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ABSTRACT
As a critical feature for enhancing user experience, cross-app URL
invocation has been reported to cause unauthorized execution of
app components. Although protection has already been put in place,
little has been done to understand the security risks of navigating
an app’s WebView through an URL, a legitimate need for displaying
the app’s UI during cross-app interactions. In our research, we found
that the current design of such cross-WebView navigation actually
opens the door to a cross-app remote infection, allowing a remote
adversary to spread malicious web content across different apps’
WebView instances and acquire stealthy and persistent control
of these apps. This new threat, dubbed Cross-App WebView Infec-
tion (XAWI), enables a series of multi-app, colluding attacks never
thought before, with significant real world impacts. Particularly,
we found that the remote adversary can collectively utilize multiple
infected apps’ individual capabilities to escalate his privileges on a
mobile device or orchestrate a highly realistic remote Phishing at-
tack (e.g., running a malicious script in Chrome to stealthily change
Twitter’s WebView to fake Twitter’s own login UI). We show that
the adversary can easily find such attack “building blocks” (popular
apps whose WebViews can be redirected by another app) through
an automatic fuzz, and discovered about 7.4% of the most popu-
lar apps subject to the XAWI attacks, including Facebook, Twitter,
Amazon and others. Our study reveals the contention between the
demand for convenient cross-WebView communication and the
need for security control on the channel, and makes the first step
toward building OS-level protection to safeguard this fast-growing
technology.
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1 INTRODUCTION
Clicking on “vnd.youtube://862r3XS2YB0” in your mobile Chrome,
you will see the YouTube app popping up to play the video. Here
Chrome hands over control to YouTube since the latter is better
suited for the task. This is an example of integrated service, which
leverages apps with different capabilities (video playing, social
networking, payment, etc.) to provide best possible user experiences.
This idea is rooted in the designs of Android and iOS, and can
be seen in the implementations of most apps today. Such URL
based, web-to-app communication, however, could also expose a
mobile system to security hazards: it is reported that vulnerable
implementations within Opera and Chrome allowed a web page to
access browsers’ local resources by sending an Intent scheme to
their private activities [37]; also Samsung KNOX’s MDM app was
found to expose critical services (e.g., app installation) to the Intent
scheme from other apps [27]. In response, protection is now in
place to guard sensitive app components, e.g., through closing the
channel used by the Intent scheme or limiting the access of these
components only to the app with a proper permission. A problem
is that such protection does not directly apply toWebView, a key
user-interface (UI) component that often needs to be triggered by
URLs from a different app: e.g., using the URL in Chrome to launch
another app’s UI, which runs in the app’s WebView.
Cross-appWebView navigation. More specifically, once the web
content (e.g., a script) inside the Chrome WebView triggers a URL
fb://webview/?url=[web.page.url], immediately Chrome sends to
Facebook an Intent containing web.page.url; upon receiving the In-
tent, Facebook automatically redirects its WebView to web.page.url,
loading web content from the link. Such a collaboration, which
we call cross-app WebView navigation (XAWN ), is commonplace in
mobile app designs, for the purpose of enabling a seamless transi-
tion between different apps’ UIs, for example, from the YouTube
page opened in Chrome to the YouTube app. It is built on top of
the aforementioned URL-base cross-app channel: in the example, if
the Facebook activity is registered with an Intent filter containing
a scheme, the WebView can be directly invoked through an Intent-
based or custom scheme; otherwise, if the activity is set exported or
registered with a normal Intent filter, the script running in Chrome
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needs to trigger a deep link (Section 2.3) to directly activate the
Facebook WebView.

With its pervasive use in today’s mobile apps, once abused,
XAWN can also become a security nightmare, even bigger than
other types of URL-based invocations (e.g., triggering a service)
mentioned above, since this new channel allows malicious content
to propagate across apps. In the above example, once a malicious
website is visited by Chrome, an attack page in the browser can
redirect Facebook’s WebView also to the site, through XAWN; such
propagation can go beyond these two apps on the target device and
continue to affect other apps like Twitter, when the attack content
in the Facebook’s Webview issues a navigation request through
another scheme to redirect the Twitter’s WebView also to the attack
site. This spread of malicious web content across different apps’
WebView instances can proceed like an infectious disease, enabling
a remote adversary to gain partial control on multiple apps through
their WebViews (loading all from a malicious website). We call this
threat Cross-App WebView Infection or simply XAWI.
Cross-appWebView infection. The fundamental cause of XAWI
is the cross-app WebView navigation weakness, which allows the
web content loaded in one app’s WebView to issue navigation re-
quests (e.g, URL scheme) and launch another app’sWebView to visit
a malicious website. In our research, we systematically studied this
previously unknown XAWNweakness and its security implications,
particularly the complicated XAWI attacks that can be constructed
to exploit the weakness and their consequences. Our research shows
that in a XAWI attack, the adversary can maintain persistent and
stealthy control on infected apps by running their WebViews in the
background, and can further discover other vulnerable apps on the
same device: that is, those whose WebViews can also be redirected
through a scheme or a deep link. As a result, the remote adversary
can collect a set of infected apps on a device, and turns these “zom-
bies” into the bolts and nuts of a complicated colluding attack. Such
an attack consolidates the individual capabilities of their infected
WebView instances (e.g., rendering UI of a Phishing page, infecting
other apps through deep link) into a powerful attacking force.

As an example, an infected Chrome can acquire the privilege of
silent app installation by first contaminating a WebView of Ama-
zon Shopping, and later utilizing the Shopping app to spread the
infection to Amazon AppStore through its deep linking capability
(Section 3.3). Note that in the example, Chrome itself cannot directly
infect Amazon AppStore (i.e., invoking its WebView), since App-
Store’s WebView is not receiving any broadcasted Intent (produced
by an Intent URL), but this becomes possible through the stepping
stone (Amazon Shopping) capable of sending Intents to a specific
activity. In our research, we found that high-profile apps like Face-
book, Chrome, Twitter, Amazon Shopping, Amazon Appstore, etc.
can all serve as building blocks for such complicated, multi-step,
cross-app attacks, enabling a remote adversary to acquire critical
system privileges such as sending unauthorized messages, silently
installing apps, making unauthorized changes to a device (Sec-
tion 3.3).

Also importantly, we show that given the pervasiveness of ex-
posed WebViews across popular apps, even those without JS inter-
faces can be turned into effective attack weapons. Particularly, we
found a series of remote deep Phishing never thought before. For

example, an infected Chrome can stealthily navigate a WebView
of Twitter to the attack content and then switch the app to back-
ground; after this, whenever the user clicks on Twitter, she will be
greeted with the Twitter’s infected WebView, which can display a
fake Twitter login view to get the user’s credential. Also we found
that an infected app (e.g., Facebook) can actively invoke the infected
WebView of another app (e.g., Twitter) to cover its UI (Section 3.2).
This trick becomes useful when some apps’ UIs are less suitable
for Phishing than others: e.g., including URL bars. Through XAWI,
however, the adversary can remotely select right components from
those infected to build a complicated and highly realistic Phising
attack. The video demo of our attacks can be found online [1]. Our
research shows that our remote attack is much stealthier than local
Phishing (which requires a malicious apps to be installed on a de-
vice) and can easily defeat all existing defense, including the most
recent UI integrity protection [4, 30].

Most alarming here is that such a powerful attack can be system-
atically constructed. In our research, we developed a tool, called
ViewFinder, to automatically analyze popular apps to discover ex-
posed WebView interfaces. Our approach strategically fuzzes the
apps using the URLs automatically generated from the “clues” recov-
ered from these apps’ code andmeta-data. After runningViewFinder
on 5,000 top-ranked Google Play apps, our study leads to the discov-
ery of 372 apps exposed to XAWI. Our findings provide evidence
that the threat of XAWI is general, realistic and significant.
Mitigation and understanding. We have reported all the apps
involved in confirmed attacks to their vendors, including Facebook,
Google, Amazon, Baidu and others, who all acknowledged the
novelty and importance of this new type of threats. So far, we
have received over $10,000 from Facebook and Twitter for the
discovery of remote privilege escalation and remote deep Phishing,
and also Amazon tells us that they have deployed fixes [1]. Due to
the generality of the problem and pervasiveness of vulnerable apps
in the wild, we designed and implemented a new OS-level solution
to protect Android users. Our solution notifies the user of cross-app
web navigation when the request has not been triggered by her
activities, which effectively mitigates the attacks we discovered
with a low overhead and a limited user impact (Section 4.3). On the
other hand, our findings show that the elimination of the threat
relies on resolving the contention between the strong demand for
smooth web-to-app interactions and the need for security control
on such channels, which certainly requires rethinking how they
should be designed.
Contributions The contributions of the paper are summarized as
follows:
• New attacks. We conducted the first study on the security impli-
cations of cross-WebView navigation, and discovered a new type
of pervasive, high-impact remote attacks on Android. Through
propagating malicious content across WebView, a remote adversary
can gain persistent control of multiple apps and use them as build-
ing blocks to construct a complicated, coordinated attack. These
attacks leverage infected apps’ individual capabilities to acquire
unexpected privileges and perform realistic Phishing attacks, which
are all beyond existing defense, with a significant impact on today’s
Android ecosystem.
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• New findings. Our research further demonstrates the pervasive-
ness of the threat: about 7.4% of leadingAndroid apps (> 16,907,555,000
total downloads) contain exposed WebView instances that can be
picked up by the remote adversary to compose the coordinated at-
tacks. The findings highlight the need for more disciplined security
designs for the web-to-app interaction channels.
• New techniques. We developed a new technique for identifying ex-
posed WebView interfaces in apps, which helps better understand
the scope and magnitude of this new threat. Further, we imple-
mented an OS-level mitigation and demonstrate its preliminary
success.

2 BACKGROUND
2.1 Activity and Task
On Android, a WebView instance is attached to an activity. Activity
is an app component that provides a UI for users to interact with
the app (e.g., phone call, photo taking, email management, etc.).
A typical activity is described by the ⟨activity⟩ tag in an app’s
Manifest file and served by a Java class that acts as its controller.
Following we briefly introduce how activities are triggered and
managed.
Activity launch mode. An activity can be launched in four differ-
ent modes [12], which affects the running status of its WebView
instance. Activities with the “standard” mode or the “singleTop”
mode can be instantiated multiple times. For example, a system
setting activity can be launched by different apps, and each instance
of the activity can have its own status. On the other hand, activities
in the “singleTask” mode or “singleInstance” mode can only have
one instance at a time (only one in a task). Google officially refers to
the first two modes as “normal launches for most activities”, while
calls the other two “specialized launches” and does not recommend
them for general use (“not appropriate for most applications”) [14].
Therefore, most activities belong to the first two modes, which
opens an avenue for hiding infected WebViews, as elaborated in
Section 3.1.
Task and back stack. It is very common for an activity to invoke
other activities on the same device. For example, an app listing
emails in an activity can start a new activity (which could come
from a different app) to show the attachment of a given mail. When
a new activity is launched, the foreground activity will be brought
to the background and covered by the newly started activity. When
more activities have been fired, the background activities begin to
stack up, with the foreground activity always on the top. To link
these activities to a series of related operations (e.g., email listing
and checking), Android associates them to a task and puts them
all in the back stack of the task, which helps the user conveniently
navigate back to the prior activity when an operation is finished
and its activity is closed, or when the Android back button (aka.,
return button) is clicked. When an app is launched, the activity on
the top of its task is displayed, which can be another app’s activity.
Prior research shows that the stack can be rearranged through
setting special properties in the manifest, to make the backward
navigation different from the user’s expectation [31]. Our work,
however, shows that this task hijacking can be done completely

remotely, through scripts running in apps’ WebViews, and through
a collusion among multiple infected apps.

2.2 WebView Security
Resource-access mechanisms. Most mobile apps contains Web-
Views, which utilize web content to enrich their functionalities [25].
To serve this purpose, seamless use of device resources (through
the apps’ privileges on the device) from the web is often desired
(e.g., getting a device’s geo-location for displaying local news). On
Android, three mechanisms are provided to enable such web-device
interactions, including JavaScript interfaces, HTML5 and event
handlers.
• JavaScript interfaces. JS interface is a mechanism that exposes an
app’s Java objects to the JavaScript code running inside the app’s
WebView instance. Through the mechanism, the app developer can
register a Java object using an API addJavascriptInterface(),
which enables the script to invoke all public methods annotated
with @JavascriptInterface of the object.
• HTML5. HTML5 provides a set of built-in APIs as interfaces for
web content to remotely access an app’s local resources, which can
be customized by the developer to control the access.
• Event handlers. WebView reports the web event it observes, which
can be handled through a set of callback functions in its hosting app.
A special callback is shouldOverrideUrlLoading(), a function
that allows a developer to control the URLs allowed to be loaded
into a WebView instance.
WebView protection. Given the importance of local resources ex-
posed through these mechanisms, access control should certainly
be in place to prevent them from being abused by untrusted do-
mains. Android offers a set of APIs for controlling the domains
a WebView can visit, including shouldOverrideUrlLoading(),
onPageStarted() and shouldInterceptRequest(). Using these
APIs for domain control, however, is highly complicated. WebView
can visit untrusted domains under different circumstances: for ex-
ample, when its hosting app is activated to load a page directly
through loadUrl(), when it is asked to load another page in an
iframe, when it is redirected by user interactions or when it loads
another page due to a post request. Under each of these situations, a
different set of callbacks are triggered and security checks therefore
need to be performed at various program locations based upon
the unique properties of the callbacks. Given the complexity of
WebView integration within an app, complete mediation of its nav-
igation is difficult. Once such an attempt falls short, which happens
frequently in practice, some smart tricks can be played to bypass
the protection, as discovered in our study (Section 3.3).

On the other hand, app developers today often do not have in-
centive to put too much restriction on the domains their apps are
allowed to visit, due to the need to retain their customers as long as
possible, a feature critical for their apps’ commercial values [18, 34]
(for advertising, in-app purchase, etc.). So app design today is lean-
ing more toward “soft protection” of WebView instances. Specifi-
cally, many apps do not apply any restrictions to the instances that
do not include any JavaScript interfaces, since these instances are
considered to be of “low risk”. A more common approach, as ob-
served in our study (Section 4.2), seems to just limit the app UIs (e.g.,
not providing any URL bar) to prevent the user from inadvertently
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directing WebView to untrusted domains, but has little constraints
on the navigation requests from other apps. Such protection turns
out to be insufficient and can be easily defeated by an XAWI attack,
as discovered in our research (Section 3).

2.3 Remote App Linking
Intent and Intent-filter. To invoke an app’s activity from the web
content, the WebView asks its hosting app to construct an Android
Intent and send it through the StartActivity API. When the In-
tent carries the recipient’s package name and the activity name, the
OS directly locates the target component. Otherwise, the system
needs to utilize the action, category and data URI within the Intent
to find the target. For this purpose, the target activity first needs
to register an Intent filter with the OS to specify the attributes of
the Intents it expects to receive. For example, “example://” matches
the attribute “<data android:scheme="example"/>” specified in an
Intent filter. In the presence of multiple activities expecting the
same Intent, the OS prompts a dialog to ask the user to choose.
In our attack, to avoid this user interaction, we utilize the URL
scheme channel capable of generating the Intent with a package
name whenever possible, unless the recipient’s Intent filter has not
been registered by another app.
URL scheme. URL schemes are the standard support for remote
app invocation. On Android, when the user clicks a link, the system
will send an Intent to its target. There are two types of schemes
supported by Android, implicit (or broadcast) scheme and explicit
(or Intent) scheme. An implicit scheme does not name a specific
app but provides data attributes for locating the target, through its
Intent. An explicit (or Intent) scheme, starting with intent:, includes
not only the data URI but also the target’s package name. For ex-
ample, “intent://example.com/path#Intent;package=com.example.
app;scheme=http;end” will be parsed to the Intent with data URI
“http://example.com/path” and package name “com.example.app”.
Deep linking scheme. Unlike web pages available on the Internet,
content within apps cannot be searched and shared. To solve this
problem, deep linking has been proposed to connect the content
within mobile apps with a single link, which enables the invocation
from web pages to the activities inside apps. Unlike URL schemes,
deep linking supports are provided by individual app vendors and
incorporated into apps through SDKs. To use the mechanism, an
app developer includes her own WebViewClient to handle call-
backs from WebView (thereby disabling both the implicit and ex-
plicit schemes), which contains the customized program logics to
implement individual vendors’ own deep-linking protocols. Since
there is no standard for this technology right now, we consider
any customized scheme or web content capable of specifying both
package and activity names to be a deep linking approach, as it can
directly reach the activity, which the standard schemes cannot do.
An example is Facebook’s applink[16] (see Figure 1).
Security guards. URL-based app invocation has not been exten-
sively guarded by mobile OS. On Android, the protection is built
almost entirely on Intent permissions and filter. Alternatively, one
can “hide” an activity by registering no scheme in its Intent fil-
ter, so neither the implicit or explicit scheme can trigger the ac-
tivity. However, this protection becomes completely ineffective
in the presence of deep linking, which enables specification of

<html >

<head >

<meta property ="al:android:url" content =" example ://" />

<meta property ="al:android:class" content ="

WebViewActivity" />

<meta property ="al:android:package" content ="com.

example.app" />

</head >

</html >

Figure 1: An example of Facebook’s applink
activity name and therefore can reach such a “hidden” activity
(note here, “’hidden” means an activity could not be accessed by
remote party through scheme, and it may still be exported to lo-
cal apps). Further, the WebViewClient object provides an interface
(e.g.shouldOverrideUrlLoading()), for the activity to determine how
a URL in a web page should be handled, which can be used to con-
trol this app/component invocation and can even completely shut
down the channel. However, our study shows that such protection
can be circumvented even in popular apps, due to their problematic
implementation (Section 3.1).

3 INFECTION ACROSS WEBVIEWS
In this section, we elaborate the XAWI attacks, starting with pre-
liminaries for the attacks and then explicating the techniques we
used to conduct remote deep Phishing and escalate the adversary’s
capabilities. These attacks exploit high-profile apps (e.g., Facebook,
Twitter, Baidu, Amazon, etc.), posing realistic threats to a large
number of popular apps (at least 7.4% found in our research). Their
video demos are posted online [1].

3.1 XAWI Basics
Overview and threat model. The root cause of XAWI attack is
the XAWN (cross-app WebView navigation) weakness, which al-
lows the malicious content in one WebView to send a navigation
request through a URL scheme to another WebView in a different
app, redirecting the latter to an attack website, so as to gain a partial
control of its hosting app. In this way, the attack web content (e.g.,
a script) can spread across multiple apps on the same device like
an infectious disease, making it possible for the remote adversary
to utilize these infected zombies to launch a colluding attack. In
our study, we demonstrate the feasibility of such an attack. Most
importantly, we found that infected WebViews can be used collec-
tively to amplify the effectiveness of the attack, enabling the remote
adversary to perform the activities that cannot be done through a
single app.

Unlike most prior studies [2, 4, 7, 8, 20, 23, 24, 31], we do not
assume the presence of a malicious app on the victim’s device. What
needs to make the attack work is just having malicious content
(e.g., JavaScript) loaded into the WebView in at least one of the
victim’s apps. This happens when the user inadvertently visits some
malicious, compromised or other less secure domains through her
app. Actually, we believe that a main entry point for such an attack
is a mobile browser, such as Chrome, even though its WebViews
only have limited capabilities (no JS interfaces) and therefore need
stepping stones to gain more privileges.
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Target and channel. The goal of the XAWI adversary is to gain
privileges and control apps, which is served by aggressively infect-
ing other apps’ WebViews, particularly those with JS interfaces.
Our study on top 5,000 Google-Play apps shows that 7.4% of them
expose at least one of their WebView instances, providing the mate-
rials for constructing exploits that reach these targets. Particularly,
38.4% of these vulnerable targets have JS interfaces capabilities,
supporting location, device private and network state information
collection. Since almost all the WebViews with certain capabilities
also have different levels of domain control, the key of the attack is
to bypass such protection. A challenge here is the channel for such
attacks, since an infected app, such as Chrome, may not have the
capability to access the targeted resources and needs the help from
other apps to do that.

Cross-app channels are those URL based inter-process com-
munication (IPC) mechanisms, including the implicit and explicit
schemes and deep links (Section 2.3). The app’s in-WebView infec-
tion may only utilize the channel the app supports to reach out to
other apps. Therefore, in the case that the target WebView cannot
be directly invoked (e.g., not registering any Intent filter), the adver-
sary needs to strategically infect another app having that channel
(e.g., deep link) to attack the target. On the other hand, for the We-
bView not having any cross-app channels (i.e., not allowed to make
any IPC call), its infection apparently cannot go beyond its hosting
app. Interestingly, however, we discovered that this limit can actu-
ally be broken sometimes, which enables a WebView not having
the IPC privilege to issue navigation requests to other WebViews,
as elaborated below.
• Exploiting a race condition in popular apps. We found that in pop-
ular apps like WeChat and Pinterest, there exists a race-condition
when a WebView is about to be closed, which once exploited, tem-
porarily grants the WebView the privilege to send out implicit or
even explicit schemes, even though the WebView is not supposed
to have this channel. Specifically, when a WebView instance is to
be destroyed, these apps will set its WebViewClient object (for con-
trolling URL navigation) to NULL. This actually turns the object
to the default one with the capability to send out schemes. As a
result, the malicious content within the WebView can issue navi-
gation requests to others before it is closed by the OS. Note that
for the popular apps with this problem, oftentimes, the attack page
within an WebView instance can programmatically close the in-
stance through commands, thereby actively triggering this process
to produce scheme requests before the WebView stops running:
e.g., we can load "weixin://webview/close/" into WeChat’s Web-
View or "market://" into Pinterest, which will cause the app to set
WebViewClient to NULL, so the attack script’s navigation requests
can be sent out before its hosting WebView is closed.
Persistent control and reconnaissance. Serving the purpose of
strategic infection spreading are two key capabilities: stealthy and
persistent control on the infected app, and reconnaissance for find-
ing other vulnerable apps on the same device. In our research, we
found that by default, a WebView can operate in background, con-
tinuously receiving and executing the commands (e.g., monitoring
other apps and changing their states) from the remote adversary.
Among all the vulnerable apps we examined (> 16,907,555,000 total
installs), 81.6% of them can respond to remote commands while

running in the background. Further, the activity hosting WebView
can be launched in a standard mode, under which each invocation
of the activity creates a new instance. Our research shows that
many apps are running in this mode (e.g., Taobao, Baidu Appstore,
Twitter, etc.). Leveraging these features, as soon as an infected app
(i.e., the attacker) loads attack content to a victim app’s WebView,
the content (e.g., a script) in the WebView first launches another
activity of the same app to cover theWebView and then the attacker
triggers another app so as to move the victim to the background
(see Figure 2). This transition can be done within a very short period
of time, barely noticed by the user (see the online demo [1]). Most
importantly, the background WebView infection can continuously
command and control the whole infected device behind the scene,
even when the infected app is launched by the user (only the top
activity displayed) and even when the exact same activity is called
again (a different instance of the activity displayed). Also, as long
as some of the infected apps (called commander) can operate per-
sistently, the adversary can maintain a firm control of the device,
since other apps, even after their infected WebViews are closed, can
be easily reinfected by the commander.

Foreground

Background(1) (2) (3)

 Victim app’s infected WebView

Victim app’s another Activity

Another app (eg, chrome)

(1) Infect the victim app’s WebView

(2) Launch another activity of the victim app

(3) Launch another app to hide the victim app

Figure 2: An infected WebView in the background
The background running commander also needs to identify and

infect other co-located vulnerable apps to serve a XAWI attack.
It can simply send navigation requests to the popular apps likely
already installed on the target device: if the recipient is indeed
there, the web content loaded to its WebView will notify the re-
mote adversary. Note that with the adversary’s persistent control,
this can be done over a long period of time. Alternatively, we can
leverage some apps’ JS interfaces. For example, the Baidu app lets
its WebViews query the presence of a specific app; also the widely-
deployed AdMob library (a leading mobile advertising platform)
tests the presence of a given package by trying to open it, and then
informs the script running in its WebView once succeeds. To use
this platform, we successfully delivered an attack advertisement
(ad) through AdMob to our app using the library. The ad can dis-
cover vulnerable apps through AdMob and infect them using the
WebView navigation.
Entry points and triggers. A XAWI infection starts from an entry-
point app, whose WebView is the first one stuck by the attack web
content on a device. Browsers, social-networking apps and mobile
ad platforms are clearly more likely to become the entry points than
other apps. For example, Chrome can be turned into the “source of
transmission” once it visits an attack site. A problem here, however,
is that unlike the WebViews within many other apps, in which a
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script can automatically issue navigation requests, Chrome is only
allowed to do so in the presence of a user click. However, we found
that the browser is not good at linking the click to the URL scheme
to be triggered: you can click on an image, a button and even a link
opening a new page to trigger the delivery of a scheme unknown
to the user. Also, at the moment a new page is loaded (e.g., when
the browser is launched by a navigation request from another app),
Chrome is allowed to send out an Intent scheme to other apps,
without the user’s click.

3.2 Remote Deep Phishing
With such supporting techniques, a XAWI adversary’s capability to
infect and control multiple apps from the remote becomes a game
changer for mobile Phishing. No longer do we need a malicious app
to be installed on the victim’s device, as assumed by all prior work [4,
7, 31]. The new attack through XAWI can happen completely from
the remote, through the scripts running in infected WebViews. Also
we are talking about a coordinated, multi-app attack, which can do
a lot more than the conventional, single-app attack can possibly
achieve. Most importantly, such an attack is practical, only relying
on the WebViews without JS interfaces, which are less protected
and often need to be available for integrated services (discovered in
7.4% of popular apps). We call this new attack remote deep Phishing
or RDP. The importance of RDP has been acknowledged by both
Facebook and Twitter, which awarded us for the discovery of this
new type of attacks [1].

More specifically, our research shows that in an RDP, the adver-
sary can stealthily change a legitimate app’s state and the relations
between infected apps. For example, we can use one app’s WebView
to fake its own login UI, so when the user launches the app, she
will unsuspiciously expose her credentials to the remote adversary.
Further, an app with in-WebView infection can invite another app
to impersonate some of its own UIs, when the latter includes an
activity more suitable for the task. Since all these attacks happen
with the cooperation from the “victim” app, the one impersonated
or hijacked, they cannot be captured by existing defense. Follow-
ing we elaborate three examples of such attacks, on Twitter and
Facebook apps.
Evil twin from within. We found that a remote adversary with
scripts running in Chrome can stealthily change the state of the
Twitter app, using its WebView to impersonate its own login view.
This attack renders all existing protection useless, since the Phish-
ing content comes from the Twitter app itself. To make it hap-
pen, the infected Chrome first sends a navigation request to Twit-
ter through a scheme invocation. Twitter has a public activity
UrlInterpreterActivity that handles all the StartActivity re-
quests from the browser and other apps (Figure 10 in Appendix
illustrates the Intent filter registered by the activity and the URL
that can be used to trigger the activity). Upon receiving the URL,
the activity launches another activity and navigates the latter’s
WebView to attacker’s website, which grants the control to the ad-
versary. During this process, to avoid the http scheme that triggers
a dialog window asking the user to choose the handling app, our
attack utilizes an Intent scheme with Twitter’s package name.

Twitter’s WebView activity does not contain any title bar and
other UI widget, and therefore can be easily converted into a fake lo-
gin page. This activity is placed at the top of Twitter’s task stack, so
once the app is launched again, the login page will first be displayed.
To hide this state change, as soon as the attack content is loaded
into the Twitter WebView, the script running there immediately
sends out a navigation request through the scheme googlechrome://
(reserved by Chrome) to Chrome, bringing its WebView to the fore-
ground. A problem here is that a WebView in Twitter will be auto-
matically closed after it issues a scheme. Therefore, the attack web
page in the WebView needs to invoke another Twitter WebView in-
stance with the attack link, together with the navigation request for
Chrome, before it is terminated. In our attack, actually, the infected
WebView opens Twitter’s scheme multiple times before triggering
Chrome’s scheme. In this way, several Phishing pages will be put
on Twitter’s task stack before the foreground is handed over to
Chrome. Once the user later launches the Twitter, not only will she
see the Phishing page, but she will continue to be presented the
same one if she touches the back button.

The RDP happens when the Twitter is in the login state. As a
result, after the user enters her user ID and password to the fake
login page, the remote adversary immediately instructs the infected
WebView to switch to Twitter’s main activity. The whole process,
therefore, becomes indistinguishable from a real login. All the view
switching in the attack happens almost instantly and is hard to
notice by humans, as demonstrated in our online video [1]. We
summarize the whole attack in Figure 3.
Faking my UI. Unlike Twitter, Facebook has a URL bar on its ac-
tivity, which discloses the source of the web content in its WebView
and therefore cannot be used to serve a Phishing page. The remote
adversary, therefore, needs to find an accomplice app that can work
with the infected Facebook to fake its login page. Obviously, the
Twitter app can serve this purpose. In our research, we built an
RDP in which Chrome infects the Facebook app, and whenever
Facebook is launched, it further triggers Twitter to cover its inter-
face. Through this coordinated attack, the remote adversary again
can show to the user a realistically-looking attack page.

Specifically, a Facebook WebView can be invoked by the URL
with the scheme fb://. For example, the link fb://webview/?url=http:
//www.attack.com in Chrome, once clicked by the user, brings Face-
book to www.attack.com. Once infected, Facebook sends a URL
scheme googlechrome:// to switch back to Chrome’s WebView,
without being noticed by the user. What we want to do here is
that whenever Facebook is launched again, it instantly infects and
invokes a Twitter WebView to display a fake Facebook login UI. To
this end, the script dispatched to the FacebookWebView runs a loop,
making continuous effort to trigger the infected Twitter activity.
Actually, a Facebook WebView is suspended in the background and
therefore the Intent scheme it tries to deliver to Twitter is blocked.
However, immediately after it gets to the foreground (after the user
invokes the app from the launcher or “recent apps”), the scheme is
delivered, causing the Twitter Phishing page to show up. Further,
if the user clicks on Android’s back button, the system rolls back
to the infected Facebook WebView, which again fires Twitter to
impersonate its official login view. Also similar to the Twitter attack,
after the user enters her password, the infected Twitter WebView
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Figure 3: The Phishing attack on Twitter. Note that there are multiple instances of Twitter’s WebView during Phishing, so once
the back button is clicked, another instance of Twitter’s WebView with a Phishing page is displayed.

launches Facebook’s main activity, which presents the user’s ac-
count information when the attack takes place in the logged-in
state. This attack is found to work smoothly, as summarized in
Figure 4 and shown in our demo [1].
Inviting for hijacking. Actually, on the target device if there are
apps with activities running in the standard mode, UI impersonation
could become easier. Specifically, for the Facebook app, another
popular app that can become its accomplice is PicsArt, whose activ-
ity operates in the standard mode. Such an activity, once launched
by Facebook, will be automatically added to its task stack. So later
on, when Facebook is opened, PicsArt’s activity always shows on
the top.

In our research, again, we run Chrome to infect Facebook’s
WebView, which then sends a scheme picsart:// to PicsArt, invok-
ing its WebView and most importantly adding the related activ-
ity WebViewActivity to the Facebook’s task stack. Then PicsArt
can invoke Chrome to hide itself. After that, PicsArt hijacks Face-
book’s task and always shows on top of its UI. Further, the in-
fected PicsArt can also gain control on Android’s back button.
Specifically, the app overrides the onBackPressed method and
launches the most recent page once the button is clicked. This
feature is then leveraged in our attack, which loads the attack page
http://attacker.com/phishing.html that redirects the WebView to
http://attacker.com/phishing.html#123. Once the button is pushed,
PicsArt moves the WebView to phishing.html, which automatically
goes back to phishing.html#123. In the meantime, after the user in-
puts her Facebook login credentials, the Phishing page will launch
Facebook’s main activity. The attack is summarized in Figure 5.
Against known defense. Compared with today’s mobile Phishing
attacks, RDP is unique in its complete reliance on the web content to
control local apps and the cross-app coordination it can orchestrate.
These features make existing defense less effective. Specifically, a
prominent solution proposed in the prior research [4] utilizes a
indicator in the system navigation bar to inform users which app
they are interacting with. This protection is meant to defeat the UI
overlay attack [19, 26, 29, 36] (the legitimate app’s UI covered by
an attack activity). However, it does not work on the RDP in which
the infected WebView impersonates the UI in the same app. In our
Twitter attack, all the user can see from the indicator is that the
Twitter app is running on the top, which actually convinces her of
the authenticity of the UI she provides login credentials.

Most recently, a technique called WindowGuard [30] has been
proposed to enforce an Android Window Integrity (AWI) model,
which defines the legitimacy of GUI system states in the user’s
interactions with apps. Particularly, it prompts a dialog and raises

an alarm whenever a new activity is not initiated by the foreground
app, and notifies the user whether the order of activities in the
background has been rearranged after a new activity is launched.
In our RDP attacks, however, all the new activities are launched
by a foreground app and the order of the background activities
will not change. Fundamentally, our new attacks are caused by the
collusion between the app being impersonated and the perpetrator,
since they are all infected by the attack web content and turned
into the same remote master’s zombies. This makes our attack
completely different from what has been seen today, rendering
WindowGuard ineffective.

3.3 Remote Privilege Escalation
In addition to remote deep Phishing, powerful XAWI attacks can
be built to escalate the adversary’s privilege on a device. Here,
we elaborate two prominent examples in which the remote ad-
versary acquires the capabilities to silently install apps and send
out messages without the user’s consent. An additional example
is presented in Appendix A, in which the remote adversary can
stealthily gather device information (e.g., app installed), monitor
how the phone is used and change the device state (such as adding
calendars) and even automatically install apps.
Unauthorized app install. We found that the Amazon Appstore
app can be exploited by the remote adversary to silently install any
third-party app on a mobile device without its owner’s consent.
The attack leverages the Appstore’s powerful WebView, whose JS
interface provides the object IntentBridge for app installation.
However, the WebView is closely guarded and does not expose
any UI for the user to navigate to non-Amazon domains. Also,
through analyzing its code, we found that the app forcefully affixes
the domain https://mas-ssr.amazon.com to any URL its WebView is
asked to visit, thereby confining the app just to the Amazon domain.
Another challenge is that the activity hosting the WebView has
not registered any Intent filter and thus cannot be triggered by an
Intent scheme.

In our research, we come up with a coordinated attack that starts
from a Chrome browser running attack web content. The browser
propagates the infection to the Amazon Shopping app through nav-
igating its WebView to the attack domain, and further acquires the
control of Amazon Appstore’s WebView through the Shopping app
(see our demo [1]). Here, Amazon Shopping serves as a stepping
stone since the attack content hosted by Chrome can only issue
an implicit or Intent scheme, not the deep link capable of invoking
Amazon Appstore’s unregistered activity. The Shopping app, how-
ever, allows its WebView to issue a deep link, that is, converting the
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URI like intent:.attacker.com#Intent;package=com.amazon.venezia;
component=com.amazon.venezia/com.amazon.venezia.Venezia;end;
into an explicit Intent for the package com.amazon.venezia and
the activity com.amazon.venezia.Venezia. Also Amazon Shop-
ping registers the scheme URI com.amazon.mobile.shopping.web:
//domain/path, which Chrome can use to navigate the app’s Web-
View to the adversary’s domain attack.com. During each attack step,
a newly infected WebView is always switched to the background,
as mentioned earlier (Section 3.1)

A complexity, however, comes from Amazon Shopping’s domain
control: the app verifies every URL to be loaded into its WebView
and only proceeds with those from “amazon.com”. In our research,
we carefully studied this protection and found that the app uses
Android API Uri.getHost to get the domain name of a URL. How-
ever, this API does not handle complicated URLs well1: for example,
the domain of the URL https://a:a@test.amazon.com:a@attack.com
is reported as test.amazon.com by the API, while when it is parsed
in WebView, its domain is considered to be attack.com. Exploiting
this discrepancy, our infected Chrome was able to load attack.com
into Amazon Shopping, making it an accomplice of the attack. This
newly discovered vulnerability was reported to Amazon.

Once the Shopping app is infected, its WebView can trigger
the deep link to navigate Amazon Appstore’s WebView. To move

1Another researcher reported this vulnerability in Uri.getHost to Google earlier than
us. We independently discovered it and reported it to Google when the vulnerability
was not fixed.
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Figure 6: Unauthorized app install
the WebView to attack.com, we found that the adversary can sim-
ply create a sub-domain mas-ssr.amazon.com.attack.com. The pro-
tection on the Appstore side fails to append the URL affix https:
//mas-ssr.amazon.com with ‘/’ and therefore can be circumvented
by a carefully crafted navigation request: here, the request is to
navigate to .attack.com, which is issued by the infected WebView
in Amazon Shopping. As a result, attack.com gains control of all
three apps and the privilege of silent app install. The process is
summarized in Figure 6.
Stealthymessaging. In addition to directly escalating the privilege
of a malicious website, XAWI can also help the remote adversary to
exploit a vulnerability that originally can only be attacked locally,
in the presence of a malicious app installed on the target device. A
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simple example is the Intent Spoofing attack [9], which requires
that on-device malware sends a crafted Intent to unprotected com-
ponents (e.g, broadcast receivers, activities and services). Using
XAWI, the adversary can now utilize a malicious website to infect
the WebView of a different app on the same target device and then
command it to send that Intent to the vulnerable app. Specifically,
in our research, we found that Facebook is one such app, which
exposes an interface that can be attacked by a local adversary to
cause it to send unauthorized messages through Facebook Messen-
ger. The challenge here, however, is to execute this attack remotely,
without running any malicious code on the target. Here we explain
how this is done. Our attack has been acknowledged by Facebook,
which awarded us $7500 for our findings.

Specifically, Facebook Messenger has an activity SecureIntent
HandlerActivity (see Figure 9 in Appendix), which upon receiv-
ing an Intent with the scheme fb-messenger-secure:// will send
out a message. However, this activity is protected by a permis-
sion FB_APP_COMMUNICATION, a signature one only given to Face-
book’s products. We found that the authorized Facebook app can
serve as a stepping stone to deliver the message-sending Intent
to Facebook Messenger. Facebook has a unique interface (activity
IntentUriHandler) to interpret a Facebook deep link (called ap-
plink [16]) and generate an Intent to trigger the Messenger app’s
protected activity. This interface can be easily exploited by a local
adversary, which can send an Intent to activate IntentUriHandler.
The content of the Intent will then be used by Facebook to generate
the scheme fb-messenger-secure:// to the Messenger. As a result, a
message will be issued upon the local adversary’s request.

However, exploiting this vulnerability remotely is much more
difficult. A trouble here is that IntentUriHandler does not register
any Intent filter for the applink scheme fbrpc://. As a result, it cannot
be accessed by both implicit and explicit (Intent) schemes supported
by Chrome. Further, after the vulnerability is exploited, the chatting
UI of FacebookMessenger will show up in the foreground, exposing
the attack to the user. Therefore to make the attack stealthy, the
chatting UI should be switched to background after an unauthorized
message is sent out.

Our technique, again, is to find a stepping-stone app with the ca-
pability to issue a deep link and run in the background. An example
for such an app is Amazon Shopping. In our research, we utilized
a Chrome WebView running attack scripts to spread the infection
to a WebView instance in Amazon Shopping, which then issues a
deep link directly to IntentUriHandler, like what happens in the
app install attack, with an applink fbrpc:// in its data field. This
applink causes the Facebook app to send an Intent to protected
Facebook Messenger, leading to unauthorized messaging. During
the attack, Amazon Appstore acts as the commander, automati-
cally switching Chrome to the foreground as soon as it triggers
IntentUriHandler.

Alternatively, we exploited a selector Intent weakness in IntentU
riHandler to let Chrome directly talk to IntentUriHandler. Specif-
ically, we found that IntentUriHandler registers an Intent filter
for the scheme fb://. This allows us to construct a selector In-
tent scheme, which is a combination of two schemes, with fb://
in the selector field for determining the recipient activity and
fbrpc://[payload] in the data field (Figure 7). This scheme, once
triggered, causes Chrome to fire an Intent to IntentUriHandler

intent ://[ payload ]# Intent;scheme=fbrpc;action=android.
intent.action.VIEW;SEL;scheme=fb;action=android.intent
.action.VIEW;end;

Figure 7: Selector Intent scheme
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Figure 8: Attack Facebook Messenger
based upon fb://.When interpreting the Intent, however, the activity
will receive a fbrpc:// URL, in the format of an applink, from the OS.
This triggers the operations within IntentUriHandler to convert
the URL into the Intent for Facebook Messenger, causing an unau-
thorized message to be sent out. A trouble here, however, is that
Chrome’s WebView cannot operate in the background and we need
a commander to control app switching in the background, so as to
hide the execution of Facebook Messenger. To this end, we utilized
Twitter’s WebView to coordinate the whole attack. Specifically, the
malicious web content in Chrome’s WebView first infects Twitter’s
WebView, which then brings Chrome to the foreground to trig-
ger the Facebook’s vulnerability. After the unauthorized message
is sent out, Twitter’s WebView in the background again invokes
Chrome (waiting for 2 seconds after it is navigated to the attack site)
to cover the Messenger app. The attack is summarized in Figure 8.

4 TARGET FINDING AND PROTECTION
In this section, we present ViewFinder, a technique for automatic
discovering vulnerable apps. Also, we present an OS-level solu-
tion to mitigate the threat, through controlling navigation requests
across apps.

4.1 Automatic XAWI Analysis
Key to the identification of a XAWI-susceptible app is to determine
whether any of its WebView instances is exposed to the public and
can further be invoked remotely through a URL (implicit, explicit
schemes or deep links). Although such public activities can be
easily found from an Android app’s manifest, it is hard to be certain
whether they can be navigated to a domain given by the adversary.
Static analysis alone does not provide a solution. Data flow analysis
tools [3] could help determine whether input data is propagated to
a WebView, but they usually fail to provide any clue about the input
that exploits the target vulnerability. Symbolic execution could be
used to analyze all the constraints between app’s entry point and
the WebView before resolving them to generate the input, which,
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however, is a process known to be complicated, expensive and easy
to fail.

In our research, we went down the dynamic path and devel-
oped a simple fuzzing system, ViewFinder, which scans apps for
remotely-controllableWebView instances. This approach is efficient
and returns confirmed results: whatever we found will certainly be
an opportunity for a XAWI adversary. The challenge, however, is
how to find the right test cases to trigger the weaknesses. Our idea
is based upon the observations that most clues for constructing the
URL that can pass the app’s checks are out there in its code and
manifest. Actually, we found that even a simple yet systematic anal-
ysis of URL-related strings discovered from the app already leads
to the discovery of a large number of confirmed vulnerable apps,
7.4% among all popular apps we studied. Following we elaborate
on this technique.
Design. More specifically, the idea behind ViewFinder is to find
partial URLs or strings similar to URL components from the Intent
filter and the code of a public activity, for generating the test cases
(that is, Intents) most likely to navigate the activity’s WebView to
risky targets. This purpose is served by an ADB-based [13] fuzzer,
a simple app analyzer and a runtime monitor that instruments An-
droid APIs. The fuzzer receives from the analyzer clues gathered
from app data related to individual activities. These clues are con-
verted into Intents by the fuzzer to test the activities. As mentioned
earlier, all web-to-app invocations go through Intents: both explicit
and implicit schemes are translated to the Intents without the target
activity name, which rely on Intent filters to locate their recipients;
a deep link, however, provides an activity name used by an Intent
to directly trigger a specific activity. Our fuzzer directly generates
these two types of Intents, with or without activity names, to test
each app. This test is further helped by our instrumentation of
APIs, which enables the monitor to inject content into the calls
for extracting data from a test Intent. Also, to find out whether an
input successfully navigate a WebView, the monitor watches the
operations that load URLs to the instance.
URL-guided fuzz. For each app under the test, the app analyzer
first inspects its manifest file to identify public activities (e.g.,“export
ed=true”). Each of them are then evaluated by the fuzzer, through the
Intents with or without the activity name, depending on whether
the activity claims an Intent filter. The Intent filter has a data
field, including scheme, host, path and other attributes. These
attributes are set for capturing an Intent with a navigation request
(StartActivity) from a remote URL (scheme IPC or deep link),
when they are found in the data URI field in the Intent.

To fuzz an app, most importantly here is to construct the right
URI field. The field carries a URL, with a scheme (standard HTTP
“http(s)://” or customized one “fb://”), a domain, a path and parame-
ters (e.g., “?URL="). This field is automatically built by the fuzzer
based upon the clues collected from Intent filters and the app code,
as follows.
• Activity with Intent filter. For the activity opened through the
standard Android scheme IPC, it needs to claim an Intent filter.
To fuzz such an activity, the analyzer first attempts to pick up
data pieces from its Intent filter. Specifically, in the case that the
activity expects HTTP links, it will claim domain and path in the
filter, which the fuzzer can directly use to create a link (for the data

URI field), together with the target URL (e.g., “www.attack.com")
to be loaded into the WebView. As an example, for the activity
receiving a URL (through an Intent) with the scheme “http://”, host
“www.amazon.com/” and the path “abc", our fuzzer generates a link
“http://www.amazon.com/abc?url=www.attack.com” for the test.
If the monitor sees “http://www.attack.com” opened by the target
activity, ViewFinder reports that it is vulnerable.

More complicated is when an activity claims a customized scheme
(e.g., “fb://”), since the scheme can directly locate the activity and
therefore the OS does not need the domain and path information
in the Intent filter, and can leave the format checking to the app.
To generate the URI string for a test Intent, the fuzzer uses the
following strategies. It tries the test cases with the target URL di-
rectly attached to the scheme (e.g., “fb://www.attack.com”), and the
domain-like string discovered from themanifest (from “host” field in
the Intent filter), together with the standard redirection parameter
like ‘?url=” (e.g., “fb://www.facebook.com/?url=www.attack.com”).
Also, it leverages the discoveries made by the analyzer from the
app code. Specifically, the analyzer disassembles the app (through
apktool[22] in our implementation), collects all the strings from
the activity and identifies the URL components from them, particu-
larly the strings containing navigation parameters such as “?url=”,
“?redirection=”, “?uri=”, etc. These selected strings are then used
by the fuzzer to generate other test cases, together with the do-
mains found from the manifest, e.g., “pinterest://www.pinterest.
com/offsite/check?url=www.attack.com”.
• Activity without Intent filter. For the activity does not claim any
Intent filter (which is often reserved for use by local apps only), it
needs to be triggered by the Intent carrying its class name, together
with the right data URI. To find such a URI, the analyzer identifies
all URL-like strings from the app code, and picks out those not
using the HTTP scheme but having the navigation parameter fields
like “?url=” and “?uri=”. These strings are then used to fill the URI
field in a test Intent, with the navigation fields set to the target
domain (e.g., attack.com). Using the Intent generated in this way,
the fuzzer evaluates every public activity through ADB to find those
manipulatable from the remote.

Another test performed by the fuzzer is whether an activity di-
rectly reads from the data URI field or the extra field of an Intent
a URL for navigating its WebView. To this end, the fuzz sets the
URI to the target domain. The extra field, however, is more dif-
ficult to handle: the field is a collection of customized key-value
pairs. Without knowing the right key, we cannot put the target
URL at a right place. Our solution is to hook the Android system
function Intent.getStringExtra() for getting the values from
the extra field for the app under the test. The idea is that when the
app queries through the function, the monitor returns the target
URL (such as attack.com) and watches whether the URL redirects
the app’s WebView. To avoid the performance impact introduced
by frequent injections, we label each test Intent by adding a tag
to its extra field. During the fuzz, only when the monitor finds
Intent.getStringExtra() operating on the labeled Intent, will
it change the return value.

Our approach also utilizes known vulnerabilities to generate test
cases. For example, when the monitor observes that test URLs (e.g.,
amazon.com) are loaded but the redirection through parameters
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like ?url= fails, ViewFinder automatically generates another sample
using a:a@amazon.com:a@attack.com, based upon the inconsis-
tency problem (between Uri.getHost() and WebView) discussed
in Section 3.3. This strategy helps identify the apps with common
vulnerabilities.
Runtime monitor. In our implementation, we built the monitor
(for finding whether a test URL is loaded by aWebView instance) on
top of an open-source tool called Xposed [32]. To inspect URL load-
ing, ViewFinder hooks the API WebView.loadUrl() to intercept
the navigation operation. Also instrumented in our implementation
is Intent.getStringExtra(), throughwhich ViewFinder changes
the return values for the queries on the extra field in an Intent.
Discussion. As mentioned earlier, ViewFinder does not introduce
any false positive: any flagged app is confirmed to be indeed prob-
lematic. On the other hand, as many other dynamic analyzers, there
is no guarantee whatsoever that we can identify all vulnerable apps
or all vulnerable activities in individual apps. Nevertheless, our
study shows that even this simple technique can easily find many
high-value targets for the remote adversary, making the case that
remote infections, cross-app collusion are not a fantasy but a real
threat. Further running the tool over thousands of most popular
apps, we demonstrate that the threat is pervasive and significant,
even based upon the low-end estimate made by this imperfect tool.

4.2 Findings
Setup. we collected 5,000 apps receiving URL schemes or Intents
from other apps (with at least one Intent-filter for schemes or the
attribute “android:exported" set to “true”) from Google Play top-
ranked apps, in October, 2016, covering 36 categories like “Social”,
“Communication” and “Tools”. Running ViewFinder to analyze all
these apps took 7 days on 3 Nexus 5. To validate the results, we
manually checked each of the detected apps, using the generated
schemes as inputs to confirm that the app can indeed be navigated
to the site under our control. No false positive was found. In the
meantime, due to the challenges in unguided manual analysis of
these complicated apps (16.7 MB on average), we did not have the
ground truth to understand the coverage of the scan. So, all the
findings reported here should only be considered as a lower limit
for the impact of the XAWI threat.
Landscape. Among the 5,000 apps, 372 of them (7.4%) were found
to contain the WebViews subject to remote infections. Besides Face-
book and Twitter (Section 3), other popular apps include TripAdvi-
sor, Google Drive and Yelp. Table 1 in Appendix presents the top
50 XAWI-susceptible apps, together with their Google-Play install
counts. As we can see here, each app has 46,195,505 installs on
average, which may affect hundreds of millions of users around the
world. Also, we found that most of these apps are newly updated:
84.2% apps are updated in year 2016. This indicates that the security
risk of XAWI has not yet come to the app vendors’ attention.
Attack opportunities. Our scan also brought to light the potential
attack opportunities exposed by these apps (Table 1). Particularly,
81.6% popular apps (e.g., Best Buy, WPS Office and Cymera) can
respond to remote commands while running in the background,
which enables the remote adversary to maintain a persistent control
on these apps, once their WebViews are contaminated. Also JS
interfaces, HTML5 supports and callbacks are found in Pinterest,

KaKaoTalk, Hola Launcher, etc. Further discovered in our study are
the apps that provide ideal materials for an RDP: 287 apps have
at least one vulnerable WebWiew without any address bar, 151
without any title and 80 apps can show a webpage in full screen. As
soon as these apps or their co-located apps are infected by XAWI,
they could be turned into building blocks for the RDP attack, for
displaying the fake UIs to impersonate the critical views of other
apps or their own. Examples of these apps including TouchPal
Keyboard, iQiyi and mjweather (see Table 1 in Appendix). Among
these apps, the WebViews in 162 of them can be triggered by HTTP
schemes, while the others need the activity names to invoke.

Taking a close look at the vulnerable apps, our studies brought
to light a few surprising findings. For example, we found that some
WebViews without JS interfaces and callbacks can still leak out
device information to a remote adversary. For instance, iQiyi, a
famous video-sharing app, a counterpart of YouTube in China, ex-
poses such information as DeviceID and locations by appending
them to any URL given by the remote adversary through an infected
WebView (e.g., https://attack.com/?deviceID=[deviceid]&platform=
[platform]&...&location=[location]). Also discovered is the vulnera-
ble WebView inside shared libraries. As an example, KaKao SDK,
a popular OAuth library in Koera, includes exposed WebViews,
making all the apps integrating it vulnerable. Examples include
com.kakao.taxi, com.ileon.melon and com.kalao.page, each
of which has 10,000,000 ∼ 50,000,000 installs. Other examples of
the new attack opportunities we found are presented in Appendix.

4.3 Mitigation
Mitigating the XAWI risk is challenging, due to the contention be-
tween the demand for convenient web-to-app interactions and the
need to properly control the use of these channels. Fundamentally,
only the app developer knows whether a cross-WebView naviga-
tion request is reasonable and whether the task other apps asking
her program to handle stays within the scope of the services she
intends to provide. Also the developer is at the best position to
balance her need for user retention with the safeguards put in place
against the abuse of her app’s capabilities. To mitigate the XAWI
attack, an app developer could keep his app’s WebView private,
enforce proper domain control on it, or notify user when "suspi-
cious" cross-app navigations (e.g., those without user-interactions)
happen. That being said, still there is an important role for the OS to
play, which is particularly important given that the developer-end
protection inevitably takes a longer time to deploy, with no guar-
antee to be respected by app vendors (especially when restrictions
on cross-app interactions may run against some of their business
interests). Therefore in this section, we present a simple, yet ef-
fective system-level solution, called NaviGuard, for mediating the
web-to-app channels.
NaviGuard. The idea of NaviGuard is to identify and control anoma-
lous cross-WebView navigation requests, making themmore observ-
able to mobile users. Since it’s infeasible for attackers to program-
matically mimic touch event inside a WebView, our approach takes
a strategy that allows the requests with evidence of implicit user
consents (i.e., triggered by UI interactions) to silently go through,
notifies the users of those without such consents and blocks the re-
quests of high risks (e.g., those from background processes), which
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reduces the burden on users when such channels are legitimately
used. This simple protection is shown to work effectively against
all the attacks we discovered.

Specifically, to control the channels, NaviGuard hooks Start-
Activity() to monitor when an activity is launched. When this
happens, our approach further determines whether the operation
(i.e., StartActivity()) comes from WebView and has been issued
by a foreground activity. To this end, we hook all JS interfaces
APIs (e.g., addJavascriptInterface) andWebView callbacks (e.g.,
setWebViewClient), since any Intent initiated from WebView has
to go through one of these two channels: Android default schemes
are handled by shouldOverrideUrlLoading in WebViewClient,
and deep links can be processed by any of these APIs, depending
on its implementation. To link the observed StartActivity() to a
specificWebView instance, NaviGuard records the thread ID and the
WebView ID for each JS interface and callback invocation in a table
and removes the IDs once the API call completes. Also stored at that
time is the state of the WebView’s activity, particularly whether
it is on the top (through the API Activity.isResumed()). When
an Intent and its StartActivity() event are observed, NaviGuard
looks up the table using the caller’s thread ID to find out whether
the call indeed comes from a WebView instance. If so, further we
check whether the instance (and its activity) runs in the foreground.
When this is not the case, NaviGuard immediately stops the launch
request from the background WebView, since the user cannot open
another activity by operating on a backgroundWebView. Otherwise,
NaviGuard tries to link the current operation with a recent user
event (e.g., a click), and when the attempt fails, pops up a dialog
window to let the user confirm whether she wants the new activity
to be activated.

To establish a relation between a URL navigation request and
user actions, NaviGuard interposes on user-action related APIs such
as WebView.onTouchEvent() to obtain the WebView ID should a
touch event happen, and keeps the ID in the table. In the meantime,
when a StartActivity() event occurs, its hook also acquires the
caller’s WebView ID if the event is issued from a WebView, and
looks up the table to find whether a touch event is observed from
the same WebView, within a short period of time (1 second set for
our implementation). Alternatively, for Android 5.0 and later, we
can utilize the API WebResourceRequest.hasGesture() to deter-
mine the relation between a user’s gesture (like a click) and the
start of an activity. Note that although these approaches are still
subject to clickjacking [36], they make a XAWI attack more visible
to the user: even when the remote adversary manages to issue a
navigation request using an unrelated user click to infect another
app, he cannot command the infected WebView (now in the fore-
ground) to switch to the background through another navigation
request without triggering a user dialog. Another way to avoid user
interactions is using a whitelist of trusted websites. The developer
can include such a list in her app’s manifest. Whenever a navigation
is directed from any domain on the list, the request is allowed to
go through without asking the user.
Evaluation. To evaluate NaviGuard, we chose the 6 vulnerable
apps (i.e., Facebook, Twitter, Baidu, etc.) analyzed in Section 3 and
Appendix A, together with 44 apps randomly selected from all the
vulnerable apps reported by ViewFinder, and installed them on a

Nexus 5 device running a customized Android 4.4 with the Navi-
Guard enhancement. Then we utilized the ADB tool to inject the
infectious Intents found by ViewFinder from these apps, which
successfully navigated their unprotected WebViews to the sites un-
der our control. In this experiment, however, all these Intents were
either blocked (when they were issued from the background) or
caused an alert to be raised to get the user’s consent. This indicates
that no longer can such attacks go unnoticed to the user.

Also important here is the performance of the technique, which
should not cause too much delay when there is no infection at-
tempt going on. In our experiment, we ran Monkey, a UI exerciser
tool [15], to generate 10,000 random events towards 360 popular
apps (top 10 from each of 36 Google Play categories) in the presence
of NaviGuard, and then replay the same set of events to the same
apps without our protection. During the two tests, we measured
the delays introduced, denoted by t1 and t2, respectively for these
two settings, and further calculated the overhead ((t1 − t2)/t2). The
study shows that the overhead incurred is very low, around 0.5%.

We further evaluated the compatibility of our techniques with
existing apps. For this purpose, we installed 50 popular apps on
a Nexus 5. After running Monkey across these apps with 100,000
random events, we found no runtime error caused by NaviGuard
reported in the system log, indicating that the security controls put
in place will not disrupt these apps’ normal operations.

5 LESSON LEARNT
The root cause of XAWI is the capability to cross-WebView com-
munication, particularly navigating another WebView to a given
domain from the web. This capability, however, is critical for the
integrated service, which is supposed to directly link web content
to the most suitable platform (app) to present it. Actually, today’s
content providers are increasingly utilizing deep linking techniques
to indicate to the browser or WebView not only a specific app but
also its component for handling the specific content (e.g., video,
image, links, etc.) on their web pages. Such cross-WebView content
distribution is not a capability that can be curtailed, even given the
security implications we discovered.

Indeed, not only Android but also iOS is aggressively using this
capability. Actually, the scheme channel was even less protected on
iOS until recently, when research shows that URL schemes can be
hijacked by a malicious local app (installed on the target device) that
steals sensitive user information, such as secret tokens from another
app [39]. As a result, since iOS 9, any scheme invocation across
apps needs the user’s approval, which is clearly less convenient
than Apple hopes. More recently, Apple is pushing a new deep
linking mechanism called universal links on iOS 9 and later [11].
This mechanism binds an app to a link, with a certificate-based
verification. Through the link, one can directly trigger another app’s
component (e.g., WebView) and pass parameters (e.g., URL) without
asking the user. As a result, this new mechanism, once being widely
deployed, could also bring in cross-WebView infections, though
more studies are certainly needed to better understand its security
risk.

Session D2:  Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

840



Akey lesson learnt from our study is that a smooth cross-WebView
channel can also become a path for infection transmission. Safe-
guards should be in place on the path during the design and im-
plementation of such a communication mechanism. For example,
it would not be excessive for the app receiving navigation request
to check the security risk of the domain it is about to move into,
should the app decide not to confine itsWebViewwithin a white-list
of domains (for the purposes like user retention). Techniques for
protecting web surfing, such as use of blacklists like Google Safe
Browsing, could be necessary, if they are made more efficient and
more suitable for working on the IPC level. Also, isolation should be
applied to protect the WebView with critical capabilities, together
with quarantine of the untrusted domain within the WebView that
cannot communicate with other activities except those provided by
the app that initiates the navigation request. Also, it is important
to provide guidance and SDKs to the app developer for putting
security checks at the right program locations, as well as develop
program testing techniques for systematically detecting the lapses
in an app’s domain control. Further, incentives should also be given
by the content provider to developers for better protecting their
apps, through, for example, only linking the web content to the
apps of good security quality. On the OS front, at least the URLs
passed between the apps could be inspected to identify known
malicious domains or anomalies.

6 RELATEDWORKS
Attacks onWebView. WebView is a component vulnerable to var-
ious attacks. Previous studies show that untrusted web contents can
leverage JS interfaces to connect to a smartphone’s local resources
such as GPS locations [25] and file system [10, 25]. In the meantime,
an attack app could also inject malicious JavaScript code into the
web contents, sniff and hijack user events [25]. These vulnerabil-
ities are found to be pervasive [28] and are not fixed timely [35].
However, none of these prior studies looked into possibility of
cross-WebView, multi-app attacks and security implications of un-
privileged WebView (those without any JS interface and call-back
capability), which have first been investigated in our research.
Security risks in URL schemes. URL-scheme IPC is known to
be vulnerable to hijacking attacks, particularly on iOS and OS
X, in which a malicious app claims the scheme used by popu-
lar apps to steal the Intents sent to them or impersonate those
apps [39]. Scheme-based web-to-app attack is also found to be pos-
sible on iOS, with a remote cross-site request forgery reported in
a prior study [38]. On Android, as mentioned earlier, Opera and
Chrome are found to expose their private functionalities to Web-
View [37]. Most related to our research is the finding that Samsung’s
UniversalMDMClient can be launched through a URL, asking the
user whether she wants to install an update[27]. On the other hand,
never before has any systematic effort been made to understand the
security implication of cross-WebView navigation, a functionality
considered to be legitimate and necessary. Our studies reveal the se-
rious security risks involved in this communication, which enables
a remote adversary to attack the mobile users in a way that cannot
be imagined before, including remote app infections, persistent
app control and multi-app colluding attacks. Our findings point to

the fundamental design weakness in URL scheme management on
Android and new attack surface it exposes to the remote adversary.
Mobile Phishing. GUI-related Phishing has long been studied [17]
and recently mobile Phishing has also been intensively investi-
gated [5–7, 19, 21, 31]. Particularly, prior research investigates the
vulnerable links between mobile apps and web sites [19], task hi-
jacking [31] that enables a malicious app to implement UI spoof-
ing, by manipulating system back stacks or a benign app’s task
stack, side-channel based identification of attack opportunities [7],
and other kinds of Phishing activities, such as SMiShing and Vish-
ing [33]. However, none of these studies investigate the risk of a
fully remote, multi-app Phishing attack, which our study found
is completely feasible. This surprising RDP attack turns out to be
extremely powerful, outclassing all existing defense (Section 3.2)
and being recognized by the industry to be a realistic threat.

7 CONCLUSION
In this paper, we report our finding of a fundamental design chal-
lenge in cross-WebView navigation, a much-needed capability for
integrating the services from different apps. Our study reveals a
new XAWI weakness overlooked by the prior research, through
which a remote adversary can acquire persistent, stealthy control
on multiple apps, as soon as his web content is triggered by Chrome.
We demonstrate that a series of multi-app, colluding attacks can be
launched to perform highly realistic remote Phishing attacks and
escalate the remote adversary’s privileges. Also such vulnerable
apps are found to be pervasive, at least 7.4% among popular apps,
including Facebook, Google Drive, Twitter, TripAdvisor, etc. To
protect Android users, we developed a new technique to automat-
ically control cross-WebView communication. Most importantly,
our study brings to light the contention between the strong de-
mand for convenient web-to-app linking and the security need for
controlling the channels for such communication. We show that
existing protection on the channels has not been well thought-out
and often can be easily bypassed. Further effort is required to better
understand the problem and find the solution that closes the attack
avenues without undermining the utility of the channels.
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A MORE ATTACK CASES
Device state detecting and tampering. We also discovered in
our research that from Baidu mobile assistant, an app store app
among the most popular Chinese apps (with over 100 million users),
a remote XAWI adversary can acquire the capabilities to monitor
the user’s interactions with her device, identify other apps on the
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infected device and even perform an unauthorized app install. Re-
lated functionalities are provided by the Baidu app to its WebView
through JavaScript interfaces, including the readings of the device’s
gyroscope, the loudness of the voice perceived by the device’s mi-
crophone, the existence of a package and installation of an app from
the SD card. However, direct navigation from Baidu’s appstore page
to a malicious website is unlikely, since its WebView does not pro-
vide a URL bar and other assistance for browsing unrelated sites.
Further, there is protection in place that whenever the WebView
leaves a domain under Baidu’s control, part of JavaScript interfaces’
functionalities are disabled.

In our research, again we use Chrome as the entry point for the
attack. The attack content inside Chrome’s WebView generates an
Intent scheme (with the package name of the Baidu app) to trig-
ger the Baidu activity UrlHandlerActivity, which has registered
an Intent filter for the scheme http://*/.*/api/calendar (specified
in its data field). The activity responds to the attack URL http:
//attack.com/new/api/calendar, silently navigating the WebView to
attack.com. Under the domain, though part of the Javascript inter-
faces functionalities are stopped, we found that still important capa-
bilities are exposed. Particularly, the JS interfaces downloadApp and
getAppInfo are open to the untrusted domain. So the adversary can
find out what app has been installed through querying getAppInfo
or download app packages through downloadApp. Also interest-
ingly, our research shows that Baidu utilizes the WebView callback
shouldOverrideUrlLoading but fails to protect it. The callback
operates on the URLs in the form of appclient:download..., which
leads to the download of a file from a specific web location, and
appclient:intent intent://..., which creates a deep link for invoking
an activity.

We further come up with a new technique to bypass Baidu’s
domain protection. A problem with Baidu’s JavasScript interfaces
is that some of the JS interfaces it gives to WebView allow callbacks:
e.g., downloadApp(String url, String callback). Here the
callback is a piece of JavaScript code to be executed after completion
of the function call, in an asynchronous way. This creates a race
condition that enables a Time of Check and Time of Use (TOCTOU)
attack. Specifically, the attack web content can invoke such an
interface, supplying it with JavaScript code as the callback. In the
meantime, the content also initiates a navigation to a Baidu domain.
The trick here is that once the navigation is complete, even though
the adversary loses the control of the WebView, he can regain it
when the JS code in the callback is injected back to the current
domain, which now is an authorized domain with full JavaScript
interfaces capabilities. We successfully executed the attack in our
study (also see our demo [1]).

Once the JavaScript interfaces are open, the malicious script
can further access user information on the device. We found that
through the JavaScript interfaces, the adversary can change the
user’s calendar, add reminders, collect the readings from its gy-
roscope and the real-time loudness of the voice when the user is
speaking to her phone (which can be a potential side channel), get
the user’s login state and account information, and even automat-
ically install an app through installApp (when the auto-install
setting in the app is turned on). All these attacks can happen in a

stealthy way, when the infected WebView is running in the back-
ground. We reported the vulnerability to Baidu and helped them
fixed it.

B FIGURES AND TABLES
SecureIntentHandlerActivity is an Activity provided by Face-
book Messenger. As illustrated in (Figure 9), this Activity is pro-
tected by a permission FB_APP_COMMUNICATION, a signature one
only given to Facebook’s products. The Activity also registers an
Intent Filter to receive Intents with scheme fb-messenger-secure://.
Once receiving an Intent with such scheme (see example in fig-
ure 9), Faceboook Messenger will send out a message without user
consent.
<!-- Activity -->

<activity android:name="com.facebook.messenger.intents.

SecureIntentHandlerActivity" android:permission ="com

.facebook.permission.prod.FB_APP_COMMUNICATION">

<intent -filter >

<action android:name=" android.intent.action.VIEW"/>

<category android:name=" android.intent.category.

DEFAULT"/>

<data android:scheme ="fb-messenger -secure"/>

</intent -filter >

</activity >

<!-- Scheme used to send ‘‘content’’ to ‘‘userid’’ -->

fb-messenger -secure :// autocompose/post?tid=userid&ttype =2&
s=1&m=content

Figure 9: An activity from Facebook Messenger and an ex-
ploiting scheme

Activity UrlInterpreterActivity in Twitter registers an In-
tent filter to handle URL as illustrated in Figure 10. Upon receiving a
related URL, the Activity can launch another Activity and navigate
the latter’s WebView to a Phishing page. To trigger the WebView
without showing a system dialog, our attack sends an explicit Intent
scheme to Twitter.
<!-- Activity -->

<activity android:name="com.twitter.android.

UrlInterpreterActivity">

<intent -filter android:autoVerify ="true">

<action android:name=" android.intent.action.VIEW"/>

<category android:name=" android.intent.category.

DEFAULT"/>

<category android:name=" android.intent.category.

BROWSABLE"/>

<data android:scheme ="http"/>

<data android:scheme ="https"/>

<data android:host=" twitter.com"/>

<data android:host="www.twitter.com"/>

<data android:pathPattern ="/.*"/ >

</intent -filter >

</activity >

<!-- Handled URL -->

intent ://www.twitter.com/i/redirect?url=http%3A%2F%2

Fattacker.com%2 Fmessages %2 Fmedia %2 Fattack.html#

Intent;package=com.twitter.android;scheme=http;end

Figure 10: An activity fromTwitter and the scheme to trigger
it

Table 1 lists several vulnerable apps detected by our toolViewFinder.
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Table 1: XAWI-susceptible apps. (✓indicates the feature is supported.)
Package Installation JS HTML5 Custom Scheme Background
com.google.android.apps.docs 1,000,000,000 ∼ 5,000,000,000 ✓ ✓ ✓
com.evernote 100,000,000 ∼ 500,000,000 ✓
vStudio.Android.Camera360 100,000,000 ∼ 500,000,000 ✓ ✓
com.tripadvisor.tripadvisor 100,000,000 ∼ 500,000,000 ✓
com.roidapp.photogrid 100,000,000 ∼ 500,000,000 ✓
com.pinterest 100,000,000 ∼ 500,000,000 ✓ ✓
com.picsart.studio 100,000,000 ∼ 500,000,000 ✓ ✓
com.kakao.talk 100,000,000 ∼ 500,000,000 ✓
com.imo.android.imoim 100,000,000 ∼ 500,000,000 ✓
com.hola.launcher 100,000,000 ∼ 500,000,000 ✓ ✓
com.gau.go.launcherex 100,000,000 ∼ 500,000,000 ✓ ✓ ✓
com.cyworld.camera 100,000,000 ∼ 500,000,000 ✓ ✓ ✓
com.commsource.beautyplus 100,000,000 ∼ 500,000,000 ✓ ✓
com.alibaba.aliexpresshd 100,000,000 ∼ 500,000,000 ✓ ✓
cn.wps.moffice_eng 100,000,000 ∼ 500,000,000 ✓ ✓ ✓
com.zeroteam.zerolauncher 50,000,000 ∼ 100,000,000 ✓ ✓ ✓
com.rhmsoft.fm 50,000,000 ∼ 100,000,000 ✓ ✓
com.nhn.android.search 50,000,000 ∼ 100,000,000 ✓
com.mobisystems.office 50,000,000 ∼ 100,000,000 ✓
com.melodis.midomiMusicIdentifier.freemium 50,000,000 ∼ 100,000,000 ✓ ✓
com.ksmobile.launcher 50,000,000 ∼ 100,000,000 ✓ ✓
com.intsig.camscanner 50,000,000 ∼ 100,000,000 ✓ ✓ ✓
com.indeed.android.jobsearch 50,000,000 ∼ 100,000,000 ✓ ✓ ✓
com.halo.wifikey.wifilocating 50,000,000 ∼ 100,000,000 ✓ ✓
com.gau.go.launcherex.gowidget.weatherwidget 50,000,000 ∼ 100,000,000 ✓
com.cootek.smartinputv5 50,000,000 ∼ 100,000,000 ✓
com.cardinalblue.piccollage.google 50,000,000 ∼ 100,000,000 ✓
com.audible.application 50,000,000 ∼ 100,000,000 ✓ ✓ ✓
com.amazon.mShop.android.shopping 50,000,000 ∼ 100,000,000 ✓ ✓
co.vine.android 50,000,000 ∼ 100,000,000 ✓ ✓
com.yelp.android 10,000,000 ∼ 50,000,000 ✓ ✓ ✓
net.daum.android.map 10,000,000 ∼ 50,000,000 ✓ ✓
net.daum.android.daum 10,000,000 ∼ 50,000,000 ✓
jp.united.app.cocoppa 10,000,000 ∼ 50,000,000 ✓ ✓ ✓
jp.co.mcdonalds.android 10,000,000 ∼ 50,000,000 ✓
de.hafas.android.db 10,000,000 ∼ 50,000,000 ✓ ✓
com.zynga.wwf2.free 10,000,000 ∼ 50,000,000
com.xinmei365.font 10,000,000 ∼ 50,000,000 ✓
com.tokopedia.tkpd 10,000,000 ∼ 50,000,000
com.toi.reader.activities 10,000,000 ∼ 50,000,000 ✓ ✓
com.skimble.workouts 10,000,000 ∼ 50,000,000 ✓
com.ScanLife 10,000,000 ∼ 50,000,000 ✓ ✓ ✓
com.rhmsoft.fm.hd 10,000,000 ∼ 50,000,000 ✓ ✓
com.quoord.tapatalkpro.activity 10,000,000 ∼ 50,000,000 ✓
com.prestigio.ereader 10,000,000 ∼ 50,000,000 ✓
com.nytimes.android 10,000,000 ∼ 50,000,000 ✓ ✓
com.naver.linewebtoon 10,000,000 ∼ 50,000,000 ✓ ✓
com.mt.mtxx.mtxx 10,000,000 ∼ 50,000,000 ✓
com.makemytrip 10,000,000 ∼ 50,000,000 ✓
com.mobilesrepublic.appy 10,000,000 ∼ 50,000,000 ✓
com.lbe.parallel.intl 10,000,000 ∼ 50,000,000 ✓ ✓
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