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ABSTRACT

Push messaging is among the most important mobile-cloud ser-
vices, offering critical supports to a wide spectrum of mobile apps.
This service needs to coordinate complicated interactions between
developer servers and their apps in a large scale, making it error
prone. With its importance, little has been done, however, to un-
derstand the security risks of the service. In this paper, we report
the first security analysis on those push-messaging services, which
reveals the pervasiveness of subtle yet significant security flaws in
them, affecting billions of mobile users. Through even the most
reputable services like Google Cloud Messaging (GCM) and Ama-
zon Device Messaging (ADM), the adversary running carefully-
crafted exploits can steal sensitive messages from a target device,
stealthily install or uninstall any apps on it, remotely lock out its
legitimate user or even completely wipe out her data. This is made
possible by the vulnerabilities in those services’ protection of device-
to-cloud interactions and the communication between their clients
and subscriber apps on the same devices. Our study further brings
to light questionable practices in those services, including weak
cloud-side access control and extensive use of PendingIntent,
as well as the impacts of the problems, which cause popular apps or
system services like Android Device Manager, Facebook, Google+,
Skype, PayPal etc. to leak out sensitive user data or unwittingly act
on the adversary’s command. To mitigate this threat, we developed
a technique that helps the app developers establish end-to-end pro-
tection of the communication with their apps, over the vulnerable
messaging services they use.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Access con-
trols, Invasive software
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1. INTRODUCTION

Push messaging (aka. push notifications, cloud to device mes-
saging, etc.) is a type of cloud services that help developers of
mobile applications (apps for short) deliver data to their apps run-
ning on their customers’ mobile devices. Such services are offered
by almost all major cloud providers. Prominent examples include
Google Cloud Messaging (GCM), Apple Push Notification Ser-
vice and Amazon Device Messaging (ADM). Subscribers of the
services are popular apps (Android Device Manager, Facebook,
Skype, Netflix, Oracle, ABC news, etc.) on billions of mobile de-
vices. Through those services, the developer can conveniently push
her notifications, messages and even commands to her apps, avoid-
ing continuous probes initiated from the app side, which are more
resource-consuming. With the pervasiveness of the services and
the increasingly important information exchanged through them,
which includes not only private notifications (e.g., Facebook mes-
sages) but also security-critical commands (e.g., wiping out user
data on a stolen phone [2]), little has been done, however, to under-
stand their security and privacy implications.

Security risks in push messaging. Recently it has been reported
that the GCM cloud was abused by cybercriminals to coordinate
and control their malware [5]. What is less clear is whether such
push services themselves are vulnerable to infiltration attempts.
Those attempts, once succeeded, can have devastating consequences,
potentially allowing an unauthorized party to steal sensitive user
data or even completely control the apps subscribing those services.
More specifically, a push messaging service is typically provided
through a connection server in the cloud, which delivers data from a
3rd-party app server to its apps running on a large number of mobile
devices. This delivery process often goes through a service client
(e.g., the GCM client) and the software development kits (SDKs)
integrated into the apps. If the interactions that happen between
either the client and the server or the SDK and the client have not
been well thought-out, a local (on the same device) or remote ad-
versary could intercept the messages pushed through the service,
or even impersonate the app server to command the apps to operate
on his behalf. To find out whether such security risks are indeed
present in today’s mobile clouds, which are very complicated sys-
tems, an in-depth analysis is needed to understand their operations
across the cloud and mobile devices, and the security implications



of those operations. With the importance of the problem, such a
security study has never been done before.

Our findings. In our research, we conducted the first security anal-
ysis on the mobile-cloud services for Android devices. Our findings
are astonishing: almost all popular services contain security-critical
weaknesses never known before. Even though some of them are
subtle, hiding deeply inside the systems, they can all be exploited
in practice through carefully-crafted attacks, which often cause se-
rious consequences. Particularly, we found that an unauthorized
party can circumvent security checks of GCM to preempt the reg-
istration ID of the victim’s app. As a result, the victim’s sensitive
information such as her Facebook messages will all be pushed to
the adversary’s device. Such information leaks also happen to the
most popular push-messaging cloud in China with over 600 mil-
lion subscribers, though the service works in a way different from
GCM. Throughout the paper, we use a pseudonym mpCloud to re-
fer to this push-messaging service, on the request for anonymity
from the company.

Also serious are the problems with the client-side components
of those push-messaging services, including service clients (e.g.,
the GCM client) and SDKs. Our research reveals critical security
weaknesses in such components within almost all popular services
for Android devices, which are mainly caused by the exposure of
the PendingIntent object through intent broadcast or service
invocation with regard to a designated action, which an unautho-
rized party can claim to be able to handle. With this exposure,
the adversary who knows how to use the PendingIntent can
launch a series of carefully-crafted attacks to push fake messages
to subscriber apps and control their communication with the clouds,
a problem present in all leading services such as GCM, ADM and
UrbanAirship.

The consequences of those attacks are dire, through which not
only can the adversary gain access to such critical user data as bank
account balance, family members’ home addresses, etc., but he can
even command Android Device Manager to lock out the device user
and wipe out all her data, and the Google Play service to install and
uninstall any app without the user’s consent. In our research, we
analyzed 63 popular apps utilizing messaging services and discov-
ered the pervasiveness of those security-critical problems. Exam-
ples of those apps include Facebook, Google Plus, Chase bank and
PayPal. We reported all the flaws discovered in our research to
Google, Amazon, and other service providers, which all acknowl-
edged the importance of our findings. Particularly, one of them
(UrbanAirship [16]) informed us its plan to formally cite us in its
release notes and another organization (Section 3.2) has expressed
gratitude for our willingness to keep them anonymous. Also, An-
droid security team has formally acknowledged us on their official
website [3]. Video demos of the exploits are posted online [15] and
most of the flaws have already been fixed based on our reports.

End-to-end protection. Our security analysis reveals the perva-
siveness of subtle yet serious security weaknesses across major
push-messaging services, which calls into question the reliability
of those services. Based upon such understanding, new techniques
need to be developed to make these systems also secure to use,
even in the presence of a variety of unexpected security flaws an
app developer has no control of. As a first step, we designed an
end-to-end protection mechanism through which the developer and
her apps can establish a secure channel on top of those unreliable
services to authenticate each other and safeguard the confidential-
ity and integrity of the information they exchange. This mechanism
was further implemented into a pair of SDKSs, one for the app server
and the other wrapping the SDKs for popular messaging services.
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Using the mechanism, the app developer can conveniently build
up this end-to-end protection, with only minor adjustments of her
code. Our evaluation study further demonstrates that this mecha-
nism incurs only a small overhead and effectively addresses all the
problems we discovered.

Contributions. The scientific contributions of the paper are:

e Security analysis of push messaging services. Understanding se-
curity weaknesses inside practical systems is the starting point for
any system security research. For an emerging system as important
and complicated as mobile cloud, the problems there can be new,
subtle and deep, requiring a well-conceived study to identify and
determine their security implications. Our research makes a first
step towards this end, which reveals serious vulnerabilities within
push-messaging systems, one of the most important mobile cloud
services. We performed a security analysis on such services offered
by leading cloud providers, uncovered new types of security prob-
lems within its client-cloud communication and client-side compo-
nents, and further investigated the impacts of our findings, which
are shown to be significant. This work helps better understand what
can go wrong inside mobile clouds and what can be done to make
it right, raising the awareness of this new security challenge and
laying the foundation for the follow-up research on this direction.

e New protection technique. We made the first attempt to secure
end-to-end push messaging communication in the presence of weak-
nesses within the underlying mobile-cloud services. Our approach
prevents an unauthorized party from impersonating the app server
to push messages to apps or intercepting messages. It can be con-
veniently integrated into existing apps by their developers.

Roadmap. The rest of the paper is organized as follows: Sec-
tion 2 gives the background information of our study; Section 3
and Section 4 elaborates the security-critical flaws discovered in
both client-cloud communications and client-side components of
push-messaging services; Section 5 reports a measurement study
on the problems we found; Section 6 presents our end-to-end pro-
tection; Section 7 discusses the limitations of our study; Section 8
surveys related prior research and Section 9 concludes the paper.

2. BACKGROUND

2.1 Mobile Cloud Messaging

As discussed before, cloud-based push messaging services have
been extensively deployed, supporting almost all the mobile de-
vices in the market. Those services are offered by mobile-platform
providers (Google, Apple, etc.), cloud service providers (e.g., Ama-
zon) or messaging service providers (e.g., mpCloud in Section 4).
With this diversity, those services share a similar architecture and
also closely resemble each other in their operations, which we de-
scribe below.

Service infrastructure. Figure 1 illustrates the infrastructure of a
typical push-messaging service. At the center of this infrastructure
are the connection servers running on the cloud and the client-side
components installed on individual users’ mobile devices. The con-
nection server receives messages from the app server and pushes
them to the service client on each device. It also receives upstream
messages from the client. In our research, we call such interactions
cloud-device link. The client is a persistent process, which moni-
tors messages from the cloud and passes them to subscriber apps,
and wakes up the apps when necessary. This client program can
be either a standalone service app, e.g., the GCM service app, the
ADM Client and the iOS Notification Center, or part of the SDKs



from the service provider. Its interactions with the app are called
on-device link in our study.
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Figure 1: Push Messaging Infrastructure

To utilize a push-messaging service, an app needs to incorporate
its SDK to talk to the service client. On the cloud side, the devel-
oper of the app needs to run an app server to communicate with the
connection server, requesting its service to push notifications, com-
mands and other messages to the apps on her customers’ devices.
In addition to this mobile-cloud communication channel, the app
server can also get in contact with its apps out-of-band, receiving
messages directly from those apps.

Service operations. The operations of a push-messaging service
are performed at two stages, registration and message delivery. An
app is supposed to register with the connection server before it can
receive messages from its developer server. This happens when
the app sends the client (an SDK or a standalone service) a reg-
istration request, which the client forwards to the cloud. Such a
request includes the app’s identification information like its appli-
cation ID (generated from the app’s package name), an Android ID
(for uniquely identifying the host device) and a sender ID (a unique
number assigned to the app server). Using such information, the
connection server creates a random registration ID for identifying
the app. This ID is critical for the operations of the whole push-
messaging service, which is used to locate the right app recipient
of the messages pushed through the cloud. It is given to the register-
ing app and sent to the app server directly by the app out-of-band,
using a secure channel (e.g., SSL).

To push a message to its apps, the app server works with a con-
nection server, providing it registration IDs of the apps and the
message. The connection server then stores and enqueues all the
messages it receives, and pushes each of them to the corresponding
target device as soon as it gets online. On the device, the message
is first delivered to the service client, which then hands it over to
the subscriber app.

On-device communication. When the service client is a stan-
dalone program, such as the GCM app, its interactions with the sub-
scriber app need to go through Inter-Process Communication (IPC)
on the mobile device. On Android, serving this purpose is the intent
mechanism. An intent is a message that describes the operation to
be performed by its recipient. It can be used to launch a user inter-
face component (e.g., through the API startActivity), com-

municate with a background service (e.g., through startService)

or broadcast to a group of registered receivers (e.g., through send
Broadcast). To use this mechanism, the sender can either ex-
plicitly specify the package name of the recipient or just identifies
an action so that any app registering with the action (through its
intent filter) can get it. In the latter case, the intent broadcasted is
passed to the recipients in the order of the priorities they set. These
recipients can also make their broadcast receivers private or protect
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them with a permission to ensure that only authorized senders can
access them.

A problem for this intent mechanism is that the recipient is not
informed of the sender’s identity, which needs to be authenticated
when an app sends a request to the service client. This problem
is resolved by push-messaging services using PendingIntent.
PendingIntent is atoken that allows the recipient to perform a
set of pre-defined operations on an intent constructed by its sender,
using the identity and permissions of the sender. More specifi-
cally, the sender app can create a PendingIntent object and
pass it to another app. The app then acquires the capability to
perform the operation (including broadcast, startActivity or
startService) as if it was the sender. Particularly, to find out
where the message comes from, the recipient can call the object’s
method get TargetPackage or getCreatorPackage to get
the sender’s package name. Note that this information is provided
by the operating system and therefore cannot be forged.

2.2 Security Hazards

The security guarantee of a push-messaging service depends on
that of the individual links on its complicated communication chain,
which include the interactions between client-side components, the
device and the cloud, the cloud and the app server, and the server
and the app. A crack discovered on any of those links can have a se-
rious consequence, leaking sensitive user data or exposing critical
system capabilities. Here we discuss such security hazards.

What can go wrong. The most security-critical information within
mobile-cloud services is each app’s registration ID. Once the ID has
been exposed and also tied to a wrong party, the consequences can
be devastating: more specifically, when the ID is bound to an attack
device, whatever is supposed to be sent to the app will be delivered
to that device, disclosing all sensitive user data pushed through this
channel; when the ID is bound to an attack server, the adversary
gains the privilege to push commands to the app as its developer
server. Therefore, the registration ID needs to be protected on all
the links across the whole communication chain, to prevent it from
being exposed and manipulated when the app talks to the service
client, the client to the connection server, the connection server to
the app server and the app server to the app. Also, the connec-
tion servers need to check each registration request to ensure that
the registration ID of an app is built on the right parameters from
right parties. The problem is the complexity of the communication
involved in the service, which makes such protection challenging.

The content of messages can also be exposed in other ways,
particularly during the on-device communication. Although those
messages are often encrypted when they are exchanged between
the cloud and the device, they are transmitted in plaintext on the
device, between the service client and the subscriber app. Such
on-device communication, once going through insecure channels
such as broadcasting or service invocation using an action, can be
intercepted by an unauthorized app. Even when the communica-
tion does not directly carry any sensitive data, it often involves the
token (i.e., PendingIntent) for identifying a message sender,
which could be exploited by a knowledgeable adversary to imper-
sonate the sender or acquire the capability to access its protected
resources.

Our study. To understand whether those security hazards indeed
pose a credible threat to push-messaging services, we analyzed
those services’ security protection, focusing on the cloud-device
link (Section 3) and the on-device link (Section 4) as the first step.
Specifically, for the device-cloud link, we ran Dex2jar [6], JD-
GUI [9] and Baksmali [4] to study the code of different messag-
ing services’ clients and their SDKSs, in an attempt to evaluate their



program logic related to the app registration. For this purpose, we
also need to look into the logic on the cloud side, particularly the
security checks it performs. Without its code, all we can do is a
black-box analysis, in which we adjusted the parameters of regis-
tration requests to study responses from the server.

Unlike the cloud-service link, the on-device link only involves
the service components (the service client and the SDK) on the
same mobile devices, whose code and communication are more ac-
cessible. What has been inspected in our research is the security
implications of the resources (PendingIntent in particular) ex-
posed through their interactions. We further analyzed 63 popular
apps to understand the damages to their users when their push-
messaging services are exploited. The results of this study are elab-
orated in Section 3, 4 and 5.

Adversary model. We assume the presence of a malicious app on
the victim’s mobile device. The app does not have system privilege
and therefore needs to ask for a set of permissions from the users
such as READ_GSERVICES, GET_ACCOUNTS and INTERNET.
Although all such permissions are at the dangerous level, they are
also extensively requested by popular apps such as Ebay, Expedia,
Facebook and Whatsapp. Therefore, we believe that claiming them
by the malicious app will not arouse much suspicion. Further, we
consider an adversary who has the resources to set up his own app
servers with the cloud and run his devices to collect the victim’s
information.

3. EXPLOITING MESSAGING SERVICES

In this section, we report our security analysis of the cloud-
device links on major push-messaging service providers.

3.1 Google Cloud Messaging

Google Cloud Messaging is one of the most popular messag-
ing services, which has been subscribed by billions of Android de-
vices. According to Google, the GCM service pushes about 17
billion messages every day [8]. GCM works in a way as described
in Section 2.1, which requires an app to first register with the ser-
vice before receiving messages. In our study, we analyzed both
the registration and the message-delivery stages on an HTC One X
phone (serving as the attack device) and a Nexus 7 tablet (as the
victim’s target device), using mitmproxy [12] and mallory [11] to
proxy the SSL communication between the attack device and the
GCM connection server.

Flaws. To register with GCM, an app uses its app server’s sender
ID and aPendingIntent (see Section 4.1) to invoke the regis
ter method, one of GoogleCloudMessaging APIs under the
Google Play service com.google.android.gms on the de-
vice where the app is running. The service then makes an HTTPS
request to a connection server to obtain a registration ID for the app.
This request contains the device’s Android ID and its device-token
for the authentication purpose, and the package name for identify-
ing the app, as illustrated in Figure 2. Also, the Android ID shows
up in three fields Authorization, X-GOOG.USER_AID and
device. In our research, we performed a black-box analysis on
the connection server by adjusting the content of those parameters
through our proxy. What we found is that the content of device
needs to match the Android ID within the Authorization field
to let the request go through. However, X-GOOG . USER_AID does
not need to be consistent with the other two fields, which turns out
to be a security-critical logic flaw that can be exploited by an unau-
thorized party to collect sensitive user messages.

Specifically, what the adversary wants to do is to generate a reg-
istration request on behalf of the app on the victim’s device (the tar-
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Authorization: AidLogin android-id:device-token
app: package-name
User-Agent: Android-GCM/1.3
content-length: 171
content-type: application/x-www-form-urlencoded
Host: android.clients.google.com
Connection: Keep-Alive
Accept-Encoding: gzip
URLEncoded form
X-GOOG.USER_AID: android-id
app: package-name
sender: sender-1D
cert: application's certificate

device: android-id

app_ver: application's version

Figure 2: Registration Request

get) using his own attack device, a critical step for intercepting user
messages, which we elaborate later. The catch here is the device-
token (within the Authorization field in Figure 2), a secret that
is bound to the device’s Android ID and automatically appended to
the request by the Google service during the communication with
GCM. This prevents a malicious app on the target device from get-
ting it. Without knowing the token, the adversary can only use
his own Android ID and device-token to fill Authorization.
However, due to the missing consistency check between this field
and X-GOOG.USER_AID on the connection server, the adversary
can still set the latter to the Android ID of the target device (which
can be obtained by the malicious app on the target device with the
permission READ_GSERVICES). Most importantly, we found that
the connection server solely relies on X-GOOG.USER_AID (not
the Android IDs in the other two fields) to create a new registration
ID or retrieve the record of an existing one.

Exploits and consequences. In our study, we implemented an ex-
ploit, which includes an app with the permission READ_GSERVIC
ES for collecting the Android ID from the target device. Using this
information, our approach automatically generates a registration re-
quest from our attack device by replacing the content of X-GOOG.
USER_AID with the target’s Android ID. When this registration
request is made before the target app does, we found that the adver-
sary can hijack this registration ID, binding it to his attack device.
Specifically, when an app registers with GCM the first time, the
connection server establishes a binding relation between its regis-
tration ID and its current device (identified through its Android ID
in the field of device or Authorization), but apparently in-
dexes the registration with the content of X-GOOG.USER_AID.
If the same app later registers again, the server retrieves the app’s
registration ID using its Android ID and returns it to the app. Since
the content of X-GOOG.USER_AID can be different from that in
device and Authorization, the adversary who registers us-
ing the target’s Android ID in X-GOOG.USER_AID (which in-
dexes the registration with the target device) and the attack device’s
ID in the other two fields (which binds the registration to the attack
device) will cause the target app to receive a registration ID tied
to the attack device’s Android ID when the app is trying to regis-
ter with GCM. This will have all the messages for the target app
pushed to the attack device.

We built an end-to-end attack in which the attack device pre-
empted the Facebook app on the target device in registering with
the Facebook server. As a result, the Facebook app, which regis-
tered later, got a registration ID tied to the attack device and unwit-
tingly sent this ID to its app server (see Section 2.1). After that, all



Facebook messages and notifications, including those with sensi-
tive content, went to the attack device.

When the adversary makes a registration request affer the tar-
get app registers (on the victim’s device), the GCM connection
server responds by retrieving the app’s registration ID using the
X-GOOG.USER_ATID (filled with the victim’s Android ID) on the
request and sends it to the attack device. In this way, the adversary
can steal the target app’s registration ID. Typically, this ID needs
to be used by the app server with an authorized sender ID to push
messages to the app. However, we found that for GCM, this policy
was not in place until very recently, which enabled us to inject mes-
sages to the app using its registration ID (see [15]). Although this
problem is no longer there, later we show that the target’s registra-
tion can be bound to an attack server through exploiting a weakness
in the on-device link (Section 4.2).

The video demos for the above attacks (binding a registration
ID to a wrong device and injecting messages through the ID) are
posted on a private website [15]. We reported all the findings to
the Android security team and the GCM team. So far, all these
problems have been fixed based on our report.

3.2 mpCloud Messaging Services

mpCloud (the pseudonym we use on the company’s request) is
the largest push-messaging service provider in China, which serves
600 million users, including Chinese Internet giants like Sina [13].
Particularly it offers a critical support for Sina Weibo [14], an ex-
tremely popular Chinese version of Twitter. The designers of the
service clearly took security seriously: for example, on its cloud,
registration IDs (called client ID) can only be used by authorized
app servers to communicate with their corresponding apps.

Flaws. However, our analysis of this push-messaging service shows
that it also has serious security flaws, which can lead to expo-
sure of sensitive user messages. Specifically, when reinstalling a
service-subscribing app after uninstalling it on the same device, we
found that the app always gets the same client ID. A close inspec-
tion of the code of the mpCloud SDK reveals that such a client ID
is actually generated deterministically on the device, based upon
a data file (/sdcard/1libs/package_name.db) the service
deposits on the device’s SD card, and its International Mobile Equip-

ment Identity (IMEI), International Mobile Subscriber Identity (IMSI)

and MAC address. Such information is all accessible to a mali-
cious app running on the victim’s device with proper permissions
(READ_EXTERNAL_STORAGE for reading from the SD card, READ
_PHONE_STATE for collecting IMEI/IMSI and ACCESS_WIFI
_STATE for getting the MAC address). With the information ex-
posed, the adversary can come up with the right client ID on his
own device.

When it comes to message delivery, what happens within mp-
Cloud is that the device makes a socket connection to the cloud
server, providing it the device’s identity information to get mes-
sages, as other messaging services do. However, different from
GCM, in which the server will check both the registration ID of
an app and the Android ID/device-token of a device before push-
ing messages to the app, mpCloud solely relies on the client ID to
identify a device and the app running on it. As a result, the expo-
sure of the client ID renders both the victim’s target device and the
attack device equally entitled to receive push messages from the
cloud server. In our research, we found that such messages will be
randomly pushed to one of these two devices.

Exploits and consequences. We built an end-to-end attack on Sina
Weibo, one of the most important customers of mpCloud. Sina ac-
tually modified the mpCloud SDK, changing the directory path of

the data file (for generating the client ID) to / sdcard/sina/weibo

/1libs_backup/com.sina.weibo.db. In our research, we
ran an attack app to gather the data from this file and other infor-
mation (IMEI/IMSI/ MAC) to derive the client ID. Using the client
ID, our attack device successfully received the push messages (i.e.,
tweets) from Sina Weibo, which were supposed to be delivered to
the target device. This vulnerability has been reported to mpCloud.

4. VULNERABLE ON-DEVICE COMMUNI-
CATIONS

In addition to the client-cloud link, we further analyzed the on-
device link, which involves the communication between a push-
messaging client and an app subscribing the service on the same
device. For this purpose, we studied the client-side code of the most
popular push-messaging services for Android, including GCM, Ama-
zon Device Messaging (ADM), UrbanAirship [16] and mpCloud
(pseudonym for the largest Chinese push-cloud service provider).
Those services support a vast majority of Android devices, deliver-
ing messages to billions of users. However, all of their client com-
ponents were found to include serious security flaws. The problems
here start with the use of intent broadcast or startService with
regard to an action. The most intriguing part, however, is how
to use the content exposed through those channels, which itself
may not be sensitive (e.g., a message for starting the process of re-
questing a registration ID) but comes with the capability allowing
a knowledgeable adversary to wreak havoc through complicated
exploits. Following we describe the problems found in individual
services.

4.1 Exploiting Upstream Messaging

GCM client components. GCM client components include the
Android service apps com.google.android.gfs, com.goo
gle.android.gms and the SDK google-play-service.
jar integrated into the service-subscribing app. The communica-
tion between the SDK and those services all goes through intent.
Such communication includes the request for getting registration
ID and the messages pushed to the app through the service. The
intent serving those purposes carries the recipient’s package name,
which ensures that only the right party can get it. However, an ex-
ception is made when it comes to upstream messaging [7], a new
feature that allows an app to push messages to its app server. The
intent created for this purpose is delivered through the broadcast
channel without specifying the target package, which distributes
the message to whoever declares a right receiver. This treatment
is meant for flexibility, enabling the app to use any service app ca-
pable of handling its message. Also, an upstream message often
does not contain sensitive data: for example, it is used to notify the
Google server when a new account is opened on a device. How-
ever, such an exposure gives away the PendingIntent object
embedded in the intent, which has serious consequences.

More specifically, the PendingIntent objects are embedded
in the intents the GCM SDK (within the subscriber app) delivers to
the Google service apps to inform the latter of the sender’s iden-
tity, which is not given when a normal intent is passed from one
app to another [32]. The problem is that the PendingIntent
object here can do much more than just the sender identification,
and therefore can be abused once it is exposed to an unauthorized
party.

Exploits. In our research, we implemented an attack app that de-
clared a broadcast receiver for the action com. google.android
.gcm. intent . SEND (specified within its manifest file), with a
higher priority (1000) in receiving messages than the legitimate
Google service app. This attack app was able to intercept any up-



stream message a GCM-subscribing app sent to its app server, and
also prevented the Google services from getting them. This not
only violated the confidentiality of the communication, but more
importantly, enabled the attack app to obtain the PendingIntent
embedded in the upstream messages. With this token in hand, we
were able to perform the following message-injection attack:

Each app subscribing the GCM service needs to follow Google’s
instructions [7] to declare an intent receiver to get push messages.
Such areceiver is protected by the signature permission com. goog
le.android.c2dm.permission. SEND and thus only acces-
sible to the Google services and the app itself, in accordance with
the action defined for the receiver (e.g., com.google.android

.c2dm. intent .RECEIVE). For example, the Facebook app claims

areceiver com. facebook.push.c2dm.C2DMBroadcast
Receiver. The trouble here is that once the PendingIntent
is exposed, the attack app becomes able to execute the operation
specified by the object with the sender app’s permissions. Specifi-
cally, for GCM, the PendingIntent its SDK builds always in-
cludes a blank intent with a broadcast operation. Therefore, the
attack app that intercepts this object can fill the content of the in-
tent with the target app’s package name and action, and then ask
the OS to broadcast this intent. Given this new intent is viewed as
coming from the target app itself, it is allowed to be delivered to the
target’s receiver. As a result, the attack app can now push arbitrary
messages to the target. In our study, we successfully launched this
attack against Android Device Manager and other apps.

Also interestingly, we found that the exposed PendingIntent
can be used to impersonate the target app to send requests to An-
droid services. For example, an attack app can generate a regis-
tration request in the name of the target app to register it again
with GCM using its PendingIntent object. The gms service
receiving this intent checks the sender’s package name using the
PendingIntent, and will be convinced that the intent indeed
comes from the target app. As discussed in Section 3.1, when a
registered app attempts to register again, the connection server just
returns to it the existing registration ID. The attack app can then in-
clude in the forged registration intent an instance of android.os
.Messenger, through which it receives the registration ID re-
turned from the cloud. Although the registration ID alone may not
be enough for injecting messages to the app remotely, the attack
app’s capability to impersonate the target needs serious attention.

Consequences. We found that the gms itself uses upstream mes-
saging to notify Google whenever a Google account is added or
removed on a mobile device. This happens through broadcasting
an intent to the SEND action of gms itself. In our research, our
attack app intercepted this intent and the PendingIntent ob-
ject it carried, through which the attack app was able to directly
push messages to gms. Since Android Device Manager is also run-
ning in the same process, our app commanded it to wreak havoc.
Particularly, we show that Android’s anti-theft protection can be
used against the phone user: the Device Manager under our con-
trol ringed the phone, locked the legitimate user out of the system
and even erased the user’s data on the phone. Furthermore, since
gms bears the same signature as other system services, the Google
Play service in particular, our attack app was able to execute the
PendingIntent from gms to talk to the service’s GCM receiver
protected by the signature permission. Through the service, the at-
tack app silently installed new apps and uninstalled existing ones
without the user’s consent. The video demos of the attacks are on
a private website [15]. Again, we reported the problems to Google,
which has fixed the issues.
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4.2 Capability Exposure in Registration

Apps using C2DM/GCM template code. Starting from Android
Cloud to Device Messaging (C2DM), Google has provided tem-
plate code to help the app developers conveniently integrate its
push-messaging service into their apps. The code segment for ini-
tiating the registration process is presented in Figure 3. This code
is further recommended to the GCM users after C2DM was depre-
cated. As a result, many popular apps do not integrate the GCM
SDK google-play-service. jar, and instead directly use
this set of code to dispatch an intent to gms for invoking (startSe
rvice) its registration service. Prominent examples include Face-
book and UrbanAirship [16], a popular intermediary service that
enables developers to send messages to different mobile devices
(Android, i0S, Windows, etc.). Interestingly, different from what
happens through the SDK, which sets the recipient of the intent
to the package name of gms, the code here only specifies the ac-
tion com.google.android.c2dm.intent .REGISTER, S0
whoever defines this action is entitled to receive the intent mes-
sage. Apparently, this treatment can be useful for the transition
from C2DM to GCM: the new GCM service app only needs to
declare the action to work with the apps designed for C2DM. How-
ever, just like the broadcast channel, this type of service invocations
can be easily abused: an attack app only needs to specify the reg-
istration action and a high priority (above that of gms) to get the
intent and also prevent gms from receiving it.

Intent registrationIntent = new Intent("com.
google.android.c2dm.intent. REGISTER");

registrationIntent.putExtra("app",
PendingIntent.getBroadcast(this, 0, new Intent(), 0));

registrationIntent.putExtra("sender", senderID);

startService(registrationIntent);

Figure 3: Template Code

Again, though the registration intent itself does not carry any
confidential information, its exposure leaks out the PendingInt—
ent object. Since this happens during the registration stage, the ad-
versary getting the token can cause an even bigger trouble. Specifi-
cally, the target app’s registration ID can also be stolen by the attack
app through sending to gms a new registration intent with the tar-
get’s PendingIntent. In this way, our app essentially acts as
a man-in-the-middle (MitM) that receives the registration ID from
gms and hands it over to the target app through the broadcast opera-
tion included in its PendingIntent, as described before. More
seriously, our MitM can fabricate the registration ID given to the
target app, binding it to an attack device or an attack server. Fol-
lowing we elaborate these two attacks, using the Facebook app as
an example:

e Device misbinding. In this attack, the adversary requests from
GCM a registration ID for the Facebook app running on the attack
device, without sending the ID to the Facebook server. Instead,
this ID is transmitted to the attack app on the victim’s device (the
target). During the registration of the Facebook app on the tar-
get device, the attack app intercepts its request and runs the stolen
PendingIntent to inject the adversary’s registration ID to the
victim’s app in the same way as the aforementioned attack (Sec-
tion 4.1), except that the attack app’s intent is aimed at the action
com.google.android.c2dm.intent .REGISTER this time.
Upon receiving the intent, the victim’s Facebook app considers the
registration ID received as a legitimate one from the connection
server, and therefore unwittingly uploads it to the Facebook server



to link it to the victim’s account. As a result, all the victim’s Face-
book messages will go to the attack device. We implemented this
attack and successfully executed it on our Nexus 7 tablet.

e Server misbinding. As discussed before, the GCM and other
clouds (e.g., ADM, mpCloud, etc.) only allow the app server with
an authorized sender ID to push messages to the apps with related
registration IDs. Here we show that even this protection can be
completely circumvented once the PendingIntent objectis ex-
posed during the target app’s registration. The trick here is to gen-
erate a registration ID bound to the attack server. Specifically, the
attack app first intercepts the registration request from the victim’s
Facebook app and serves as an MitM. It can then set the sender
ID within the registration request it generates to that of the at-
tack server. Based on this request, the registration ID the GCM
cloud generates becomes linked to the attack server. After inject-
ing this registration ID to the victim’s Facebook app, the adversary
can push messages to the app remotely, as the app’s registration
ID is tied to the attack server. This attack was implemented and
evaluated in our research, which was found to work effectively on
popular apps, like Facebook messenger.

This problem affects many popular apps according to our study
(Section 5). We reported our findings to Google, Facebook and Ur-
banAirship. Google further notified other parties. In recognition of
the importance of the findings, UrbanAirship planned to formally
acknowledge us in their release notes and Facebook awarded us
$2000.

Amazon Device Messaging. Amazon Device Messaging (ADM)
is a push-messaging service Amazon uses to support its popular
Kindle Fire device, which accounts for about one third of the An-
droid tablet market according to a recent report [10]. ADM has a
registration process similar to that of GCM: a service-subscribing
app sends a registration request to the Amazon service app (com.
amazon.device.messaging) on the same device, which con-
tacts the ADM cloud to get a registration ID for the app. Like GCM,
this ID is tied to a specific app server: only this server is allowed to
push messages to the app with the ID.

In our research, we analyzed the code of the Amazon SDK com
.amazon.device.messaging.ADM. It turns out that the SDK
behaves just like the Facebook app during the app registration phase:
itissues a start-service intent to any recipient that declares an action
com.amazon.device.messaging.intent .REGISTER;
also the intent contains a PendingIntent object for the ADM
service app to identify the sender of the intent. Therefore, an attack
app with the action and a higher priority in receiving messages can
intercept the intent and steal the PendingIntent. Consequently,
the adversary can launch the aforementioned device-misbinding at-
tack to link the target app’s registration ID to an attack device, caus-
ing all messages for the the app to go to the attack device.

The server-misbinding attack, however, does not work on ADM,
because the ADM service app directly gets the sender ID (of the
app server) from the target app, not from the registration intent
as gms does. This thwarts the attempts to inject messages to the
target app remotely, given that a registration ID inconsistent with
a server’s sender ID cannot be used to push messages to the app
from the server through the Amazon cloud. On the other hand, the
local-injection attack is still effective: our attack app was able to
deliver messages to the target app through executing the broadcast
operation on its PendingIntent (Section 4.1). We reported the
flaws to Amazon and are helping them to fix those issues.

4.3 Other Exploits

In addition to the problems with PendingIntent, our research
on the on-device link also reveals other weaknesses. Specifically,
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Type Categories # of tested apps # of leak
GCM SOCIAL 17/25 (68%) 13/17 (76%)
GCM COMMUNICATION 9/13(69%) 3/9 (33%)
GCM FINANCE 4/11 (36%) 3/4 (75%)
GCM SHOPPING 519 (56%) 2/5 (40%)
GCM PRODUCTIVITY 3/5 (60%) 1/3 33%)
GCM HEALTH & FITNESS  3/3 (100%) 1/3 (33%)
GCM ENTERTAINMENT 217 (12%) 1/2 (50%)
GCM BUSINESS 1/3 (33%) 1/1 (100%)
GCM OTHER 9/30 (30%) 0/9 (0%)
mpCloud SOCIAL 3/3 (100%) 3/3 (100%)
UA SHOPPING 1/1 (100%) 1/1 (100%)
UA LIFESTYLE 2/2 (100%) 0/2 (0%)
ADM SOCIAL 2/2 (100%) 0/2 (0%)
ADM EDUCATION 1/1 (100%) 1/1 (100%)
ADM COMMUNICATION 1/1 (100%) 1/1 (100%)
TOTAL 63/126(50%) 28/63(44%)

Table 1: Summary of Measurement Study

we analyzed the code of the mpCloud SDK and found that the pro-
cess it runs to receive messages from the cloud actually delivers
them to the target app through an intent broadcast targeting at an
action. This allows an attack app to easily intercept those messages.
Also, instead of declaring the receiver of the intent statically within
the app’s manifest file, the SDK actually dynamically defines the
receiver during the app’s runtime, which makes the receiver public.
And the app does not take extra measures to guard it either. As a
result, the receiver has been made public and any app can send mes-
sages to it. We implemented an end-to-end attack that successfully
exploited those flaws. Our findings were reported to mpCloud.

S. MEASUREMENT STUDY ON VULNER-
ABLE APPS

To understand the impacts of the problems discovered in our re-
search, we analyzed popular Android apps to study their individ-
ual vulnerabilities and the consequences once those flaws are ex-
ploited. Here we report what we found.

App collection. We downloaded 599 top free apps from the Google
Play store. From their manifest files, 255 were found to use GCM.
Also we collected from the Google Play store 3 apps subscrib-
ing mpCloud and 4 apps subscribing ADM. For the 255 GCM-
subscribing apps, we picked out those among the top 125 and also
within the categories of SOCIAL, COMMUNICATION, SHOP-
PING, FINANCE and HEALTH, and further manually added a few
well-known apps with a large number of downloads (more than 10
million) but did not make to the top 125 list, such as Google plus,
YouTube, Dropbox, and 3 apps subscribing UrbanAirship (UA).
All together, 63 apps, including those using GCM, ADM and mp-
Cloud, were inspected in our study.

Table 1 summarizes the number of apps studied and their re-
sults in each category, and Table 3 provides examples of vulnera-
ble apps, including their ranking/download information. Note that
for the apps in some categories, particularly FINANCE, we need
an account with related organizations to study their functionalities.
Under this constraint, we had to only work on those accessible to
us. For example, in the FINANCE category, we checked the apps
from Chase bank, Bank of America, PayPal and Google Wallet.

Vulnerabilities. For each of those 63 apps, we installed it on
our devices and monitored their operations using the ADB Log-
Cat tool [1], which recorded all the messages the app got from its
cloud. This logging was done on rooted phones, through setting the
"log.tag.GTalkService" property of its Google Play service (which
makes the service log all the GCM messages it gets) and modify-
ing related APIs for the ADM service. Note that all such messages



Category App name Rank #of download leaked contents

COMMUNICATION Facebook Messenger 3 100,000,000+ messages

COMMUNICATION Glide - Video Texting 55 5,000,000+ chat messages

SOCIAL Instagram 4 100,000,000+ comment

SOCIAL Twitter 15 100,000,000+ direct messages

SOCIAL Vine 40 10,000,000+ follow, comment

SOCIAL textPlus Free Text + Calls 98 10,000,000+ chat messages

SOCIAL LinkedIn 125 10,000,000+ invitation, messages

SOCIAL Google+ 331 500,000,000+ comment, plus - encoded by base64

FINANCE Chase Mobile 78 10,000,000+ alert messages : minimum balance, incoming/outgoing wire transfer, payment,
debit card transaction, ATM withdrawal, external transfer, direct/online/ATM de-
posit, notify hold, overdraft protection, etcetera.

FINANCE Bank of America 82 10,000,000+ alert messages : available balance, debit card/ATM deduction, low balance thresh-
old, money transfer, online bill payment, personal information update, irregular
debit card activity, etcetera.

FINANCE PayPal 141 10,000,000+ send money, buy something, receive money, get a request for money

HEALTH & FITNESS  Calorie Counter - MyFitnessPal 112 10,000,000+ comments, like

SHOPPING eBay 18 50,000,000+ watched items end alert(item name, price, bidding information), winning bid,
shipment, messages

ENTERTAINMENT Find My Phone 535 5,000,000+ messages from family, check-in info, help request, invitation, home address, loca-
tion of family members

Table 3: Examples of Vulnerable Apps
Category num Vulnerability(Section) vulnerable apps : . : : :
GCM/UA 56— GCM clond-device Tnk(31) 36(100%) push-messaging services, 1.nclud1ng the ,most .le.adl.ng ones, are not
GCM/UA 56  GCM C2DM/GCM code template(4.2) 10(18%) up to the task of safeguarding app users’ sensitive information.
mpCloud 3 mpCloud cloud-device link(3.2) 3(100)%
mpCloud 3 mpCloud on-device link(4.3) 3(100)%
ADM 4 ADM on-device link(4.3) 4(100)%

Table 2: Summary of Security Weakness

were confirmed to be exposed to the unauthorized app through the
vulnerabilities we found. This step just serves the purpose of ex-
tracting their content from the app. We also ran our attack app dur-
ing its registration, trying to find out whether it includes the vulner-
able C2DM/GCM code template. Among them, 10 apps turned out
to use the template, whose registration intents were intercepted by
our apps. The rest are all vulnerable to the exploit on their cloud-
device link (Section 3.1) or other threats. The security weaknesses
of those apps are summarized in Table 2.

Consequences. We further manually analyzed the logs of those
apps to understand the type of the information the adversary can
learn (through binding the victim’s registration ID to the attack de-
vice) or fake (through pushing falsified messages). It turned out
that among those apps, only Sina Weibo encrypts messages with a
symmetric key hard-coded in its app, which is very unsafe given
that all its apps share the same key, and others simply use plaintext
(sometimes, with the Base64 encoding). From the logs, we were
able to monitor the chats from Facebook Messenger, posts from
Google plus, etc. Also, apps in the FINANCIAL category leaks
alert messages including sensitive personal financial data such as
the user’s minimum/current balance, debit card usage, payment,
wire transfer activity etc. All alert messages are in plaintext with
the exact amount, receiver, last four digits of account and credit
card number and others. Moreover, Find My Phone, an app for lo-
cating and tracking phones of family members, exposes the exact
home address of every member in the victim’s family. Also leaked
out from the app are help requests and other private messages. All
together, 28 extremely popular apps were confirmed to expose sen-
sitive user data and most of them also allow the adversary to inject
security-critical information. More details of some examples are
provided in Table 3. The situations with other apps are less clear,
due to the challenges in fully understanding their semantics and
triggering all their operations related to push messaging. Never-
theless, the preliminary findings already point to the seriousness of
the problems we found. In the absence of proper protection, those
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6. PROTECTING CLOUD MESSAGING

Our findings point to the pervasiveness of security-critical flaws
in push-messaging services, which are very likely to be just a tip
of the iceberg. Given the complexity of these services and their
diversity, app developers often end up with little confidence in the
safety of their communication with their customers across different
cloud platforms (GCM, ADM, etc.). To improve this situation, we
developed Secomp (secure cloud-based message pushing), a simple
mechanism that establishes end-to-end protection across different
push-messaging channels. In this section, we describe our design
and implementation of the technique, and also our evaluation study.

6.1 End-to-End Protection

The design of Secomp is based upon the observation that apps in-
volving security-critical operations or sensitive data (e.g., the Face-
book app, Chase Mobile app, etc.) almost always need to authenti-
cate themselves or their users to their servers, which typically goes
through HTTPS, allowing the user to log into her account using
password or other credentials. So, the idea here is to leverage this
existing secure channel (HTTPS) and authentication mechanism
(e.g., password-based login) to establish a secret key between the
app and its server, which is later used to protect the confidentiality
and integrity of push-messaging communication with an authenti-
cated encryption scheme.

Figure 4 elaborates how Secomp works, where DIRECTCHANNEL
can be an HTTPS connection an app uses to log its user into the
app server and get the secret key K, Kygriry can be the devel-
oper’s public verification key embedded within the app, and the
ENCAU™ scheme used for “in-band” communication (through the
push cloud) can be AES in Galois/Counter Mode. This simple pro-
tection mechanism was implemented in our research into a pair of
SDKs that the developer can incorporate into her server-side code
and app, respectively. Whenever the app user is authenticated (us-
ing her password or a single-sign-on scheme) to the server through
an out-of-band HTTPS connection (a direct connection between
the app and its server, which is already there for login), the server
immediately generates K and sends it to the user through the con-
nection. For all the messages exchanged through the push cloud, K
is always used together with ENC*"™" to let the app and the server



1. Preliminaries:

— Let (KEYGEN, ENCA¥™" DECA¥™M) be an authenticated
encryption scheme, such that ENCA"*" and DEC*"™" guar-
antees both confidentiality and integrity.

— Let (KEYGEN', SIGN, VERIFY) be an unforgeable digital
signature scheme.

— The push message channel PUSHCHANNEL between the
app server and the app through push messaging service is
unprotected as shown in this paper.

— The direct communication channel DIRECTCHANNEL be-
tween the app and the app-server is authenticated and en-
crypted.

. SECOMP.KEYGEN:

e App server generates a key K using KEYGEN algorithm.

e App server generates a signing key Ksigy and the corre-
sponding verification key Kygpry using KEYGEN’. (This
operation is done once for all users).

. SECOMP.SHAREKEY:

e App server sends the app specific key K and a global
signature verification key Kvygriry to the app using
DIRECTCHANNEL.

. SECOMP.REGISTERAPP:

e App registers itself with a push-messaging service such as
GCM and receivers a registration ID ReglD.

e App sends this registration ID ReglD to the app server
using DIRECTCHANNEL.

e App server records the tuple (app’s identity, ReglD, K).

. SECOMP.PUSHMESSAGE (message), where message is the
push message that needs to be send to the app:

e App server encrypts the message with key K using
ENCA"*" and obtains ENCR" (message).
e App server sends ENCy

"™ (message) to the app using
PUSHCHANNEL.

. message <— SECOMP.RECEIVE:

Auth

e App receives the ciphertext ENC"™" (message).

e App decrypts the message using K to obtain message =
DECRU" (ENCR"™ (message)).

. SECOMP.BROADCAST (message):

e App-server signs the message message using key Kgign to
get the signature SIGNk,,, (message).

e App-server now broadcasts the message as before but in-
cludes the signature SIGNk,, (message) with the mes-
sage.

. SECOMP.BROADCASTRECEIVE:

e App receives these message message and a signature

SIGNk,,, (Mmessage).
e App  verifies the  signature  with  verifica-
tion key Kvgrry using  VERIFY  algorithm

VERIFYKy, ey (SIGNKg,, (Message)).

Figure 4: SECOMP Operations
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authenticate each other and protect the content of their messages
from other parties. Here are more details about the approach.

Secure channel establishment. Step 3 and 4 in Figure 4 show how
to set up an end-to-end secure push-messaging channel. The user
runs the app, which builds an HTTPS connection to let the user log
into the app server with her password or a third party single-sign-
on (SSO) scheme (e.g., a token from Facebook to get the user’s
identity). The server then sends back a secret key (embedded in the
cookie it set to the app) through the connection for follow-up au-
thentication and data encryption. After that, the app registers itself
with a push-messaging service (e.g., GCM) and delivers the regis-
tration ID to the server using an authenticated encryption channel.
In our research, we implemented a set of APIs within the SDKs
that wrap the GCM SDKs (Google Play Service) to support a con-
venient integration of those check-in operations into both an app
and its server-side code. Particularly for the existing apps using
GCM, their developers only need to use the wrapped SDKs and
slightly adjust the way they invoke the GCM APIs to activate the
Secomp protection. Later we discuss other design options to help
integrate our SDKs (Section 7). Specifically, in our implemen-
tation, once an app completes its login, the server runs the API
checkin to generate the key, log it together with the app’s iden-
tity, store the key within the HTTPS cookie and send it to the app
by setting the cookie through HTTPS. The app keeps the key in its
local storage (with the user’s session ID), which is utilized by other
APIs for encrypting or decrypting messages and checking their in-
tegrity. After the app delivers to the server its registration ID, the
server records the ID together with the app’s identity and key.

Secure communication. Using the secret key, the app and its
server encrypts their messages to protect their communication. In
our implementation, we adopted AES in Galois/Counter Mode, a
known secure and efficient authenticated encryption scheme, for
this purpose. Whenever the app or the server receives a message
from the other party, it decrypts the message and verifies its in-
tegrity. Step 5 and 6 in Figure 4 describe the operations. Within
our SDKs, such a message is created by secureMessage and
parsed/decrypted/verified by onReceiveMessage.

Sometimes, the app server needs to broadcast messages to all
apps. Such messages are typically public but their integrity and
authenticity still need to be protected. Using the secret key here is
no longer efficient, due to the need of generating a large number of
authentication tags, one for each app. What we did in our research
is simply turning to a public-key scheme, as described in Step 7 and
8 in Figure 4. The server signs the message using a secret signing
key and each app checks the message with a public verification key,
which either comes from the certificate embedded within the app or
from the server during the establishment of the secret key.

Security analysis. The security of Secomp can be directly estab-
lished upon its underlying security primitives. Specifically, the key
K is shared between the app server and the app through an authenti-
cated and encrypted channel DIRECTCHANNEL that is established
for login authentication purposes. All unicast messages sent to the
app through PUSHCHANNEL are encrypted with K using an au-
thenticated encryption scheme (KEYGEN, ENC**" DEC**™"). Now,
the messages sent by the adversary knowing the registration ID
RegID would be detected and discarded, as he does not have the
key K. We do not guarantee privacy for broadcast messages, so
we only make sure that the adversary is not able to compromise
the integrity of broadcast messages protected by the unforgeable
digital signature scheme. Under this scheme, the attacker may still
reorder messages or send invalid messages to squander the recip-
ient’s resources. These threats, however, can be easily addressed.



Specifically, the app server can add a sequence number to specify
an order for messages. Also, once invalid messages are found, the
app can talk to the server through DIRECTCHANNEL, which can
then contact the cloud provider to investigate the problem. In Sec-
tion 6.3, we further show that this simple scheme defeats all the
attacks we discovered.

6.2 Misbinding Detection

Although the secure channel established between the app and its
app server protects the confidentiality and integrity of their com-
munication, its availability can be hard to guarantee. The problem
here is the threat of the misbinding attack, which can be caused
by exploiting the vulnerable on-device link or cloud-device link.
Such an attack could block the right app from getting its messages
(Section 3.1 and Section 4.2). To detect it, we built into Secomp a
probing mechanism, which works as follows:

e First, the app server sets a new challenge field on a message, gen-
erates a random number N, encrypts it together with the message
using the app’s secret key and pushes this message to the app.

e The app receiving the message is supposed to decrypt it and sends
back to the server an encrypted version of N 4 1.

e Then, the app server verifies the response and reports to the push-
messaging service if the result is incorrect.

The whole idea of this probing mechanism is to help the server
find out whether the app can still get the message pushed to it. A
problem is that the adversary can act as a MitM (Section 4.2), pass-
ing the challenges received by his device to the malicious app on
the victim’s target device, which in term injects the message to the
target app for generating the correct response. The catch here is
that the adversary needs to know exactly when to forward the mes-
sage. Otherwise, he either has to do this all the time, sending every
message to the target device, or gets caught when he stops doing
that. Therefore, our strategy is to generate a challenge at a random
moment: each time when a message to be pushed to an app, its
server flips a random coin, with a certain probability (which can be
tuned by the developer) to set the challenge field, asking the app to
come up with a response. Since this field is within the encrypted
content, the adversary cannot determine when to forward the mes-
sage. As a result, he cannot effectively prevent the legitimate user
from getting her messages without being detected.

6.3 Evaluation

To understand how Secomp performs in practice, we built a GCM-
subscribing app and its app server to integrate the Secomp SDKs.
This app’s login operations has been taken care of by the Google
SSO. Incorporating our SDKs turned out to be rather straightfor-
ward: all we did is just invoking onReceiveMessage when the
app receives the message from GCM, and secureMessage to
prepare and send out an upstream message. On the server side, the
API checkin was used to generate the secret key and send it to
the app, store_regid for handling the registration ID from the
app and secure_message for preparing a message before hand-
ing it over to the connection server. Here we report an evaluation
of its effectiveness in defending against the attacks through GCM
and its performance impact.

Effectiveness. We ran the app against all the GCM-related attacks
in Section 3 and Section 4. Even though the adversary was still able
to hijack the app’s registration ID to bind it to the attack device or
use it to inject messages to the apps, due to the underlying GCM
vulnerabilities, our app was found to effectively fend off all those
attacks. Specifically, all the messages that came from the adversary
was easily identified through the authenticated encryption scheme
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and then dropped by onReceiveMessage. Also, through the
random probing, the app server immediately identified the attack
based on exploiting the GCM authentication problem (Section 3.1),
since the adversary in this case could not come up with the right
response by himself and was not able to play the MitM to let our
app do that. More complicated here is the misbinding attack using
PendingIntent (Section 4.2), in which the adversary had the
capability to talk to the target app and could therefore relay the
challenge from the server to the target. However, the adversary had
to keep on doing that to avoid getting caught: once he stopped,
our app server quickly found out the problem after pushing a few
messages, as observed in our experiment.

send message mean/sd(ms)  receive message delay mean/sd(ms)

baseline  2.88/10.33 0/0
Secomp  6.63/11.05 3.63/4.87
delay 3.75/4.28 3.63/4.87

Table 4: Performance of Secomp (test 200 times). Note that in
the case of the baseline, the receiving method delivers a message
instantly; for Secomp, a very small overhead is introduced for
decrypting the message, checking its integrity and restore the
data

Performance. We further measured the performance of the app
by comparing it with a baseline, a version using unprotected GCM
SDKs. Our evaluation focused on the delay caused by receiving
and sending messages: for the registration process, it is identical
to what happens to the baseline, since our current design com-
bines key exchange with cookie setting and therefore does not in-
cur any extra cost. As we can see from Figure 4, the overheads
caused by sending and receiving messages are low (within 10 ms
per message), which was completely caused by AES (in the Ga-
lois/Counter Mode) encryption and decryption (with a message size
of 256 bytes). In Appendix A, we present our measurement of this
cost over messages of different sizes.

7. DISCUSSION

We report our security analysis on push-messaging services in
the paper, which reveals critical security weaknesses inside the
most popular services (e.g., GCM, ADM, etc.), enabling an unau-
thorized party to lock out the legitimate user of a device, wipe out
her data, silently install/uninstall any apps and steal her sensitive
messages. Given the complexity of such services, we believe that
what we found is nothing more than a tip of the iceberg. Specifi-
cally, we only inspected the cloud-device link and on-device link,
and have not yet looked into the interactions between connection
servers and the developer’s app server, and the way that the app
server directly talks to the developers’ apps. Even for the “links”
we studied, our research is still incomprehensive, missing some
important services such as Apple Push Notification Service. More
effort is certainly needed to dig deeper on this subject to better un-
derstand the security risks in push messaging services and mobile
clouds in general.

On the defense side, our current design and implementation of
Secomp is still preliminary. Particularly, we built our SDKs as a
wrapper of the GCM SDKs, making it convenient for the devel-
opers to retrofit them into their apps: all they need to do is just a
small adjustment of the APIs the apps call to activate the new pro-
tection. On the other hand, this treatment makes our tool kit less
general, requiring a new implementation for a different service. We
are debating on other options, including a design that allows the de-



veloper to build into her app no matter what kind of push-message
service it subscribes.

8. RELATED WORK

Mobile cloud security. Cloud computing has been used to pro-
tect mobile devices, including malware scanning [28] and dynamic
analysis of apps [29]. On the other hand, the platform is also abused
by the adversary, who uses push-messaging services as a command
and control channel for botnets [5, 35]. However, little has been
done to understand the weaknesses in protecting the services pro-
vided by existing mobile clouds and the consequences once they
have been exploited, not to mention any concrete effort to enhance
the protection of mobile cloud services, push messaging in partic-
ular, toward which we made the first step in our research.

Security implications of Android IPC. Extensive studies have
been done on the security of Android Inter-Process Communication
(IPC), including the intent broadcasting and service invocation with
regard to an action. Examples include the prior work that identifies
the security risks in the IPC channel [21, 24, 32, 23], the permission
re-delegation problems [25], and the data leak and pollution issues
in content providers [36, 33]. Although the security flaws we dis-
covered on the on-device link are often related to the known IPC
vulnerabilities (e.g, intent broadcast), which enables our attack app
to intercept messages of a cloud-mobile service, oftentimes, such
an exposure itself does not directly reveal sensitive user informa-
tion. Instead, we studied how to use the capability it discloses,
the PendingIntent object, to collect confidential user data and
inject security-critical commands to the victim’s apps. Up to our
knowledge, this is the first attempt to utilize the object for attack-
ing real systems. Also importantly, our work demonstrates the seri-
ous security risk that comes with the common practice of using the
PendingIntent to provide the origin of an IPC request, which
can easily lead to other vulnerabilities.

Also, techniques have been developed to mitigate the security
problems in Android IPC, finding the vulnerabilities through a static
analysis [21, 27, 26] or a dynamic analysis [22, 20]. These tech-
niques can help detect some vulnerable IPC usages, which we show
in our study still widely exist in popular apps and mobile-cloud ser-
vices. However, we are not aware of any prior effort to secure the
end-to-end communication between an app and its server across the
underlying mobile cloud service, which can have those known vul-
nerabilities and the new ones found in our research, and is beyond
the control of app developers who need to use it.

Authentication in web applications. The problems in web appli-
cations’ authentication mechanisms have been extensively studied
recently [19, 30, 17]. For example, prior research reveals serious
logic flaws in popular single-sign-on systems [31]. New techniques
for mitigating the security threats related to those flaws and other
authentication problems have also be developed [18, 34]. Our re-
search made the first step in understanding the authentication is-
sues in mobile clouds, particularly the push-messaging services
they provide, which has not been done before. A unique feature
of those services is that they authenticate their apps without the
user’s intervention (e.g., entering her credentials), which makes the
authentication process more difficult to analyze.

9. CONCLUSION

In this paper, we present the first security analysis on popular
push-messaging services. Our research shows that these services
are highly error-prone, allowing unauthorized parties to bind a tar-
get app’s registration to an attack device or inject arbitrary mes-
sages to the app, both locally and remotely. As a result, the adver-
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sary can intercept sensitive user messages (Facebook posts, Skype
messages, bank account balance, etc.) or even command Android
service apps to stealthily install/uninstall any apps on the target de-
vice, lock out its legitimate user or wipe out her data. The prob-
lems were found to affect many popular apps, such as Facebook,
Google Plus, Skype and PayPal/Chase apps, bringing in serious se-
curity threats to billions of Android users. Fundamentally, they
come from questionable practices in developing those services, in-
cluding weak server-side authentication and access control, and the
insecure use of the IPC channels and PendingIntent. To mit-
igate those threats and help app developers protect their commu-
nication over those services, we designed and implemented a new
technique that establishes an end-to-end secure channel on top of
existing push-messaging services.

Given the critical role played by push-messaging services in the
mobile ecosystem and their complexity, we expect that more effort
will be made to further the understanding of their security implica-
tions, and improve our technique to safeguard such channels.
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APPENDIX
A. COST OF PERFORMING ENCRYPTION
ON MOBILE DEVICE

Because mobile device has limited battery and computation power,
we further measure the cost of doing encryption and decryption on
a mobile device. Figure 5 shows the cost of performing encryption
and decryption on a mobile device. For each message length, we
test 1024 times and calculate the mean value. As we can see, for a
message of 4096 bytes (maximum message size allowed by GCM),
it takes less than 10ms using AES in Galois/Counter Mode
on Nexus 7 with Quad-core 1.5 GHz Krait CPU.

AES Galois/Counter Mode
Encryption/Decryption cost on Nexus 7
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Figure 5: Average cost of performing encryption and decryp-
tion on mobile device.
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