"iot:Publish",
"iot:Receive"

],
"Resource": [

"*"
]

}
]

}

Figure 18: A policy with simple patterns of wildcard

us great convenience. Take topic filter “a/b/x/y” as an example, P-
Verifier splits the string by “/” and gets a string sequence [a, b,
x, y], then we know the length of the sequence is 4 and the basic

numerical sequence is [0, 1, 2, 3] as subscript. Algorithm 1

shows how to get the subsets of a numerical sequence. Based on the

obtained subset of all subscript numeric sequences, all synonyms

containing “+” are obtained by replacing the corresponding position

with “+”. Based on all the ISes with "+", replace the corresponding

position with “#” respectively, after string cutting, de-duplication,

and merging, we can get all the ISes.

Algorithm 1 Get subsets of numerical sequence

Require: 𝑠𝑒𝑡 The basic numerical sequence

1: function GetSubSets(𝑠𝑒𝑡)

2: 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 = [[]]

3: for 𝑣𝑎𝑟 in 𝑠𝑒𝑡 do
4: 𝑐𝑎𝑐ℎ𝑒 = []

5: for 𝑖𝑡𝑒𝑚 in 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 do
6: 𝑐𝑎𝑐ℎ𝑒 .add(𝑖𝑡𝑒𝑚 + [𝑣𝑎𝑟])

7: end for
8: 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 .extends(𝑐𝑎𝑐ℎ𝑒)

9: end for
10: return 𝑠𝑢𝑏𝑠𝑒𝑡𝑠

11: end function

.4 Algorithm of Alphabet-Reducing
Asmentioned in § 4.1, the alphabet-reducing algorithm (Algorithm 2

) generates a set of automata at a reduced alphabet by decomposing

an automaton running on amore inclusive alphabet (see an example

with formula 4).

.5 Implementation of P-Verifier
We have implemented P-Verifier in Python with 961 lines of code.

P-Verifier leverages the off-the-shelf SMT prover Z3. P-Verifier lever-
ages the Z3Py APIs [52] (for Python applications) provided by Z3

to invoke the functionalities of Z3 (e.g., And/Or/Not, Regular Ex-

pression, Solver). We use Z3 with its String Constraint Solver[51].

Similar to ZELKOVA, in case the verification for a policy exceeds a

threshold of time (120 seconds), P-Verifier also tries the solver CVC4
to re-run the task and reports an “unknown” result if no result

Algorithm 2 Alphabet-Reducing

1: 𝑛𝑒𝑥𝑡_𝑖𝑛_𝑠𝑒𝑡 :: (𝐸𝑞 𝑎) => 𝑎 → [𝑎] → 𝑎

2: 𝑛𝑒𝑥𝑡_𝑖𝑛_𝑠𝑒𝑡 𝑥 (𝑦 : 𝑦𝑠) = 𝑖 𝑓 𝑥 == 𝑦

3: 𝑡ℎ𝑒𝑛 ℎ𝑒𝑎𝑑 𝑦𝑠

4: 𝑒𝑙𝑠𝑒 𝑛𝑒𝑥𝑡_𝑖𝑛_𝑠𝑒𝑡 𝑥 𝑦𝑠

5: 𝑠𝑡𝑎𝑟_𝑐𝑙𝑜𝑠𝑢𝑟𝑒 :: [𝐶ℎ𝑎𝑟] → [𝑆𝑡𝑟𝑖𝑛𝑔]
6: 𝑠𝑡𝑎𝑟_𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑎𝑠 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 𝑠𝑡𝑒𝑝 “”

7: 𝑤ℎ𝑒𝑟𝑒 𝑠𝑡𝑒𝑝 𝑠 = 𝑐𝑎𝑠𝑒 𝑠𝑝𝑙𝑖𝑡𝐴𝑡 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑠 − 1) 𝑠 𝑜 𝑓
8: (𝑠′, “”) → 𝑠 + +𝑓 𝑠𝑡_𝑐ℎ_𝑠
9: (𝑠′, [𝑐ℎ]) → 𝑖 𝑓 [𝑐ℎ] == 𝑙𝑎𝑠𝑡_𝑐ℎ_𝑠

10: 𝑡ℎ𝑒𝑛 𝑠𝑡𝑒𝑝 𝑠′ + + 𝑓 𝑠𝑡_𝑐ℎ_𝑠

11: 𝑒𝑙𝑠𝑒 𝑠′ + +[𝑛𝑒𝑥𝑡_𝑖𝑛_𝑠𝑒𝑡 𝑐ℎ 𝑎𝑠]
12: 𝑙𝑎𝑠𝑡_𝑐ℎ_𝑠 = 𝑑𝑟𝑜𝑝 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑠 − 1) 𝑎𝑠
13: 𝑓 𝑠𝑡_𝑐ℎ_𝑠 = [ℎ𝑒𝑎𝑑 𝑎𝑠]
14: 𝑐ℎ𝑒𝑐𝑘 :: 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝐵𝑜𝑜𝑙

15: 𝑐ℎ𝑒𝑐𝑘 𝑠 = 𝑎𝑛𝑑 $𝑚𝑎𝑝 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 (𝑧𝑖𝑝 𝑠 (𝑡𝑎𝑖𝑙 𝑠))
16: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 :: (𝐶ℎ𝑎𝑟,𝐶ℎ𝑎𝑟) → 𝐵𝑜𝑜𝑙

17: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 (′∗′,′ ∗′) = 𝐹𝑎𝑙𝑠𝑒

18: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 (′+′, 𝑦) = 𝑦 == ′/′
19: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 (′#′, 𝑦) = 𝐹𝑎𝑙𝑠𝑒

20: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 (′/′, 𝑦) = 𝑇𝑟𝑢𝑒

21: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 (𝑥,′ +′) = 𝑥 == ′/′
22: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 (𝑥,′ #′) = 𝑥 == ′/′
23: 𝑚𝑞𝑡𝑡_𝑏𝑎𝑛 _ = 𝑇𝑟𝑢𝑒

24: 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑠 = [′+′,′ #′,′ /′,′ ∗′]
25: 𝑚𝑞𝑡𝑡_𝑡𝑜𝑝𝑖𝑐𝑠 :: [𝑆𝑡𝑟𝑖𝑛𝑔]
26: 𝑚𝑞𝑡𝑡_𝑡𝑜𝑝𝑖𝑐𝑠 = 𝑓 𝑖𝑙𝑡𝑒𝑟 𝑐ℎ𝑒𝑐𝑘 (𝑠𝑡𝑎𝑟_𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑠)

{
"Version": "2012-10-17”,
"Statement": [

{
"Action": [

"iot:Connect"
],
"Effect": "Allow",
"Resource": [

"arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
]

},
{

"Action": [
"iot:Subscribe"

],
"Effect": "Allow",
"Resource": [

"arn:aws:iot:us-east-1:123456789012:topicfilter/${iot:Connection.Thing.ThingName}/*"
]

}
]

}

Figure 19: A simple policy not overly permissive

is obtained within the same time threshold. Such a case will only

happen for unusually complicated IoT policies with many levels of

wildcards, which are rare (see the evaluation in § 5). We released
the full source code of P-Verifier online [44].

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ze Jin, Luyi Xing et al.

Table 2: Comparison with AWS IoT Defender (backed by
ZELKOVA [46])

Flaw1 Flaw2 Flaw3 Flaw4

P-Verifier

FPR 0 0 0 0

FNR 0 0 0 0

Defender

FPR 0 28.3% 15.6% 0

FNR 21.1% 0 37.9% 100%

.6 Equations of encoding the lock policies and
properties

𝐹𝑥 � (𝑎 = “𝑖𝑜𝑡 : 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒” ∧ 𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/. ∗ ”) ∨
(𝑎 = “𝑖𝑜𝑡 : 𝑃𝑢𝑏𝑙𝑖𝑠ℎ” ∧ 𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/. ∗ ”)

𝐹𝑦 � ((𝑎 = “𝑖𝑜𝑡 : 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒” ∧ 𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/𝑙𝑜𝑤𝑝𝑟𝑖𝑣/. ∗ ”) ∨
(𝑎 = “𝑖𝑜𝑡 : 𝑃𝑢𝑏𝑙𝑖𝑠ℎ” ∧ 𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/𝑙𝑜𝑤𝑝𝑟𝑖𝑣/. ∗ ”))

(10)

𝐹𝑝𝑟1 � ¬(𝑎 = “𝑖𝑜𝑡 : 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒” ∧ 𝑟 = “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/ℎ𝑖𝑔ℎ𝑝𝑟𝑖𝑣/𝑟𝑒𝑠𝑒𝑡”)
𝐹𝑝𝑟2 � (𝑎 = “𝑖𝑜𝑡 : 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒” ∧ 𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/. ∗ ”) ∨

(𝑎 = “𝑖𝑜𝑡 : 𝑃𝑢𝑏𝑙𝑖𝑠ℎ” ∧ 𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/. ∗ ”)
𝐹𝑝𝑟3 � (𝑎 = “𝑖𝑜𝑡 : 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒” ∧ 𝑟 = “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/ℎ𝑖𝑔ℎ𝑝𝑟𝑖𝑣/𝑟𝑒𝑠𝑒𝑡”) ∨

(𝑎 = “𝑖𝑜𝑡 : 𝑃𝑢𝑏𝑙𝑖𝑠ℎ” ∧ 𝑟 = “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/ℎ𝑖𝑔ℎ𝑝𝑟𝑖𝑣/𝑟𝑒𝑠𝑒𝑡”)
𝐹𝑝𝑟4 � (𝑎 = “𝑖𝑜𝑡 : 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒” ∧ 𝑟 = “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/𝑙𝑜𝑤𝑝𝑟𝑖𝑣/𝑜𝑝𝑒𝑛”) ∨

(𝑎 = “𝑖𝑜𝑡 : 𝑃𝑢𝑏𝑙𝑖𝑠ℎ” ∧ 𝑟 = “𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑/𝑙𝑜𝑤𝑝𝑟𝑖𝑣/𝑜𝑝𝑒𝑛”)
(11)

.7 A high-level scenario to avoid client ID
conflict

To manage users and devices in an organization, suppose the de-

vices and users are assigned policies in Figure 20. In this scenario,

since the users and devices share the same MQTT broker, one

should ensure a user client cannot use an MQTT Client ID that is

conflicting with that of a device client [85]. Otherwise, the user

(who can be malicious) can force the device offline based on the

MQTT protocol [35], and then may fake device messages on behalf

of the device [85].

We can leverage P-Verifier to verify this high-level security prop-

erty. By using the same encoding approach as described in §4.2,

we can encode the two policies as 𝐹𝑑 and 𝐹𝑢 , and then leverage

the Check 3 to reason about if the resource field of the connect

action — determining the Client IDs that are allowed to use — in the

device policy shares permissions with that in the user policy (see

equation (12)). If the two policies share resources (allowed Client

IDs), a user can use the same Client ID as a device.

𝑅 = 𝐹𝑑 ∧ 𝐹𝑢 (12)

((allow,
action : iot:Connect,
resource : client/user-*))

((allow,
action : iot:Connect,
resource : client/device-*))

Device Policy

User Policy

Figure 20: Example IoT policies for devices and users

((allow,
action : iot:Publish,
resource : topic/deviceId/highpriv/reset),

(allow,
action : iot:Subscribe,
resource : topicfilter/deviceId/highpriv/reset))

Property pr3

((allow,
action : iot:Publish,
resource : topic/deviceId/lowpriv/open),

(allow,
action : iot:Subscribe,
resource : topicfilter/lowpriv/open))

Property pr4

Same as policy z1 in Figure 16
Property pr2

((deny,
action : iot:Subscribe,
resource : topicfilter/deviceId/highpriv/reset))

Property pr1

Figure 21: Multiple security properties for the lock

1 10 20 30 40 50 60 70 80 90
0

10

20

30
Check 1Check 1 Check 2Check 2 Check 3Check 3

Number of Statements

T
im

e
du

rin
g

(s
)

Figure 22: Performance evaluation for setting 1

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

5

10

15

20
Check 1Check 1 Check 2Check 2 Check 3Check 3

The length of string (MB)

T
im

e
du

rin
g

(s
)

Figure 23: Performance evaluation for setting 2

	Abstract
	1 Introduction
	2 The Cloud-based IoT Access-Control Infrastructure
	3 Error Space in Cloud-based IoT Access Policies
	3.1 Design-Space Flaw 1: Semantic Gap in IoT Access Policies
	3.2 Design-Space Flaw 2: Flawed Cooperation between IAM Policy and IoT Policy
	3.3 Implementation-Space Flaws: Chaotic Practices of IoT Policy Deployments
	3.4 Measurement of Impact

	4 Logical Encoding and Formal Verification of IoT Access Policies
	4.1 Overview
	4.2 Logical Encoding of IoT Access Policies
	4.3 Formal Verification and Flaw Detection

	5 Evaluation
	5.1 New Benchmark: IoT-Policy Bench
	5.2 Effectiveness
	5.3 Performance Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	.1 Additional Technical Details for A Few Flawed IoT Policies
	.2 Discussion of Relation between IAM Policy and IoT Policy
	.3 Algorithm to Enumerate ISes
	.4 Algorithm of Alphabet-Reducing
	.5 Implementation of P-Verifier
	.6 Equations of encoding the lock policies and properties
	.7 A high-level scenario to avoid client ID conflict

