
iDEA: Static Analysis on the Security of Apple Kernel Drivers
Xiaolong Bai

bxl1989@gmail.com
Orion Security Lab, Alibaba

Group

Luyi Xing∗
luyixing@indiana.edu
Indiana University

Bloomington

Min Zheng
zhengmin1989@gmail.com
Orion Security Lab, Alibaba

Group

Fuping Qu
fuping.qfp@alibaba-inc.com
Orion Security Lab, Alibaba

Group

ABSTRACT
Drivers on Apple OSes (e.g., iOS, tvOS, iPadOS, macOS, etc.) run
in the kernel space and driver vulnerabilities can incur serious
security consequences. A recent report from Google Project Zero
shows that driver vulnerabilities on Apple OSes have been actively
exploited in the wild. Also, we observed that driver vulnerabilities
have accounted for one-third of kernel bugs in recent iOS versions
based on Apple’s security updates. Despite the serious security
implications, systematic static analysis on Apple drivers for finding
security vulnerabilities has never been done before, not to mention
any large-scale study of Apple drivers.

In this paper, we developed the first automatic, static analysis tool
iDEA for finding bugs in Apple driver binaries, which is applicable
to major Apple OSes (iOS, macOS, tvOS, iPadOS). We summarized
and tackled a set of Apple-unique challenges: for example, we show
that prior C++ binary analysis techniques are ineffective (i.e., fail-
ing to recover C++ classes and resolve indirect calls) on Apple
platform due to Apple’s unique programming model. To solve the
challenges, we found a reliable information source from Apple’s
driver programming and management model to recover classes,
and identified the unique paradigms through which Apple drivers
interact with user-space programs. iDEA supports customized, plug-
gable security policy checkers for its security analysis. Enabled by
iDEA, we performed the first large-scale study of 3,400 Apple driver
binaries across major Apple OSes and 15 OS versions with respect
to two common types of security risks – race condition and out-of-
bound read/write, and discovered 35 zero-day bugs. We developed
PoC and end-to-end attacks to demonstrate the practical impacts
of our findings. A portion of the bugs have been patched by re-
cent Apple security updates or are scheduled to be fixed; others
are going through Apple’s internal investigation procedure. Our
evaluation showed that iDEA incurs a low false-positive rate and
time overhead.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3423357

KEYWORDS
Apple; Kernel Drivers; iOS; iPadOS; tvOS; macOS; Static Analysis;
Vulnerability Detection

ACM Reference Format:
Xiaolong Bai, Luyi Xing, Min Zheng, and Fuping Qu. 2020. iDEA: Static
Analysis on the Security of Apple Kernel Drivers. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security (CCS
’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3372297.3423357

1 INTRODUCTION
The Apple OSes, i.e., tvOS, iOS, iPadOS, watchOS, macOS, feature
a hybrid kernel called XNU (an abbreviation of “X is Not Unix”),
which includes network stacks, IPC mechanisms, device drivers, etc.
Among them, device drivers act as a bridge between software and
hardware (e.g, the camera, microphone, BLE devices, USB, speaker,
sensors, etc.).
Security risks with Apple drivers. Since drivers on Apple OSes
(called Apple drivers in this paper) generally run in the kernel space,
vulnerabilities found in drivers can have serious security impacts:
exploiting driver vulnerabilities on Apple OSes enables a malicious
user-space application to execute arbitrary code or read/write ar-
bitrary memory address in the kernel space, or even completely
control Apple OS kernel [43]. By examining Apple’s security up-
dates [8] from iOS 8 through the recent iOS 13.4.1, we found there
are 74 CVEs related to Apple drivers, which account for approxi-
mately one-third of all 231 reported Apple kernel vulnerabilities.
In the wild, unfortunately, recent evidence shows that Apple driver
vulnerabilities have been actively exploited to attack real-world
users. In August 2019, a report from Google Project Zero [44] found
that, for a few years, malicious websites have been silently installing
monitoring implants on the iPhones of website visitors. Among all
14 vulnerabilities that have been exploited, four are driver vulner-
abilities that give the malicious websites kernel privilege on the
victims’ iPhones. With the kernel privilege, the adversary can take
full control of the victim device, such as to install malicious apps,
steal users’ private data like messages and photos, inspect applica-
tions’ internal data, etc. Further, Apple driver vulnerabilities have
also seen serious usage in APT attacks: for example, an iOS mal-
ware called Pegasus was found to be exercised against high-value
victims as far back as 2016 [47].

Although the community has seen automatic tools [37, 60] for
Apple kernel analysis, these tools cannot be easily applied to Apple
drivers. Prior works from industry performed analysis on iOS or
macOS drivers [27, 28, 85], which, however, largely relied on man-
ual reverse engineering and OS-specific heuristics. For example,
Ryuk [85] relied on debug symbols only available in macOS dri-
vers, and its security analysis is mainly manual. In the absence of a

https://doi.org/10.1145/3372297.3423357
https://doi.org/10.1145/3372297.3423357

general, automatic analysis technique, these approaches are rather
time-consuming, even error-prone and do not scale since recent
Apple OSes all come with a plethora of drivers (e.g., more than 170
drivers on iOS, 180 on iPadOS, 350 on macOS, see Section 5). Also,
as Apple devices (iPhone, iPad, Apple TV, Mac, etc.) increasingly
adopt new or updated peripheral devices (new-generation cameras,
speakers, microphones, graphic devices, sensors, etc.), device dri-
vers are always updating. Despite the serious security impact, we
are unaware of any systematic, automatic security analysis tech-
niques that are general to all major Apple OSes (iOS, tvOS, macOS,
iPadOS, etc.), not to mention any large-scale study on Apple drivers.
Newchallenges. Apple drivers are programmed in C++ but usually
do not come with source code, debug symbols (symbols only avail-
able for a portion of drivers on macOS), or RTTI information [3].
Hence, Apple driver analysis has to tackle stripped binaries (no
debug symbols) whose C++ abstractions (e.g., classes, member func-
tions, inheritance hierarchies) are lost in compilation, the recovery
of which is essential for an automatic analysis [49, 59, 67]. How-
ever, prior static analysis for C++ binaries [31–33, 49, 59, 67] are
ineffective in analyzing Apple drivers due to Apple’s unique driver
programming model (detailed below). Also, prior techniques for dri-
ver analysis on non-Apple platforms cannot work for Apple due to
the Apple-unique driver management (e.g., driver interactions with
user space), programming model, and even availability of source
code (see Section 5.2). For example, driver analysis on Linux, such
as Dr. Checker [51], can leverage their C-language source code,
while Apple drivers are closed-source and programmed in C++.
In the following, we summarize the major challenges in the static
analysis of Apple drivers.
• Recovering C++ classes. Apple driver features a unique pro-

gramming model: Apple kernel and drivers can instantiate objects
of driver C++ classes simply using the class name (by calling ker-
nel API OSMetaClass::allocClassWithName(), see Section 2.2).
This is a dynamic allocation feature, essential for Apple driver
management at runtime (Section 2.2), but introducing a problem
to driver analysis: state-of-the-art techniques for recovering C++
classes [49, 59, 67] (recovering vtables, inheritance hierarchies, etc.),
essential for automatic C++ binary analysis (e.g., resolving indirect
calls and building control-flow graphs), are made ineffective.

There are two reasons for the issue. First, constructors of C++
classes are often removed from Apple driver binaries since class in-
stantiation can leverage the above general kernel API using a class
name, without calling constructors of specific classes. This, how-
ever, renders prior constructor-analysis-based approaches [59, 67]
ineffective: they identify constructors in the binary, which further
help identify inheritance hierarchies, vtables, etc. Second, recent
approaches rely on the identification of vtable assignment through
specific code patterns [31–33, 49, 59], which helps recover class hi-
erarchies and identify assigned vtables for constructed objects (so to
resolve indirect calls on the objects). However, these approaches are
ineffective for Apple since Apple kernel leverages a runtime map
(with vtables of all driver classes, see MetaClassmap in Section 2.2)
to select the right vtable and assign it to an object. Without such
runtime information and analysis of Apple’s dynamic allocation
mechanism, prior approaches cannot work on Apple platforms.

Due to the above reasons, in our evaluation of the state-of-the-art
workMarx [59] (designed to recover C++ classes and resolve virtual-
function calls) on a set of 362 Apple driver binaries with 8,217
classes, Marx incurs a high false-positive rate in recovering classes
(34% false positives compared to the 100% precision of our tool to
be introduced in this paper); Marx resolves only 20% of indirect
calls compared to the 66% resolved by our tool (see Section 5.3).
• Finding driver entry points. Entry points are the interface func-

tions that an Apple driver exposes to the user-space programs (see
Section 2.3) which are essential starting points of driver analysis
and bug detection [51]. On Windows and Linux, how to find entry
points is well known: they are located in specific data structures, e.g.,
WDF_DRIVER_CONFIG [54] and file_operations [51]; these data
structures can be located in certain functions used to register dri-
vers to the kernel (i.e., WdfDriverCreate [55] and register_ch-
rdev [51]). However, there is no known, public approach that en-
ables systematic discovery of entry points for Apple drivers since
Apple has unique, proprietary driver interface management to gov-
ern how drivers interact with user-space programs (see Section 2.3).
Our work. In this paper, we present iDEA (an alias for Apple Driver
Security Analyzer), an automatic, static security analysis tool for
Apple driver (binaries), which is applicable to major Apple OSes –
iOS, tvOS, macOS, and iPadOS. iDEA tackles the new challenges
(summarized above) and is capable of inter-procedural analysis
on Apple drivers, i.e., control-flow and data flow analysis starting
from Apple-unique driver entry points. iDEA is implemented as
a modular framework, where customized security policies can be
specified and checked for identifying driver vulnerabilities.

To solve the challenges in Apple driver analysis, we found that
one should find a reliable information source from Apple’s driver pro-
gramming and management model to recover classes, and identify
the unique paradigms how Apple drivers interact with user-space
programs. In particular, we demystified Apple’s unique driver pro-
grammingmodel, driver registration and interfacemanagement (see
Section 2), which we first systematized through analyzing Apple’s
driver development framework I/O Kit [5] and studying real-world
Apple drivers. Specifically, we show that each driver registers infor-
mation of its class (name, inheritance hierarchy, vtable, size, etc.)
to the kernel; such information is essential since it enables Apple
kernel to conveniently instantiate the driver’s class through its
class name at runtime (see Section 2). Such an essential registration
procedure provides us a reliable source to recover driver classes:
just like how the kernel gathers the class information, our analy-
sis follows the same procedure to recover classes (see Section 3.1).
Further, we identified two general ways for Apple drivers to pro-
vide interfaces to user-space programs and how Apple organizes
the interfaces. We show that finding these interfaces from driver
binaries is the starting point of static driver analysis, enabling us
to build an inter-procedural control flow (Section 3.2).

We applied iDEA to perform a large-scale security analysis on
3,400 Apple driver binaries across 15 OS versions, ranging from
the earlier iOS 8, macOS 10.13, iPadOS 13.1, and tvOS 13.2, to their
latest versions (Section 5). With two security policy checkers we
implemented on iDEA for identifying common driver security risks,
including race condition and out-of-bound read/write (Section 4),
we successfully detected more than 40 previously unknown driver

vulnerabilities. This was done with high precision (92%) and low
time overhead (e.g., analyzing all 362 drivers on macOS 10.15.6
within 14 hours).

To demonstrate the practical impacts of the vulnerabilities we
found, we implemented PoC exploits: e.g., exploiting one vulnera-
bility, an unpriviledged user-space program on macOS 10.15.4 (the
latest at the time of the finding) successfully gains root privilege
and runs arbitrary code in the kernel space (see video demo [2]).
We reported all vulnerabilities to Apple, who acknowledged our
findings, and issued CVEs. With our reports, Apple has fixed a few
vulnerabilities in early 2020, and more fixes are scheduled.
Contributions. We summarize the contributions as follows:
• iDEA is the first automatic, static bug finding tool for Apple
driver binaries that applies to major Apple OSes. We identified new,
unique challenges in Apple driver analysis and developed novel,
automatic, systematic methods to address them.
•We show that iDEA supports pluggable security policy checkers;
we developed two checkers on iDEA which are capable of large-
scale security analysis on Apple drivers.
• We performed the first large-scale security analysis on Apple
driver binaries, which led to the discovery of 35 zero-day vulner-
abilities. We implemented a few proof-of-concept exploits, which
demonstrated serious security implications. We plan to release the
source code of iDEA (15,000 lines of source code in Python) [2].
• Our evaluation shows iDEA incurs a low false positive rate and
time overhead.

2 BACKGROUND
This section introduces (1) the mechanism Apple kernel uses to
facilitate driver registration, which is essential for its runtime driver
management, and (2) how Apple drivers interact with user-space
programs.

2.1 Driver Programming Model.
Apple has a unique model for regulating driver programming and
how driver functions are exposed to the kernel and user space. In
the model, each driver is implemented as a C++ class – also called
driver class in this paper; correspondingly, we simply call the driver
class’ instance driver instance. The driver class must inherit a kernel
class IOService (defined in Apple’s I/O Kit [5], a kernel frame-
work for Apple driver programming), and accordingly implement
a set of virtual functions inherited (Table 1). 1 These functions are
called by the kernel and referred to as driver-callbacks: e.g., the
kernel calls start() on a driver instance to start the driver after it
is instantiated by the kernel. In addition, Apple does not allow dri-
ver classes to define customized constructors/destructors; instead,
drivers adopt pre-defined marcos OSDefineDefaultStructors [4]
(defined in I/O Kit) to generate constructors/destructors. Note that
the constructor will be removed from driver binary if there is no
explicit invocation in the driver’s code space.

A driver binary (in Mach-O format [83]) can bundle multiple
drivers with their driver classes and utility implementation. Also,
a driver binary is packaged with a configuration file (in plist for-
mat [6]), which specifies each driver’s name, class name, and the
types of hardware devices it handles (e.g., ethernet adapter, human
1C++ on Apple platforms mandates single inheritance.

Table 1: Sample driver-callbacks
Callback Name Description

start() the driver is about to start
stop() the driver is about to stop

initWithTask() the driver is about to be initialized
setProperties() set the properties of the driver
newUserClient() create the driver’s UserClient instance

interface device, USB storage device, etc.). Such information enables
the kernel to know which driver to use when handling a certain
device and what its class is when instantiating a driver instance.
Installed driver binaries and their configuration files can be found
under /System/Library/Extensions on Apple OSes.

2.2 Registering Drivers to Apple Kernel
All drivers with their driver class information need to be registered
to the kernel. To access a hardware device, e.g., a plugged USB
key, or the built-in microphone, the kernel first figures out which
driver to use (based on hardware type), then leverages a driver
instance of the driver to operate the device (by calling methods
on the instance). The kernel instantiates driver instances when a
driver binary is loaded to the kernel, and maintains all instances in
a runtime pool, ready to use (see Figure 2).

To facilitate the management and easy instantiation of driver in-
stances, especially when a driver is on demand (e.g., a new USB key
is inserted, and, thus, a new IOUSBDevice driver instance is needed
to access the key), Apple kernel maintains driver class information
(class name, size, inheritance relationship, etc.). Based on such infor-
mation, the kernel can easily instantiate a driver instance through
a class name (by calling OSMetaClass::allocClassWithName()
kernel API, see details below). This is extensively used in Apple
kernel and driver programming.
Registering class information through InitFunc. To facilitate
the registration of driver class information to the kernel, the Apple
driver compiler places a special section called “__mod_init_funcs”
in a driver binary. This section contains a list of function point-
ers to driver initialization functions, called InitFuncs, with each
InitFunc corresponding to a particular driver class in the binary.
InitFuncs are executed automatically by the kernel when the binary
is loaded at runtime, to register driver class information to the
kernel (see an example below). Specifically, each InitFunc wraps
the information of a driver class into an object of a MetaClass –
a subclass that inherits from the kernel class OSMetaClass. Each
InitFunc/driver class corresponds to a particular MetaClass (e.g.,
IOSurfaceRoot::MetaClass for the driver class IOSurfaceRoot,
see the example below).

At runtime, the kernel maintains a map of MetaClass objects
for all drivers registered to the kernel. These objects enable Ap-
ple kernel to easily instantiate driver (class) instances through the
aforementioned API allocClassWithName() (using a class name).
Specifically, to create an instance of a certain driver, the API inter-
nally finds the corresponding MetaClass object from the map, and
invokes its MetaClass::alloc() (a virtual function implemented
in each MetaClass), which creates the driver instance. To create a
driver instance, MetaClass::alloc() internally allocates memory
for the instance based on the size of the driver class, and assigns a
vtable to the instance.
An example of InitFunc. Figure 1 illustrates an InitFunc, which
creates a MetaClass object. Specifically, register X0 (Line 1-2) holds

Table 2: Names and descriptions of user-entries
Name Description Corresponding system APIs

externalMethod() provide methods to user-space programs IOConnectCallMethod
getTargetAndMethodForIndex() provide methods to user-space programs (legacy user-entry) IOConnectCallMethod

getAsyncTargetAndMethodForIndex() provide methods that return results asynchronously (legacy user-entry) IOConnectCallAsyncMethod
getTargetAndTrapForIndex() similar to getTargetAndMethodForIndex (legacy user-entry) IOConnectTrapX

clientMemoryForType() share memory with user-space programs IOConnectMapMemory
registerNotificationPort() allow user-space programs to register for notifications IOConnectSetNotificationPort

setProperty() set runtime property of the userclient IOConnectSetCFProperty
clientClose() stop using the userclient IOServiceClose

/* Allocate a driver object */
ɠ BL __ZN8OSObjectnwEm

/* Store the address of driver class’s vtable
(0xFF…8C30) into the driver object */
ɡ ADRP X8, #0xFF…8000
ɢ ADD X8, X8, #0xC30
ɣ STR X8, [X0]

/* Load the address of an uninitialized
MetaClass object into the 1st argument */
1. ADRP X0, #0xFF…8000
2. ADD X0, X0, #0x5C8

/* Load the address of class name string
“IOSurfaceRoot” into the 2nd argument */
3. ADRP X1, #0xFF…7000
4. ADD X1, X1, #0xB2E

/* Load the address of parent class’s static
MetaClass object into the 3rd argument */
5. ADRP X2, #0xFF…1000
6. ADD X2, X2, #0x688

/* Store class size into the 4th argument */
7. MOV W3, #0x1F0

/* Initialize the MetaClass object,
save into kernel’s MetaClass object map */
8. BL __ZN11OSMetaClassC2E…

/* Store the address of MetaClass vtable
(#0xFF…291F0) into the initialized object */
9. ADRP X8, #0xFF…29000

10. ADD X8, X8, #0x1F0
11. STR X8, [X0]

······
······

IOSurfaceRoot::MetaClass::alloc()

······
······
······

0xFF…8C30:
IOSurfaceRoot’s vtable

0xFF…291F0
IOSurfaceRoot::MetaClass’s vtable

IOSurfaceRoot::MetaClass::alloc()

InitFunc

Figure 1: An example of InitFunc and its MetaClass

a pointer to the uninitialized MetaClass object (a static object in
the binary’s data section); register X1 (Line 3-4) holds pointer
to the string of driver class name; register X2 (Line 5-6) holds
pointer to the static MetaClass object of the driver class’ par-
ent class; register W3 holds the size of the driver class; taking
X1, X2 and W3 as arguments, at Line 8, InitFunc calls constructor
OSMetaClass::OSMetaClass() (through BL instruction) to instan-
tiate the MetaClass object pointed to by X0. After instantiation,
at Line 9-11, the MetaClass’s vtable is assigned to the (starting
address of the) MetaClass object. In Section 3, we will elaborate
on our analysis on InitFunc to recover driver class information,
including its vtable used by MetaClass::alloc() for instantiating
the driver class.

2.3 Interacting with User-space Programs
A driver with its driver class and functions runs in the kernel space
and is accessible by the kernel, but it is not directly exposed to
user space programs. To serve user-space requests, a driver class
typically has a companion class, called UserClient, that acts like its
delegate and is exposed to the user space (through system API calls,
see below). A driver’s UserClient (class) inherits from a generic
class IOUserClient (also defined in I/O Kit) and implements a set
of virtual functions inherited, as listed in Table 2. We call these
functions user-entries since although they run in the kernel space
they are exposed to user-space programs (through a set of system
APIs) for accessing driver functionalities.

Figure 2 illustrates the typical process when a user-space pro-
gram interacts with a driver through its UserClient. First, the (user-
space) program obtains a handle to an instance of the driver in need
(IOUSBDevice). This is through a systemAPI call (IOServiceGetMa-
tchingService) with the driver class name “IOUSBDevice" spec-
ified; in response, the kernel finds the driver instance from its
runtime information pool that maintains instances of all drivers
registered and returns its handle (see Section 2.2).

I/O
Kit

externalMethod(…){…}

clientClose(…){…}

 system
 API

 system
 call

UserClient instanceKernel SpaceUser Space

ɠ

ɡ

driver 
instance

ɢ

ɣ

pool of driver  
instances

Hardware

/* Get handle to a driver instance */
mach_port_t driver_handle =
IOServiceGetMatchingService(0,
 IOServiceMatching(“IOUSBDevice"));
/* Ask the driver to create a userclient,
 and get its handle */
mach_port_t userclient_handle;
IOServiceOpen(driver_handle, …,
 &userclient_handle);
int selector = 4;
uint64_t scalarInput[1] = { … };
/* “invoke” method of the userclient */
IOConnectCallMethod(userclient_handle,
 selector, scalarInput, …);
/* close connection to the userclient*/
IOServiceClose(userclient_handle);

Processes

newUserClient(…)
{ … }

create

Figure 2: The interactions between user-space programs and
drivers

Then (step 2○), using the handle, the user-space program obtains
another handle to the UserClient instance of the driver. This is
through a system API call (IOServiceOpen); in response, the kernel
calls newUserClient on the driver instance, which instantiates a
UserClient object (of class IOUSBDeviceUserClient).

To access the driver using the UserClient handle, the user-space
program can trigger a user-entry through a particular system API
(see Table 2). Then, a user-entry can further invoke functions of the
driver instance or implement driver functionalities itself. An exam-
ple is shown in Figure 2 that triggers a user-entry externalMethod
(step 3○). Specifically, after system API IOConnectCallMethod is
called from the user-space program, the kernel invokes externalMe-
thod on the UserClient instance. Note that externalMethod uses
the selector, an argument specified in the system API call, to select
(execute) specific functionality the user space requests (e.g., GetDe-
viceInformation). To fulfill the request, externalMethod can opt for
a few strategies: (1) invoke functions of the driver instance; (2) fulfill
the functionality itself; and (3) return a function pointer of a User-
Client-internal function to the kernel – the kernel will then invoke it.
Also note that legacy UserClient may have get*Target*ForIndex
user-entries (Table 2), which operate similarly to externalMethod.
InitFunc for UserClient. Like driver instances, a UserClient in-
stance also needs to be created at runtime on demand (see Figure 2).
Hence, just like a driver that has a corresponding InitFunc for the
kernel to manage the class information and easily instantiate its in-
stance (through a name), each UserClient has its InitFunc as well.
Besides, driver developers may define other classes that inherit from
kernel classes (e.g., OSData, OSDictionary, OSSet, etc.) defined in
I/O Kit to handle data structures. These classes also come with cor-
responding InitFuncs in driver binaries. Section 3.1 will show our
analysis on InitFuncs to recover classes from driver binaries. Fig-
ure 10 in Appendix outlines the inheritance relationship between
driver related classes, including driver classes, UserClients, and
kernel classes defined in I/O Kit. Note that all the classes have the
same ancestor (OSMetaClassBase [19]).

3 ANALYSIS DESIGN
Overview. iDEA is an automatic security analysis framework that
detects security bugs in Apple drivers using pluggable security
policy checkers. To this end, iDEA first builds an inter-procedural
control-flow graph (ICFG) starting from each entry point of a driver.
iDEA then employs a set of pluggable security policy checkers
which identify the policy violation along the control flow and raise
warnings.

…

Warning

iDEA

Phase III: Identify  
objects

Phase IV: Resolve  
indirect calls

object 
types

call  
graph

Traverse CFG

Phase I: Recover  
classes

Driver
Binary

TAC SEC

race
condition
checker

Policy 
Engine

OOB
checker

Phase II: Locate  
entry points

Class A
vtable

hierarchy
···

Class B
vtable

hierarchy
···

Type I
0xffff···

···
···

Type II
0xffff···

···
···

Figure 3: The analysis phases of iDEA

The general architecture of iDEA is outlined in Figure 3. iDEA
first builds the ICFG in four phases. Phase I recovers driver class
information (vtable, inheritance hierarchy, etc.) that is lost in com-
pilation, a step needed for resolving indirect calls in C++ bina-
ries [31–33, 49, 59, 67] (Section 3.1). This is done in our study by
leveraging the mechanism by which Apple drivers are registered to
the kernel, which is demystified in our study (Section 2.2). Phase II
then locates all entry points of a driver in the binary since they are
essential starting points of driver analysis (Section 3.2). For the first
time, our study summarizes two types of entry points for Apple
driver analysis and shows how they can be found. Starting from
each entry point, iDEA traverses the driver to generate the ICFG,
which tackles the challenges for identifying (the types of) driver
class objects (Phase III) and resolving their virtual function calls
(Phase IV). This incurs new challenges since the types and vtables
of many objects cannot be identified using known approaches such
as constructor-based analysis; this is because the objects are often
instantiated simply through a class name (see Section 2.2) or instan-
tiated elsewhere in the kernel invisible to the driver, etc. (see five
scenarios in Section 3.3).

The ICFG(s) is produced once for a driver, which can then be
leveraged by multiple policy checkers. Along the ICFG, iDEA in-
vokes detection functions of a checker before and after each in-
struction. iDEA, as a framework also provides a few analysis clients
that can be leveraged by checkers, i.e., taint analysis client (TAC)
and symbolic execution client (SEC); this is done by integrating an
off-the-shelf tool Triton [62, 65]. The details of our analysis and
security policy checkers are introduced in the following sections.
The implementation details are elaborated in Section 9 in Appendix.

3.1 Phase I: Recovering Driver Classes
Overview. Phase I aims to recover all classes from driver binaries,
including vtables (the addresses in binaries) and inheritance hi-
erarchies. The output of Phase I is (1) a class-vtable map, and
(2) the inheritance hierarchies (rooted from generic kernel classes
IOService and IOUserClient, see Section 2).

To recover classes, our insight is to leverage the mechanism how
driver classes are registered to Apple kernel, an essential procedure in
Apple driver management (see InitFuncs in Section 2.2). Specifically,

just like how the kernel gathers the class information (names, sizes,
vtables, hierarchies, etc.) from a binary, our analysis follows the
same procedure to recover classes, i.e., by analyzing the InitFunc
corresponding to each class in the binary. This is a reliable informa-
tion source to recover classes. In contrast, state-of-the-art works that
recover C++ class mainly leverage heuristics or human-summarized
code patterns [31–33, 49, 59, 67], which we show to be ineffective on
Apple platforms (see our evaluation in Section 5.3).

Analyzing InitFunc. As mentioned earlier (Section 2.2), an Init-
Func corresponding to a certain driver class (or a UserClient class),
wraps the class information into a MetaClass object. We take Fig-
ure 1 as a running example to show how iDEA recovers a driver
class IOSurfaceRoot by analyzing its InitFunc.

Our analysis first looks for the driver class name and size from the
registers that hold their pointers/values. From InitFunc at Line 8 we
find the call to the constructor of the MetaClass (i.e., IOSurfaceRo-
ot::MetaClass, corresponding to the driver class IOSurfaceRoot,
see Section 2.2), and those registers used as its arguments indi-
cate the (static) addresses of driver class name (X1), the MetaClass
object to construct (X0), the MetaClass object of the driver class’
parent class (X2), and class size (W3). To find the values in these reg-
isters, we first use backward slicing to find instructions that affect
values in these registers; we then use forward constant propagation
to identify the values in these registers.

Further, we performed forward analysis to find vtable for the
driver class. The driver class’ vtable is used in virtual function
IOSurfaceRoot::MetaClass::alloc() of the MetaClass object
– for assigning the vtable to the driver’s instance (the MetaClass’
alloc() is used to instantiate the driver’s instance, see Section 2.2).
Hence, to find the vtable, iDEA locates the MetaClass object’s
vtable when it is assigned to the MetaClass object (Line 9-11), and
then finds the pointer to its alloc() function in the vtable (see
Figure 1). What comes next is similar to a conventional constructor
analysis: in IOSurfaceRoot::MetaClass::alloc(), we can find
the vtable (Line 2○- 3○) since it is stored into the starting address of
the driver class instance to instantiate (4○).

To recover driver class hierarchies, we can leverage the (pointer
to) MetaClass object of the driver class’ parent class (X2 register).
This requires a binary-wide analysis: we first found all MetaClass
objects in all InitFuncs then identified the driver classes’ inher-
itance relation if one class’s InitFunc points to the MetaClass
object of another class – its parent class (e.g., in the X2 register).

We also analyzed I/O Kit, the kernel framework, using the above
approach to recover classes IOService and IOUserClient, the
ancestor classes of driver classes and UserClients (see Section 2).

3.2 Phase II: Discovering Driver Entry Points
Overview. Entry points are the interface functions that an Apple
driver exposes to the user-space programs and are the starting
points to build ICFG for an analysis. Based on the unique mecha-
nisms Apple drivers use to interact with user-space programs we de-
mystified and systematized in Section 2.3, we summarize two types
of entry points for Apple driver analysis: Type-1) user-entries – vir-
tual functions of UserClients (inherited from IOUserClient) that
respond to user-space requests; and Type-2) UserClient-internal
functions whose pointers are returned by user-entries (passed out of

…

IOUserClient::externalMethod()
IOUserClient::clientMemoryForType()

…

…

IOSurfaceRootUserClient::externalMethod()
IOUserClient::clientMemoryForType()

…
IOSurfaceRootUserClient::virtual_func1()
IOSurfaceRootUserClient::virtual_func2()

…

vtable of IOUserClient vtable of IOSurfaceRootUserClient

overriden

NOT 
overriden

same pointer

same offset

Figure 4: Example of vtable structure in class inheritance

ldr x8, [x0]
ldr x8, [x8,0x2E8]
mov w1, #0
blr x8

ptr to vtable

···

···
vfunc_0x2E8

···

object layout vtable layout

Figure 5: Illustration of virtual function calls

UserClients, see Section 2.3). To find Type-1 entry points, we look
for the virtual functions in a UserClient’s vtable that are inherited
from IOUserClient (Table 2). Type-II entry points are organized
by Apple in certain data structures in the data section of a driver
binary for convenient driver management. We will show the first
systematic approach to find the two types of entry points as follows.
Hunting for Type-I entry points. Our idea is to compare the
vtable of a UserClient class and its parent IOUserClient. As Ap-
ple mandates single inheritance in C++, a virtual function in the
parent’s vtable is at the same offset with the child’s vtable (see
Figure 4). Since we have identified the vtables of UserClients in a
binary and IOUserClient in Phase I, we can take the first few func-
tion pointers in UserClient vtable (up to the length of parent class
vtable, see Figure 4) as potential user-entries we are looking for. Still,
among these pointers some need to be filtered out. If a user-entry
is not implemented (overridden) by UserClient, its invocation
will flow into the parent’s (IOUserClient) generic implementation,
which (1) is in the kernel – invisible in the code space of driver
analysis; and (2) has no effect – the generic implementation does
not define what to do for specific subclasses. To filter out these, we
compare the function pointers at the same offset between parent
and child vtables: if the two function pointers are identical, that
means the child class did not override the parent’s virtual function
– we filter out this user-entry.
Hunting for Type-II entry points. Those UserClient functions
whose pointers are returned out by a user-entry (Type-II) are not
directly referenced in the user-entry and returned, so a search in the
user-entry code does not work. Here we need to understand Apple’s
uniform management to these driver interfaces. Specifically, for any
UserClient function that will be exposed as an interface (except Type-
I), Apple manages its function pointer and other information (e.g.,
input buffer size) in a data structure, called method-struct. All
method-structs of a UserClient forms an array in the data section
of a driver binary. Further, each time the user-entry returns one
method-struct from the array (based on the selector argument
in the system API call, see Figure 2); hence, our approach is to
inspect the user-entry to find the reference to the array (i.e., find
the loading of the array from data section), so as to find all function
pointers it recorded.

At a lower level, iDEA takes a few steps: (1) find instructions in
a user-entry where the referenced method-struct is finally stored
in the return register (by convention RAX on macOS and X0 on
iOS, iPadOS, see implementation in Section 9); (2) use backward

slicing [34, 81] to find instructions that affect the value in the re-
turn register; and (3) in these instructions, find an address-loading
instruction that loads an address of method-struct array from
data section. With this address, iDEA parses each element of the
array – a method-struct – and finds the function pointers in it
(see implementation details in Section 9).

3.3 Phase III: Identifying Objects with Vtables
Overview. Along the ICFG starting from a driver entry point, we
observed many virtual function calls. As shown in Figure 5, a virtual
function call on an object is an indirect call (e.g., through BLR
instruction in arm64 and call in x86_64) whose target is retrieved
from the vtable (a list of function pointers [35]) associated with the
object’s class. To resolve virtual-function calls, we need to identify
the vtable assigned to the object during its instantiation.

For this purpose, prior approaches [31–33, 59, 67] rely on constructor-
based analysis and specific code patterns of vtable assignment to
identify vtables for constructed objects. However, those approaches
cannot work on Apple platforms since the drivers classes are com-
monly instantiated through a generic kernel API (allocClassWith
Name()) without constructors, and the vtable assignment leverages
a runtime feature (the above kernel API uses the runtime map
of MetaClass objects to find vtable for the intended class based
on class name and assign it to the object under construction, see
Section 2).

In our research, since Phase I has identified vtables for each class,
our approach is to infer the types (classes) of the objects when
we traverse the ICFG, leveraging the understanding of runtime
class instantiation and management in Apple drivers (which we
systematized in Section 2). In particular, we analyzed its extensive
usage of kernel API OSMetaClass::allocClassWithName(char *
classname) for instantiating classes with names and objects passed
as function arguments between driver classes, UserClients and
Apple kernel. For a comprehensive analysis, we summarized three
categories of objects to identify their types: (1) objects constructed
locally in a driver function, e.g., through allocClassWithName
(see Scenario 1, 5 below); (2) objects passed as arguments to driver
functions (see Scenario 2, 3 below); and (3) objects returned by
kernel APIs (see Scenario 4 below).
Scenario 1: objects instantiated through a classname. This is
through the aforementioned kernel API allocClassWithName(char
* classname). We infer the type of the instantiated objects by an-
alyzing the classname argument. This leverages known backward
slicing and forward constant propagation techniques: backward
slicing extracts the instructions affecting the classname argument,
and forward constant propagation on the extracted instructions
decides which string address is eventually passed to the argument.
The discovered class name string indicates the object type.

Listing 1: start() of UserClient IOReportUserClient
bool IOReportUserClient::start(IOReportUserClient ∗this, IOService ∗a2) {
v2 = OSMetaClasBase::safeMetaCast(a2, IOReportHub::MetaClassObj);

Scenario 2: driver class objects passed to UseClient as ar-
guments. When a UseClient instance is created (through the
newUserClient() driver-callback, see Figure 2), the kernel also

Driver Class
UserClient Class

Figure 6: A part of a driver’s configuration file

passed to it the driver instance. This is through calling start() on
the UseClient instance, but the driver instance is passed in as a
generic type IOService * (see Listing 1). The problem is, when
the driver instance is referenced in the UseClient code (e.g., in a
user-entry) to make virtual function calls, we don’t know its type
and vtable – which is essential to resolve the indirect calls. To solve
the problem, we leverage Apple’s driver registration and manage-
ment, in particular, the information in the driver’s configuration
file and Apple’s dynamic casting for driver classes:
• As mentioned in Section 2.1, Apple driver has a configuration

file to register key information to the kernel (e.g., driver class and
hardware type it can handle). The configuration file recorded a dri-
ver class’ companion UserClient class to facilitate its management,
as illustrated in Figure 6. Such information indicates the concrete
type of driver instance passed to a particular UserClient such as
IOReportUserClient.
• In occasional cases, the configuration information is not com-

plete, which we complement through clue found in the code. Specifi-
cally, in start() function (Listing 1), we observed that UserClient
often dynamically casts the generic-type (IOService *) driver in-
stance to its concrete driver class type, through OSMetaClassBase::
safeMetaCast() API. This function accepts an argument named
“target type" (indicating casting target type), which is a pointer to
a string or MetaClass object (a MetaClass object includes infor-
mation about driver class name, see Section 2.2). Hence, we traced
the reference of “target type" passed into the casting function, em-
ploying known backward slicing and forward constant propagation.
This gives us the concrete type information for the driver instance.
Scenario 3: kernel objects passed to driver-callbacks as argu-
ments. The driver callbacks (see Table 1) are virtual functions
inherited from IOService, which is defined in the public kernel
framework I/O Kit and comes with symbols, e.g., mangling func-
tion names [30]. Hence, we analyze the argument types of these call-
backs through a conventional analysis on thosemangling names [40].
For example, the mangling name of an init function in IOService
is __ZN9IOService4initEP12OSDictionary, whose last partition
indicates the argument type as OSDictionary *. Note that this is
a one-off analysis step for all drivers.
Scenario 4: objects are return values or arguments of kernel
API calls. Drivers often need to invoke kernel APIs to process data
or create objects. The declaration of these kernel API can be found
in Apple API documentation [9] or header files [7]. Based on the
declaration, if the object to identify is the return value or used as
an argument of kernel API call, we can infer its type.
Scenario 5: objects instantiated through constructors. Some-
times, driver objects are instantiated through constructors, for
which we leverage traditional, constructor-based analysis to iden-
tify vtable installed into the starting address of the object [31–
33, 59, 67]. Specifically, we recognize a constructor in the code
based on certain code patterns, and Apple drivers’ patterns are
slightly different from other platforms: Apple driver constructors
are created by compilers (based on fixed macros [4]) and, thus,

show a few fixed patterns (we detail two common code patterns in
Section 9).
Type propagation. Once we identified the types of certain objects
(called type sources), we performed type propagation to infer the
types of more objects. Along the control flow, type propagation
passes the type of a type source to other objects if they are copied
from the type source. In our approach, we keep an object-type map
(𝜏) recording the confirmed types of objects (objects are referenced
by registers and memory address at instruction level). We start our
propagation from a basic block, by examining whether an object
in the type set is copied to another object (by instructions such as
MOV or STR). If true, we update the type of the destination object.
Inversely, if we find an object in the map is assigned with a new
value, we remove the object from the map. If a type-known object is
stored in a memory region of another type-known object, we know
that the latter object (and its class) has a member whose type is the
former’s type. After type propagation in a basic block, we carry
the type set (𝜏) and continue propagation in the subsequent basic
block and functions. Sometimes, inter-procedural type propagation
needs to pause and wait until indirect calls are resolved (see Phase
IV). Once they are resolved, a new round of type propagation is
performed. Algorithm 1 in Appendix outlines our approach.

3.4 Phase IV: Resolving Indirect Calls
With the output of previous phases – recovered classes, vtables,
and object types – we can resolve indirect calls along the control
flow and produces ICFGs. Specifically, we trace the load and add
instructions on an object, and look up its vtable to find which
function pointer is used as the call target (based on the offset in
vtable indicated in the instructions). In this way, we resolve the
targets of indirect calls, and add an edge from the call site to the
target in the ICFG. Considering polymorphism, we consider the
child-class’ virtual functions of the resolved object as potential
targets, and add edges from the call site to the child-class’ functions.
Therefore, some nodes in the call graph may have multiple out-
edges.

Besides virtual function calls, we observed another Apple driver-
typical indirect-call scenario to handle, to make the ICFGmore com-
plete. Specifically, driver classes pass their function pointers out to
kernel (through calling certain kernel APIs), and then it is up to the
kernel to make indirect calls through the function pointer [24]. Such
kernel APIs include IOCommandGate::runAction() and IOWorkLo-
op::runAction(). When iDEA finds such kernel API calls in driver
code, it performs backward slicing to trace the function pointers
passed to the APIs. Then, instead of flowing the analysis into the
kernel code space, iDEA opts for directly extending the call graph
with an edge from the call site to the target of the function pointer.

Phase III and IV run iteratively. After an object’s type is identified,
Phase IV resolves indirect calls on the object. After a call target is
identified, more objects’ types can be analyzed and identified.

3.5 Supporting Pluggable Policy Checkers
iDEA supports pluggable security policy checkers to detect dri-
ver vulnerabilities along the ICFGs. A checker is implemented as
a plugin with two call-back functions, (pre_instr_checker and
post_instr_checker), which are invoked by iDEA before and af-
ter each instruction when traversing the ICFG. The checkers check

each instruction and can leverage the results from Phases I∼IV, i.e.,
the ICFG and object types identified along the control flow.
Analysis clients. iDEA provides two analysis clients, taint analysis
client (TAC) and symbolic execution client (SEC), whose capabilities
can be leveraged by checkers. For taint tracking, a checker can spec-
ify taint sources (i.e., specific registers and memory areas at specific
instructions) and iDEA performs taint tracking by employing an
off-the-shelf dynamic taint tracking tool Triton [62, 65]. Triton per-
forms taint tracking at register/memory area level by dynamically
simulating the execution of arm64/x86_64 instructions without us-
ing specific hardware devices [61]; the taint results are updated
as iDEA processes each instruction along the ICFG and are avail-
able to checkers. iDEA employs another client SEC that supports
symbolic execution. Again, this is enabled by directly integrating
Triton. A checker can specify the registers/memory areas, which
will be assigned symbolic values using Triton’s TritonContext
module. Triton processes symbolic values on each instruction as
iDEA traverses the ICFG; the results, i.e., symbolic expressions for
data in the registers and memory areas and path-constraints, are
available to the checker.

4 SECURITY POLICY CHECKERS
This section elaborates on two security policy checkers we have
implemented to detect common types of driver bugs, race condition
issues (Section 4.1) and out-of-bound (OOB) read/write (Section 4.3).
Our checkers have led to the discovery of more than 30 zero-day
security bugs in Apple drivers across 15 OS versions (see Section 5).

4.1 Race Condition in Apple Drivers
Race condition is a common risk that could lead to serious vulnera-
bilities, in which multiple threads/processes use the same resource
simultaneously. We observed that race conditions tend to occur in
Apple drivers, whose management implicitly treats any driver/User-
Client instance as a shared resource without protection. Different
user-space threads can use the same UserClient handle to trigger a
user-entry on the same UserClient instance (see Section 2), whose
internal states thus should have been protected with locks [15].
A motivating example. To illustrate the risk of race condition in
the context of Apple drivers, we show a new vulnerability found by
iDEA, which has been acknowledged by Apple with CVE assigned.

IOThunderboltFamilyUserClient::externalMethod (…)

IOThunderboltFamilyUserClient::removeXDListener (…) {
 v7 = v2->member42_IOMemoryDescriptor;
 if (v7) { v7->release(); }

…

Figure 7: A security bug found by iDEA (we converted the
assembly code to pseudo code for better readability)

This bug is found in the IOThunderboltFamilyUserClient class
– a UserClient of macOS driver IOThunderboltFamily. Figure 7
outlines the vulnerable code: in the function removeXDListener()
of the UserClient, which is called by externalMethod() (a entry-
point of the UserClient reachable by user-space programs), the
release() function is called on a member variable v7 of the User-
Client (of type IOMemoryDescriptor *). The code introduces a bug
because the release() function frees the member variable without
taking any lock or concurrency protection. The security risk comes

when two user-space threads simultaneously trigger this code. One
thread may cause the member variable to be freed first, and, thus,
the other thread will call release() on an already freed object,
leading to a use-after-free (a.k.a., UAF [76]) vulnerability.

4.2 Race Condition Checker
We developed a security policy checker to detect race-condition
risks. As a first step, we focused on two common types of bugs that
race conditions can lead to – UAF and Null pointer dereference. Our
checker, starting from driver entry-points, inspects each instruction,
including direct and indirect calls, memory load, memory store, etc.,
with respect to a set of security policies, defined as follows.
Terminology. Before defining the security policies, we first define
two types of terms, operation (op) and function (func).
• op_nullify(member𝐴): an operation to store 0 into member𝐴 .
• op_release(member𝐴): a call to member𝐴’s release() func-
tion. On Apple platform, release() decreases the object’s refer-
ence count by 1 [21]. When the reference count becomes zero, the
referenced memory block is automatically freed.
• op_retain(member𝐴): a call to member𝐴’s retain() function.
retain() increases the object’s reference count by 1 [23].
• op_use(member𝐴): a call to member𝐴’s virtual function.
• op_lock: a call to lock-related kernel function, e.g. IOLockLock [15].
• op_unlock: a call to unlock-related kernel function, e.g. IOLock
Unlock [15].
• func_pathTo(op): the checker function to extract the instruc-
tions along the ICFG from entry-point to the op, yielding a path.
• func_numberOf(op): the checker function to count the occur-
rences of op, given a path p.

Intuitively, the ops can be observed in driver code by the checker;
the funcs are detection-related functions employed by the checker.
Security policies. A release() on a member variable (of a User-
Client or driver class) should always be paired with (come after) a
retain() and should happen by first acquiring a lock. Otherwise,
a thread might reduce its reference count to zero and, thus, get it
freed while another thread is using the member variable, leading
to UAF. Similarly, setting a member variable to NULL should get
a lock first. Otherwise, a Null pointer dereference on the member
variable could happen in another thread. We define the security
policies as follows.
•UnsafeRelease: on path func_pathTo(op_release(member𝐴)),
func_numberOf(op_lock) == func_numberOf(op_unlock) and
func_numberOf(op_retain(member𝐴)) == 0.
•UnsafeNullify: on path func_pathTo(op_nullify(member𝐴)),
func_numberOf(op_lock) == func_numberOf(op_unlock).
Supplemental rules. For better detection accuracy, iDEA employs
a set of rules to supplement the security policies as follows.
• To report an Unsafe Release or Unsafe Nullify bug, there
should be at least one op_use on the same member variable through
any entry-point of the driver – this is to account for the racing
condition where a second thread uses the variable after the first
thread releases or nullifies it.
• To report an Unsafe Nullify bug, the member variable in ques-
tion should be a pointer to a class instance, not a constant.
• If an Unsafe Release is on an object passed into drivers by the
kernel (e.g., through UserClient’s start(), see Listing 1), we do

not raise alarms for this object. This is because the object is created
by the kernel, and we do not know its reference count unless we
perform a thorough analysis of the kernel.

4.3 OOB Read/Write Checker
Out-of-bound (OOB) read and write is a common security risk [77]
that also tends to happen in Apple drivers and can lead to arbitrary
code execution in kernel space, or kernel data leakage and corrup-
tion. This happens when drivers take user-space inputs as indexes
to access buffers in the kernel space without boundary checks.
Amotivating example. To illustrate the risk of OOB in Apple dri-
vers, we showcase a new vulnerability found by iDEA, that enabled
a malicious user-space program to get kernel privilege. The bug was
just reported to Apple, which is fixing it and asked us to keep its
details confidential (so we omit its driver name and vulnerable func-
tion name in its description). In this bug, the user space interacts
with a UserClient through its getTargetAndMethodForIndex()
user-entry (see Table 2). The UserClient performed the following
without a boundary check: (1) retrieve a 32-bit integer from the
buffer in user-space input (an argument of system API call, see
Figure 2); (2) add the integer to a kernel buffer pointer without
checking the integer value; and (3) read from and write to the ker-
nel buffer using the pointer, which can be out of boundary. Also,
the data to write comes from the user-space buffer.

As a result, this vulnerability allows a malicious user-space pro-
gram to write crafted data beyond the intended kernel buffer, cor-
rupting other critical kernel data near the buffer. We implemented
an end-to-end full-chain exploit by combining known exploitation
techniques including heap spray [36] and heap feng-shui [71]; it
successfully achieved arbitrary code execution in the kernel, and
completely controlled a macOS 10.15.4 (the latest version when we
reported the vulnerability) system (see attack demo online [2]).
OOB security policy. The high-level policy for OOB detection is
simple: the driver accesses a buffer in the kernel space using an
index from user-space inputs without boundary check. Note that
user-space inputs come from the arguments of entry-points and
buffers storing user inputs (e.g., scalarInput in Figure 2).
OOB checker. To apply the policy for OOB bug detection, our
implemented checker leverages the taint analysis enabled by the
iDEA framework. From a high-level, the checker specifies the user(-
space) inputs as taint sources, and iDEA will perform taint tracking.
Before and and after each instruction along the ICFG, call-back
functions of the checker will be invoked by iDEA, to determine
whether any tainted value is used to access memory buffer. The
dereferenced access is identified at instruction level by examining
memory load and store instructions (e.g., LDR, STR, mov). If the
access through a tainted pointer indeed happened, the checker then
checks whether there is a condition check on the original tainted
user-input data along the control-flow path. The lack of condition
checks indicates an OOB bug.

The key low-level details relate to two aspects:
• The taint sources are set to arguments of driver entry-points and
data in user-input buffers, e.g., scalarInput in system API call
(Figure 2). Each separate argument or small chunk in a buffer (4
bytes as a chunk in our implementation) is assigned a unique taint.

• To check the existence of condition check on a tainted data, iDEA
employs its symbolic execution client to assign a symbol to its
taint source, and resolves constraints if any on the symbol along
the ICFG. No constraint, i.e., intuitively no checks on its value,
indicates an OOB bug regarding the taint source.

5 EVALUATION
In this section, we evaluate the effectiveness and performance of
iDEA. We ran iDEA over 3,400 driver binaries across 15 OS versions
to evaluate the overall effectiveness, including bug findings, false
positives, etc. (Section 5.1). Note that this is the first known large-
scale security analysis on Apple drivers. We also evaluate individual
analysis phases of iDEA (Section 5.2) and the overall performance
overhead (Section 10 in Appendix), and further compare iDEA with
state-of-the-art works for C++ binary analysis (Section 5.3). The
comparison showed that prior works are generally ineffective for
analyzing Apple drivers. We will discuss the limitations of iDEA in
Section 6.

5.1 Evaluating Overall Effectiveness
Driver set. We used 3,400 driver binaries from 15 OS versions,
including iOS (8, 9, 10, 11, 12, 13, 13.6.1 – the latest), macOS (10.13,
10.14, 10.15, 10.15.6 – the latest), iPadOS (13.1, 13.6.1 – the latest),
and tvOS (13.2, 13.4.8 – the latest). On Apple platforms, a certain
driver binary may be used on different OSes: e.g., a driver binary
named IOSurface is found on iOS, tvOS, and iPadOS, and also on
different versions of these OSes; still, its implementation can be
different on each OS and version. Without loss of generality, we
count each driver binary on a specific OS version, yielding a total
of 3,400 driver binaries. The driver binaries were obtained from the
OS update packages available online [46].
Bugfindings.Altogether, iDEA reported 50 unique bugs in all 3,400
driver binaries. Note that if two bugs are found on two OS versions
but with the same driver name, policy violation, and (call-graph)
path to the bug, we consider them as one bug. We manually con-
firmed 46 are true positives, which include 13 UAF, 28 NULL pointer
dereferences, and 5 OOB bugs, spanning macOS, iOS, iPadOS, and
tvOS (see all vulnerabilities in Table 6 in Appendix, including their
OSes, driver names, vulnerability types, etc.). Among the 46 true
positives, 35 are zero-day vulnerabilities; the other 11 are publicly
unknown vulnerabilities in older OS versions (e.g., iOS 8-12, macOS
13-14), which have been silently fixed in later OS versions by Ap-
ple. We have reported all 35 zero-day vulnerabilities to Apple: five
vulnerabilities have been assigned CVEs with Apple acknowledge-
ment; two are acknowledged and CVE assignments are scheduled;
others are still going through Apple’s internal investigation process
(Apple requested us to keep them confidential).
Bug confirmation with PoC exploits. We manually confirmed
all 35 zero-day bugs found by iDEA. This combines PoC exploits
on real Apple devices we own (see device list below), and manual
inspection of vulnerable code. To this end, we developed proof-of-
concept user-space programs to trigger the bugs on corresponding
OSes: a system crash indicates a successful exploit. To confirm a bug,
we further confirm that the crash is caused by our exploit: the crash
indeed comeswith kernel panic log (under /Library/Logs/Diagn-
osticReports/), and the stack trace in the log shows the crash is

caused by our target driver and its vulnerable function. We devel-
oped PoC exploits for 10 zero-day bugs, which all caused system
crash and were confirmed. We show the source code of one PoC in
Listing 2 in Appendix. The PoC exploits were done on our Apple
computers/devices, including a MacBook Air, MacBook Pro, iMac
mini, iPad mini 2, and iPhone 6s, XR and 11 pro.

For the other 25 bugs, we cannot actually run and exploit their
drivers since we don’t have the corresponding hardware devices.
For example, the FireWireAudio driver requires an audio device [56]
connected through a firewire [12] cable; AppleIntel8254XEthernet
driver must be run on Mac Pro which we don’t have. For these
bugs, we disassembled the binary and manually confirmed them
by comparing the vulnerable code with those we have confirmed
through PoC. This worked since vulnerable drivers often made sim-
ilar mistakes, e.g., nullifying a member variable in clientClose()
(a user-entry to close UserClientwhen IOServiceClose() system
API is called) without taking any locks.
Serious impacts. Besides system crash, the bugs we found can
enable a malicious user-space program to gain kernel privilege and
run arbitrary code in the kernel space. We developed an end-to-end
exploit on macOS 10.15.4 (the latest at the time of the finding), with
a video demo online [2].
False positives. There are four false positives in our findings. The
root cause of these false positives is that our current security check
is flow-sensitive but not context-sensitive. For example, in a ma-
cOS user-entry, i.e., AHCISMARTUserClient::externalMethod(),
there is a release operation on a member variable without lock-
protection, for which our checker raised a false alarm. After a
manual analysis, we found that the release operation is under a
branch which is restricted through a condition check. Based on the
condition check, the release operation is only reachable through
a path where a previous retain operation is performed (retain
increases the reference counter of the member variable, a common
mechanism to prevent UAF [76]); hence, the release is always
safe. The false positive occurs because our current analysis is not
context-sensitive, i.e., we do not resolve the condition check and
then simply opt for both branches to build control-flow graphs
when a condition check is met.

5.2 Evaluating Individual Analysis Phases
We also evaluated the effectiveness of key individual phases (see
Section 3) of iDEA using multiple Apple OSes. To this end, we ran
iDEA over all driver binaries on the latest macOS 10.15.6 (362 driver
binaries), iOS 13.6.1 (176 driver binaries), iPadOS 13.6.1 (189 driver
binaries), and tvOS 13.4.8 (143 driver binaries).
Recovering classes. In the evaluation on multiple OSes, only ma-
cOS drivers come with debug symbols that can provide ground
truth for recovering classes. We will first show the results with
macOS, and then all other OSes.

For all 8,217 classes (including 3,841 MetaClasses generated by
the driver compiler) in all the 362 driver binaries, iDEA accurately
recovered 7,666 (93%) classes, including their vtables, inheritance
hierarchies, class names, and class sizes. The approach of iDEA
handles driver classes, UserClients, MetaClasses, and all classes
inherited from classes in Apple’s kernel programming framework

(e.g., I/O Kit, the driver programming framework); for these “Apple-
rooted" classes (accounting for 93% of all classes in the driver bi-
naries), iDEA has 100% precision in class recovery. This is because
iDEA leverages a reliable information source, unlike heuristics in
prior works (see Section 3.1). The 7% that iDEA did not recover
are utility classes implemented by driver developers (not “rooted”
from Apple framework and do not come with InitFuncs); they may
be handled by prior approaches in recovering C++ classes, such
as [59, 67], which the current implementation of iDEA did not
include.

On iOS, iPadOS and tvOS (see OS versions above), iDEA recov-
ered 3,536, 3,848, and 3,274 classes, respectively. We lack ground
truth as Apple drivers on these platforms are generally closed-
source and without debug symbols. Still, we found Apple released
the source code of four driver binaries [14, 16–18] on the three
OSes (see driver names in Table 5 in Appendix), and used their class
information as ground truth. For the four drivers, iDEA recovered
all 140 out of 140 (100%) classes for each OS with 100% precision.
Discovering driver entry points. On macOS, iOS, iPadOS, and
tvOS (see OS versions above), iDEA found 1,426, 348, 371, and 310
entry points, respectively. Again, the four drivers with source code
provided us ground truth. For the four drivers, iDEA successfully
found all 54 entry points with 100% precision on each OS.
Resolving indirect calls. On macOS, iDEA resolved 139,282 out
of 209,558 indirect calls (66%) found in the 362 driver binaries. Simi-
larly, on iOS, iPadOS, and tvOS, iDEA resolved 63% (58,163/92,464),
and 63% (66,861/105,950), 59% (43,621/74,768) of indirect calls, re-
spectively. Unlike prior works such as [59] that can generate ground
truth at compile time, we were not able to compile the four dri-
vers even with source code due to the lack of Apple-internal driver
SDK (with errors such as “cannot find sdk iphoneos.internal” in
Xcode [13]).

5.3 Comparison with Prior Works
We also compared iDEA with state-of-the-art techniques/tools (for
C++ binary analysis) in analyzing Apple drivers. In particular, we
ran Marx [59] and iDEA over all 362 driver binaries on the latest
macOS 10.15.6, and compared the results for recovering classes and
resolving indirect calls. We show that iDEA significantly outper-
formed Marx on Apple platforms and discuss the reasons.
Experiment preparation.The experimentwas done after we care-
fully made Marx Apple-aware, i.e., capable of handling Apple’s
Mach-O [83] binary format. In its original design, Marx could ana-
lyze x86_64 binaries (in ELF and PE format [82, 84]) on Linux and
Windows; for this purpose, Marx must first extract information
(functions, data, vtables, symbols, etc.) from the corresponding sec-
tions of a binary (the sections were prepared in IDA pro). Since
Mach-O has different sections and section layouts to hold the in-
formation, what we need to do is to retrofit the implementation
of Marx, so it is aware of Mach-O sections and what information
(e.g., functions, data, etc.) could be found in which sections. We
keep Marx’s algorithms intact, including those to identify vtables,
infer class hierarchies, resolve indirect calls, etc. We released our
Apple-aware version of Marx online [2].
Recovering classes. For a total of 8,217 classes in all the 362 driver
binaries (macOS drivers have debugs symbols as ground truth, see

Section 5.2),Marx (Apple-aware) recovered 7,186 (87%) of all classes
by finding their vtables. However, it incured a 34% false positive
rate, i.e., Marx reported 10,963 vtables, among which 34% were not
vtables. In comparison, on the same set of drivers, iDEA achieved a
100% precision and 93% coverage (see Section 5.2).

For recovering class hierarchies, Marx could not identify the
direction of class inheritance, but only group classes that have
the same ancestors into a hierarchy. However, in Apple’s driver
programming model (see Section 2), all classes have the same an-
cestor (OSMetaClassBase [19]), even for classes of functionality-
unrelated drivers. This makes Marx’s results much less useful on
Apple platforms. For example, Marx intends to use the recovered
class hierarchies against control flow hijacking by ensuring virtual
function calls conform to the class hierarchy [59]) (when all/most
classes are in the same hierarchy, the defense is less useful). In
contrast, iDEA could accurately identify the inheritance relation
and direction using the reliable information source (see Section 3.1).
Resolving indirect calls. Among the 209,558 indirect calls in all
362 driver binaries, Marx only resolved 42,223 (20%) indirect calls,
while iDEA resolved 66%. This indicates iDEA can build much more
complete control-flow graphs in analyzing Apple drivers thanMarx.
Discussion. As mentioned earlier (Section 1), prior works, includ-
ing Marx [59], rely on constructor-based analysis and specific code
patterns of vtable assignment to identify vtables for constructed
objects (so as to resolve indirect calls on the objects). However,
these techniques become much less effective on Apple platforms.
In Apple drivers, classes are often instantiated through a generic
kernel API allocClassWithName() (without constructors), which
internally leverage the runtime map of MetaClass objects to assign
vtables for the objects being instantiated (see Section 2). Without
analyzing Apple’s dynamic mechanism for class instantiation, prior
works cannot properly identify vtables for objects, not to mention
resolving indirect calls made on the objects.

Also, to find vtables, Marx relies on a few heuristics to match
specific patterns in the data sections and patterns of references in
the code section (e.g., only the beginning of the function entries is
referenced from the code). Such heuristics are far less effective on
Apple platforms, since we observed a substantial amount of vtable-
like data structures (an array of function pointers) in Apple drivers.
For example, the Type-2 entry-points are arrays of function pointers
organized similarly to vtables (see Section 3.2) and were mistakenly
identified as vtables by Marx, as found in our evaluation.
Other state-of-the-art works. We also attempted to compare
iDEAwith other state-of-the-art works [49, 67] for C++ binary anal-
ysis. We found it requires significant engineering efforts to make
them Apple-aware due to incompatible disassemblers, different
instruction sets, and call conventions, etc. For example, the disas-
sembling framework relied on by [67] does not support Mach-O.
This further indicates the lack of a tool like iDEA that can properly
analyze Apple drivers.

6 DISCUSSION
Unique aspects of driver security on Apple platforms. Due
to the unique paradigm of Apple driver programming and man-
agement (see Section 2), there are types of risks that Apple drivers

are especially susceptible to, as indicated by our results. For exam-
ple, Apple’s management of driver instances can easily incur race
conditions (see Section 4.2), a common problem uncovered by our
large-scale study. This is because Apple kernel implicitly treats any
driver/UserClient (class) instance as a shared resource: multiple,
untrusted user-space threads/processes can operate on the same
driver/UserClient instance (through system API calls, see Figure 2),
whose internal operations (e.g., use/free of member variables) thus
should generally have been protected, e.g., through locks. How-
ever, we found that Apple does not have a mechanism to enforce a
concurrency protection (e.g., mandatory adding of locks), nor did
Apple properly communicate the risks to driver developers, based
on public documentations.

Such an observation will help derive security guidelines for Ap-
ple driver development, which are lacking today. Also, unlike the
driver management on Linux,Windows, Android, etc., that has been
well understood with their drivers extensively analyzed [26, 29, 50,
51, 57, 58, 63, 66, 68, 69, 74, 79, 87], our study brings to light that
driver management on Apple is unique, opaque, and proprietary to
Apple, posing a major obstacle for systematically understanding its
security qualities and risks. Our research shows that a systematic
analysis of Apple drivers requires an analysis of the driver manage-
ment with driving programming model, registration, interactions
with user-space programs, and the advanced runtime features to
facilitate driver instantiation and usage. Note that the Apple driver
management we demystified in Section 2 lacks public information,
which we systematized through analyzing Apple I/O Kit (the kernel
framework) and driver binaries.

Further, our tool – the first for automatic Apple driver analysis, can
enable future research to systematically investigate the unique aspect-
s/risks of Apple drivers and systems, a ubiquitous but far less explored
ecosystem whose security quality can introduce serious implications.
Limitations of static analysis on Apple platforms. Although
our static analysis achieved favorable results (e.g., tens of zero-day
bugs found, significantly outperforming prior tools), a full analysis
for the drivers on Apple platforms still faces challenges that require
non-trivial new research, as observed in our study. In particular,
Apple developed a set of advanced, runtime features to facilitate
driver management and usage, which our current approach cannot
fully handle (we handled a few runtime features, see Section 3).
For example, the kernel organizes instances of all drivers in the
system in a runtime pool. An Apple driver can call a kernel API
IOService::waitForMatchingService() [25] to retrieve a driver
(instance) from the pool that matches specified criteria, such as a
category, name, or ID [10], and then calls its virtual functions. For in-
stance, the iPhone camera driver would retrieve an instance of light
sensor driver available on the phone, and uses its functionalities
when taking pictures. Such a runtime feature makes the virtual func-
tion calls hard to resolve using our current approach, since we may
not know the types (i.e., classes) and vtables of the retrieved driver
instance, which is selected by the kernel at runtime and dependent
on the drivers available on the specific system (e.g., an iPhone/i-
Pad/iMac of a specific model). To handle the situation, one needs to
analyze all drivers available on the particular system and how Ap-
ple kernel selects the driver instance. Besides, Apple provides other
kernel APIs, such as resourceMatching() [22], fromPath() [11],

propertyMatching() [20], that feature advanced, runtime driver
management. A systematic analysis of those Apple-unique features
that can build upon the analysis capabilities offered by iDEA will be
left to our future research.

Limitations of iDEA and false negatives. False negatives can
be introduced due to the limitations mentioned above and a few
other limitations of iDEA. First, iDEA currently does not analyze
control-flow across binaries: if a driver imports classes from an-
other driver binary, iDEA can not resolve indirect calls on objects
instantiated from the imported classes. For example, a driver of
a Bluetooth keyboard would call certain utility functions imple-
mented in a generic Bluetooth driver. To handle this situation, one
needs to figure out the drivers’ dependency tree, identify calls to
external functions, and share analysis results (e.g., class recovery)
across binaries. Second, our current OOB checker is relatively sim-
ple, which only checks the (non-)existence of constraint (for tainted
values used to access memory buffers), instead of solving the con-
straint. This may lead to false negatives. Solving the constraint and
enabling a more precise boundary check will be left to our future
work by improving the OOB checker, which is pluggable to iDEA.
Differences and homogeneity between Apple OSes. For the
ease of driver management and programming, Apple OSes share
not only the management of drivers (see Section 2), but even source
code of a portion of drivers. We found that 46 drivers are shared
by the latest macOS, iOS, iPadOS, and tvOS (see OS versions in
Section 5.2), with the same bundle IDs [10] (Apple identifier ofMach-
O binaries) and code. The major differences across Apple OSes are
the instruction sets, since macOS drivers use x86_64 instructions
while iOS/iPadOS/tvOS uses arm64 instructions, which we have to
process differently in our implementation.

7 RELATEDWORK
Security analysis on Apple drivers. As mentioned earlier (Sec-
tion 1), prior works performed analysis on iOS [1, 27, 36, 52, 78, 85,
86] or macOS drivers [28, 41, 53, 66, 70], which, however, heavily
relied on manual reverse engineering efforts and OS-specific heuris-
tics. iDEA is automatic in bug finding generally across major Apple
OSes. On iOS, for example, [1, 36, 52, 72, 73, 78, 86] showed how they
manually discovered vulnerabilities and exploited them in iOS/ma-
cOS drivers and the kernel. The most related to iDEA are [27, 85],
which applied to iOS andmacOS. However, their bug finding is man-
ual; these tools were mainly designed to assist manual bug finding
by complementing IDA pro [42] (using class information recovered
from binaries). Still, their class recovery did not employ a general ap-
proach in the sense that, on iOS and macOS they leveraged different
heuristics, e.g., using symbols only available in macOS drivers [85].
On macOS, prior driver security analysis [28, 41, 53, 66, 70] are
mostly based on dynamic approaches. For example, kAFL [66] and
LynxFuzzer [53] utilize hardware-assisted virtualization to fuzz ma-
cOS drivers. PassiveFuzzFrameworkOSX [70] rewrites the kernel
code at runtime to fuzz macOS drivers. Their approaches cannot
work for other Apple OSes (iOS, tvOS, iPadOS, etc.), since they
are more restricted than macOS: they do not allow kernel instru-
mentation due to runtime integrity check [45]; hardware-assisted
virtualization used in these approaches is unavailable on these
customized Apple devices.

Security analysis on drivers of other platforms. Priorworks [26,
29, 50, 51, 57, 58, 63, 66, 68, 69, 74, 79, 87] studied driver security on
other platforms including Linux, Window, and Android. On Linux,
Dr. Checker [51] is a fully-automated static analysis tool that uses
pointer and taint analysis to find general bugs in driver source code
in C language. SymDriver [63], S2E [29] and WatSym [58] employ
symbolic execution for verifying properties and finding vulnerabil-
ities on Linux drivers. On Android, Charm [74] facilitates dynamic
analysis of Android device drivers by exporting Android drivers to
a virtual machine on a workstation. ADDICTED [87] aims at detect-
ing flaws in customized Android drivers. On Windows, kAFL [66]
and Digtool [57] fuzz Windows drivers using hardware-assisted vir-
tualization and execution tracing techniques. [50] performs static
analysis on Windows drivers’ binaries to verify API specifications
on drivers. Besides examining drivers’ binary code, Microsoft pro-
vides a tool called SDV [26] to analyze driver source code. Driver
analysis techniques on non-Apple platforms cannot be applied for
Apple due to the Apple-unique driver management (e.g., unique
entry points, driver regisgtration and dynamic instantiation), pro-
gramming model, and even availability of source code. For example,
driver analysis on Linux can leverage their C-language source code,
while Apple drivers are closed-source and programmed in C++.
Static analysis on C++ binaries. Many works, such as [31–33,
49, 59, 67], have been proposed for the analysis of C++ binaries.
For example, [32, 48, 49, 59] depend on heuristics and specific code
patterns to identify vtables in data sections, their references in code
sections, and class hierarchies. Prior works [31–33] also rely on
heuristics to identify constructors, rely on code features for con-
structors and vtables assignment to resolve indirect calls. Some
other works [38, 39, 64] relied on RTTI data structures embed-
ded in unstripped C++ binaries to facilitate reverse engineering of
C++ binaries. However, such RTTI information is absent in Apple
drivers. As evaluated and discussed in Section 5.3, prior works,
including [49, 59, 67], typically rely on constructor-based analysis,
specific code patterns, or heuristics to recover classes, identify vta-
bles, and resolve indirect calls. However, Apple leverages unique
runtime features to manage classes (e.g., class instantiation using a
name and vtable assignment using a runtime map), with construc-
tors removed and many vtable-like data structures, which make
prior works ineffective on Apple platforms.

8 CONCLUSIONS
In this paper, we propose iDEA, an automatic static analysis plat-
form for checking the security of Apple drivers. We systematically
identify the unique challenges in automatic static analysis of Apple
drivers and tackle the challenges with new, Apple-general tech-
niques. Based on iDEA, we customize some security policies to
automatically detect UAF and Null-Pointer dereference vulnerabli-
ties caused by race condition and out-of-bound read/write. We ran
iDEA to analyze 3,400 driver binaries of 15 Apple OS versions, which
resulted in the discovery of more than 40 previously unknown bugs.
iDEA incurs a low false positive rate and time overhead.

REFERENCES
[1] Adam Donenfeld. 2018. Viewer Discretion Advised: (De)coding an iOS Kernel

Vulnerability. http://phrack.org/papers/viewer_discretion_advised.html.

http://phrack.org/papers/viewer_discretion_advised.html

[2] anonymous author. 2020. iDEA Supporting Website. https://sites.google.com/
view/idea-apple-driver.

[3] Apple Inc. 2004. The libkern Base Classes. (2004). http://mirror.informatimago.
com/next/developer.apple.com/documentation/DeviceDrivers/Conceptual/
IOKitFundamentals/BaseClasses/chapter_6_section_2.html.

[4] Apple Inc. 2014. The Base Classes. https://developer.apple.com/library/archive/
documentation/DeviceDrivers/Conceptual/IOKitFundamentals/BaseClasses/
BaseClasses.html.

[5] Apple Inc. 2014. Introduction to I/O Kit Fundamentals. https:
//developer.apple.com/library/archive/documentation/DeviceDrivers/
Conceptual/IOKitFundamentals/Introduction/Introduction.html.

[6] Apple Inc. 2018. About Information Property List Files. https:
//developer.apple.com/library/archive/documentation/General/Reference/
InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html.

[7] Apple Inc. 2018. XNU source code. (2018). https://opensource.apple.com/source/
xnu/.

[8] Apple Inc. 2019. Apple security updates. (2019). https://support.apple.com/en-
us/HT201222.

[9] Apple Inc. 2019. Kernel. https://developer.apple.com/documentation/kernel.
[10] Apple Inc. 2020. CFBundleIdentifier. https://developer.apple.com/documentation/

bundleresources/information_property_list/cfbundleidentifier.
[11] Apple Inc. 2020. fromPath(const char *, const IORegistryPlane *, char *, int

*). https://developer.apple.com/documentation/kernel/ioregistryentry/1810742-
frompath.

[12] Apple Inc. 2020. Identify the ports on your Mac. https://support.apple.com/en-
us/HT201736.

[13] Apple Inc. 2020. Introducing Xcode 12. https://developer.apple.com/xcode/.
[14] Apple Inc. 2020. IOHIDFamily-1446.80.2. https://opensource.apple.com/source/

IOHIDFamily/IOHIDFamily-1446.80.2/.
[15] Apple Inc. 2020. IOLocks.h. https://opensource.apple.com/source/xnu/xnu-

6153.61.1/iokit/IOKit/IOLocks.h.auto.html.
[16] Apple Inc. 2020. IONetworkingFamily-139.60.1. https://opensource.apple.com/

source/IONetworkingFamily/IONetworkingFamily-139.60.1/.
[17] Apple Inc. 2020. IOPCIFamily-370.81.1. https://opensource.apple.com/source/

IOPCIFamily/IOPCIFamily-370.81.1/.
[18] Apple Inc. 2020. IOStorageFamily-238.0.1. https://opensource.apple.com/source/

IOStorageFamily/IOStorageFamily-238.0.1/.
[19] Apple Inc. 2020. OSMetaClassBase. https://developer.apple.com/documentation/

kernel/osmetaclassbase.
[20] Apple Inc. 2020. propertyMatching. https://developer.apple.com/documentation/

kernel/ioservice/1810622-propertymatching.
[21] Apple Inc. 2020. release. https://developer.apple.com/documentation/kernel/

osobject/1941151-release.
[22] Apple Inc. 2020. resourceMatching(const char *, OSDictionary *).

https://developer.apple.com/documentation/kernel/ioservice/1810840-
resourcematching.

[23] Apple Inc. 2020. retain. https://developer.apple.com/documentation/kernel/
osobject/1941154-retain.

[24] Apple Inc. 2020. runAction. https://developer.apple.com/documentation/kernel/
iocommandgate/1811576-runaction.

[25] Apple Inc. 2020. waitForMatchingService. https://developer.apple.com/
documentation/kernel/ioservice/1811164-waitformatchingservice.

[26] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
ConMcGarvey, Bohus Ondrusek, Sriram K Rajamani, and Abdullah Ustuner. 2006.
Thorough static analysis of device drivers. ACM SIGOPS Operating Systems
Review 40, 4 (2006), 73–85.

[27] bazad. 2018. ida_kernelcache: An IDA Toolkit for analyzing iOS kernelcaches.
https://github.com/bazad/ida_kernelcache.

[28] Ian Beer. 2014. pwn4fun Spring 2014–Safari–Part II. (2014). https:
//googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-
ii.html.

[29] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. ACM Sigplan
Notices 46, 3 (2011), 265–278.

[30] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. 2019. 5.1 External
Names (a.k.a. Mangling). https://itanium-cxx-abi.github.io/cxx-abi/abi.html.

[31] David Dewey and Jonathon T Giffin. 2012. Static detection of C++ vtable escape
vulnerabilities in binary code.. In NDSS.

[32] David Dewey, Bradley Reaves, and Patrick Traynor. 2015. Uncovering Use-
After-Free Conditions in Compiled Code. In Availability, Reliability and Security
(ARES), 2015 10th International Conference on. IEEE, 90–99.

[33] David Bryan Dewey. 2015. Finding and remedying high-level security issues in
binary code. Ph.D. Dissertation. Georgia Institute of Technology.

[34] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS:
Detecting Privacy Leaks in iOS Applications.. In NDSS. 177–183.

[35] Margaret A Ellis and Bjarne Stroustrup. 1990. The annotated C++ reference
manual. Addison-Wesley.

[36] Esser, Stefan. 2011. Exploiting the iOS kernel. Black Hat USA (2011).

[37] Flanker. 2016. The Python Bites your Apple Fuzzing and exploiting OSX Kernel
bugs. https://papers.put.as/papers/macosx/2016/xkungfoo.pdf.

[38] Alexander Fokin, Egor Derevenetc, Alexander Chernov, and Katerina Troshina.
2011. SmartDec: approaching C++ decompilation. In 2011 18th Working
Conference on Reverse Engineering. IEEE, 347–356.

[39] Alexander Fokin, Katerina Troshina, and Alexander Chernov. 2010. Recon-
struction of class hierarchies for decompilation of C++ programs. In Software
Maintenance and Reengineering (CSMR), 2010 14th European Conference on.
IEEE, 240–243.

[40] GNU. 2020. Demangling. https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_
demangling.html.

[41] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based Fuzzer.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2345–2358.

[42] Hex-Rays. 2015. IDA: About. (2015). https://www.hex-rays.com/products/ida/.
[43] Ian Beer. 2018. CVE-2017-13861. https://bugs.chromium.org/p/project-zero/

issues/detail?id=1417.
[44] Ian Beer. 2019. A very deep dive into iOS Exploit chains found in the

wild. https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-
ios-exploit.html.

[45] iOS Expert. 2017. Apple’s iOS Kernel Patch Protection (KPP) Explained. (2017).
https://yalujailbreak.net/kernel-patch-protection/.

[46] Just a Penguin. 2019. IPSW Downloads. (2019). https://ipsw.me/.
[47] Kaspersky Lab. 2017. Pegasus: The ultimate spyware for iOS and Android. (2017).

https://www.kaspersky.com/blog/pegasus-spyware/14604/.
[48] Omer Katz, Ran El-Yaniv, and Eran Yahav. 2016. Estimating types in binaries

using predictive modeling. In ACM SIGPLAN Notices, Vol. 51. ACM, 313–326.
[49] Omer Katz, Noam Rinetzky, and Eran Yahav. 2018. Statistical reconstruction of

class hierarchies in binaries. In ACM SIGPLAN Notices, Vol. 53. ACM, 363–376.
[50] Johannes Kinder and Helmut Veith. 2010. Precise static analysis of untrusted

driver binaries. In Formal Methods in Computer-Aided Design (FMCAD), 2010.
IEEE, 43–50.

[51] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. DR. CHECKER: A Soundy Analysis for
Linux Kernel Drivers. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, 1007–1024.

[52] Mandt, Tarjei. 2013. Attacking the iOS Kernel: A Look at’evasi0n’. http:
//www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf.

[53] Stefano Bianchi Mazzone, Mattia Pagnozzi, Aristide Fattori, Alessandro Reina,
Andrea Lanzi, and Danilo Bruschi. 2014. Improving mac os x security through
gray box fuzzing technique. In Proceedings of the Seventh European Workshop
on System Security. ACM, 2.

[54] Micorsoft. 2019. WDF_DRIVER_CONFIG structure. https:
//docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdriver/ns-
wdfdriver-_wdf_driver_config.

[55] Micorsoft. 2019. WdfDriverCreate function. https://docs.microsoft.com/en-
us/windows-hardware/drivers/ddi/wdfdriver/nf-wdfdriver-wdfdrivercreate.

[56] Music Matter. 2015. 6 Of The Best Firewire Audio Interfaces 2015. https:
//www.musicmatter.co.uk/lists/best-firewire-audio-interfaces-2015.

[57] Jianfeng Pan, Guanglu Yan, and Xiaocao Fan. 2017. Digtool: A virtualization-
based framework for detecting kernel vulnerabilities. In 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, 149–165.

[58] Riyad Parvez, Paul AS Ward, and Vijay Ganesh. 2016. Combining static analysis
and targeted symbolic execution for scalable bug-finding in application bina-
ries. In Proceedings of the 26th Annual International Conference on Computer
Science and Software Engineering. IBM Corp., 116–127.

[59] Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwehand,
Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuffrida. 2017.
MARX: Uncovering Class Hierarchies in C++ Programs.. In NDSS.

[60] Plaskett, Alex and Loureiro, James. 2017. Biting the Apple that feeds you - macOS
Kernel Fuzzing. https://labs.f-secure.com/archive/biting-the-apple-that-feeds-
you-macos-kernel-fuzzing/.

[61] Quarkslab. 2019. Taint analysis on aarch64 binaries? https://github.com/
JonathanSalwan/Triton/issues/837.

[62] Quarkslab. 2020. Triton - A DBA Framework. https://triton.quarkslab.com/.
[63] Matthew J. Renzelmann, Asim Kadav, andMichael M. Swift. 2012. SymDrive: Test-

ing Drivers without Devices. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12). USENIX, Hol-
lywood, CA, 279–292. https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/renzelmann.

[64] Paul Vincent Sabanal and Mark Vincent Yason. 2007. Reversing C++.
(2007). https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/
bh-dc-07-Sabanal_Yason-WP.pdf.

[65] Florent Saudel and Jonathan Salwan. 2015. Triton: A dynamic symbolic execution
framework. In Symposium sur la sécurité des technologies de l’information et
des communications, SSTIC, France, Rennes. 31–54.

[66] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.

https://sites.google.com/view/idea-apple-driver
https://sites.google.com/view/idea-apple-driver
http://mirror.informatimago.com/next/developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/BaseClasses/chapter_6_section_2.html
http://mirror.informatimago.com/next/developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/BaseClasses/chapter_6_section_2.html
http://mirror.informatimago.com/next/developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/BaseClasses/chapter_6_section_2.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/BaseClasses/BaseClasses.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/BaseClasses/BaseClasses.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/BaseClasses/BaseClasses.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html
https://opensource.apple.com/source/xnu/
https://opensource.apple.com/source/xnu/
https://support.apple.com/en-us/HT201222
https://support.apple.com/en-us/HT201222
https://developer.apple.com/documentation/kernel
https://developer.apple.com/documentation/bundleresources/information_property_list/cfbundleidentifier
https://developer.apple.com/documentation/bundleresources/information_property_list/cfbundleidentifier
https://developer.apple.com/documentation/kernel/ioregistryentry/1810742-frompath
https://developer.apple.com/documentation/kernel/ioregistryentry/1810742-frompath
https://support.apple.com/en-us/HT201736
https://support.apple.com/en-us/HT201736
https://developer.apple.com/xcode/
https://opensource.apple.com/source/IOHIDFamily/IOHIDFamily-1446.80.2/
https://opensource.apple.com/source/IOHIDFamily/IOHIDFamily-1446.80.2/
https://opensource.apple.com/source/xnu/xnu-6153.61.1/iokit/IOKit/IOLocks.h.auto.html
https://opensource.apple.com/source/xnu/xnu-6153.61.1/iokit/IOKit/IOLocks.h.auto.html
https://opensource.apple.com/source/IONetworkingFamily/IONetworkingFamily-139.60.1/
https://opensource.apple.com/source/IONetworkingFamily/IONetworkingFamily-139.60.1/
https://opensource.apple.com/source/IOPCIFamily/IOPCIFamily-370.81.1/
https://opensource.apple.com/source/IOPCIFamily/IOPCIFamily-370.81.1/
https://opensource.apple.com/source/IOStorageFamily/IOStorageFamily-238.0.1/
https://opensource.apple.com/source/IOStorageFamily/IOStorageFamily-238.0.1/
https://developer.apple.com/documentation/kernel/osmetaclassbase
https://developer.apple.com/documentation/kernel/osmetaclassbase
https://developer.apple.com/documentation/kernel/ioservice/1810622-propertymatching
https://developer.apple.com/documentation/kernel/ioservice/1810622-propertymatching
https://developer.apple.com/documentation/kernel/osobject/1941151-release
https://developer.apple.com/documentation/kernel/osobject/1941151-release
https://developer.apple.com/documentation/kernel/ioservice/1810840-resourcematching
https://developer.apple.com/documentation/kernel/ioservice/1810840-resourcematching
https://developer.apple.com/documentation/kernel/osobject/1941154-retain
https://developer.apple.com/documentation/kernel/osobject/1941154-retain
https://developer.apple.com/documentation/kernel/iocommandgate/1811576-runaction
https://developer.apple.com/documentation/kernel/iocommandgate/1811576-runaction
https://developer.apple.com/documentation/kernel/ioservice/1811164-waitformatchingservice
https://developer.apple.com/documentation/kernel/ioservice/1811164-waitformatchingservice
https://github.com/bazad/ida_kernelcache
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://papers.put.as/papers/macosx/2016/xkungfoo.pdf
https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
https://www.hex-rays.com/products/ida/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1417
https://bugs.chromium.org/p/project-zero/issues/detail?id=1417
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://yalujailbreak.net/kernel-patch-protection/
https://ipsw.me/
https://www.kaspersky.com/blog/pegasus-spyware/14604/
http://www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf
http://www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdriver/ns-wdfdriver-_wdf_driver_config
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdriver/ns-wdfdriver-_wdf_driver_config
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdriver/ns-wdfdriver-_wdf_driver_config
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdriver/nf-wdfdriver-wdfdrivercreate
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdriver/nf-wdfdriver-wdfdrivercreate
https://www.musicmatter.co.uk/lists/best-firewire-audio-interfaces-2015
https://www.musicmatter.co.uk/lists/best-firewire-audio-interfaces-2015
https://labs.f-secure.com/archive/biting-the-apple-that-feeds-you-macos-kernel-fuzzing/
https://labs.f-secure.com/archive/biting-the-apple-that-feeds-you-macos-kernel-fuzzing/
https://github.com/JonathanSalwan/Triton/issues/837
https://github.com/JonathanSalwan/Triton/issues/837
https://triton.quarkslab.com/
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/renzelmann
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/renzelmann
https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf

In 26th USENIX Security Symposium (USENIX Security 17). USENIXAssociation,
Vancouver, BC, 167–182. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/schumilo.

[67] Edward J Schwartz, Cory F Cohen, Michael Duggan, Jeffrey Gennari, Jeffrey S
Havrilla, and Charles Hines. 2018. Using logic programming to recover C++
classes and methods from compiled executables. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. ACM,
426–441.

[68] Semmle. 2020. Semmle. https://semmle.com/.
[69] ShiftLeftSecurity. 2020. Joern Documentation. https://joern.io/docs/.
[70] SilverMoonSecurity. 2016. PassiveFuzzFrameworkOSX. (2016). https://github.

com/SilverMoonSecurity/PassiveFuzzFrameworkOSX.
[71] Alexander Sotirov. 2007. Heap feng shui in javascript. Black Hat Europe 2007

(2007).
[72] Stefan Esser. 2011. IDA-IOS-Toolkit. https://github.com/stefanesser/IDA-IOS-

Toolkit.
[73] Stefan Esser. 2011. Targeting the iOS Kernel. https://papers.put.as/papers/ios/

2011/SysScan-Singapore-Targeting_The_IOS_Kernel.pdf.
[74] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang, Zheng

Zhang, Ardalan Amiri Sani, and Zhiyun Qian. 2018. Charm: facilitating dy-
namic analysis of device drivers of mobile systems. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 291–307.

[75] The Clang Team. 2019. LibClang. https://clang.llvm.org/docs/Tooling.html.
[76] The MITRE Corporation. 2019. CWE-416: Use After Free. https://cwe.mitre.org/

data/definitions/416.html.
[77] The MITRE Corporation. 2020. CWE-787: Out-of-bounds Write. https://cwe.

mitre.org/data/definitions/787.html.
[78] Tielei Wang, Hao Xu, and Xiaobo Chen. 2016. Pangu 9 internals. Black Hat USA

(2016).
[79] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.

2012. Improving Integer Security for Systems with KINT. In Presented as part of
the 10th USENIX Symposium onOperating Systems Design and Implementation
(OSDI 12). USENIX, Hollywood, CA, 163–177. https://www.usenix.org/
conference/osdi12/technical-sessions/presentation/wang.

[80] Mark N Wegman and F Kenneth Zadeck. 1991. Constant propagation with con-
ditional branches. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 2 (1991), 181–210.

[81] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering
4 (1984), 352–357.

[82] Wikipedia. 2020. Executable and Linkable Format. https://en.wikipedia.org/
wiki/Executable_and_Linkable_Format.

[83] Wikipedia. 2020. Mach-O. https://en.wikipedia.org/wiki/Mach-O.
[84] Wikipedia. 2020. Portable Executable. https://en.wikipedia.org/wiki/Portable_

Executable.
[85] Xiaolong Bai, Min (Spark) Zheng. 2018. Eating The Core of an Ap-

ple: How to Analyze and Find Bugs in MacOS and iOS Kernel Drivers.
https://conference.hitb.org/hitbsecconf2018ams/sessions/eating-the-core-of-
an-apple-how-to-analyze-and-find-bugs-in-macos-and-ios-kernel-drivers/.

[86] Zhenquan Xu, Gongshen Liu, Tielei Wang, and Hao Xu. 2017. Exploitations of
uninitialized uses on macos sierra. In 11th {USENIX} Workshop on Offensive
Technologies ({WOOT} 17).

[87] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in android device driver
customizations. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE,
409–423.

APPENDIX
9 IMPLEMENTATION
We implemented iDEA as an IDA pro [42] plugin (15,000 lines of
Python code), which performs analysis on the assembly code of
driver binaries. We will release the source code. In the following,
we provide implementation details for iDEA, with respect to key
phases in its design (Section 3).
Recovering classes. For recovering classes, we implement the
backward slicing [34, 81] and forward constant propagation algo-
rithm [80] on both arm64 instructions (for iOS/iPadOS/tvOS) and
x86_64 instructions (for macOS). We inspect registers that store
addresses of MetaClass object, class name string, and class size
during the analysis of InitFuncs. For finding driver class vtable
in analyzing MetaClass::alloc(), we identify the invocation of

new() allocation function, and perform forward data flow analysis
on the newly-allocated object (whose address is stored in register
X0 for arm64 or RAX for x86_64) and look for the code pattern that
stores an data section address (i.e., vtable address) into the starting
address (e.g., [X0] or [RAX]) of the allocated object .

Besides recovering classes, iDEA in Phase I also complements
IDA pro’s auto-analysis on the driver binaries. Specifically, IDA
pro can not properly recognize many function bodies in iOS/iPa-
dOS/tvOS drivers. We recognize functions by looking for stack-
push (e.g. STP X29, X30,[SP,-0x10]!) and stack-pop (e.g. LDP
X29,X30,[SP],0x10) instructions.
Finding entry points.Asmentioned in Section 3.2, iDEA has a few
steps in the hunting for Type-II entry-points. In the first step, we find
the return instruction that returns a method-struct, and exclude
those that return NULL. This is because certain branch returns
NULL to handle invalid selector argument, which intuitively is
used to select a method-struct from its array. To this end, iDEA
integrated off-the-shelf tool Triton [62, 65] to taint the register with
the "selector" argument and find tainted return instruction – one
that returns method-struct but not NULL. In the second step, iDEA
integrated backward slicing provided by Triton to find instructions
that affect the value in the return register (X0 for iOS/iPadOS/tvOS,
rax for macOS). In these instructions, we look for the address
loading instructions (ADRP for iOS/iPadOS/tvOS, lea for macOS).
If the instruction is loading an address in the data section, we take
it as the address of method-struct array.

To parse the array, we first need to decide the array length. To this
end, we performed symbolic execution (again using Triton) on the
selector argument along the control flow path leading to the ad-
dress loading instruction (found above): because the address loading
happens after the user-entry confirms selector does not exceed the
array length, the symbolic execution analysis of Triton gives us the
range constraints on the selector, i.e., the array length. After the
length of the method-struct array is found, we traverse the array
and extract function pointers (i.e., Type-II entry points) in each
method-struct. For the array found in get*Target*ForIndex
user-entries (see Table 2), each method-struct’s size is 48 and the
function pointer is placed at offset 8. For externalMethod user-
entry, each method-struct’s size is 24 and the function pointer is
placed at offset 0; other user-entries do not involve method-struct
and Type-II entry points.
Identifying object types. To decode the mangling name (Scenario
3), which are encoded in ItaniumC++mangling format [30] inApple
drivers, iDEA leveraged IDA pro’s python API Demangle(). Further,
in order to get the types of kernel APIs’ return values (Scenario
4), we developed a tool based on libclang [75] to parse the header
and source files in the XNU source code.2 This tool collects kernel
functions’ types (including argument types and return value types)
for iDEA. Besides, for Scenario 5, the constructor code patterns we
used for Apple drivers are listed in Table 4 in Appendix.
Supporting pluggable policy checkers. To support pluggable
checkers, iDEA provides a template class for checkers to inherit
from. Checkers are implemented in Python, the same as iDEA.
Checkers must override two functions (pre_instr_checker and
2Apple released some versions of XNU [7]. The types of kernel functions typically
remain stable between OS versions for backward compatibility.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://semmle.com/
https://joern.io/docs/
https://github.com/SilverMoonSecurity/PassiveFuzzFrameworkOSX
https://github.com/SilverMoonSecurity/PassiveFuzzFrameworkOSX
https://github.com/stefanesser/IDA-IOS-Toolkit
https://github.com/stefanesser/IDA-IOS-Toolkit
https://papers.put.as/papers/ios/2011/SysScan-Singapore-Targeting_The_IOS_Kernel.pdf
https://papers.put.as/papers/ios/2011/SysScan-Singapore-Targeting_The_IOS_Kernel.pdf
https://clang.llvm.org/docs/Tooling.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wang
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wang
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://conference.hitb.org/hitbsecconf2018ams/sessions/eating-the-core-of-an-apple-how-to-analyze-and-find-bugs-in-macos-and-ios-kernel-drivers/
https://conference.hitb.org/hitbsecconf2018ams/sessions/eating-the-core-of-an-apple-how-to-analyze-and-find-bugs-in-macos-and-ios-kernel-drivers/

post_instr_checker), which are invoked by iDEA before and after
each instruction when traversing the ICFG. iDEA employs two
analysis clients (TAC and SEC, see Section 3.5), and their analysis
results (tainted register/memory area, symbolic expressions, etc.)
are provided to checkers through these callback functions.

10 PERFORMANCE EVALUATION
Overview.We use the same set of drivers in Section 5.2 (870 driver
binaries on the latest versions of four Apple OSes) to evaluate the
analysis time of iDEA. We ran iDEA to scan all these drivers on a
Macbook Pro with 2.2 GHz Intel Core i7 CPU and 16 GB 1600 MHz
DDR3. The analysis time is shown in Table 3, which includes the
time for all phases of iDEA (Section 3) and running two checkers
(Section 4). It takes 6∼14 hours to analyze an OS, depending on its
number of driver binaries. Note that, given a driver binary, Phase
I-IV only needs to run once and the results can be stored by iDEA
to run more checkers.

Table 3: Analysis time for different Apple OSes (in hours)

OS
Number of

Drivers (Binaries)
Size
(MB)

Overall
Time

Time of
Phase I-IV

Time to
Run Checkers

macOS 362 525 14 10 4
iOS 176 21 7 5 2

iPadOS 189 23 8.5 6 2.5
tvOS 143 13 6 4 2

Table 3 also shows the total size of driver binaries on each Apple
OS. Figure 9 further outlines the distribution of driver binary sizes
on each Apple OS. For macOS, except for 30 (out of 362) graphics
driver binaries taking up 482 MB (92%) of the total size, most driver
binaries have a size of 10∼100 KB, which is consistent with iOS,
iPadOS and tvOS. The 30 graphics binaries have huge data sections
(387 MB in total), which did not obviously affect our analysis time.
As discussed below, we observed that the major factor affecting
analysis time is the size of code section, not data section.

0
500

1000
1500
2000

2500

0 1000 2000 3000
0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200
macOS 10.15.6 tvOS 13.4.8

0

1000

2000

3000

4000

0 200 400 600 800 1000 1200
iPadOS 13.6.1

0

1000

2000

3000

4000

0 200 400 600 800 1000 1200
iOS 13.6.1

Figure 8: The relationship between code section size and
analysis time for macOS, tvOS, iOS, and iPadOS driver bina-
ries, with each dot denoting a driver binary (X-ray: the size
of driver binaries’ code sections in KB; Y-ray: analysis time
in seconds)

Factors affecting analysis time. From a high-level view, the anal-
ysis time is roughly proportional to the number of driver binaries,
analyzing about 25 driver binaries per hour on each Apple OS (see
Table 3). On each OS, we also measured the time for analyzing

0

50

100

150

200

<5 5~10 10~100 100~500 500~1000 1000~5000
macOS iOS iPadOS tvOS

Figure 9: The distribution of driver binary sizes (X-ray: Sizes
in KB; Y-ray: Number of driver binaries)

different driver binaries of different sizes and functionalities. The
analysis time is mainly affected by the binary size, in particular,
the code section of a binary. For most driver binaries, there is an
approximately positive linear correlation between the binary size
and the analysis time, as shown in Figure 8 . Those sparse dots
relatively far above the dotted line have more indirect calls and
more complex control flows, and, thus, took more time to analyze.
For macOS drivers we observed two linear correlations in Figure ??.
Most drivers around the lower dotted line are related to AMD-
manufactured hardware devices (indicated by their binary names
such as “AMD9500Controller”). These AMD-related drivers took
less time to analyze since they have less indirect calls.

IOSurfaceRootUserClient

IOSurfaceRoot

root class of all classes

IOSurfaceRoot::MetaClass

IOSurfaceRootUserClient::MetaClassIOUserClient

OSMetaClass

parent of all 
MetaClass

parent of all  
driver classes

OSMetaClassBase

parent of all  
UserClient

classes

IOService

OSData

OSSet

OSDictionary

OSObject

class defined in I/O Kit class defined in a specific driver
inherit explanation

Figure 10: The inheritance relationship between driver
classes and classes in the kernel driver programming frame-
work I/O Kit. OSMetaClassBase is the ancestor of all classes.

Table 4: Common code patterns of constructors

Function
Size & # of
basic blocks

Other
features

Constructors
(Paradigm 1) 36 & 1 A vtable pointer is loaded

at function offset +0xC.

Constructors
(Paradigm 2) 72 & 1

OSMetaClass::instanceConstructed
is called at offset +0x34. A MetaClass

object is referenced at +0x10

Table 5: Drivers with source code

Source
Project Name Bundle ID

IOPCIFamily com.apple.iokit.IOPCIFamily
IOStorageFamily com.apple.iokit.IOStorageFamily

IONetworkingFamily com.apple.iokit.IONetworkingFamily
IOHIDFamily com.apple.iokit.IOHIDFamily

Algorithm1:The algorithm of identifying objects and type
propagation
1 Funciton

TypeAnalsisInFunc(𝑓 :Function, 𝜏 :Map, Δ: Set):
2 if ¬ (𝑓 in Δ) then
3 if 𝑓 is 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑖𝑛𝑡 then
4 𝜏 ←− ∅;
5 Γ ←− ∅;
6 deFuncName←− demangle function name;
7 𝑓 .argTypes←− extractArgTypes(deFuncName);
8 foreach arg𝑖 in 𝑓 .args do
9 𝜏 [𝑓 .arg𝑖]←− 𝑓 .argType𝑖 ;

10 end
11 𝑓 𝑖𝑠𝑡𝐵𝐵←− 𝑓 .firstBasicBlock;
12 TypePropagateInBB(𝜏 , 𝑓 𝑖𝑠𝑡𝐵𝐵, Γ, Δ);
13 markVisited(𝑓 , Δ);
14 end
15 Funciton

TypePropagateInBB(𝜏 :Map, 𝑏𝑏:BasicBlock, Γ: Set, Δ: Set):
16 if ¬ (𝑏𝑏 in Γ) then
17 𝜎 ←− copy(𝜏);
18 foreach instruction 𝑖 in 𝑏𝑏.instructions do
19 if 𝑖 .operator is call then
20 F←− 𝑖 .target;
21 if F is TypeCastFunc then
22 resolve 𝑑𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 argument;
23 𝜎 [x0]←− 𝑑𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 *;
24 else if F is allocClassWithName then
25 resolve 𝑐𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 argument;
26 𝜎 [x0]←− 𝑐𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 * ;
27 else if F is Constructor then
28 𝑜𝑏 𝑗𝐶𝑙𝑎𝑠𝑠 ←− classOfConstrucot(F) ;
29 𝜎 [x0]←− 𝑜𝑏 𝑗𝐶𝑙𝑎𝑠𝑠 * ;
30 else if F is KernelAPI then
31 𝑟𝑒𝑡𝑇𝑦𝑝𝑒 ←−

getRetTypeOfAPI(KernelAPI) ;
32 𝜎 [x0]←− 𝑟𝑒𝑡𝑇𝑦𝑝𝑒 ;
33 else
34 TypeAnalsisInFunc(F, 𝜎 , Δ);
35 else if 𝑖 .operator is mov/store/load then
36 if 𝑖 .src in 𝜎 then
37 𝜎 [𝑖 .dst]←− 𝜎 [𝑖 .src];
38 else if 𝑖 .dst in 𝜎 then
39 𝜎 [𝑖 .dst]←− ∅;
40 end
41 markVisited(𝑏𝑏, Γ);
42 while more 𝑏𝑏.nextBB do
43 TypePropagateInBB(𝜎 , 𝑏𝑏.nextBB, Γ, Δ);
44 end
45 end

Table 6: Vulnerabilities found by iDEA inApple drivers (“Silently fixed"means the vulnerabilitywas found in olderOS versions,
but have been fixed silently by Apple in newer OS versions without public disclosure. “Null-Pointer" means Null-Pointer
dereference vulnerability.)

Vulnerable driver UserClients OS Vuln Type Status
IOFirewireFamily IOFirewireUserClient macOS UAF CVE-2018-4135
IOMikeyBusFamily IOMikeyBusDeviceUserClient iOS/iPadOS UAF CVE-2020-3834
IOUSBDeviceFamily IOUSBDeviceInterfaceUserClient iOS UAF CVE-2019-8836
AppleC26Charger AppleC26ChargerUserClient iOS/iPadOS/tvOS UAF CVE-2020-3858

IOThunderboltFamily IOThunderboltFamilyUserClient macOS UAF CVE-2020-3851

AppleFWAudio AppleFWAudioUserClient macOS UAF Acknowledged by Apple;
CVE scheduled to assign

AppleFWAudio AppleMLANAudioUserClient macOS UAF Acknowledged by Apple;
CVE scheduled to assign

AppleIntelSKLGraphics IGAccelCommandQueue macOS OOB read&write Reported
AppleIntelKBLGraphics IGAccelCommandQueue macOS OOB read&write Reported
AppleIntelBDWGraphics IGAccelCommandQueue macOS OOB read&write Reported

AppleIntelHD5000Graphics IGAccelCommandQueue macOS OOB read&write Reported
AppleIntelHD4000Graphics IGAccelCommandQueue macOS OOB read&write Reported

AppleMultitouchSPI AppleMultitouchSPIUserClient iOS/iPadOS Null-Pointer Reported
EncryptedBlockStorage EncryptedMediaFilterUserClient iOS/iPadOS/tvOS Null-Pointer Reported

LSKDIOKitMSE com_apple_driver_KeyDelivery
IOKitUserClientMSE iOS/iPadOS/tvOS Null-Pointer Reported

LightweightVolumeManager LwVMUserClient iOS/iPadOS Null-Pointer Reported
AppleSMCLMU AppleLMUClient macOS Null-Pointer Reported
AppleGFXHDA AppleGFXHDADriverUserClient macOS Null-Pointer Reported
AppleGFXHDA AppleGFXHDAControllerUserClient macOS Null-Pointer Reported
AppleImage4 AppleImage4UserClient macOS Null-Pointer Reported

IOBluetoothFamily IOBluetoothRFCOMM
ConnectionUserClient macOS Null-Pointer Reported

IONVMeFamily AppleNVMeSMARTUserClient macOS Null-Pointer Reported
AppleGraphicsPowerManagement AGPMClient macOS Null-Pointer Reported

watchdog IOWatchdogUserClient macOS Null-Pointer Reported
AppleACPIPlatform AppleACPIPlatformUserClient macOS Null-Pointer Reported

AppleSMBusController AppleSMBusControllerUserClient macOS Null-Pointer Reported
AppleHDA AppleHDADriverUserClient macOS Null-Pointer Reported

SMCMotionSensor SMCMotionSensorClient macOS Null-Pointer Reported

IOSCSIBlockCommandsDevice AppleNVMeTranslation
SMARTUserClient macOS Null-Pointer Reported

ACPI_SMC_PlatformPlugin ACPI_SMC_PluginUserClient macOS Null-Pointer Reported
IOHDAFamily IOHDACodecDeviceUserClient macOS Null-Pointer Reported

AppleMikeyDriver AppleMikeyDriverUserClient macOS Null-Pointer Reported
AppleHDAController AppleHDAControllerUserClient macOS Null-Pointer Reported
IOATABlockStorage ATASMARTUserClient macOS Null-Pointer Reported

AppleDiskImagesKernelBacked KDIDiskImageNubUserClient macOS Null-Pointer Reported
IOUserEthernet IOUserEthernetResourceUserClient macOS UAF Silently fixed

AppleIntel8254XEthernet Intel8254XUserClient macOS UAF Silently fixed
mDNSOffloadUserClient mDNSOffloadUserClient macOS UAF Silently fixed
IOAVBStreamingPlugin IOAVBInputUserSpaceStreamUserClient macOS UAF Silently fixed
IOUSBDeviceFamily IOUSBDeviceInterfaceUserClient iOS UAF Silently fixed
AppleJPEGDriver AppleJPEGDriverUserClient iOS Null-Pointer Silently fixed
IOUserEthernet IOUserEthernetResourceUserClient iOS Null-Pointer Silently fixed
AppleS7002SPU AppleSPUHIDDeviceUserClient iOS UAF Silently fixed

EncryptedBlockStorage EncryptedMediaFilterUserClient iOS Null-Pointer Silently fixed

LSKDIOKit com_apple_driver_
KeyDeliveryIOKitUserClient iOS Null-Pointer Silently fixed

IOImageLoader IOImageLoaderUserClient iOS Null-Pointer Silently fixed

Listing 2: The POC of UAF vulnerability in IOFirewireUserClient

io_connect_t connection = (io_connect_t) 0;
uint64_t outputHandle = 0xaa;

void race(void *args){
kern_return_t kr;
struct CommandSubmitParams inputStruct = {0};
inputStruct.type = kFireWireCommandType_Read;
size_t outputStructCnt = 10;
uint64_t asyncRef[8] = {0};
uint32_t selector;
struct CommandSubmitResult outputStructNew = {0};
outputStructCnt = sizeof(outputStructNew);
inputStruct.kernCommandRef = outputHandle;
selector = kCommand_Submit;
kr = IOConnectCallAsyncMethod(connection, selector, MACH_PORT_NULL, asyncRef, 3, NULL, 0, (void *)&inputStruct,

↩→ sizeof(inputStruct), NULL, 0, &outputStructNew, &outputStructCnt);
}

void main()
{
io_service_t service = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching("

↩→ IOFireWireLocalNode"));
kern_return_t kr = IOServiceOpen(service, mach_task_self(), 0, &connection);
while(1){
uint64_t input[3] = {0};
struct CommandSubmitParams inputStruct = {0};
inputStruct.type = kFireWireCommandType_Read;
uint64_t output[16] = {0xaa};
uint32_t outputCnt = 2;
size_t outputStructCnt = 1;
uint64_t asyncRef[8] = {0};
uint32_t selector;
selector = kCommandCreateAsync;
kr = IOConnectCallAsyncMethod(connection, selector, MACH_PORT_NULL, asyncRef, 3, NULL, 0, (void *)&

↩→ inputStruct, sizeof(inputStruct), NULL, 0, &outputHandle, &outputStructCnt);
pthread_t t;
pthread_create(&t, NULL, (void*) race, NULL);
struct CommandSubmitResult outputStructNew = {0};
outputStructCnt = sizeof(outputStructNew);
inputStruct.staleFlags = 1<<1;
inputStruct.kernCommandRef = outputHandle;
selector = kCommand_Submit;
wait_n(200);
kr = IOConnectCallAsyncMethod(connection, selector, MACH_PORT_NULL, asyncRef, 3, NULL, 0, (void *)&

↩→ inputStruct, sizeof(inputStruct), NULL, 0, &outputStructNew, &outputStructCnt);
pthread_join(t, NULL);

}
IOServiceClose(connection);

}

	Abstract
	1 Introduction
	2 Background
	2.1 Driver Programming Model.
	2.2 Registering Drivers to Apple Kernel
	2.3 Interacting with User-space Programs

	3 Analysis Design
	3.1 Phase I: Recovering Driver Classes
	3.2 Phase II: Discovering Driver Entry Points
	3.3 Phase III: Identifying Objects with Vtables
	3.4 Phase IV: Resolving Indirect Calls
	3.5 Supporting Pluggable Policy Checkers

	4 Security Policy Checkers
	4.1 Race Condition in Apple Drivers
	4.2 Race Condition Checker
	4.3 OOB Read/Write Checker

	5 Evaluation
	5.1 Evaluating Overall Effectiveness
	5.2 Evaluating Individual Analysis Phases
	5.3 Comparison with Prior Works

	6 Discussion
	7 Related Work
	8 Conclusions
	References
	9 Implementation
	10 Performance Evaluation

