2014 IEEE Symposium on Security and Privacy

Upgrading Your Android, Elevating My Malware:
Privilege Escalation Through Mobile OS Updating

Luyi Xing*, Xiaorui Pan*, Rui Wang’, Kan Yuan* and XiaoFeng Wang*
*Indiana University Bloomington
Email: {luyixing, xiaopan, kanyuan, xw7}@indiana.edu
Microsoft Research
Email: ruiwan@microsoft.com

Abstract—Android is a fast evolving system, with new updates
coming out one after another. These updates often completely
overhaul a running system, replacing and adding tens of thou-
sands of files across Android’s complex architecture, in the
presence of critical user data and applications (apps for short).
To avoid accidental damages to such data and existing apps,
the upgrade process involves complicated program logic, whose
security implications, however, are less known. In this paper,
we report the first systematic study on the Android updating
mechanism, focusing on its Package Management Service (PMS).
Our research brought to light a new type of security-critical
vulnerabilities, called Pileup flaws, through which a malicious
app can strategically declare a set of privileges and attributes on
a low-version operating system (OS) and wait until it is upgraded
to escalate its privileges on the new system. Specifically, we found
that by exploiting the Pileup vulnerabilities, the app can not only
acquire a set of newly added system and signature permissions
but also determine their settings (e.g., protection levels), and it
can further substitute for new system apps, contaminate their
data (e.g., cache, cookies of Android default browser) to steal
sensitive user information or change security configurations, and
prevent installation of critical system services. We systematically
analyzed the source code of PMS using a program verification tool
and confirmed the presence of those security flaws on all Android
official versions and over 3,000 customized versions. Qur research
also identified hundreds of exploit opportunities the adversary
can leverage over thousands of devices across different device
manufacturers, carriers and countries. To mitigate this threat
without endangering user data and apps during an upgrade,
we also developed a new detection service, called SecUP, which
deploys a scanner on the user’s device to capture the malicious
apps designed to exploit Pileup vulnerabilities, based upon the
vulnerability-related information automatically collected from
newly released Android OS images.

I. INTRODUCTION

Mobile operating systems (OSes) are evolving quickly.
Every a few months, major updates or new overhauls of entire
systems are made available, bringing to mobile users brand
new apps and enriched functionalities. Conventional wisdom is
that such a vibrant ecosystem benefits the phone users, making
mobile systems more usable and also more secure, through
timely plugging loopholes whenever they are found. Indeed,
for years, major smartphone vendors and system/software de-
velopers leverage convenient updating mechanisms on phones
to push out fixes and enhance existing protection. However,
with such updates becoming increasingly frequent (e.g., every
3.4 months for all 19 Android major updates [5]) and compli-
cated (e.g., hundreds of apps being added or replaced each time
by hundreds of different Android device vendors), questions

© 2014, Luyi Xing. Under license to IEEE.
DOI 10.1109/SP.2014.32

393

arise about their security implications, which have never been
studied before.

New challenges in mobile updating. Security hazards that
come with software updates have been investigated on desktop
OSes [45], [37]. Prior research focuses on either compromises
of patches before they are installed on a target system [26]
or reverse-engineering of their code to identify vulnerabilities
for attacking unpatched systems [40]. The reliability of patch
installation process has never been called into question. For a
mobile system, this update process tends to be more complex,
due to its unique security model that confines individual apps
within their sandboxes and the presence of a large amount
sensitive user data (e.g., contacts, social relations, financial
information, etc.) within those apps’ sandboxes. Every a few
months, an update is released, which causes replacement
and addition of tens of thousands of files on a live system.
Each of the new apps being installed needs to be carefully
configured to set its attributes within its own sandboxes and
its privileges in the system, without accidentally damaging
existing apps and the user data they keep. This complicates
the program logic for installing such mobile updates, making it
susceptible to security-critical flaws. Also adding to this hazard
is fragmentation of mobile OSes, particularly Android, the
most popular system. Multiple official Android versions (from
Froyo to Jellybean) co-exist in the market [3], together with
thousands more customized by different vendors (Samsung,
LG, HTC, etc.). Those versions are slowly but continuously
updated to higher ones [3], leaving the potential adversary a
big window to exploit their update installation process, should
its security flaws be uncovered. With the importance of this
issue, little has been done so far to understand it, not to mention
any effort to mitigate the threat it may pose.

Menace of Pileup. In our research, we conducted the first
security analysis of mobile updating, focusing on Android
Package Manager as a first step. Our study brings to light a
new category of unexpected and security-critical vulnerabilities
within Android’s update installation logic. Such vulnerabilities,
which we call Pileup (privilege escalation through updating),
enable an unprivileged malicious app to acquire system capa-
bilities once the OS is upgraded, without being noticed by the
phone user. A distinctive and interesting feature of such an
attack is that it is not aimed at a vulnerability in the current
system. Instead, it exploits the flaws in the updating mechanism
of the “future” OS, which the current system will be upgraded
to. More specifically, through the app running on a lower
version Android, the adversary can strategically claim a set

@) CO‘ pute
1(!) I
& SOCIety

of carefully selected privileges or attributes only available on
the higher OS version. For example, the app can define a new
system permission such as permission.ADD_VOICEMAIL
on Android 2.3.6, which is to be added on 4.0.4. It can also
use the shared user ID (UID) [17] (a string specified within
an app’s manifest file) of a new system app on 4.0.4, its
package name and other attributes. Since these privileges and
attributes do not exist in the old system (2.3.6 in the example),
the malicious app can silently acquire them (self-defined
permission, shared UID and package name, etc.). When the
system is being updated to the new one, the Pileup flaws within
the new Package Manager will be automatically exploited.
Consequently, such an app can stealthily obtain related system
privileges, resources or capabilities. In the above example,
once the phone is upgraded to 4.0.4, the app immediately gets
permission.ADD_VOICEMAIL without the user’s consent
and even becomes its owner, capable of setting its protection
level and description. Also, the preempted shared UID enables
the malicious app to substitute for system apps such as Google
Calendar, and the package name trick was found to work on the
Android browser, allowing the malicious app to contaminate
its cookies, cache, security configurations and bookmarks, etc.

With the help of a program analyser, our research discov-
ered 6 such Pileup flaws within Android Package Manager
Service and further confirmed their presence in all AOSP
(Android Open Source Project) [1] versions and all 3,522
source code versions customized by Samsung, LG and HTC
across the world that we inspected. The consequences of the
attacks are dire, depending on the exploit opportunities on
different Android devices, that is, the natures of the new
resources on the target version of an update. As examples,
on various versions of Android, an upgrade allows the unpriv-
ileged malware to get the permissions for accessing voicemails,
user credentials, call logs, notifications of other apps, sending
SMS, starting any activity regardless of permission protection
or export state, etc.; the malware can also gain complete
control of new signature and system permissions, lowering
their protection levels to “normal” and arbitrarily changing
their descriptions that the user needs to read when deciding
on whether to grant them to an app; it can even replace
the official Google Calendar app with a malicious one to
get the phone user’s events, drop Javascript code in the data
directory to be used by the new Android browser so as to
steal the user’s sensitive data, or prevent her from installing
critical system apps such as Google Play Services [8]. We
performed a measurement study on those exploit opportunities,
which shows how they are distributed across Android versions,
countries, carriers and vendors. Particularly, we found that
customized OSes are highly susceptible to the Pileup attacks,
due to a large number of system capabilities they bring in
for each upgrade. We have reported our findings to major
Android-device vendors, e.g. Google, and are helping them
fix the issues. Demos of our exploits are online [14].

Secure updating. The Pileup vulnerabilities are critical, highly
pervasive and also fundamental. It is caused by a conservative
strategy device manufacturers have to take to avoid replacing
resources of unknown origins on the existing system (Sec-
tion II-A) during an upgrade, for the purpose of protecting
their users’ data and installed high-version apps. As discussed
before, we found the presence of the problem in thousands

394

of Android images we scanned and highly suspect that all
Android devices are vulnerable to our attacks. Given that
near a billion Android devices [11] are out there, simply
patching all of them within a short period of time is unrealistic.
Also, given the fundamentality of the issue, any less than
well-thought-out fixes will easily lead to serious side effects,
including damages to user data or installed high-version apps.
To better understand the problem and practically mitigate its
threat, we developed a Pileup detection service, called SecUP.
SecUP provides a scanner app to inspect installed Android
application packages (APKs) on an Android device, in an
attempt to identify those that will cause privilege escalations
during an update. It includes a mostly automated vulnerability
detector built upon VeriFast [18], a program verification tool
for Java, that discovers the Pileup flaws within the source
code of different Android versions, and a threat analyser that
automatically scans thousands of OS images to find out all the
exploit opportunities related to these flaws. We built a database
that documents all the opportunities generated as the result of
the analysis, which is used by the scanner to check installed
APKs. We utilized SecUP to perform the aforementioned
measurement study and also evaluated its effectiveness. Our
study shows that the approach can catch Pileup risks and avoid
incriminating the new version of a legitimate app installed on
an Android device before OS upgrading.

Contributions. We summarize the contributions of the paper
as follow:

e New findings. We performed the first systematic study
on the security risks in mobile updating mechanisms through
analyzing Android Package Management Service, and discov-
ered Pileup, a new type of privilege escalation vulnerabilities.
Successful exploits of the vulnerabilities can have devastating
consequences. Our research confirmed the presence of those
flaws in all official Android versions and all 3,522 customized
systems from major smartphone vendors, indicating that all
Android versions could be affected by this problem. We
further conducted a measurement study over 3,549 factory
images from Google and Samsung, and discovered tens of
thousands of attack opportunities across different Android
versions, countries, carries and vendors, each of which en-
ables a knowledgable adversary to acquire system capabilities
automatically during an upgrade.

e New techniques. We developed a new service for automati-
cally identifying the Pileup risks on a mobile OS. Our approach
can continuously scan new Android versions emerged, find out
new vulnerabilities or exploit opportunities they introduce, and
conveniently detect related malicious apps on Android devices
without undermining its utility.

Roadmap. The rest of the paper is organized as follows:
Section II provides the background information about mobile
updates and discusses its potential security risks; Section III
elaborates the Pileup vulnerabilities we discovered; Section IV
presents the design and implementation of the SecUP service
for detecting Pileups; Section V reports our evaluation of
SecUP and a measurement study on the consequences of
Pileups using our service; Section VI discusses the limitation
of our research and potential future directions; Section VII
compares our work with related prior research and Section VIII
concludes the paper.

II. HAZARDS IN MOBILE OS UPDATING

A. The Problem

Mobile OSes are characterized by their quick paces of
updating, which enable smartphone vendors to continuously
push their new services to their customers and timely fix all the
problems that show up. Different from desktop OSes, whose
whole system upgrades happen less frequently, mainstream
mobile systems like Android and iOS rapidly elevate their
customers’ OSes from one version to another, patching and
adding tens of thousands of system files each time (e.g., 15,525
files when upgrading Android 4.0.4 to 4.1.2). This updating
process is also carefully designed to inherit all user information
on the old system and operate in a way completely transparent
to the user: typically, all one needs to do here is just to push a
button, and the new OS will then be downloaded from the
Internet and installed on her phone without disrupting the
operations of her favorite apps and messing up her settings
and data. Such a design, however, significantly complicates
the update mechanisms on mobile devices. Understanding the
security implications of this new complexity is the purpose of
our study, with our focus on Android as the first step.

Since September 2008, 19 Android official versions (from
1.0 to 4.4) have been released. New updates are available
almost every three months [5]. Figure 1 illustrates the sequence
of such updates. In addition to these AOSP versions, phone
manufacturers also provide their customized OSes, oftentimes,
for different carriers (Verizon, AT&T, T-Mobile, etc.) and
different countries. For example, Samsung has so far released
over 10,000 different versions to serve its customers world
wide. Many of them co-exist on today’s Android market,
causing what is so called Android fragmentation [3]. On the
other hand, these versions are being steadily upgraded to
newer ones: it is reported that within the recent 6 months,
the market share of Jelly Bean (Android 4.1+) has increased
from 25% to 48.6% [2]. This trend is supported by the
increasing convenience in updating on more recent devices. In
our research, we analyzed popular Android devices released by
major manufacturers in the past three years, including Google,
Samsung, LG, HTC, Motorola and Sony Erisson, and found
that all of them can be easily upgraded through WiFi or 3G,
with a single click on the “update” button. From security
viewpoints, however, this upgrading process could leave a big
window to the adversary who wants to exploit vulnerabilities
within Android updating mechanisms. How serious the threat
is depends on what can be found from the mechanisms. To
better understand this issue, we need to take a look at how the
updating works, as described below.

A__‘*_—W

4 /
8 " .//
2 3 T
o . .
> 25 —O—A.ndrmd version
3 history
o 2
3 -
c 15
< J
1 &
«x @ @ [=] o =] — ~ ~ 0 ~
(=] o o — P o P — — 1 -
I IS IS =] o o o o o o o
9 g 9 d 8 o & 8 & & I
S @ > > > ~ ~ ~ AN N
o g o o = o = o >) >
Date

Fig. 1. Timeline of Android Updates

395

Android updating. The technical details for the Android
updating process have not been officially released. All we can
learn about it is from third-party reports and our manual anal-
ysis based on system logs, runtime observations and related
source code. Here is the picture we come up with.

After the user clicks on the system update button under
Android Setting, an upgrading image (called “Over the Air” or
OTA) is downloaded from the device manufacturer’s servers’.
The image includes bootloader. img, other system files
and a set of Android application package files distributed
across different directories. Some of them are patches to the
existing files (on the old system), which typically end with
“.p” (e.g.,, radio.img.p). Once receiving the image, the
Android device reboots into a recovery mode, where it verifies
the authenticity and integrity of the image and then replaces
existing system files such as bootloader, Package Manager
Service and APKs under the system directory with the new
ones. After this is done, the device reboots into the new OS and
continues to update other system components through different
Android services, including Activity Manager, Service Man-
ager, User Manager Service, Package Manager Service, Input
Manager, etc. Of particular interest here is Package Manager
Service (PMS), which we investigated in our research.

PMS is an Android service for installing, upgrading, con-
figuring and removing application packages. When it comes
to upgrading, the service installs or reinstalls all system apps
(new and existing ones from the old OS) under /system/
directory, and then existing third-party apps (user installed)
under /data/app onto the new OS. When installing an
app, PMS registers its permissionsz, shared UID, activities,
intent filters, actions, services and others. What complicates
this installation process is the presence of duplicated attributes
(e.g., package names, shared UlDs, etc.) and properties (e.g.,
permissions). In this case, PMS needs to decide which one to
install. For this purpose, it builds a data structure mSettings
to record all such information about existing apps on the
old OS, which includes a group of lists (in the HashMap
type) such as mPackages, mUserIds, mSharedUsers,
mPermissions, etc. Whenever a new system package is
about to be installed or its properties to be registered, PMS
first looks up these lists to find out whether another package
with the same attributes like package names® or duplicated
properties like permissions already exists in the old system.
This happens, for example, when a high-version system app is
installed on the old OS to replace its low-version counterpart.
Once a new package or its property is found to be already in
the old system, the decision on which one to keep is made case
by case, based upon the nature of the package or the property.
For example, an app from the updating image will replace an
existing one if the former has a higher version number than
that of the latter.

What can go wrong. This installation process has been

'Some old devices are required to be physically connected to a PC through
their USB to get access to the updating package.

2Note that on Android, all the permissions (i.e., privileges for accessing
system resources) are declared by certain apps. Particularly, all AOSP permis-
sions are defined by the package android and other system apps.

3The user can install a high-version system app like Google Plus on a low
version Android. In this case, the app is placed under /data/app directory,
instead of system where all system APK files are placed.

designed to preserve user data and avoid improperly replacing
existing properties, which is of paramount importance to an
update that happens to a live system. However, achieving the
goal is by no means easy. Compared with Linux, Android is
much more complex, with its layered architecture designed
to shield the user from low-level details. Particularly, on
Android, each app is confined within its sandbox, together
with user data it guards. Its attributes and properties (i.e.,
permissions, package names, shared UlDs, etc.) are system-
wide, uniquely identifying its package and its privileges within
the system. This complicates an update process in the presence
of duplicated package attributes or properties: not only does
PMS need to check different conditions on the packages (with
such attributes/properties) in conflict before choosing the right
one (either the original one on the old OS or the new one
within the update image) to install, but it may also has to
carefully combine two apps together, for example, keeping the
data from the old version while using the code of the new one.
The program logic here can become very complicated, and thus
error-prone, as discovered in our research (Section IV). Also
problematic is that for the sake of simplicity, PMS uses the
same program logic for both system upgrading and normal
app installation: that is, the decision on whether to install a
new system app or register its properties (e.g., permissions) is
always made in the same way as when a third-party app to be
installed is found in conflict with an existing app.

Once PMS keeps a wrong attribute or property (one intro-
duced by a third-party app, instead of its system counterpart),
the consequence can become very serious. Android often refers
to privileges, resources and data by their names. As a result,
the third-party package attribute or property, which bears the
name of its system counterpart, can be elevated to a system one
during the updating shuffle-up where all apps are installed or
reinstalled, and all system configurations are reset. Also, when
two apps from old and new systems are merged as described
above, security risks can also be brought in when the one on
the original system turns out to be malicious. To avoid these
and other pitfalls in the updating process, its design needs to
be carefully thought out. This cannot be done without an in-
depth understanding about what can go wrong here, a question
our research attempts to answer.

B. Adversary Model

We consider an adversary with his malicious apps installed
on the victim’s Android devices. In Section III-E, we show that
such malware can be uploaded to Google Play and third-party
Android markets, or disseminated to Android users through
other channels such as email attachments. Also, the apps here
can appear less dangerous than some legitimate apps on their
target Android versions, simply because they may not ask for
dangerous permissions (which they wait for the next update to
get). Of course, the threat becomes particularly serious when
there are a lot of old mobile OSes that are slowly but steadily
updated to new ones, and such updates come with addition
of many security-critical privileges and capabilities. This is
exactly what is happening in the Android ecosystem.

III. PILEUP EXPLOITS

In this section, we elaborate the Pileup vulnerabilities
discovered from Android PMS and our exploits on them. Some

396

of these flaws were first found manually, which motivated this
research, and the others were first caught by our Pileup detector
(Section 1V). All the problems we found are essentially a type
of broadly defined privilege escalation weaknesses, by which
we refer to not only the situation where an unauthorized party
gains elevated access to protected resources but also when it
acquires elevated capabilities to deny authorized parties’ access
to the resources. We present those problems below.

A. Permission Harvesting and Preempting

At the center of the Android security architecture is its
permission and sandbox model. Each app runs within its
own sandbox, separated from other apps. To gain any addi-
tional capabilities that would impact other apps or the OS,
the app needs to explicitly request a permission (within its
manifest.xml) before it is installed. These permissions are
used to guard resources such as Internet, camera, storage, etc.
They are categorized into protection levels [4], among which
most common are normal (automatically granted to apps when
requested), dangerous (granted based upon the user’s consent),
signature (granted to apps signed with the same certificate
as the one that declares the permission), System (granted
to system apps on the system image) and a combination
signatureOrSystem (granted to system apps or those signed
with the same certificate). All the standard (AOSP) permissions
are declared by system packages android and others located
under /system/. Third-party apps can also define their own
permissions, which can be requested by others.

In our research, we found that the program logic within
PMS for handling the permissions inherited from the old sys-
tem is problematic, which allows a malicious app to automati-
cally gain dangerous or even system and signature permissions
added by the new OS without the user’s awareness, or even
become the source package of these permissions with the
power to set their protection levels and descriptions. Here we
elaborate how this can happen.

Existing/conflicting permissions. As discussed above, right
before an app is about to be installed, PMS needs to check the
permission it requests, and most of the time, turns to the device
user for consent. All such requests are specified in the app’s
manifest file. What is interesting here is that when PMS goes
through the manifest, it ignores all those it fails to recognize,
and never reports them to the user. This design, presumably, is
for handling the third-party apps that are not well implemented.
The problem is that the adversary can take advantage of this
opportunity, letting his malicious app ask for a set of dangerous
permissions only declared on a higher Android version without
being noticed by the device user.

When the OS is being upgraded to the higher version, PMS
first installs all new and existing system apps and registers the
permissions they declare, and then moves on to install third-
party apps from the old OS. When it is the malicious app’s
turn, this time, PMS recognizes all the permissions it requests,
including the ones that come with new system packages and
have just been defined. In this case, everything that the app asks
for is just silently granted, since these permissions are with
an existing app and supposed to have already been approved
by the user. However, as we know, the truth is that those
new dangerous permissions have never been identified by the

system before the updating and are thus never known to the
user. Exploiting this weakness, a malicious app can “harvest”
permissions (i.e., requesting them on the old system) and wait
until an update to get them. Note that this attack can only
get the app dangerous level permissions, since signature and
system permissions declared by system apps cannot be granted
to the third-party app and an attempt to get them will be
identified during permission registration.

However, there is a way to get the permissions at sig-
nature and system level: the malicious app can preempt the
permissions from the new system and simply define them
when it is installed. Again, since there is no such permissions
on the old system, the OS just lets the app declare them,
which includes specification of the permissions’ protection
levels and descriptions. This process does not need the user’s
intervention at all, as all these permissions are used to protect
the sources that come with the app. During an update, PMS
reads all existing permissions (on the old system) into the
list mSettings.mPermissions. When it registers a new
permission defined by a new system package, it first goes
through the list: once this permission has been found on the
list and the package that first defines it (on the old system)
is different from the current one, the permission definition
part (for the system package) is skipped. As a result, the old
permission, which has been declared by the malicious app,
is automatically elevated to the one that guards new system
resources. That is, whenever any app needs to access the
resources, a related Android service will check whether the
app has this permission. Note that not only does the malicious
app that defines the permission get the permission (even at the
signature and system level), it is also the party that specifies
the protection-level of the permission and its descriptions. In
other words, the adversary can lower a system permission to
a normal one and arbitrarily set its descriptions. Also, on the
new system, once the malicious app is uninstalled, this whole
permission is removed from the OS. There is no way for any
other app to request it and therefore none gets the privilege to
touch the resources under its protection.

Attacks and consequences. Our research shows that the
permission harvesting and preempting vulnerabilities exist in
all official Android versions and all 3,522 customized source
code versions by Samsung, LG and HTC that we inspected
(Section V). What the adversary can get from exploiting
these flaws depends on the permissions added by the target
versions of different updates. In our research, we implemented
an app to play those tricks when our Google Nexus S and
Galaxy Nexus phones were upgraded from 2.3.6 to 4.0.4, then
to 4.1.2, 4.2.2 and 4.3 consecutively. Our app successfully
obtained and also preempted all the permissions we tested,
with some of them elaborated in Table I. In the table, we
also present the permissions in lower Android versions that
are also vulnerable to our attack. For all the system, signature
and dangerous permissions we obtained, our app deliberately
lowered their protection levels to normal, so other parties
can get them automatically without user’s explicit consent.
An example is certinstaller.INSTALL_AS_USER, a
signature permission for installing the root certificate under the
download directory on an SD card. We further utilized the
permissions READ_PROFILE and READ_CALL_LOG, both at
the dangerous level, to get unauthorized access to the profile

397

and the call log on Android 4.0 and 4.1 respectively.

Permission Protection| Android Description (allows to)
Name Level Version
Mlgunt_ff)rmal_ mgnafure 1.5 format removable storage
ileSystems OrSystem
Use_credentials dangerous 2.0 request authentication tokens
GoogleVoice.SMS | dangerous 4.0 receive Google Voice messages
Retrieve_ signature 40 retrieve content of entire
window_content OrSystem : active window except passwords
Send_sms_ signature 4.0 send SMS messages
no_Confirmation OrSystem : without confirmation
Start_any_activity signature 4.1 start any activity, ignore
permission or exported state
Grant_permissions | signature 4.1 grant specific permissions for apps
Plus.Picasa dangerous 4.2 access photos in Google Photos
Across_users signature 4.2 violate protection between users
OrSystem
Access_notification signature 43 r‘etrievel and clear notifications
OrSystem including those of other apps

TABLE 1. SELECTED PREEMPTED PERMISSIONS

As another example, we preempted the permission for
Google Cloud Messaging (GCM) [7] to intercept its Push
messages. GCM is a service that helps developers send data
from their servers to their Android apps. The messages deliv-
ered through this service can contain up to 4KB of payload
data. System apps employing GCM to push messages include
Google Plus, Google Hangout, Gmail, Google Voice, etc. To
receive the Push messages, an app must register a signature
permission packageName .permission.C2D_MESSAGE.
In our attack, our app preempted the GCM permission on our
Google Nexus phones and got the permission to eavesdrop on
the sensitive Push messages delivered to affected system apps,
which had a significant security implication.

B. Shared UID Grabbing

Android security has been built upon Linux user protection.
Each app running on Android is assigned a UID, which
prevents it from accessing other apps’ information assets.
An exception, however, is provided for those bearing the
same shared UID, an attribute that comes with individual
app. Specifically, two apps can declare in their manifests an
identical shared UID under android: sharedUserID [17],
a constant string, which causes the OS to assign them the same
UID (a number) when they are installed, if they are also signed
by the same party. When this happens, these apps can access
each other’s data and even execute in the same process.

In our research, we found that a malicious app on a
low-version Android can declare the shared UID used by a
system app on a high-version system. During an update, this
forces PMS to skip the installation of the new app, which
gives the adversary an opportunity to replace the app with a
malicious one. Following we elaborate this Pileup problem and
its consequences.

Shared UID handling. As discussed before, during an update,
PMS is invoked to go through all APK files under system
directory and then /data/app/ to install new apps and
reinstall existing apps one by one. This procedure excludes
the third-party app carrying a system package’s name, simply
because after the system app has been installed, the third
party app can no longer be reinstalled, due to the conflict
of package names. However, we show here that PMS will
handle this situation differently when the third-party app also

has a shared UID. When installing a system app, PMS creates
a class instance pkgSetting that holds the app’s setting
information. The content of the data structure normally comes
from the app itself. However, when PMS looks up the list
mSettings and finds a conflict in package name (an existing
app with an identical package name from the old OS), it
will look at both packages’ shared UID settings: if they use
the same shared UID (including empty ones), the structure
pkgSetting will be loaded from the existing app. Then in
the case of non-empty share UIDs, PMS verifies their app
signatures to check whether they are signed by the same party.
When this is not true, the new system app will not be installed
so the existing one could be installed later. Presumably, this
treatment is meant to be conservative, as Google and other
vendors have no idea whether the existing app and its data is
useful to the user. Note that on the same device, by no means
two apps signed by different parties should share their UIDs,
which will completely open them to each other in terms of
their individual information assets. However, this conservative
treatment can be exploited by the adversary, who can craft an
app bearing the same package name and shared UID as the
system app from a higher-version OS. During upgrading, the
app can block the installation of the system app. This can have
serious consequences, which we will discuss later.

This problem was first discovered through a manual check
of the code, which had motivated this research. Later, when
we ran our Pileup detection tool (Section IV) on PMS, it
turned out that the package name is unnecessary for the attack.
Interestingly, even in the case that PMS does not identify
any package conflict and thus pkgSetting contains the
settings from the system package itself, as long as the new
package configures a shared UID, Android will retrieve from
mSettings all existing packages with the same Shared UID
and inspect their signatures to find out any inconsistency with
that on the new package. If one such app is signed by a
different party, the new package will not be installed. In this
way, a malicious app only needs to preempt the new package’s
shared UID to knock it out of the system.

When the updating process moves Android into the re-
covery mode, all the APKs files under the system directory
are replaced with the new ones* (Section II). As a result,
once a new system app fails to install, it becomes completely
missing on the new OS, as its old version under system on
the original system (before the upgrading) has already been
overwritten. This gives the adversary an opportunity to install
a malicious one in its replacement, which can be done by
downloading another package through the existing malicious
one, making it look like part of the upgrading.

Attacks and consequences. In our research, we installed an
app on a Nexus S with Android 2.3.6. The app claimed the
shared UID com.google.android.calendar on 4.0.4.
After the upgrading, it successfully blocked the installation of
the new official calendar app without user’s awareness. Given
the original calendar app was already removed, we filled this
blank with a malicious calendar downloaded through the attack
app, which set a filter for receiving all the intents for adding

4Note that in the case that an Android user installs a high-version system app
on a low-version OS, that package is placed under the /data/app directory
and therefore will not be replaced in the recovery mode.

398

events to the calendar. This malicious calendar can be made to
have the same user interface as the official calendar app. Note
that should the official calendar app still be there, the user
would be notified that two apps were monitoring the same
intents and asked to choose one of them, while in our case,
our app was the only one expecting the events and therefore
such a notification did not come out. We have a video demo
posted online [14] to show how our app stealthily gets private
user events and schedules. The same exploit can also work on
other Android system apps, as illustrated in Table II.

Device Carrier/ Android
sharedUID Package Name Model Country Version
uid.nfc com.sec.surfsetprop | SGH-T869 TMB/US 4.0.4
uid.platform com.sec.widget GT-P7300 SER/Russia 4.0.4
uid.graphics | com.samsung.reader | GT-P6800 SER/Russia 4.0.4
vmware.mvp vmware.mvp SCH-I535 VZW/US 4.1.2
uid.widget sec.app.launcher GT-18160 LUX/Luxemburg| 4.1.2
com.c chinaunicom.cloud G?;O CHU/China 4.1.2

sCloud.datasync
scloud.sync | sCloudSyncBrowser | GT-I9300 CHU/China 4.1.2
sCloudSyncContacts
TABLE II. EXPLOIT OPPORTUNITIES OF SHARED UID GRABBING ON

SAMSUNG DEVICES

C. Data Contamination

All the precautions made by PMS during an update are
for the purpose of avoiding any potential damage to the
device user’s existing assets, particularly her data. Indeed,
even when PMS decides to replace an existing app with a
new one, it still carefully merges the former’s data into the
latter during its installation, making sure that it does not mess
up the user’s configurations and personal information. Such a
treatment, however, provides the adversary another opportunity
to escalate his privilege on the infected system, this time
through the data the malicious app left to the new system app.

Reuse of existing data. Android keeps the data for
both system and third-party apps under directory
/data/data/PackageName, which is owned by a
unique Linux UID in the absence of UID sharing. An app
is only allowed to access the information under its own
data directory. During an update, PMS will compare the
UID recorded within pkgSetting with that of the existing
data directory associated with the package name of the new
system app being installed, keeping the directory when they
match and clear the directory otherwise. The UID within
pkgSetting is typically a new one assigned by Linux
to the new system app. However, when there is another
app installed on the old OS with the same package name
and Shared UID, as we explained before (Section III-B),
pkgSetting will contain the existing app’s information.
The UID within pkgSetting is naturally the owner of its
data directory under the inspection. When this happens, if
the shared UIDs of the two apps are both empty, the new
system app is installed but the data of the existing app is left
and incorporated into the new app. Therefore, a malicious
app that bears the package name of a new system app when
neither has a shared UID, will be able to contaminate the
latter’s data through OS upgrading. (Note that the malicious
app will not be reinstalled successfully later for the package
name conflict which means it will not exist in the new OS).
The consequences here are serious and diverse, depending on

the natures of the new apps. Here we describe an end-to-end
attack on the Android default browser.

Attacks and consequences. The package name of the official
browser for Android 2.3 is com.android.browser. After
the system is upgraded to Android 4.0, the package name
is updated to com.google.android.browser. In our
research, we exploited this discrepancy in its package names’
to implant an attack app on 2.3.6 that used the new browser
package name. An update to 4.0.4, therefore, caused our app
to be removed and the old browser to cease to exist but
rendered the new browser using our app’s data directory.
Under the directory are the browser’s databases (.db files)
that keep cookies, security configurations and bookmarks, etc.
and also cache for web pages, scripts and others. The database
files from the old OS will be replaced if their versions are
lower than that specified by the new browser. In our attack,
however, we deliberately built high-version . db files into our
attack app, thereby leaving all our content untouched. Within
those files, we put the cookies for our own Google, Dropbox,
Facebook and other accounts and successfully caused login
cross-site request forgery (CSRF) attacks, in which the phone
user unconsciously logged into our account, and her searching
terms and other personal data were therefore made available
to us. Also, we dropped web pages with malicious JavaScript
in the cache. As a result, whenever the browser visits the
target websites, our cached pages are loaded and the script get
access to the user’s cookies and other web data. Moreover, the
Android browser includes in a whitelist of websites allowed
to access the device’s geolocation. Our app contaminated this
list and added our malicious website onto it. As a result, a
visit to the website automatically discloses the phone user’s
geolocation to us. More seriously, through our app, we even
tampered with the browser’s built-in bookmark list. On the list
are a set of website-URL pairs, which we modified to point to
the sites under our control. For example, we replaced the URLs
for Google, Yahoo, Facebook, Twitter, etc. with the links to
our sites. Note that this bookmark list can also include what
the user sets on her 2.3.6 device. As the result of this exploit,
whenever the user uses her bookmarks, she is always directed
to our websites. Video demos of the attacks are here [14].

Again, such attacks are not limited to browser. Table III
illustrates some of the other opportunities we found from
Google Nexus and Samsung devices.

:}Jp d?te Package Name Updfate Package Name
‘ersion Version
android.exchange com.dropbox
. < 4.0 4.1 .
23 .40 android.keychain samsung.gmail
: : google.gsf.login 41 -42 sec.safetyassurance
google.apps.plus . : samsung.accesscontrol
TABLE III. OTHER EXPLOIT OPPORTUNITIES FOR DATA

CONTAMINATION

D. Denial of Services

As discussed in Section III-A and Section III-B, the Pileup
flaws within PMS lend a malicious app an elevated capability
to deny a mobile system new resources added through an

update. Here we describe two other vulnerabilities that can
also prevent PMS from installing new system resources.

Exploiting permission tree. On Android, a permission typ-
ically can only be defined before an app has been installed.
An exception is when the app specifies a permission tree [13],
which is the base name (root) of a tree of permissions. An
app can define such a base name in its manifest file so as
to claim the ownership of all permission names within the
tree. For example, given a base com.example, permissions
like com.example.mathl, com.example.mathl.add,
com.example.math2 etc. all belong to the tree. Once
declaring the tree, the app controls the whole name space
defined by the root, and can then add individual permission
within the tree during its runtime.

As discussed before, Android does not allow the existence
of two permissions with the same name. What the adversary
can do here is to define a permission tree, covering permissions
to be added by a new Android version, through his app on
a low-version OS. Those permissions are not defined yet
but their names are all owned by the malicious app. During
an update, PMS checks the mPermissiontrees list
under mSettings before registering any new permission.
Whenever a permission’s name is found to be covered by an
existing tree declared by a different package from the system
package that is registering the permission, its registration
process fails. Interestingly, since by default, PMS assigns
every permission a signature protection-level before
changing it to the actual levels at the end of a registration,
this disruption produces a signature permission no one
can get®, and thus prevents legitimate apps from accessing
the resources the permission guards. As one example,
permission.ADD_VOICEMAIL, the permission required
to add voicemail became inaccessible to legitimate apps
due to our attack when updating from Android 2.3 to 4.0.
Also interestingly, we found that even in the presence of a
permission tree defined by a system app already on the old
system, the malicious app can still prevent the new system
from registering any new permissions covered by the existing,
legitimate tree. The key issue here is that Android allows
our app to define another permission tree that also covers
the existing one. For example, even though the system app
google.android.gsf on Google Nexus already defines
the tree google.apps.permission.GOOGLE_AUTH,
our app can still declare a permission tree google.apps.
permission. As a result, any related new
permissions the new system adds will not be able
to register even if they are within the name space of
google.apps.permission.GOOGLE_AUTH, as they
are also covered by our permission tree. Also note that the
device user will not be aware of this problem, as Android
never notifies her the failure of the registration. We found that
this vulnerability can be exploited on every single Android
version, given the large number of new permissions added by
each update, as studied in section I'V-C.

Blocking Google Play Services. Google Play Services is
a critical package introduced by Android 4.0 on Google
compatible devices. It is used to update apps from Google

5Otherwise, we would not be able to install a malicious app, as two packages
on the same OS are not allowed to have the same package name.

399

%An eligible app should also be signed by the developer who defined the
permission.

Play, offering key supports for authentication, synchronized
contacts, access to user private settings and location-based
services [8]. Its absence will disable some important system
apps and third-party apps. We found that when a device is
upgraded from Android 2.3 to 4.0 on Nexus S, this critical
service is actually not part of the update image as a system
app. Instead, after installing all new and existing apps, Android
downloads this package from the Internet and installs it as
third-party app. As a result, a malicious app on 2.3.6 using the
same package name will stop the installation of the service,
simply because PMS cannot have two packages with the same
name coexist on the OS. Actually, this also happens when
the app includes a content provider with an authority name in
conflict with that of the new package. PMS in this case will
also skip the new package. We implemented both attacks and
successfully blocked Google Play Services. In this way, any
app relying on it will not work. For example, when opening
Google Plus on our Nexus S, the app crashed and the OS
prompted to the user a message “Google Play Services, which
some of your apps rely on, is not supported by your device”,
which is very misleading. Also, many popular apps rely on
Google Cloud Messaging [7], which is based on Google Play
Services, to push messages. These apps include all top 10 free
apps in the social category on Google Play. They all crash or
function unexpectedly due to our attack. The root cause of this
problem is that a new package, critical to other system apps
and third-party apps, is not included in OS updating image as
a system app, but downloaded as a third-party app.

E. Discussion

Other Pileup flaw. A unique feature of all Pileup vulnera-
bilities is that the consequences of any successful exploits on
them hinge upon the types of new capabilities the adversary
can acquire through them during an update. This sounds that
as long as Android does not offer any security-critical new
functionalities related to these flaws, their risk levels seem to
be low. The problem is that the Pileup flaws we found have
always been there since the first Android version, and also
within every manufacturer-customized system (Section V).
Therefore, even for those that do not bring in any harms on
the existing systems, they are essentially ticking time bombs
waiting for explosions (when the right functionalities are added
by Google or device manufacturers one day). Here we describe
one such flaw discovered in our study.

When PMS detects a package name conflict when installing
a system app, in the case of both apps having identical shared
UID, not only does it incorporate the existing app’s data
into the new system app, it also copies the whole settings
of the existing app into a data structure pkg.mExtras.
This structure partially contributes to the configuration and
inspection of the new app’s settings. For example, it is used
to check whether a permission is given to the app. Under our
attack, the content of the structure can be manipulated by the
attack app that takes the package name and Shared UID of the
new system app. Even though so far, not much can be done to
exploit this issue for escalating the adversary’s privilege on the
user’s device, the evolution of PMS, which has been adjusted
in almost every new Android release, could one day bring in
an opportunity to make the problem more serious.

Malware distribution. To understand whether malicious apps

400

exploiting Pileup flaws can be easily disseminated in prac-
tice, we attempted to upload them to both Google Play and
third-party Android marketplaces. It turns out that all the
apps relying on the seizure of new permissions, UIDs and
content provider names have no problem being added to
Google Play. Therefore, the attack code for most exploits
(Section III-A, III-B and III-D) can be conveniently distributed
and delivered to Android users. On the other hand, Google
does check package names and disallows those having name
conflicts with existing packages to be uploaded. However, such
a restriction does not exist on third-party marketplaces: in our
study, we successfully posted our malicious apps using sys-
tem package names on popular third party markets including
Amazon Appstore, appfutura.com, appslib.com,
1lmobile.com and others. Also, the adversary can propagate
the malware through other channels, for example, by sending
a phone user the malicious app in email attachments or just a
link to download the app.

Causes of the problem. All aforementioned Pileup flaws are
caused by the conservative strategy Android has to take when
updating a live system. After all, without a clear idea about
what existing third-party apps and personal data are, it will
not be wise to overwrite them and face uncertain liability
consequences. In our opinion, that is why PMS chooses
not to replace existing permissions, app data, packages with
conflicting shared UIDs and even those bearing the names of
new system packages’. This thinking will not go away even
after those Pileup flaws are revealed. The oversight on the
Android developer’s side, however, is failing to connect the
outcomes of this conservative strategy to the way Android
refers to system capabilities, which is often by names, UID,
etc. As a result, those critical security flaws have been left
there for years, distributed across all AOSP versions as well
as manufacturers’ customizations.

Addressing the Pileup issues can be much more compli-
cated than releasing yet another Android patch. This time, tens
of thousands of Android source code versions need to be fixed
and compiled, and billions of devices will be affected. Also,
it is less clear to us whether Google and device manufacturers
are willing to be more aggressive, taking back the conservative
strategy and replacing unknown information assets on their
customers’ devices whenever they think is necessary. In our
research, we explored an alternative, less extreme path to
move forward, which automatically identifies potential hazards
before an update happens (Section 1V).

Responses from vendors. We notified Google of those Pileup
vulnerabilities and provided them with all technical details
soon after we confirmed the presence of the flaws within
their Android versions. After analyzing our report, Google
security team informed us that they came up with a fix
for the permission bug (11242510: “Apps can hijack and
change protection level of some permissions when Android is
upgrading”) and released it to their partners. They also created
tracking numbers for all other issues that we reported and are
working on solutions. We continue to communicate with them
to find out the status of this system patching and are helping
them fix all the Pileup vulnerabilities we discovered.

7 Again, this can happen legitimately, for example, when one installs high-
version Google Plus on Android 2.3.6.

IV. FINDING PILEUPS

In this section, we elaborate the design and implementation
of new tools for detecting Pileup flaws, called SecUP, which
contributed to our finding of not only most flaws in Section III
but also the scope and magnitude of the problem (existing on
all AOSP versions and all the customized versions we studied,
and affecting hundreds of new privileges and capabilities).
Also, as discussed before, the root cause of the Pileup flaws
is the conservative strategy used to update live systems, an
issue that will not go away. To provide Android users timely
protection without endangering their data, SecUP builds up
a database that documents Pileup attack opportunities across
thousands of Android versions, and operates a scanner app that
leverages the database to detect Pileup risks on an Android
device before its update.

A. Overview

Architecture. Figure 2 illustrates the architecture of SecUP,
which includes a vulnerability detector, an exploit opportunity
analyzer, a risk database and a scanner app. The detector
verifies the source code of PMS (from different Android
versions) to identify any violation of a set of security con-
straints, in which we expect that the attributes, properties
(name, permission, UID, etc.) and data of a third-party app
will not affect the installation and configurations of system
apps during an update. A Pileup flaw is detected once any of
those constraints are breached. All discovered vulnerabilities
are further inspected by the analyzer, which searches released
Android factory images for the opportunities of privilege
escalations (depending on the new properties and packages
on each Android version), and updates such information to a
Pileup risk database. From such a database, the scanner app,
which can be installed on Android devices, checks all installed
third-party apps and reports to the user all the risks it finds.
The app is designed in a way that minimizes false alarms
particularly when the user has a high-version legitimate app
on her device.

Example. To understand how SecUP works, consider the
following example. As soon as a customized Android 4.3 is
released, our SecUP service downloads its source code and
manufacturer image. The Pileup detector then analyzes the
Java code of PMS and, hypothetically, confirms the presence of
the permission flaws in Section III-A. This discovery triggers
the risk analyzer, which extracts all new system packages from
the image to find out new permissions they define. All these
permissions are vulnerable to the aforementioned harvesting
and preempting exploits and therefore recorded in the risk
database. Once the scanner app is downloaded and installed to
an Android device, it first checks the manufacturer, model and
version of the device and utilizes such information to search
the database. If the device turns out to run a customized 4.2 that
can be upgraded to the 4.3, the scanner inspects all manifest
information to detect the packages that either declare or request
the permissions retrieved from the database. Such packages, if
unrelated to the device’s manufacturer, are all reported to the
device owner, together with the risks they pose. The owner will
decide whether to uninstall them before upgrading her system.

401

Architecture of SecUP

Android
Source Code,

Android
Images

Fig. 2. Architecture of SecUP

B. Detecting Update Flaws

Pileup vulnerabilities are a type of program logic flaws
that hide deeply inside PMS. To uncover those flaws in a
mostly automatic way, SecUP includes a detector that performs
a formal verification on the Java source code of PMS, in an
attempt to identify the program logic that causes the problem.

Here we elaborate this approach.
ttack

(S
Reference

new
PMsS| Diff Code Full aths
computation | | generation verification

>

Fig. 3. Framework of Vulnerability Detector

Framework. As shown in Figure 3, our flaw detector takes as
input the code of the PMS from an Android version serving
as an upgrade target (called “new PMS”) and outputs the
execution paths that a malicious app can exploit to gain
more privileges when the device is upgraded to this new
OS. To this end, we want to convert the code into a format
that can be automatically checked by an off-the-shelf Java
verification tool, which in our implementation, is VeriFast [18].
VeriFast is a general-purpose verification tool for C and Java
programs. It performs a full formal verification on the source
code instead of bounded model checking [24]. As a result, it
can guarantee completeness, i.e., finding all attack paths with
respect to the assertions specified. However, just like other
full verification tools [23], [21], [39], it requires the developer
to manually annotate each function related to the assertions.
This effort could be costly, depending on the scale and the
complexity of the program [46]. It would be hard to verify a
large number of Android OSes (including AOSP versions and
vendor customized versions) in this way.

To make this verification process more automatic, we
leverage the observation that changes to PMS during upgrading
and customization have been minor and incremental. Specif-
ically, we first built a reference PMS (AOSP 4.0.4), which
was manually annotated with assertions and other descriptions
(e.g., pre-conditions and post-conditions for a function, loop
invariants) required for running VeriFast. This is a one-time
effort, which facilitates the follow-up analysis on the PMS
for other Android versions. Given an extracted new PMS, our
detector first compares it with the reference to identify their
code difference (diff for short). By inspecting the diff, it at-
tempts to reuse the annotations in the reference when possible.
Since oftentimes, the new PMS does not contain changes to
the program locations that need annotations, though it often

comes with some adjustments of the original program logic and
therefore needs to be reverified, a new annotated source code
ready for the verification can often be automatically created
in this way. When the new PMS does bring in new program
structures that need annotations (e.g., a new function), VeriFast
will detect the changes it cannot handle and require manual
adjustments during its runtime. This analysis framework is
illustrated in Figure 3.

Assertions for Pileup detection. Most important to the ver-
ification is design of effective assertions for detecting the
Pileup flaws. Those assertions are placed within PMS in the
program logic related to updating to describe the security
constraints that the program has to satisfy. Any instance of
violating such constraints indicates a Pileup flaw. In general,
two security constraints for PMS are: 1) a non-system app and
its dynamic content should not gain any more privileges on
the new OS than they have on the old Android it is upgraded
from; 2) a non-system app should not compromise the integrity
and the availability of the new Android (e.g., changing the
settings and data of a system app). To describe these two
constraints, we designed a set of assertions for two key stages
during the installation of a new system package, that is,
attribute setting and property registrations. As discussed before
(Section II-A), for each new system package that comes with
an update, PMS needs to configure its attribute settings (e.g.,
userID, pkgFlags, SharedUserSetting, codePath,
resourcePath, etc.) and then register its properties (e.g.,
permissions, activities, services, receivers, content providers,
permission trees, etc.). For each of these two tasks, we im-
pose a set of assertions to make sure that the system app’s
attributes are not contaminated by a non-system app, nor can
its properties be preempted by the app.

In the upgrading logic, the attribute settings for a new
system app are filled according to the content of a class
instance pkgSetting. The origin of the content, however,
can be less clear to our flaw detector. The assertions for
this process are designed to ensure that when content of
pkgSetting is inherited from an existing non-system app
on the old OS, individual fields in pkgSetting cannot
be directly used to affect the settings of the system app
being installed. To this end, our first assertion, placed right
after initializing of pkgSetting, is evaluating whether the
content comes from a system app. This is done by inspecting
whether pkgFlags in pkgSetting has been set to 1
by PMS (note that this setting can be changed after the
initialization). Whenever pkgSetting is used to config-
ure individual attributes of the system package within its
class pkg (parsed manifest information of the package), we
further look at the content of pkgSetting to find out
whether it has not been changed by the system since the
initialization. Consider UID as an example. Immediately after
pkgSetting.userId is assigned to pkg.uid, we insert
an assertion claiming that pkgSetting.userId is equal to
its value when pkgSetting is just initialized, as illustrated in
Figure 4, where copySetting is a copy of the original value
of pkgSetting. After analyzing the whole program, once
VeriFast concludes that the first assertion is False (indicating
pkgSetting possibly from a non-system source) while the
second one for a specific attribute like UID is True (i.e.,
userId keeps the value from the non-system pkgSetting),

402

we know that a Pileup flaw has been discovered. Intuitively,
the evaluation results for this pair of assertions indicate that
this specific attribute, which belongs to a new system app, can
be set according to a non-system input.

pkgSetting = Init();
1: Assert (pkgSetting .pkgFlags&1)!=0
copySetting = copy(pkgSetting);

BasePermission bp =
mSettings.mPermissions.
get(PermissionName);
3: Assert
(bp.pkgFlags & 1) 1=0) | |
(bp.sourcePkg.equals
(pkg.pkgName));

pkg.uid = pkgSetting.userld;
2: Assert pkgSetting.userld
== copySetting.userld;

Fig. 4. Assertions for PileUp Detection

For the registration logic, we want to ensure that whenever
PMS stops registering a property of a system package, this is
not caused by the presence of the same property owned by
a non-system package with a different name. Otherwise, the
existing property such as permissions can be elevated for a
system use on the upgraded OS. Note that we here allow an
existing third-party package to claim the property of a new sys-
tem package when they have the same package name because
in practice, a high-version legitimate system app installed on a
low-version Android, is placed under /data/app/ as a third-
party app. Also, any logic flaws related to package names are
already checked by the first two assertions. This constraint is
expressed by the third assertion in Figure 4, which claims that
either a conflicting old package is a system app (pkgFlags
= 1) or the old package has the same name as the new system
app. This assertion is inserted where the properties of the
new system app are used to search mSettings. Whenever
there is a hit (which stops the registration of the new app’s
corresponding properties), the assertion needs to be True if
no logic flaw exists. Take permission as an example. Once
the new permission name is discovered to be already exist-
ing in mSetting, we check assert(((bp.pkgFlags&1)! =
0)]|(bp.sourcePkg.equals(pkg.pkgName))), where bp is a
class instance storing information of the existing permission
with same name. If the assertion is False, a flaw is reported.

Note that these two sets of assertions do not cover all
possible Pileup vulnerabilities. For example, the first set cannot
find a flaw when the UID of the new package has been changed
since the initialization of pkgSetting, even though this
change is still made based upon untrusted sources. As another
example, the assertion for the registration logic misses the
situation when the shared UID problem also exists: in this
case, a malicious app can utilize the name of a new package
to register its properties. Of course, this problem becomes less
of a concern once the shared UID problem is discovered by
the first set of assertions. On the other hand, whatever gets
caught by those assertions is sure to be a Pileup flaw.

Other Android versions. As discussed before, the flaw de-
tector is designed to efficiently generate annotations for a new
PMS under an analysis. Given the source code of an Android
version, it first checks code diff of PMS with the version’s
predecessor during an update. If no changes happen to PMS,
then a verification is unnecessary if the predecessor’s PMS has
already been checked. Otherwise, the detector further extracts
the code diff between the new PMS and the reference (or its
immediate predecessor): as long as the annotated functions
remain unchanged, all the marks can be moved to the new

program for running the verification. When those functions
have also been modified, what the detector does is to reuse as
many existing annotations as possible and run grep to identify
the new statements from the diff related to the variables
in the assertions, and instrument those statements with the
corresponding assertions. In this case, human intervention is
needed to ensure that the code has been instrumented correctly.

C. Finding Exploit Opportunities

For a given Pileup vulnerability, what the adversary can
get from it are pretty opportunistic, depending on the types
of system attributes and properties involved in an update.
With the fragmentation of the Android ecosystem, such exploit
opportunities vary across not only different Android versions,
but also different manufacturers, device models and sometimes
even carriers. For example, Google and other vendors add to
their devices different system apps, permissions, shared UID
and others each time when updating their systems. On the other
hand, our study shows that existing Android versions are all
vulnerable (Section V). Therefore, it is important to understand
the unique threats individual versions are exposed to. To this
end, we built into SecUP an exploit opportunity analyzer (EOA
for short) that automatically scans different Android versions
to discover potential threats to their update mechanisms and
also documents the problems identified in a well-structured
Pileup risk database.

Android image scan. To find exploit opportunities in an
update, EOA compares system attributes and properties on
two consecutive Android versions from the same manufacturer,
device model, region and carrier, based upon the Pileup flaws
reported by the detector. As an example, with regard to all
the flaws described in Section III, EOA inspects the OS image
of Samsung GT-I9300-TGY on Android 4.1.1 customized by
carrier TGY for new permissions, shared UID and package
names not present in the immediate predecessor of the OS
(Samsung GT-I9300-TGY Android 4.0.4). All such resources
can be exploited during a Pileup attack and the security risks
they expose need to be well documented.

To collect such information, EOA automatically identi-
fies and downloads Android images from multiple sources,
including all 38 Google Nexus images from [6] and 3,511
Samsung images from [16], to scan their pre-installed system
apps. Those images are first classified according to their
targeted device models, regions, carriers and manufacturers,
and then arranged in the order of upgrade sequence (e.g.,
2.3.6 to 4.0.4, then to 4.1.2). They are compressed files. To
work on them, EOA first uncompresses each image to get
system. img, which is the image of /system/ directory for
a running Android and contains all the system apps we need
to look into. Then, EOA mounts the image using ext4_utils
and inspects all the APKs under /system/. What it needs to
look at depends on the types of Pileup flaws discovered by the
detector. Again, for those we found (Section III), EOA focuses
on the manifest files of individual APKs. After uncompressing
the APKs using apktool, our approach extracts all defined
permissions, shared UIDs, package names and other attributes
and properties from their manifests, before unmounting the
whole image and turning to the next one. In our research, we
implemented the prototype of EOA using Python, which took

403

about 700 hours to fully process all the 3,549 images from
Google and Samsung.

Pileup risk database. The collected information from an
Android version is kept in a data record. EOA further compares
the records for two consecutive versions (according to the order
of updates) to identify new resources vulnerable to the known
Pileup flaws in the newer version’s PMS. In the case of the
flaws reported in the paper, we search for the permissions,
permission trees, shared UIDs and package names on the newer
version that are not there on the older one. All such attributes
and properties can be taken advantage of by a malicious
app running on the older Android and therefore are recorded
into our Pileup risk databases, together with their meta data,
including manufacturers, carriers, models, regions and others.

Note that this information collection process is not a one-
time operation. Instead, we are closely monitoring the new
versions (both official and customized ones) released by phone
manufacturers and analyzing them whenever they become
available so as to document the exploit opportunities they bring
in.

D. Pileup Scanner

With the flaws identified by the detector and the exploit
opportunities collected by EOA, we can provide a service
to Android users to detect the privilege escalation attempts
aimed at the system upgrading process. Such a service is
delivered through a Pileup scanner app that operates on the
user’s device and checks the attributes and properties of all
her third-party apps to find out those suspicious. This approach
can offer timely and less intrusive protection than patching all
vulnerable PMSes, given the fact that this will affect possibly
billions of Android devices, all manufacturers and carriers.
Also importantly, it is less clear to us how to fix the problem
through patching without causing any collateral damages to
the user’s live system: actually even months after we notified
Google and Android about those vulnerabilities, they still have
not deployed effective solutions to address all the problems we
discovered.

Following we elaborate the design and implementation of
our Pileup scanning service.

Design. Our scanning service was built with three compo-
nents: the Pileup risk database, a server and a scanner app.
The server contains the flaw detector and EOA, and also
a component to perform database operations and coordinate
with the scanner app. To use this service, the Android user is
supposed to download and install the scanner on her device.
The app only asks for the INTERNET permission. Once it
starts to run, it first gathers information about the device, for
example, its brand, model and Android version from the class
android.os.Build, and uses it to query the database for
the security risks the device is exposed to. The server then
responds with all the exploit opportunities the scanner needs
to check, which for what we found, include new permissions
to appear on the Android version the device will be upgraded
to, new shared UIDs, package names etc.

The scanner app evaluates all third-party apps on the
device against all those opportunities. Specifically, it first calls
the API getInstalledPackages to get the names of a

list of installed packages, and then uses getPackageInfo
to retrieve all the information about these packages. What
returned by the call includes a flag that indicates whether
the package is a system one. Here we do not check system
packages because all we want to prevent is that an unprivileged
app escalates its privileges to the system level. From the
API getPackageInfo, our app gets all the ingredients it
needs for scanning a package, such as its name, signatures,
permissions requested or defined, permission trees, shared UID
and others.

Malware detection. Specifically, the scanner app first checks
the permissions defined or requested by a third-party app. It
reports a security issue if any permission defined by the app
bears the same name as a new permission retrieved from the
database and the app’s package name is different from that
of the system app on the new OS declaring the permission.
This is because during an update, the new app will replace
the existing one (from the old OS) of the same package name
unless the former has a shared UID which is already taken by
any malicious app on the old OS (The UID grabbing attack
will also be detected by our scanner). Such a treatment is
designed to avoid false positives, as the old system can have
more recent system apps installed directory of under non-
system apps: for example, Google Plus has been added when
Android is upgraded from 2.3.6 to 4.0.4 on Google Nexus S
phone; before the system update, one can actually install this
system package on 2.3.6 as a third-party app, which further
declares some legitimate permissions supposed to be defined
at 4.0.4. Similarly, our app inspects the permission tree defined
by the third-party app and raise an alarm whenever the tree
is found to cover a single new permission declared on the
next Android version, according to the information retrieved
from the risk database. As an example, consider a permission
READ_CALL_LOG defined by the system package Android
when the system goes from 4.0.4 to 4.1.2 on a Nexus device.
On 4.0.4, our scanner reports a security risk once it discovers
that a third-party app with a different name also declares that
permission. When this happens, the scanner informs the device
user of the problem through an alert that explains to her the
potential security consequences of keeping the suspicious app
there during an update and suggests the actions she can take
(e.g., uninstalling the app). This same strategy is also applied
to handle the permission a third-party app requests: if it is a
“future” permission and the app does not have a right name, the
scanner alarms a risk and notifies the user that the permission
will be automatically given to the app in an update.

For the shared UID taken by a third-party app, again, our
scanner checks whether it is in conflict with the one used by a
system app to be added in an update. If so and the third-party
app carries a different package name than that system app, the
scanner immediately reports a security risk. In the case that the
app looks like that system app, with the same package name,
the situation becomes a bit complicated, given the possibility
that the system app of a higher version can be installed by the
user before the update as a third-party app. To ensure that it is
indeed the right app, the scanner further verifies the signature
of the third-party app, which can be extracted through function
collectCertificates of PackageParser class. If the
app has not been signed by the same party that developed the
system app (whose signature is stored in the risk database), an

404

alarm is raised to make the user aware of this security risk.
In the same way, the scanner handles the conflicting package
name carried by existing and new apps. If the former does not
have the right signature, we will report the problem.

V. MEASUREMENT AND EVALUATION

In this section, we report our study on the impacts of the
Pileup risks to the Android ecosystem. We found that such
security flaws are present in the source code of all AOSP
versions and all 3,522 customized Android versions from Sam-
sung, HTC and LG that we inspected, which strongly indicates
their existence in all Android devices in the market. Our
study further measured the distribution of exploit opportunities
across different vendors, carriers and regions, bringing to light
a few interesting findings. We further describe an evaluation
of our scanner app’s effectiveness in detecting Pileup malware
and its performance.

A. Experiment Settings

Android image collection. To understand the scope and the
magnitude of the problem, we collected a large number of
Android OS images for our study. Specifically, we downloaded
all 38 OS images for Google Nexus devices from [6], which
cover all versions of Nexus 7, Nexus 10, Nexus Q, Galaxy
Nexus, Nexus S from Android 2.3.6 to 4.3. We also gathered
3,511 OS images for Samsung devices from [16], covering
217 devices models and 267 carriers from Android 2.3 to 4.3.
Those customized images were automatically crawled from
the website [16], using paid premium accounts. We selected
the images with consecutive version numbers so that the new
resources added through updates can be identified. Those
images took about 3 TB storage and 310 hours to download.

We also collected the source code of all AOSP versions
and those customized by different manufacturers to detect the
Pileup flaws within their PMSes. Such customized versions,
including 1,552 from Samsung, 377 from LG and 1,593 from
HTC, were downloaded from [15], [12], [9]. It took about
200 hours and 400 GB local storage.

Other settings. We further evaluated our scanner app on a
Google Nexus S and a Galaxy Nexus phone. Our experiments
were conducted with the OSes on those devices being contin-
uously upgraded, starting from 2.3.6 for the Nexus S and from
4.0.4 for the Galaxy Nexus.

B. Pileup Flaws

Flaws detected. Table IV illustrates all the Pileup flaws we
detected. As mentioned before, what motivated this research is
our discovery of two permission Pileup flaws (Section III-A)
and the first shared UID flaw (Section III-B), which was
done manually. All other vulnerabilities, except the issue
with Google Play Services (Section III-D), were all found
automatically by our flaw detector (Section I'V-B).

We further evaluated the detector on manually identified
flaws. It worked on both the permission preemption and the
shared UID vulnerabilities. However, it could not find the
permission harvesting problem, that is, when a malicious app
on a low version OS requests a permission available only on its
successive version. This is because the flaw here is in the way

PMS registers non-system app’s property, which our assertions
do not cover. Similarly, our approach also could not detect the
flaw associated with Google Play Services, as this service is
installed under the /data/app directory on Android 4.0.4,
and not considered to be an official system app. Design of
assertions for user apps is challenging, given the difficulty in
avoiding false positives (erroneously incriminating legitimate
apps). How to address this issue and improve the coverage of
the automatic flaw detection is left for future research.

Logic Flaw Detected
Permission Preempting Yes
Shared UID Grabbing Yes

Data Contamination Yes
Permission Tree Yes
Other Flaws (pkg.mExtras) Yes

TABLE IV. DETECTED PILEUP FLAWS

Impacts. In our study, we ran the detector against the PMSes
within four recent AOSP OSes (4.0, 4.1, 4.2, 4.3) with 4.0
serving as the reference. It turned out that changes to other
versions with regard to 4.0 are rather minor. As a result, most
notations made on the reference were reused and the verifica-
tion process was largely automatic. Our Pileup detector further
inspected other customized Android versions. By comparing
them with their corresponding AOSP versions, no changes
were found within their PMSes®. Therefore, we conclude
that all those versions contain the Pileup flaws discovered in
our research’®. Given that all 3,522 customized source code
versions we studied have the same Pileup issues, we believe
that this strongly indicates that the problem exists on all
Android devices.

C. Measurement of Opportunities

The success of a privilege escalation attack on an update
process depends not only on the presence of Pileup vulnera-
bilities, but also on the new system resources and capabilities
the update adds that can be acquired by the adversary through
the attack. Here we present a measurement study in which
we ran our EOA (Section IV-C) against a large number of
Android images to understand the exploit opportunities (new
exploitable attributes and properties) they bring in.

Landscape. We first looked at the overall impacts of the
Pileup vulnerabilities to the Android ecosystem, in terms of
update instance, which refers to the upgrade of a specific
OS (from a specific manufacturer, on a specific device model
and for a specific carrier) to a higher one under the same
set of constraints. For each update instance, we measured the
quantity of exploit opportunities it can offer, with regards to all
the Pileup flaws found in our research, such as the numbers of
new permissions, packages and shared UIDs an update instance
introduces to the new system. From the 38 Google and 3,511
Samsung images we downloaded, we identified 741 update
instances. The statistics on their total exploit opportunities in
each instance are illustrated in Figure 5. Particularly, we found
that 50% of those instances have more than 71 opportunities.

8Note that missing of the PMS in the source code of a customized Android
indicates that the customization makes no changes to the PMS. This is because
in order to build an OS image, one needs to copy the source code of the
customized Android onto that of AOSP, overwriting the files to be replaced,
before compiling the code.

9This does not include the two flaws our approach missed.

405

100%

80%

60%

40%

20%

cumulative distribution

0%
0

24

48 72 96 120 144 168 192
number of exploit opportunities
Fig. 5. Cumulative Distribution of Total Exploit Opportunities in Each Update
Instance

Permissions, packages and UIDs. Then we inspected new
permissions and packages. Here we call a permission sensitive
if it is at least dangerous in the Android protection level,
and restrictive if it is above the dangerous level. Figure 6
shows the cumulative distributions of the new permission
number, sensitive and restrictive permission numbers respec-
tively. Note that all the new permissions, including sensitive
and restrictive ones, can be obtained by the malicious app
exploiting the Pileup vulnerabilities and lowered down to the
level of normal. Figure 6 demonstrates that 50% of the
update instances offer at least 38 sensitive and at least 31
restrictive permissions each to the adversary.

100%

80%

60%

——new permissions

40%

20%

cumulative distribution

new restrictive permissions

//j —=new sensitive permissions

0%

20 40 60 80 100
number of permissions
Fig. 6. Cumulative Distribution of New Permissions, New Sensitive and

Restrictive Permissions in Each Update Instance

120

Also, updates render a lot of new packages and shared
UIDs up for grabs. From the cumulative distributions in
Figure 7, we can see that 50% of update instances have at
least 23 new packages. Also at least one new shared UID was
added in 50% update instances.

100%

80%

60%

/ —new packages

40%

20%

0%

cumulative distribution

12 24 36 48 60
number of packages

Cumulative Distribution of New Packages in Each Update Instance

72
Fig. 7.

Impacts of customizations. Customizations of Android OSes
contribute to a large portion of all the exploit opportunities
discovered. Device manufacturers and carriers tend to add
more permissions, packages and others than normal updates
of AOSP versions. Figure 8 compares the average numbers
of the exploit opportunities provided by AOSP, Google and

Samsung, when the system is upgraded from 2.3.X to 4.0.X,
then to 4.1.X, 4.2.X, 4.3.X and 4.4.X consecutively. As we can
see from the figures, not only do the manufacturers introduce
more opportunities than AOSP, but Samsung adds more than
Google. Also interestingly, though Google and AOSP make the
biggest system overhaul from 2.3.X to 4.0.X and show a trend
of less aggressive updating afterwards, Samsung continues to
bring in more new stuffs from 4.1.X to 4.2.X and to 4.3.X, at
the cost of increased security risks.

.\/ =W—Samsung devices

_‘\’AOSP

23.x-4.0x 4.0x-41x 41x-42x 42x43x 43x4.4x
upgrade versions
Exploit Opportunities Affected by Vendor Customization

160

120

=4—Google devices
80

40

exploit opportunities

Fig. 8.

We also studied the diversity and complexity different
carriers bring to the picture. We find that they have significant
influence on the exploit opportunities within their customers’
systems. Table V presents what we found from the carriers
in eight different countries, based upon the 3,511 images
downloaded from [16]. From the table, we observe that each
carrier is associated with many new functionalities for each
update, which makes their devices susceptible to the Pileup
exploits. Particularly, when the system goes up from 4.0 to 4.1,
the devices affiliated with DCM in Japan and TMB (T-Mobile)
in US look most vulnerable. For the 4.2 update, the devices
with DBT in Germany, INU in India and SER in Russia offer
the adversary over 120 opportunities each.

\l,i l; gi?)tnes Average Exploit Opportunities per Update Instance by Carriers
CHU| DBT | DCM| FTM | INU SER | SKT TMB
(CN) | (DE) dP) | (FR) | (IN) (RU) | (KR) (US)
2.x -4.0 108 103 110 102 115 72 98
4.0 -4.1 69 75 137 32 95 78 72 162
4.1 -42 129 193 131
TABLE V. INFLUENCE OF CARRIERS ON EXPLOIT OPPORTUNITIES

D. Evaluating Scanner

Effectiveness. To evaluate the effectiveness of the scanner, we
first set up an Android 2.3.6 on our Nexus S and a 4.0.4 on the
Galaxy Nexus. Under these OSes, we installed top 100 free
apps from Google Play and a set of attack apps for exploiting
all the flaws in Section III. Also on these devices we installed
system apps that could be updated through Google Play, i.e.
Google Play Services, in order to better evaluate potential
false positives. Before the systems were upgraded, we ran
our scanner on them to detect potential Pileup risks. After
that, we changed our malicious apps according to the exploit
opportunities on the new systems, scanned the systems again
and continued to update them to the next versions, until 4.3, the
most recent one available. During those updates, our scanner
successfully detected all malicious apps and never incriminated
any legitimate ones, including the high-version apps.

Performance. We measured the performance of our scanner
app, in terms of the amount of the time it used to scan apps be-

406

fore each update. This includes what it took to check the apps
on the devices(Local Time) and what was introduced by
network communication(Query Time). Such a delay(Total
Scan Time) was further compared with the durations of the
upgrading on those devices. Table VI presents the experimental
results for scanning 30 apps on Nexus S and 100 apps on
Galaxy Nexus. Note that 30 apps are approaching the limit
Nexus S can handle smoothly. Our study shows that the time
spent on checking Pileup risks only took a negligible portion
of that incurred by the whole upgrading process.

Phone Model Nexus S Galaxy Nexus
Update Version 2.3 -4.0 4.0 4.1 4.0 -4.1 4.1 -4.2 42 -43
Local Time(s) 0.318 0.446 1.284 0.44 0.374
Query Time(s) 2.484 1.532 1.216 0.812 0.446
Total Scan Time(s) 2.802 1.978 2.5 1.252 0.82
Upgrading Time(s) 406 546 657 708 745
Scan/ Upgrading 0.69% 0.36% 0.38% 0.18% 0.11%

TABLE VI PERFORMANCE EVALUATION OF SCANNER APP

VI.

Other Pileup flaws. Our current design to detect Pileup flaws
is very preliminary. We only checked part of the program logic
within PMS for setting a new system package’s attributes and
registering its properties. This is far from sufficient, given
the Pileup flaws that may also appear in other part of the
code. A prominent example is that related to the installation
of non-system apps. As discussed before, our detector does not
work on the permission harvesting exploit and the denial-of-
service attack on Google Play Service, because in both cases,
the problem is within the program logic for processing non-
system apps. Even for system apps, the assertions used in
our implementation are just a set of sufficient but unnecessary
conditions for the presence of Pileup flaws. As a result, there
is no guarantee that we found all such problems even within
the code related to system apps’ attributes and properties.

DiSCUSSION

Another issue is how to make SecUP more automatic. This
is challenging, given the difficulties in detecting such logic
flaws even with our semi-automatic techniques. A more capa-
ble solution can be built on more mature program verification
tools that less depend on annotations, and a more powerful
program analysis technique that automatically generates the
annotations and instrument a program correctly.

Other services and OSes. Our study only focuses on PMS,
which is just one service involved in the upgrade process.
There are many other services and components, such as
UserManagerService, BackupManagerService, DevicePolicy-
ManagerService and ServiceManager, etc., that can also have
various types of Pileup vulnerabilities. More importantly, given
the fundamentality of the issue, we suspect that a similar
problem could also exist in other mobile systems. Further
research is needed here to better understand the scope and
the magnitude of this new security hazard.

VII. RELATED WORK

Security issues in upgrades. Updates (or patches) have long
been used to quickly respond to software vulnerabilities dis-
covered [28] and mitigate the threat of exploiting such flaws.
Although it is known that patches themselves may bring in
new flaws and releases of updates also tips the adversary about

the vulnerabilities they are meant to protect [26], [19], never
before has anyone systematically studied the security hazards
introduced by the vulnerable program logic for installing such
updates. Understanding this issue is particularly important to
securing mobile devices, whose OSes need to be upgraded
frequently, in the presence of a large amount of critical user
data and applications. The program logic for such a live
update inevitably becomes more complicated and thus more
error-prone. Our research makes a first step towards better
understanding of this new security challenge and finding a
practical way to address it.

Most related to our is the recent research on dormant
permissions [43], which is published right before the sub-
mission of this paper and thus just comes to our awareness.
The research focuses on Android permission management and
evolution but also reports an experiment in which an app
was made to apply for a new dangerous permission or the
one defined by the app yet to install and waited until the
installation of the right app or an upgrade to get it. This is
similar to the permission harvesting threat we found. However,
the research did not investigate the updating mechanism at all
and thus failed to identify the root cause of the problem and
any other vulnerabilities, which are often much more serious.
Particularly, permission harvesting only grants the malicious
app dangerous permissions, while our permission preemption
attack allows a malicious app to acquire any permissions, in-
cluding system and signature level ones, and even lower down
their protection levels. Also after the malware performing such
preemptions is detected, removing it is nontrivial, because it
will go with the permission, which denies other apps’ access
to the protected resources. Beyond permissions, our research
brought to light other serious logic flaws: e.g., the shared
UID issue that allows the installation of a malicious calendar
app and the data contamination threat that causes cross-site
scripting, login CSREF, etc. Most importantly, we systematically
studied PMS, found the root cause of the problems, analyzed
over 3,000 images to understand the gravity of those logic
flaws and further offered a mitigation.

Mobile OS security. Our work on the Pileup flaws falls
into recent efforts on discovering and mitigating new security
threats to mobile computing systems, a vibrant research area.
Numerous studies have been done to exploit the implemen-
tation errors in mobile apps [32], [22] as well as circumvent
Android’s sandbox and permission protection [29], [34], [36],
[41], [42]. Examples include the Permission Re-Delegation
attack [34] and other types of confused deputy problems for
the mobile platforms [44]. Also, new security designs have
continuously been proposed to address those challenges and
enhance Android security mechanisms [44], [31], [35], [30].
Compared with such prior research, our study explores mobile
security from a different angle: our malicious app does not
aim at the vulnerabilities within the “current” OS on which
it is installed, but rather the “future” system the OS will
be upgraded to. This new way to look at the problem helps
broaden the scope of security research in the area.

Flaw detection. Formal reasoning tools have been widely
used for bug findings [20], [27], [25], [33]. In our research,
we built our vulnerability detector upon a popular formal
reasoning tool for Java (i.e., VeriFast[38]), which can certainly
be replaced by other similar tools. Also, the way our scanner

407

app checks third-party packages is essentially signature-based
malware detection, which can potentially help improve the
existing antivirus systems like Norton Security [10] to handle
the malicious code exploiting Pileup vulnerabilities.

VIII. CONCLUSION

Android devices are frequently upgraded, replacing and
adding tens of thousands of files on a live system in the
presence of a large amount of user data and existing apps.
To ensure that this process goes smoothly without endangering
such user assets, the Android update mechanism involves com-
plicated program logic and inevitably becomes error-prone. In
this paper, we report the first systematic study on the security
implications of this problem. Our research reveals Pileup,
a new type of privilege escalation vulnerabilities within the
updating logic. Exploiting Pileup flaws, a malicious app can
use what it declares on a low-version system to gain system
capabilities on the new OS after an upgrade, involving gaining
system and signature level permissions, substituting system
apps, contaminating browser data and blocking the installation
of new system apps. We performed a large-scale measurement
study to confirm the presence of such flaws in all Android
versions, official or customized. To mitigate the threat they
pose, we further developed SecUP, a new service that detects
Pileup vulnerabilities from released system code, automatically
gathers attack opportunities and leverages such information to
support a scanner app running on the user’s device to identify
the malicious code attempting to exploit Pileup flaws.

ACKNOWLEDGEMENTS

This work is supported in part by the NSF CNS-1017782,
1117106, 1223477 and 1223495. We also thank Shaz Qadeer
for his help on VeriFast.

REFERENCES

[1] Android Developers. http://source.android.com/.

[2] Android Distribution. http://www.droid-life.com/tag/
distribution/.

Android Fragmentation.
fragmentation-2013/.
Android Permission. http://developer.
android.com/reference/android/R.styleable.html#
AndroidManifestPermission_protectionLevel.

Android Version History. http://en.wikipedia.org/wiki/
Android_version_history.

(3]
(4]

http://opensignal.com/reports/

(5]

[6] Factory Images for Nexus Devices. https://developers.
google.com/android/nexus/images.
[7]1 Google Cloud Messaging. http://developer.

android.com/reference/com/google/android/gms/gcm/
GoogleCloudMessaging.html.

Google Play Services. https://play.google.com/store/apps/
details?id=com.google.android.gms.

HTCdev. http://www.htcdev.com/devcenter/downloads/
P00.

Norton Security Antivirus. https://play.google.com/store/
apps/details?id=com.symantec.mobilesecurity&hl=en.
One Billion Android Devices. http://www.
technologyreview.com/graphiti/520491/mobile-
makeover/.

(8]
(9]
[10]

[11]

[12]
[13]
(14]

[15]
[16]
[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

OpenSouce Code Distribution. http://www.lg.com/global/
support/opensource/index.

Permission Tree. http://developer.android.com/guide/
topics/manifest/permission-tree-element.html.

PileUp Supporting Materials. https://sites.google.com/
site/pileupieeesp/.

Samsung Open Source. http://opensource.samsung.com/.
Samsung Updates. http://samsung-updates.com/.

Shared UID. http://developer.android.com/guide/topics/
manifest/manifest-element.html#uid.

VeriFast. http://people.cs.kuleuven.be/~bart.jacobs/
verifast/.

A. Arora, R. Krishnan, A. Nandkumar, R. Telang, and
Y. Yang. Impact of vulnerability disclosure and patch
availability-an empirical analysis. In Third Workshop on
the Economics of Information Security, 2004.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichten-
berg, C. McGarvey, B. Ondrusek, S. K. Rajamani, and
A. Ustuner. Thorough static analysis of device drivers.
ACM SIGOPS Operating Systems Review, 2006.

M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier
for object-oriented programs. In Formal methods for
Components and Objects. Springer, 2006.

D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji. A methodology for empirical analysis of
permission-based security models and its application to
android. In the 17th ACM conference on Computer and
communications security, CCS *10. ACM, 2010.

B. Beckert, R. Hihnle, and P. H. Schmitt. Verification of
object-oriented software: The KeY approach. Springer-
Verlag, 2007.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking. Advances in comput-
ers, 2003.

P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs
in an alpha microprocessor using satisfiability solvers. In
Computer Aided Verification, 2001.

D. Brumley, P. Poosankam, D. Song, and J. Zheng.
Automatic patch-based exploit generation is possible:
Techniques and implications. In IEEE Symposium on
Security and Privacy, 2008.

C. Csallner and Y. Smaragdakis. Check’n’crash: combin-
ing static checking and testing. In the 27th international
conference on Software engineering. ACM, 2005.

W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto.
Shieldgen: Automatic data patch generation for unknown
vulnerabilities with informed probing. In Security and
Privacy, IEEE, 2007.

L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.
Privilege escalation attacks on android. In Information
Security. Springer, 2011.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart phone
operating systems. In USENIX Security Symposium,
2011.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

408

(32]

(33]

(34]

(35]

[36]

[37]

[38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

(461

P. McDaniel, and A. Sheth. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on
smartphones. In OSDI, 2010.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A
study of android application security. In USENIX Security
Symposium, 2011.

D. Engler and M. Musuvathi. Static analysis versus
software model checking for bug finding. In Verification,
Model Checking, and Abstract Interpretation. Springer,
2004.

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and defenses.
In USENIX Security Symposium, 2011.

P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung. Vision:
automated security validation of mobile apps at app
markets. In the second international workshop on Mobile
cloud computing and services. ACM, 2011.

M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock android smart-
phones. In the 19th Annual Symposium on Network and
Distributed System Security, 2012.

M. Howard and S. Lipner. Inside the windows security
push. Security & Privacy, IEEE, 2003.

B. Jacobs and F. Piessens. The verifast program verifier.
CW Reports, 2008.

T. Lev-Ami and M. Sagiv. Tvla: A system for implement-
ing static analyses. In Static Analysis, pages 280-301.
Springer, 2000.

J. Oh. Fight against 1-day exploits: Diffing binaries
vs anti-diffing binaries. In Blackhat Technical Security
Conference, 2009.

R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia,
and X. Wang. Soundcomber: A stealthy and context-
aware sound trojan for smartphones. In the 18th Annual
Symposium on Network and Distributed System Security,
2011.

S. Schrittwieser, P. Friithwirt, P. Kieseberg, M. Leithner,
M. Mulazzani, M. Huber, and E. Weippl. Guess whos
texting you? evaluating the security of smartphone mes-
saging applications. In the 19th Annual Symposium on
Network and Distributed System Security, 2012.

J. Sellwood and J. Crampton. Sleeping android: Exploit
through dormant permission requests. In 3rd Annual
ACM CCS Workshop on Security and Privacy in Smart-
phones and Mobile Devices (SPSM), 2013.

R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized
origin crossing on mobile platforms: Threats and miti-
gation. In the 20th ACM conference on Computer and
communications security. ACM, 2013.

C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: General
security support for the linux kernel. In USENIX Security
Symposium, 2002.

J. Yang and C. Hawblitzel. Safe to the last instruction:
automated verification of a type-safe operating system.
In ACM Sigplan Notices, 2010.

