
Exploring Fine-Grained Heterogeneity with
Composite Cores

Andrew Lukefahr, Student Member, IEEE , Shruti Padmanabha, Student Member, IEEE ,
Reetuparna Das, Member, IEEE , Faissal M. Sleiman, Student Member, IEEE ,

Ronald G. Dreslinski, Member, IEEE , Thomas F. Wenisch, Member, IEEE ,
and Scott Mahlke, Fellow, IEEE

Abstract—Heterogeneous multicore systems—comprising multiple cores with varying performance and energy characteristics—
have emerged as a promising approach to increasing energy efficiency. Such systems reduce energy consumption by identifying
application phases and migrating execution to the most efficient core that meets performance requirements. However, the
overheads of migrating between cores limit opportunities to coarse-grained phases (hundreds of millions of instructions), reducing
the potential to exploit energy efficient cores.
We propose Composite Cores, an architecture that reduces migration overheads by bringing heterogeneity into a core.
Composite Cores pairs a big and little compute µEngine that together achieve high performance and energy efficiency. By sharing
architectural state between the µEngines, the migration overhead is reduced, enabling fine-grained migration and increasing the
opportunities to utilize the little µEngine without sacrificing performance. An intelligent controller migrates the application between
µEngines to maximize energy efficiency while constraining performance loss to a configurable bound. We evaluate Composite
Cores using cycle accurate microarchitectural simulations and a detailed power model. Results show that, on average, Composite
Cores are able to map 30% of the execution time to the little µEngine, achieving a 21% energy savings while maintaining 95%
performance.

Index Terms—Adaptive architecture, heterogeneous processors, hardware scheduling, fine-grain phases

F

1 INTRODUCTION

The microprocessor industry, fueled by Moore’s
law, has continued to provide an exponential rise
in the number of transistors that can fit on a single
chip. However, transistor threshold voltages have not
kept pace with technology scaling, resulting in near
constant per-transistor switching energy. These trends
create a difficult design dilemma, more transistors can
fit on a chip but the energy budget will not allow
them to be used simultaneously, making it possible
for computer architects to trade increased area for
improved energy efficiency.

Heterogeneous multicore systems are an effective
approach to trade area for improved energy efficiency.
These systems comprise multiple cores with different
capabilities, yielding varying performance and energy
characteristics [19]. In these systems, an application
is mapped to the most efficient core that can meet
its performance needs. As its performance changes,
the application is migrated to a new core. Traditional
designs select the best core by briefly sampling perfor-
mance on each core. However, every time the applica-

• A. Lukefahr, S. Padmanabha, R. Das, F.M. Sleiman,
R.G. Dreslinski, T.F. Wenisch and S.Mahlke are with the
Advanced Computer Architecture Laboratory, University
of Michigan, Ann Arbor, MI 48109. E-mail: luke-
fahr,shrupad,reetudas,sleimanf,rdreslin,twenisch,mahlke@umich.edu

Manuscript received April 10, 2014; revised January 13, 2015.

tion is migrated to a new core, its current state must
be explicitly transferred or rebuilt on the new core.
This state transfer incurs large overheads that limit
the migration between cores to a coarse granularity
of tens to hundreds of millions of instructions. To
mitigate these effects, the migration is only done at
the granularity of operating system time slices.

This work postulates that the coarse-grained mi-
gration in existing heterogeneous processor designs
limits their effectiveness and energy savings. What is
needed is a tightly-coupled heterogeneous multicore
system that can support fine-grained migration and
is unencumbered by the large state transfer latency of
current designs. To accomplish this goal, we propose
Composite Cores, an architecture that brings the concept
of heterogeneity into a single core. A Composite Core
contains several compute µEngines that together can
achieve both high performance and energy efficiency.
In this work, we consider a dual µEngine Composite
Core consisting of: a high performance pipeline (re-
ferred to as the big µEngine) and an energy efficient
pipeline (referred to as the little µEngine). As only
one µEngine is active at a time, execution migrates
dynamically between µEngines to best match the cur-
rent application’s characteristics to the hardware re-
sources. As this occurs on a much finer granularity
(on the order of a thousand instructions) compared to
past heterogeneous multicore proposals it allows the

application to spend more time on the energy efficient
µEngine without sacrificing additional performance.

As a Composite Core migrates frequently between
µEngines, it relies on hardware resource sharing and
low-overhead transfer techniques to achieve near zero
migration overhead. For example, both µEngines share
branch predictors, L1 caches, fetch units and TLBs.
This sharing ensures that during a migration only the
register state needs to be transfered between µEngines.
We further propose optimizations to a Composite Core
that both improve energy savings and simplify phys-
ical layout.

Because of the fine migration interval, conventional
sampling-based techniques to select the appropriate
core are not well-suited for a Composite Core. Instead,
we propose an online performance estimation tech-
nique that predicts the throughput of the unused
µEngine. If the predicted throughput of the unused
µEngine is significantly higher or has better energy
efficiency than the active µEngine, the application is
migrated. Thus, the decision to migrate µEngines max-
imizes execution on the more efficient little µEngine
subject to a performance degradation constraint.

The migration decision logic tracks and predicts
the accumulated performance loss and ensures that it
remains within a user-selected bound. With Composite
Cores, we allow the users or system architects to select
this bound to trade off performance loss with energy
savings. To accomplish this goal, we integrate a simple
control loop in our decision logic, which maintains the
current performance within the allowed performance
bound, and a reactive model to detect the instan-
taneous performance difference via online performance
estimation techniques.

In summary, this paper offers the following contri-
butions:

• We propose Composite Cores, an architecture that
brings the concept of heterogeneity into a single
core. The Composite Core consists of two tightly
coupled µEngines that enable fine-grained match-
ing of application characteristics to the underly-
ing microarchitecture to achieve both high per-
formance and energy efficiency.

• We study the benefits of fine-grained migration in
the context of heterogeneous core architectures.
To achieve near zero µEngine transfer overhead,
we propose low-overhead migration techniques
and a core microarchitecture which shares neces-
sary hardware resources.

• We design intelligent migration decision logic
that facilitates fine-grain migration via predictive
rather than sampling-based performance estima-
tion. Our design tightly constrains performance
loss within a user-selected bound through a sim-
ple feedback controller.

• We study the performance and energy implica-
tions of several architectural designs of a Com-
posite Core with the goal of maximizing both

energy savings and physical layout. We propose
the addition of a small L0 filter cache [15] for the
little µEngine, as well as evaluate the effects of
various migration techniques.

• We evaluate our proposed Composite Core archi-
tecture with cycle accurate full system simula-
tions and integrated power models. Overall, a
Composite Core can map an average of 25% of
the dynamic execution to the little µEngine and
reduce energy by 21% while bounding performance
degradation to at most 5%.

2 MOTIVATION

Industry interest in heterogeneous multicore de-
signs has been gaining momentum. ARM’s heteroge-
neous multicore, known as big.LITTLE [9], combines
a set of Cortex-A15 (Big) cores with Cortex-A7 (Little)
cores to create a heterogeneous processor. The Cortex-
A15 is a 3-way out-of-order with deep pipelines (15-
25 stages), which is currently the highest performance
ARM core that is available. Conversely, the Cortex-A7
is a narrow in-order processor with a relatively short
pipeline (8-10 stages). The Cortex-A15 has 2-3x higher
performance, but the Cortex-A7 is 3-4x more energy
efficient.

In big.LITTLE, all migrations must occur through
the coherent interconnect between separate level-2
caches, resulting in a migration cost of about 20
µseconds. Thus, this overhead requires that the sys-
tem migrate between cores only at coarse granular-
ity, on the order of tens of milliseconds. The large
scheduling interval forfeits potential gains afforded by
a more aggressive fine-grained migration.

2.1 Migration Interval

Traditional heterogeneous multicore systems, such
as big.LITTLE, rely on coarse-grained migration to
exploit application phases that are hundreds of mil-
lions to billions of instructions. These systems assume
the performance within a phase is stable, and sim-
ple sampling-based monitoring systems can recognize
low-performance phases and map them to a more
energy efficient core. While these long term low-
performance phases do exist, in many applications
they occur infrequently, limiting the potential to uti-
lize a more efficient core. Prior works have shown that
observing performance at finer granularity reveals
more low-performance periods, increasing opportuni-
ties to utilize a more energy efficient core [26], [32].

Figure 1(a) shows a trace of the instructions per
cycle (IPC) for 403.gcc over a typical operating system
scheduling interval of one million instructions for
both a three wide out-of-order (big) and a two wide
in-order (little) core. Over the entire interval, the little
core is 25% slower on average than the big core, which
may necessitate that the entire phase be run on the big
core. However, when observing the performance with
finer granularity, we observe that there are numerous

0

0.5

1

1.5

2

2.5

3

200K 400K 600K 800K 1M

In
st

ru
ct

io
n

s
/

C
yc

le

Instructions

Big Core Little Core

(a) Instruction window of length 2K over 1M
instructions

0

0.5

1

1.5

2

2.5

3

160K 170K 180K

In
st

ru
ct

io
n

s
/

C
yc

le

Instructions

Big Core Little Core

(b) Instruction window of length 100 over a
200K instructions

Fig. 1. IPC Measured over a typical scheduling interval for 403.gcc

periods where the performance gap between the cores is
negligible.

If we zoom in to view performance at even finer
granularity (100s to 1000s of instructions), we find
that, even during intervals where the big core out-
performs the little on average, there are brief periods
where the cores experience similar stalls and the
performance gap between them is negligible. Figure
1(b) illustrates a subset of the trace from Figure 1(a)
where the big core has nearly forty percent better
performance, yet we again see brief regions with
minimal performance gap.

2.2 Migration Overheads

The primary impediment to exploiting these brief
low-performance periods is the cost (both explicit
and implicit) of migrating between cores. Explicit
migration costs include the time required to transport
the core’s architecturally visible state, including the
register file, program counter, and privilege bits. This
state must be explicitly stored into memory, migrated
to the new core and restored. However, there are
also a number of implicit state migration costs for
additional state that is not transferred but must be
rebuilt on the new core. Several major implicit costs
include the extra time required to warm up the L1
caches, branch prediction, and dependence predictor
history on the new core.

3 ARCHITECTURE

A Composite Core consists of tightly-coupled big
and little compute µEngines that can achieve high
performance and energy efficiency by rapidly migrat-
ing between the µEngines in response to changes in
application performance. To reduce the overhead of
migration, the µEngines share as much state as possi-
ble. As Figure 2 illustrates, the µEngines share a front-
end, consisting of a fetch stage and branch predictor,
and multiplex access to the same L1 instruction and
data caches. The register files are kept separate to
minimize the little µEngine’s register access energy.
However, as both µEngines require different control

signals from decode, each µEngine has its own decode
stage.

As the µEngines target different performance and
energy tradeoffs, each µEngine has a separate back-
end implementation. The big µEngine is a highly-
pipelined superscalar design that includes compli-
cated issue logic, a large reorder buffer, numerous
functional units, a complex load/store queue (LSQ),
and register renaming with a large physical register
file. It relies on these complex structures to support
both reordering and speculation in an attempt to
maximize performance at the cost of increased energy
consumption.

The little µEngine features a reduced issue width,
simpler issue logic, reduced functional units, and
omits many of the associatively searched structures
(such as the issue queue or LSQ). By only main-
taining an architectural register file, the little µEngine
eliminates the need for renaming and improves the
efficiency of register file accesses.

As a base design, both µEngines multiplex access to
a single L1 data cache, again to maximize shared state
and reduce migration overheads. However, sharing
a cache between two backends might impact cache
access latencies for one or both µEngines. Therefore
we explore a design where the L1 data cache is tightly
integrated with the big µEngine, maintaing its access
latency at the expense of the little µEngine. We then
introduce an L0 data cache to filter many of the little
µEngine’s access, alleviating it’s latency penalty.

Figure 3 gives an approximate layout of a Composite
Core system with an L0 at 32nm. The big µEngine
consumes 6.3mm2 and the L1 caches consume an
additional 1.4mm2. The little µEngine without an L0
adds an additional 1.8mm2, or about a 20% area over-
head. The L0 cache consumes another 0.05mm2, but
alleviates some of the difficulties in routing two high-
performance access paths to the same cache. Finally,
the Composite Core control logic adds an additional
0.02mm2 or 0.2% overhead.

L1
Instruction

Cache

L1
Instruction

Cache
FetchFetch

DecodeDecode

DecodeDecode

Physical
Register File

Physical
Register File Load Store QueueLoad Store QueueRATRAT

In-Order BackendIn-Order Backend

Architectural
Register File

Architectural
Register File MemMem

Out-Of-Order BackendOut-Of-Order Backend

Branch
Predictor

Branch
Predictor

L1
Data

Cache

L1
Data

Cache

Control Flow Data Flow Core Transfer

Reactive Online
Controller

Reactive Online
Controller

L0
Cache

Fig. 2. Microarchitectural overview of a Composite
Core. The optional L0 cache is shown in grey.

Little uEngine
1.8 mm2

In
t+

FP
 R

eg
fi

le
0

.7
 m

m
2

R
O

B
 +

 F
re

e
Li

st

0
.4

 m
m

2

Big uEngine
6.3 mm2

Ld Queue
0.1 mm2

St Queue
0.1 mm2

L1 ICache +
ITLB

0.7 mm2

BP
0.3 m2

L1 DCache +
DTLB

0.7 mm2

Reactive Online Controller
0.02 mm2

Fetch – 0.1 mm2

Ld/St Unit
0.1 mm2

Int+FP RegFile - 0.07 mm2

L0 Cache
+ DTLB

0.05 mm2

Fig. 3. Estimated physical layout of a Composite Core
in 32nm technology.

Fetch

BIG µENGINE SWITCHING
CONTROLLER

Exposed
Latency

Speculative Transfer

Residual Transfer

BIG
µENGINE

LITTLE
 µENGINE

SWITCHING
CONTROLLER

Ti
m

e

Hidden
Latency

LITTLE µENGINE
CommitFetchCommit

Collect Metrics

Compute Decision

Collect Metrics

Pipeline Drain

Pipeline Refill

Register
 Transfer

Active Inactive

Big

Little

Big

Big

Big

Little

Fig. 4. Overview of a Composite Core migration when utilizing pipeline draining.

3.1 µEngine Transfer

During execution, the Reactive Online Controller
collects a variety of performance metrics and uses
these to determine the µEngine to activate for the
following quantum. If, at the end of the quantum,
the controller determines that the following quantum
should be run on the inactive µEngine, the Composite
Core must migrate control to the new µEngine. As
both µEngines have different backend implementa-
tions, they have incompatible microarchitectural state.
Therefore before migration, the current active µEngine
must first be brought to an architecturally precise
point for control to be transferred.

The simplest approach, shown in Figure 4, is to
drain the active µEngine’s pipeline. While the pipeline
is draining, the register contents can be speculatively
transferred to the inactive µEngine. If draining in-
structions update a previously-transferred register, the
register must again be transferred during the resid-
ual transfer. Once the register transfer is complete,
fetch resumes dispatching instructions to the newly
active µEngine, which must refill its pipeline before
committing instructions. As the pipeline drain hides
a majority of the register transfer latency, the only
exposed latency is the residual register transfer and
the pipeline refill latency of the new µEngine. As
this latency is similar to that of a branch mispredict,

the total exposed migration overheads are roughly
equivalent to a branch misprediction recovery.

If, while draining the active µEngine, a long latency
instruction stalls the pipeline, draining may take a
long time and negate much of the potential energy
savings of the migration. A second approach is to
immediately flush (or squash) all speculative state
in the pipeline, and immediately transfer control to
the inactive µEngine. While this allows a quicker
migration, it is potentially wasteful as the pipeline
may contain a large amount of completed work that
we do not wish to flush.

A third option is a hybrid approach. When a mi-
gration is triggered, the active µEngine is allowed to
drain, or commit instructions, as long as there are
instructions ready to commit. In this way, completed
instructions are allowed to commit rather than being
squashed. However, if commit stalls for any reason,
the pipeline will be squashed and execution migrated
to the new µEngine as desired.

The energy implications of all three options are
evaluated in Section 5.8.

3.2 L0 Cache

As mentioned previously, the L1 data cache should
be placed in physical proximity to the big µEngine,
with the goal of maximizing its performance. As this

Other-GetM
Own-PutM

Other-GetS
Own-PutS

Own-GetM

silent
BigWr

Other-GetM

ModifiedModified

Own-GetM Own-GetS

InvalidInvalidSharedShared

Fig. 5. L0’s Writeback-On-Migrate Protocol. Bold Tran-
sitions have been added to the standard MSI proto-
col [28].

increases access latencies for the little µEngine, we
provisioned it with a private 2kB L0 data cache. As
this cache is both near the little µEngine and small, hits
provide both low-latency access and increased energy
efficiency. However, as a L0 miss incurs increased
latency and energy consumption, the L0 hit rate must
be kept high to provide these benefits. Additionally,
the little µEngine accesses the L0 through its own TLB,
which is kept in sync with the big µEngine’s TLB. The
hit rate and energy savings are further discussed in
Section 5.7.

We designed the coherence protocol between the
L1 and L0 specifically to prevent the L0 from causing
a slowdown when running on the big µEngine. As
such, the L1 is inclusive of the L0, preventing the
L0 from removing cache blocks from the L1 and
causing additional miss latencies for big. Additionally,
to prevent the big µEngine from accessing stale data
directly from the L1, all dirty blocks in the L0 are
flushed back to the L1 before a migration from the
little to big µEngine occurs. Finally, as both µEngines
are not simultaneously active, the big µEngine will not
access the L1 while the little µEngine and L0 are active.

The exact coherence protocol is a modified MSI
protocol, [28], called Writeback-On-Migrate (WOM),
shown in Figure 5. WOM contains all original MSI
transitions, shown in grey, plus three additional tran-
sitions, shown in bold. When a migration is triggered,
the L0 uses the Own−PutS signal to self-downgrade
all blocks to Shared, flushing dirty data back to the
L1. After a migration to the big µEngine, the L0 must
monitor big’s writes and invalidate it’s copy of any
block which the write updates. While the L1 can
already issue the Other − GetM signal to evict a
Modified block, as a condition of inclusivity, it must
also be able to evict a Shared block using the same
Other −GetM signal.

4 REACTIVE ONLINE CONTROLLER

The decision of when to migrate µEngines is han-
dled by the Reactive Online Controller. Our controller,
following the precedent established by prior works
[19], [30], attempts to maximize energy savings subject
to a configurable maximum performance degradation,
or slowdown. The converse, a controller that attempts

to maximize performance subject to a maximum en-
ergy consumption, can also be constructed in a similar
manner.

To determine the appropriate core to minimize per-
formance loss, the controller needs to 1) estimate the
dynamic performance loss, which is the difference
between the observed performance of the Composite
Core and the performance if the application were to
run entirely on the big µEngine; and 2) make migration
decisions such that the estimated performance loss
is within a parameterizable bound. The controller
consists of three main components: a performance es-
timator, threshold controller, and migration controller
illustrated in Figure 6.

The performance estimator tracks the performance
on the active µEngine and uses a model to provide an
estimate for the performance of the inactive µEngine
as well as provide a cumulative performance estimate.
This data is then fed into the migration controller,
which estimates the performance difference for the
following quantum. The threshold controller uses the
cumulative performance difference to estimate the
allowed performance drop in the next quantum for
which running on the little µEngine is profitable.
The migration controller uses the output of the per-
formance estimator and the threshold controller to
determine which µEngine should be activated for the
next quantum.

4.1 Performance Estimator

The goal of this module is to provide an estimate
of the performance of both µEngines in the previous
quantum as well as track the overall performance for
all past quanta. While the performance of the active
µEngine can be trivially determined by counting the
cycles required to complete the current quantum, the
performance of the inactive µEngine is not known
and must be estimated. This estimation is challenging
as the microarchitectural differences in the µEngines
cause their behaviors to differ.

The traditional approach is to sample execution on
both µEngines for a short duration at the beginning of
each quantum and base the decision for the remain-
der of the quantum on the sample measurements.
However, this approach is not feasible for fine-grained
quanta for two reasons. First, the additional migration
necessary for sampling would require much longer
quanta to amortize the overheads, forfeiting poten-
tial energy gains. Second, the stability and accuracy
of fine-grained performance sampling drops rapidly,
since performance variability grows as the measure-
ment length shrinks [32].

Simple rule based techniques, such as migrate-
to-little-on-miss, cannot provide an effective perfor-
mance estimate needed to allow the user to con-
figure the performance target. As this controller is
run frequently, more complex approaches, such as

+ Threshold
Controller

Migration
Controller

ΔCPIthreshold Composite
Cores

Corenext

Performance
Estimator

CPIobserved +
Performance Metrics

CPIactual

CPIerror
CPItarget

CPIbig
CPIlittle

-
Σ

sum

CPIobserved

Fig. 6. Overview of the Reactive online controller.

non-linear or neural-network models, add too much
energy overhead and hardware area to be practical.

Therefore the Composite Core instead monitors a
selected number of performance metrics on the active
µEngine that capture fundamental characteristics of
the application and uses a simple performance model
to estimate the performance of the inactive µEngine.
A more detailed analysis of the performance metrics
is given in Section 4.4.
4.1.1 Performance Model

The performance model provides an estimate for
the inactive µEngine by substituting the observed
metrics into a model for the inactive µEngine’s per-
formance. As this computation must be performed
often, we chose a simple linear model to minimize
computation overhead. Eq. 1 defines the model, which
consists of the sum of a constant coefficient (a0) and
several input metrics (xi) times a coefficient (ai). As
the coefficients are specific to the active µEngine, two
sets of coefficients are required, one set is used to
estimate performance of the big µEngine while the
little µEngine is active, and vice versa.

y = a0 +
∑

aixi (1)

To determine the coefficients for the performance
monitor, we profile each of the benchmarks on both
the big and little µEngine for 100 million instructions
(after a 2 Billion instruction fast-forward) using each
benchmark’s supplied training input set. We then
utilize ridge regression analysis to determine the co-
efficients using the aggregated performance metrics
from all benchmarks.
Little→Big Model: This model is used to estimate
the performance of the big µEngine while the little
µEngine is active. In general good performance on
the little µEngine indicates good performance on the
big µEngine. As the big µEngine is better able to
exploit both MLP and ILP its performance can im-
prove substantially over the little for applications that
exhibit these characteristics. However, the increased
pipeline length of the big µEngine makes it slower
at recovering from a branch mispredict than the little
µEngine, decreasing the performance estimate. Finally,
as L2 misses occur infrequently and the big µEngine

is designed to partially tolerate memory latency, the
L2 Miss coefficient has minimal impact on the overall
estimate.
Big→Little Model: While the big µEngine is active,
this model estimates the performance of the little
µEngine. The little µEngine has a higher constant due
to its narrower issue width causing less performance
variance. As the little µEngine cannot exploit applica-
tion characteristics like ILP and MLP as well as the big
µEngine, the big µEngine’s performance has slightly
less impact than in the Little→Big model. L2 Hits
are now more important as, unlike the big µEngine,
the little µEngine is not designed to hide any of the
latency. The inability of the little µEngine to utilize
the available ILP and MLP in the application causes
these metrics to have almost no impact on the over-
all performance estimate. Additionally, as the little
µEngine can recover from branch mispredicts much
faster, mispredicts have very little impact. Finally even
though L2 misses occur infrequently, the little µEngine
suffers more performance loss than the big µEngine
again due to the inability to partially hide the latency.
Per-Application Model: While the above coefficients
give a good approximation for the performance of
the inactive µEngine, some applications will warrant a
more exact model. For example, in the case of memory
bound applications like mcf, the large number of L2
misses and their impact on performance necessitates
a heavier weight for the L2 Miss metric in the overall
model. Therefore the architecture supports the use
of per-application coefficients for both the Big→Little
and Little→Big models, allowing programmers to use
offline profiling to custom tailor the model to the exact
needs of their application if necessary. However, our
evaluation makes use of generic models.
4.1.2 Overall Estimate

The second task of the performance estimator is to
track the actual performance of the Composite Core as
well as provide an estimate of the target performance
for the entire application. The actual performance is
computed by summing the observed performance for
all quanta (Eq. 2). The target performance is computed
by summing all the observed and estimated perfor-
mances of the big µEngine and scaling it by the al-
lowed performance slowdown. (Eq. 3). As the number

of instructions is always fixed, rather than compute
CPI the performance estimator hardware only sums
the number of cycles accumulated, and scales the
target cycles to compare against the observed cycles.

CPIactual =
∑

CPIobserved (2)

CPItarget =
∑

CPIBig × (1− Slowdownallowed) (3)

4.2 Threshold Controller
The threshold controller is designed to provide a

measure of the current maximum performance loss
allowed when running on the little µEngine. This
threshold is designed to provide an average per-
quantum performance loss where using the little
µEngine is profitable given the performance target.
As some applications experience frequent periods of
similar performance between µEngines, the controller
scales the threshold low to ensure the little µEngine is
only used when it is of maximum benefit. However
for applications that experience almost no low per-
formance periods, the controller scales the threshold
higher allowing the little µEngine to run with a larger
performance difference but less frequently.

The controller is a standard PI controller shown
in Eq. 5. The P (Proportional) term attempts to scale
the threshold based on the current observed error, or
difference from the expected performance (Eq. 4). The
I (Integral) term scales the threshold based on the sum
of all past errors. A Derivative term can be added to
minimize overshoot. However in our case, it was not
included due to noisiness in the input signal. Similar
controllers have been used in the past for controlling
performance for DVFS [29].

The constant Kp and Ki terms were determined ex-
perimentally. The Kp term is large, reflecting the fact
that a large error needs to be corrected immediately.
However, this term suffers from systematically under-
estimating the overall performance target. Therefore
the second term, Ki is introduced to correct for small
but systematic under-performance. This term is about
three orders of magnitude smaller than Kp, so that
it only factors into the threshold when a long-term
pattern is detected.

CPIerror = CPItarget − CPIactual (4)

∆CPIthreshold = KpCPIerror +Ki

∑
CPIerror (5)

4.3 Migration Controller
The migration controller attempts to determine

which µEngine is most profitable for the next quan-
tum. To estimate the next quantum’s performance,
the controller assumes the next quantum will have
the same performance as the previous quantum. As
shown in Figure 7, the controller determines prof-
itability by computing ∆CPInet as shown in Eq. 6.
If ∆CPInet is positive, the little µEngine is currently
more profitable, and execution is mapped to the little

CPIBig

(a) (b)

CPILittle

ΔCPIThreshold

L

B

B Big More Profitable L Little More Profitable

Fig. 7. Migration controller behaviour: (a) If CPIbig +
∆CPIthreshold > CPIlittle pick Little; (b) If CPIbig +
∆CPIthreshold < CPIlittle pick Big.

µEngine for the next quantum. However, if ∆CPInet
is negative, the performance difference between big
and little is too large, making the little µEngine less
profitable. Therefore the execution is mapped to the
big µEngine for the next quantum.

∆CPInet = (CPIBig +∆CPIthreshold)−CPIlittle (6)

4.4 Implementation Details
We use several performance counters to generate

the detailed metrics required by the performance
estimator. Most of these performance counters are
already included in many of today’s current systems,
including branch mispredicts, L2 cache hits and L2
cache misses. Section 4.4.1 details the additional per-
formance counters needed in the big µEngine. Due to
the microarchitectural simplicity of the little µEngine,
tracking these additional metrics is more complicated.
We add a small dependence table (described in Sec-
tion 4.4.2) to the little µEngine to capture these metrics.
4.4.1 Performance Counters

The performance models rely heavily on measure-
ments of both ILP and MLP, which are not triv-
ially measurable in most modern systems. As the
big µEngine is already equipped with structures that
exploit both ILP and MLP, we simply add a few low
overhead counters to track these metrics. For ILP,
a performance counter keeps a running sum of the
number of instructions in the issue stage that are wait-
ing on values from in-flight instructions. This captures
the number of instructions stalled due to serialization
as an inverse measure of ILP. To measure MLP, an
additional performance counter keeps a running sum
of the number of MSHR entries that are in use at each
cache miss. While not perfect measurements, these
simple performance counters give a good approxima-
tion of the amount of ILP and MLP per quantum.
4.4.2 Dependence Table

Measuring ILP and MLP on the little µEngine is
challenging as it lacks the microarchitectural ability
to exploit these characteristics and therefore has no
way of measuring them directly.

We augment the little µEngine with a simple table
that dynamically tracks data dependence chains of
instructions to measure these metrics. The design is

from Chen, Dropsho, and Albonesi [7]. This table is a
bit matrix of registers and instructions, allowing the
little µEngine to simply look up the data dependence
information for an instruction. A performance counter
keeps a running sum per quantum to estimate the
overall level of instruction dependencies as a measure
of the ILP. To track MLP, we extended the dependence
table to track register dependencies between cache
misses over the same quantum. Together these metrics
allow Composite Cores to estimate the levels of ILP and
MLP available to the big µEngine.

However, there is an area overhead associated with
this table. The combined table contains two bits of
information for each register over a fixed instruction
window. As our architecture supports 32 registers
and we have implemented our instruction window to
match the length of the ROB in the big µEngine, the
total table size is 2 × 32 × 128 bits, 1KB of overhead.
As this table is specific to one µEngine, the additional
area is factored into the little µEngine’s estimate rather
than the controller.
4.4.3 Controller Power & Area

To analyze the impact of the controller on the area
and power overheads, we synthesized the controller
design in an industrial 65nm process. The design
was placed and routed for area estimates and accu-
rate parasitic values. We used Synopsys PrimeTime
to obtain power estimates which we then scaled to
the 32nm target technology node. The synthesized
design includes the required performance counters,
multiplicand values (memory-mapped programmable
registers), and a MAC unit. For the MAC unit, we
use a fixed-point 16*16+36-bit Overlapped bit-pair
Booth recoded, Wallace tree design based on the Static
CMOS design in [17]. The design is capable of meeting
a 1.0GHz clock frequency and completes 1 MAC
operation per cycle, with a 2-stage pipeline.

Thus, the calculations in the performance model
can be completed in 9 cycles as our model uses 7
input metrics. With the added computations for the
threshold controller and migration controller, the final
decision takes approximately 30 cycles. The controller
covers 0.02mm2 of area, while consuming less than
5uW of power during computation. The MAC unit
could be power gated during the remaining cycles to
reduce the leakage power while not in use.

5 RESULTS

To evaluate the Composite Cores architecture, we
extended the Gem5 simulator to support fast migra-
tion [6]. All benchmarks were compiled using gcc
with -O2 optimizations for the Alpha ISA. We fast
forwarded all benchmarks for two billion instructions
before beginning detailed simulations for an addi-
tional one billion instructions. The simulations in-
cluded detailed modeling of the pipeline drain/flush
functionality for migrating between µEngines.

We utilized McPAT to estimate the energy savings

Component Parameters
Big µEngine 3 wide Out-Of-Order @ 1.0GHz

12 stage pipeline
128 ROB entries
160 entry register file
Tournament branch predictor (Shared)

Little µEngine 2 wide In-Order @ 1.0GHz
8 stage pipeline
32 entry register file
Tournament branch predictor (Shared)

Memory System 2KB L0 dcache, 1 cycle access (Little Only)
32KB L1 dCache, 2 cycle access (Shared)
32KB L1 iCache, 2 cycle access (Shared)
1 MB L2 Cache, 15 cycle access
1024MB Main Mem, 80 cycle access

TABLE 1
Experimental Composite Core parameters

from a Composite Core [27]. We model the two main
sources of energy loss in transistors, dynamic energy
and static (or leakage) energy. We study only the
effects of clock gating, due to the difficulties in power
gating at these granularities. Finally, as our design
assumes tightly coupled L1 caches, our estimates
include the energy consumption of the L1 instruction
and data caches (and L0 data cache when included),
but neglect all other system energy estimates.

Table 1 gives more specific simulation configura-
tions for each of the µEngines as well as the memory
system configuration. The big µEngine is modeled as a
3-wide out-of-order processor with a 128-entry ROB
and a 160-entry physical register file. It is also ag-
gressively pipelined with 12 stages. The little µEngine
is modeled to simulate a 2-wide in-order processor
with a 32-entry architectural register file. Its simpli-
fied hardware structures shorten the pipeline depth,
providing quicker branch misprediction recovery. The
branch predictor and fetch stage are shared between
the two µEngines. Results from Section 5.1-5.6 do not
include an L0, while Section 5.7-5.9 do.
5.1 Quantum Length

One of the primary goals of the Composite Cores
architecture is to exploit short duration phases of
low performance using fine-grained quanta. To de-
termine the optimum quantum length, we performed
detailed simulations to sweep quantum lengths with
several assumptions that will hold for the remainder
of Section 5.1. To achieve an upper bound, we assume
the µEngine selection is determined by an oracle,
which knows the performance for both µEngines for
all quanta and migrates to the little µEngine only for
the quanta with the smallest performance difference
such that it can still achieve the performance target.
We also assume that the user is willing to tolerate
a 5% performance loss relative to running the entire
application on the big µEngine.

Given these assumptions, Figure 8 demonstrates
the little µEngine’s utilization measured in dynamic
instructions as the quantum length varies. While the

memory-bound mcf can almost fully utilize the little
µEngine at larger quanta, the remaining benchmarks
show only a small increase in utilization until the
quantum length decreases to less than ten thousand
instructions. Once sizes shrink below this level, the
utilization begins to rise from approximately thirty
percent to fifty percent at quantum lengths of one
hundred instructions.

While a Composite Core is designed to minimize
overheads, migration still incurs a small register trans-
fer and pipeline refill latency. Figure 9 illustrates the
performance impacts of these migrations at various
quanta with the oracle targeting 95% performance
relative to the all big µEngine case. We observe that,
with the exception of mcf, all the benchmarks achieve
the target performance at longer quanta. This result
implies that the additional overheads of migration
are negligible at these quanta and can safely be ig-
nored. However, for quantum lengths around 1000
instructions we begin to see additional performance
degradation, indicating that the migration overheads
are no longer negligible.

The main cause of this performance decrease is
the additional migrations allowed by the smaller
quanta. Figure 10 illustrates the number of migrations
per million instructions the Composite Core performed
to achieve its goal of maximizing the little µEngine
utilization. Observe that as the quantum length de-
creases, there is a rapid increase in the number of
migrations. In particular, for a quantum length of 1000
the oracle migrates approximately 340 times every
million instructions, or roughly every 3000 instruc-
tions.

As quantum length decreases the Composite Core
has greater potential to utilize the little µEngine, but
must migrate more frequently to achieve this goal.
Increased hardware sharing allows the Composite Core
to migrate at a much finer granularity than traditional
heterogeneous multicore architectures. However be-
low quantum lengths of approximately 1000 dynamic
instructions, the overheads of migration begin to
cause intolerable performance degradation. Therefore
for the remainder of this study, we fix the quantum
length to 1000 instructions.

5.2 µEngine Power Consumption

A Composite Core relies on shared hardware struc-
tures to enable fine-grained migration. However these
shared structures must be designed for the high per-
formance big µEngine and are over-provisioned when
the little µEngine is active. The little µEngine frontend
now includes a fetch engine, branch predictor, and
instruction cache designed for the big µEngine. Also,
the shared L1 data cache, designed to support the
big µEngine’s need for multiple outstanding memory
transactions, is not effectively utilized by the little
µEngine’s simple pipeline. Finally, the leakage power

0%

20%

40%

60%

80%

100%

100 1K 10K 100K 1M 10M

Li
tt

le
 E

n
gi

n
e

 U
ti

liz
at

io
n

Quantum Length

astar bzip2 gcc gobmk h264ref

hmmer mcf omnetpp sjeng average

Fig. 8. Impact of quantum length on instructions
mapped to the little µEngine. Note the increase as
quantum length approaches 1K.

80%

85%

90%

95%

100%

105%

100 1K 10K 100K 1M 10M

Pe
rf

o
rm

an
ce

 R
el

at
iv

e
to

 B
ig

Quantum Length

astar bzip2 gcc gobmk h264ref

hmmer mcf omnetpp sjeng average

Fig. 9. Impact of quantum length on overall perfor-
mance with a 5% slowdown target. The overheads
remain negligible until 1K.

of Composite Cores will be higher as neither µEngine
can be power gated.

Figure 11 illustrates the average power when the
complete application is run on the specified core or
µEngine. While the little core provides lower per-
formance levels, it consumes almost 6x less power
than the big core. Observe that there are minimal
overheads for the big µEngine, as the leakage power
of little is small relative to the dynamic power of
big. However, as the little µEngine incurs additional
leakage power from the big µEngine and uses the less-

0

1000

2000

3000

4000

5000

100 1K 10K 100K 1M 10M

M
ig

ra
ti

o
n

s/
 M

ill
io

n
 In

st
ru

ct
io

n
s

Quantum Length

astar bzip2 gcc gobmk h264ref

hmmer mcf omnetpp sjeng average

Fig. 10. Impact of quantum length on µEngine migra-
tions.

0%

50%

100%
A

vg
 P

o
w

er
 R

el
at

iv
e

to
 a

 B
ig

 C
o

re

Little Core Big uEngine Little uEngine

Fig. 11. Average µEngine power relative to dedicated
cores. The little µEngine consumes 10% higher power
than a little core.

0%

20%

40%

-50% -25% 0% 25% 50%

Q
u

an
tu

m
s

Deviation from Actual Performance Per Quantum

 Lit->Big

 Big->Lit

Fig. 12. Accuracy of regression models. 95% (Big →
Lit) and 82% (Lit → Big) of the quanta have ≤ 10%
error.

efficient frontend and data caches, it’s average power
is about 10% higher than the little core, reducing it’s
power consumption advantage to 4x. While the little
µEngine of a Composite Core is not able to achieve
the same average power as a separate little core, this
limitation is offset by Composite Core’s ability to utilize
the little µEngine more frequently.

5.3 Regression

As the Reactive Online Controller, of Section 4.1,
relies on a model to estimate performance, in this
section we evaluate its accuracy. Figure 12 illustrates
the accuracy of both the Big→Little and Little→Big
models. The y-axis indicates the percent of the total
quanta, or scheduling intervals. The x-axis indicates
the difference (or error) between the estimated and
actual performance for a single quantum. Higher peak
values indicate a greater percentage of quantums with
0% Deviation. Wider curves indicate a greater amount
of error is being introduced.

As the little µEngine has less performance variation
and fewer features, it is easier to model, causing the
Big→Little model to be more accurate, with 95% of
the quanta having ¡10% error. On the other hand, the
Little→Big model must rely on the little µEngine’s
limited features to predict the performance of the
big µEngine, which has advanced hardware features

0%

20%

40%

60%

80%

100%

C
yc

le
s

o
n

 L
it

tl
e

Oracle

Perfect Past

Regression

Fig. 13. Cycles on the Little µEngine, for different mi-
gration schemes. Note the similarities between Perfect
Past and Regression.

90%

95%

100%

Pe
rf

o
rm

an
ce

 R
el

at
iv

e
to

 B
ig

Oracle

Perfect Past

Regression

Fig. 14. Performance impact for various migration
schemes with a 5% slowdown target. Oracle switching
incurs 1% switching overheads, while Perfect Past and
Regression adapt to maintain performance targets.

designed to overlap latency nonlinearly. This causes
it to have a slightly lower percentage (82%) that
are within 10% error. Also note that, as the error is
centered around zero, over a large number of quanta,
positive errors are canceled by negative errors. This
allows the overall performance estimate, CPItarget to
be more accurate despite the variations in the models
themselves.

0%

20%

40%

60%

80%

100%

En
er

gy
 S

av
in

gs
 R

el
at

iv
e

to
 B

ig

Oracle

Perfect Past

Regression

Fig. 15. Energy savings for various migration schemes.

5.4 Little Core Utilization

For Section 5.4-5.6 we evaluate three different mi-
gration schemes configured to allow a maximum of
5% performance degradation. The Oracle is the same
as in Section 5.1 and picks only the best quanta to
run on the little µEngine so that it can still achieve
its performance target. The Perfect Past has oracle
knowledge of the past quanta only, and relies on
the assumption that the next quantum has the same
performance as the most recent past quantum. The
realistic Regression model can measure the perfor-
mance of the active µEngine, but must rely on a
performance model for the estimated performance
of the inactive µEngine. This model is described in
Section 4.1.

Figure 13 illustrates the percent of cycles spent on
the little µEngine for various benchmarks using each
migration scheme. For a memory bound application,
like mcf, a Composite Core can map nearly 100% of
the execution to the little µEngine. For applications
that are almost entirely computation bound with
predictable memory access patterns, the narrower
width of the little µEngine limits its overall utilization.
However, most applications lie somewhere between
these extremes and the Composite Core is able to map
between 20% to 55% of the cycles on the little µEngine
given oracle knowledge, with an average of 37%.
Given the imperfect regression model, the average
drops to 30%.

5.5 Performance Impact

Figure 14 illustrates the performance of the Compos-
ite Core relative to running the entire application on
the big µEngine. Composite Core is configured to allow
a 5% slowdown, so the controller is targeting 95%
relative performance. As can be observed, Oracle falls
a few percentage points below the target. This is due
to the migration overheads, which the oracle neglects.
However, the controller is able to compensate for
these overheads, and maintains a target performance
at or slightly above the target. As mcf is almost
entirely memory bound, the controller runs almost the
entire application on the little µEngine and is actually
able to beat the 95% target.

5.6 Energy Reduction

Figure 15 illustrates the energy savings for different
migration schemes across all benchmarks. Note that
these results only assume clock-gating, meaning that
both cores are always leaking static energy regardless
of utilization. Again, as mcf is almost entirely mem-
ory bound, the Composite Core is able to map almost
the entire execution to the little µEngine and achieve
significant energy savings. Overall, the oracle is able
to save 24% the energy of a Big Core. Due to the lack
of perfect knowledge, the perfect past and regression
schemes are not able to utilize the little µEngine as
effectively, reducing their overall energy savings to

0%

20%

40%

60%

80%

100%

En
er

gy
 S

av
in

gs
 R

el
at

iv
e

to
 a

 B
ig

 C
o

re

No L0 WT L0 WOM L0

Fig. 16. Impact of additional L0 filter Cache. The WOM
(Writeback-On-Migrate) protocol achieves higher en-
ergy savings than both No L0 and WT (WriteThrough).

20%. Interestingly, the addition of a regression model
causes an almost negligible impact on energy savings.

5.7 L0 Cache

As mentioned in Section 3, the physical layout of
a Composite Core is difficult without impacting cache
access latencies. Therefore, we evaluate the impact of
adding a small L0 data cache to the little µEngine.
As the L1 is inclusive of the L0 and the L0’s access
is single cycle, it effectively filters many of little’s
accesses to the L1, which has a two-cycle access. While
the hit rates vary from as low as 67%, mcf, to 94%,
bzip2, the average hit rate is 86%, decreasing the
average memory access time and yielding a small
performance improvement. This allows the controller
to schedule more quanta on the little µEngine.

However, migration is now made more complicated
as the µEngines no longer share a single data cache.
One solution is to make the L0 use a WriteThrough
(WT) protocol, which would propagate any update
the L1. Figure 16 illustrates that WT’s performance
improvement coupled with the decrease in access en-
ergy for the L0 yields an additional 1% energy savings
on average over a No L0 design. However, WT caches
cause a significant amount of traffic between the L0
and the L1. As the big µEngine is not active while the
L0 is being accessed, a Writeback-On-Migrate (WOM)
protocol writes back dirty data to the L1 only on
migration to the big µEngine, reducing the traffic. This
allows the L0 cache with WOM to achieve slightly
higher savings over WT, increasing the overall energy
savings to 21%.

5.8 Migration Technique

Another potential impact on the energy savings
is how the µEngine is brought to an architecturally
stable point before migration. Figures 9 and 14 as-
sume the active µEngine is flushed when migration
occurs. However, as discussed in Section 3.1, three
options need to be considered: draining, flushing, and
finishing completed instructions. Figure 17 illustrates
the impact of these three techniques. Drain, which re-

0%

20%

40%

60%

80%

100%

En
er

gy
 S

av
in

gs
 R

el
at

iv
e

to
 a

 B
ig

 C
o

re

Drain Flush Finish Completed

Fig. 17. Impact of different migration techniques.
Flushing the pipeline is more effective than either drain-
ing or waiting for all completed instructions to commit.

12%

30%

46%

69%

10%

21%

31%

48%

1% 5% 10% 20% 1% 5% 10% 20%

Target Slowdown

Little Cycles Energy Savings

Fig. 18. Slowdown sensitivity analysis. Note the large
energy savings (10%) for a minimal target slowdown
(1%).

mains on the energy-intensive big µEngine the longest
while waiting for the pipeline to empty, achieves the
least energy savings. The next option, Flush, flushes
the pipeline and migrates to the more energy efficient
µEngine faster. The final option, Finish Completed,
allows the pipeline to drain until commit stalls, then
flushes. Counter-intuitively, Flush actually achieves
higher energy savings than Finished Completed, im-
plying that it is more energy efficient to squash a
few completed instructions on the energy-intensive
big µEngine to allow quicker migration to the more
energy-efficient little µEngine than it is continue to
clock the big µEngine while it commits instructions.

5.9 Allowed Performance Loss
As the Composite Core can be controlled to pro-

vide different levels of energy savings by specifying
permissible performance slowdowns, the end user or
OS can choose how much of a performance loss is
tolerable in exchange for energy savings. Figure 18
illustrates the little µEngine cycles as a percent of
total runtime and corresponding energy savings for
various performance levels using a Composite Core
with an L0. As the system is tuned to permit a higher
performance drop, utilization of the little µEngine

increases resulting in higher energy savings. Allowing
only a 1% slowdown saves up to 10% of the energy
whereas tuning to a 20% performance slowdown can
save 48% of the energy consumed on the big µEngine.

6 RELATED WORK

Numerous works motivate a heterogeneous multi-
core design for the purposes of performance [21], [2],
[4], power [19], and alleviating serial bottlenecks [10],
[30], [13]. The heterogeneous design space can be
broadly categorized into 1) designs which migrate
thread context across heterogeneous processors, 2)
designs which allow a thread to adapt (borrow, lend,
or combine) hardware resources, and 3) designs which
allow dynamic voltage/frequency scaling.

6.1 Heterogeneous Cores, Migratory Threads

Similar to our technique, Kumar et al. [19] consider
migrating thread context between out-of-order and in-
order cores for the purposes of reducing power. At
granularities of 100M instructions, the performance of
an inactive core is sampled by briefly migrating the
thread to the core. Rather than sampling, PIE relies
on a model using measures of CPI, MLP, and ILP to
predict the performance on the inactive core [31].

Rangan et al. [26] examine fine-grained thread mi-
gration using a history-based predictor in a cluster
of in-order cores sharing an L1 cache. Varied volt-
age and frequency settings are used to create per-
formance and power heterogeneity. Fallin et al. uses
customized atomic blocks to examine extremely fine-
grained heterogeneity[8]. Our solution combines the
benefits of both architectural heterogeneity [20] and
fast migration of only register state, and contributes
a more sophisticated mechanism to estimate the inac-
tive core’s performance. Rather than react to perfor-
mance changes, Padmanabha et al. rely on a predic-
tive model for a Composite Cores architecture [23].

Another class of work targets the acceleration of
parallel applications. Segments of code constituting
bottlenecks are annotated by the compiler and mi-
grated at runtime to a big core. Suleman et al. [30]
accelerate the critical sections, and Joao et al. [13]
generalize this work to identify more potential bot-
tlenecks at runtime. Patsilaras et al. [24] propose one
core that targets MLP and another that targets ILP, and
use L2 cache miss rate to determine memory intensive
phases and map them to the MLP core.

Annavaram et al. [2] show the performance benefits
of heterogeneous multi-cores for multithreaded appli-
cations on a prototype with different frequency set-
tings per core. Kwon et al. [22] motivate asymmetry-
aware thread schedulers. Koufaty et al. [16] discover
an application’s big or little core bias by monitoring
stall sources, to give preference to OS-level thread
migrations which migrate a thread to a core it prefers.

6.2 Adaptive Cores, Stationary Threads

Alternatively, asymmetry can be introduced by dy-
namically adapting a core’s resources to its workload.
Prior work has suggested adapting out-of-order struc-
tures such as the issue queue [3], ROBs, LSQs, and
caches [25], [5], [1]. Kumar et al. [18] explored how
conjoined cores can share area-expensive structures,
while keeping the floorplan in mind. Homayoun et
al. [11] examined how microarchitectural structures
can be shared across 3D stacked cores. Ipek et al. [12]
and Kim et al. [14] describe techniques to fuse sev-
eral cores into a larger core. While these techniques
provide a fair degree of flexibility, a core constructed
in this way often has a datapath that is less energy
efficient than an indivisible core of the same size.

6.3 Dynamic Voltage and Frequency Scaling

DVFS approaches reduce the voltage/frequency of
the core, improving the core’s energy efficiency at
the expense of performance. Like traditional hetero-
geneous multicore systems, the overall effectiveness
of DVFS is limited to scheduling intervals in the
millisecond range. When targeted at memory-bound
phases, this approach can be effective at reducing
energy with minimal impact on performance. Unlike
DVFS, the Composite Core architecture can also target
phases of serial computation, low instruction level
parallelism and high branch-misprediction rates.

DVFS is widely used in today’s processors, in-
cluding ARM’s big.LITTLE heterogeneous multicore
system [9]. Similarly to big.LITTLE, DVFS could be
incorporated into a Composite Core design. Here the
operating system would attempt to maximize energy
savings by reducing the voltage for the entire Compos-
ite Core at a coarse granularity. Within these intervals,
the Composite Core controller can act as an additional
optimization layer by exploiting fine-grained phases.
This approach can be designed to achieve maximum
energy savings by allowing DVFS and Composite Core
to work together to save energy by targeting both
coarse-grained and fine-grained phases.

7 CONCLUSION

This paper explored the implications of migration
between heterogeneous systems at a much finer gran-
ularity than previously proposed. We demonstrated
the increased potential to utilize a more energy ef-
ficient core at finer intervals than traditional hetero-
geneous multicore systems. We proposed Composite
Cores, an architecture that brings heterogeneity from
between different cores to within a core by utilizing
two tightly coupled µEngines. A Composite Core takes
advantages of increased hardware sharing to enable
fine-grained switching while achieving near zero mi-
gration overheads. The Composite Core also includes
an intelligent controller designed to maximize the
utilization of the little µEngine while constraining
performance loss to a user-defined threshold. Overall,

our system can map an average of 30% of the execution
time to the little µEngine and reduce energy by 21%
while maintaining a 95% performance target.

8 ACKNOWLEDGEMENTS

This work is supported in part by ARM Ltd and
the National Science Foundation, grant SHF-1217917.

REFERENCES

[1] D. Albonesi, R. Balasubramonian, S. Dropsbo, S. Dwarkadas,
E. Friedman, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Se-
meraro, P. Bose, A. Buyuktosunoglu, P. Cook, and S. Schuster,
“Dynamically tuning processor resources with adaptive pro-
cessing,” IEEE Computer, vol. 36, no. 12, pp. 49 –58, Dec. 2003.

[2] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating am-
dahl’s law through epi throttling,” in Proceedings of the 32nd
annual international symposium on Computer Architecture, 2005,
pp. 298–309.

[3] R. Bahar and S. Manne, “Power and energy reduction via
pipeline balancing,” Proc. of the 28th Annual International Sym-
posium on Computer Architecture, vol. 29, no. 2, pp. 218–229,
2001.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact
of performance asymmetry in emerging multicore architec-
tures,” in Proc. of the 32nd Annual International Symposium on
Computer Architecture, Jun. 2005, pp. 506 – 517.

[5] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures,”
in Proceedings of the 33rd annual ACM/IEEE international sym-
posium on Microarchitecture, 2000, pp. 245–257.

[6] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Com-
puter Architecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[7] L. Chen, S. Dropsho, and D. Albonesi, “Dynamic data de-
pendence tracking and its application to branch prediction,”
in Proc. of the 9th International Symposium on High-Performance
Computer Architecture, 2003, pp. 65–.

[8] C. Fallin, C. Wilkerson, and O. Mutlu, “The heterogeneous
block architecture,” Carnegie Mellon University, Tech. Rep.,
March 2014.

[9] P. Greenhalgh, “Big.little processing with
arm cortex-a15 & cortex-a7,” Sep. 2011,
http://arm.com/files/downloads/big LITTLE Final Final.pdf.

[10] M. Hill and M. Marty, “Amdahl’s law in the multicore era,”
IEEE Computer, no. 7, pp. 33 –38, 2008.

[11] H. Homayoun, V. Kontorinis, A. Shayan, T.-W. Lin, and D. M.
Tullsen, “Dynamically heterogeneous cores through 3d re-
source pooling,” in Proc. of the 18th International Symposium
on High-Performance Computer Architecture, 2012, pp. 1–12.

[12] E. Ipek, M. Kirman, N. Kirman, and J. Martinez, “Core fusion:
Accommodating software diversity in chip multiprocessors,”
in Proc. of the 34th Annual International Symposium on Computer
Architecture, 2007, pp. 186–197.

[13] J. A. Joao, M. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
identification and scheduling in multithreaded applications,”
in 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2012, pp. 223–
234.

[14] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler, “Composable
lightweight processors,” in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, 2007,
pp. 381–394.

[15] J. Kin, M. Gupta, and W. Mangione-Smith, “The filter cache:
An energy efficient memory structure,” in Proc. of the 30th
Annual International Symposium on Microarchitecture, Dec. 1997,
pp. 184–193.

[16] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in
heterogeneous multi-core architectures,” in Proc. of the 5th
European Conference on Computer Systems, 2010, pp. 125–138.

[17] R. Krishnamurthy, H. Schmit, and L. Carley, “A low-power 16-
bit multiplier-accumulator using series-regulated mixed swing
techniques,” in Custom Integrated Circuits Conference, 1998.
Proceedings of the IEEE 1998, 1998, pp. 499 –502.

[18] R. Kumar, N. Jouppi, and D. Tullsen, “Conjoined-core chip
multiprocessing,” in Proc. of the 37th Annual International Sym-
posium on Microarchitecture, 2004, pp. 195–206.

[19] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction,” in Proc. of the
36th Annual International Symposium on Microarchitecture, Dec.
2003, pp. 81–92.

[20] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture
optimization for heterogeneous chip multiprocessors,” in Proc.
of the 15th International Conference on Parallel Architectures and
Compilation Techniques, 2006, pp. 23–32.

[21] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas, “Single-isa heterogeneous multi-core architectures
for multithreaded workload performance,” in Proceedings of
the 31st annual international symposium on Computer architecture,
2004.

[22] Y. Kwon, C. Kim, S. Maeng, and J. Huh, “Virtualizing per-
formance asymmetric multi-core systems,” in Proc. of the 38th
Annual International Symposium on Computer Architecture, 2011,
pp. 45–56.

[23] S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “Trace
based phase prediction for tightly-coupled heterogeneous
cores,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-46, 2013, pp. 445–
456.

[24] G. Patsilaras, N. K. Choudhary, and J. Tuck, “Efficiently ex-
ploiting memory level parallelism on asymmetric coupled
cores in the dark silicon era,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 28:1–28:21, Jan. 2012.

[25] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power
requirements of instruction scheduling through dynamic al-
location of multiple datapath resources,” in Proc. of the 34th
Annual International Symposium on Microarchitecture, Dec. 2001,
pp. 90–101.

[26] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion:
fine-grained power management for multi-core systems,” in
Proc. of the 36th Annual International Symposium on Computer
Architecture, 2009, pp. 302–313.

[27] L. Sheng, H. A. Jung, R. Strong, J.B.Brockman, D. Tullsen, and
N. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architec-
tures,” in Proc. of the 42nd Annual International Symposium on
Microarchitecture, 2009, pp. 469–480.

[28] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, 1st ed. Morgan & Claypool
Publishers, 2011.

[29] J. Suh and M. Dubois, “Dynamic mips rate stabilization in out-
of-order processors,” in Proc. of the 36th Annual International
Symposium on Computer Architecture, 2009, pp. 46–56.

[30] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Ac-
celerating critical section execution with asymmetric multi-
core architectures,” in 17th International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
2009, pp. 253–264.

[31] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and
J. Emer, “Scheduling heterogeneous multi-cores through per-
formance impact estimation (pie),” in Proceedings of the 39th
International Symposium on Computer Architecture, ser. ISCA ’12,
2012, pp. 213–224.

[32] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“Smarts: accelerating microarchitecture simulation via rigor-
ous statistical sampling,” in Proceedings of the 30th annual
international symposium on Computer architecture, 2003, pp. 84–
97.

Andrew Lukefahr received his BS in electri-
cal and computer engineering from the Uni-
versity of Missouri - Columbia in 2010, his
MSE in computer science and engineering
from the University of Michigan in 2012, and
is currently working toward his PhD in com-
puter science and engineering. His research
interests include energy efficiency, hetero-
geneous architectures, task scheduling, and
control systems.

Shruti Padmanabha received her BTech in
computer engineering from Birla Institude of
Technology and Science - Pilani in 2011, her
MSE in computer science and engineering
from the Univeristy of Michigan in 2013, and
is currently working toward her PhD in com-
puter science and engineering. Her research
interests include energy efficient processor
design, memory architectures, and heteroge-
neous multicore systems.

Reetuparna Das received her PhD in Com-
puter Science and Engineering from Penn-
sylvania State University in 2010. She is cur-
rently a Research Scientist at the University
of Michigan and a researcher in residence
for the Center for Future Architecture Re-
search (CFAR). She is a member of the
IEEE. Her research interests include energy-
efficient mobile architectures, near-data pro-
cessing for big-data applications, and on-chip
interconnection networks.

Faissal M. Sleiman received his BE in com-
puter and communications engineering from
the American University of Beirut in 2008, his
MSE in computer science and engineering
from the University of Michigan in 2010, and
is currently working toward his PhD in com-
puter science and engineering. His research
interests include energy-efficient cache and
core architectures focusing on hybrid de-
signs.

Ronald G. Dreslinski received a BSE in
electrical engineering and a BSE in computer
engineering, a MSE and PhD in computer
science and engineering from the University
of Michigan, Ann Arbor. He is currently a re-
search scientist at the University of Michigan
and is a member of the IEEE. His research
focuses on architectures that enable emerg-
ing low-power circuit techniques.

Thomas F. Wenisch received a PhD in
electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA in
2007. He is an associate professor of Elec-
trical Engineering and Computer Science at
the University of Michigan, Ann Arbor, as well
as a member of IEEE. His research interests
include computer architecture, server and
data center energy efficiency, smartphone
architecture, and multiprocessor systems.

Scott Mahlke received the PhD degree in
electrical engineering from the University of
Illinois at Urbana-Champaign in 1997. Cur-
rently, he is a professor in the Electrical Engi-
neering and Computer Science Department
at the University of Michigan. He leads the
Compilers Creating Custom Processors Re-
search (CCCP) Group, focusing on the areas
of compilers for multicore processors, het-
erogenous processors, and reliable system
design. He was awarded the Young Alumni

Achievement Award from the University of Illinois in 2006 and the
Most Influential Paper Award from the International Symposium on
Computer Architecture in 2007. He is a fellow of the IEEE.

