
SeRFI: Secure Remote FPGA Initialization in an
Untrusted Environment

Adam Duncan∗, Adib Nahiyan†, Fahim Rahman†, Grant Skipper∗
Martin Swany∗, Andrew Lukefahr∗, Farimah Farahmandi†, Mark Tehranipoor†
∗Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47401 USA

†Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 USA
Email: adamdunc@indiana.edu

Abstract—The bitstream inside a Field-Programmable Gate
Array (FPGA) is often protected using an encryption key, acting
as a root of trust and stored inside the FPGA, to defend
against bitstream piracy, tampering, overproduction, and static-
time reverse engineering. For cost savings and faster production,
trusted system designers often rely on an untrusted system
assembler to program the encryption key into the FPGA, focusing
only the end-user-stage threats. However, providing the secret
encryption key to an untrusted entity introduces additional
threats, since access to this key can compromise the entire
root of trust and breach the encrypted bitstream enabling a
multitude of attacks including Trojan insertion, piracy and
overproduction. To address this issue, we propose the Secure
Remote FPGA Initialization (SeRFI) protocol to transmit the
encryption key securely from a trusted system designer into an
FPGA in physical possession of an untrusted system assembler.
Our protocol eliminates direct key sharing with the untrusted
system assembler as well as prevents against adversarial intention
of extracting the encryption key during the programming phase
where the assembler has physical access to the FPGA.

Keywords—FPGA Security, Encryption, Secure Key Exchange

I. INTRODUCTION

Recent advancements in field-programmable gate array
(FPGA) devices have enabled product designs ranging from
low-cost consumer electronics to high-end commercial sys-
tems with reconfigurability, low development cost, and high
performance [1]. The specific hardware functionality pro-
grammed into an FPGA is defined by a binary configuration
file, called a bitstream, which is auto-generated via computer-
aided design (CAD) tools by the designer. The bitstream file
may contain sensitive and proprietary information and is often
encrypted to ensure integrity and prevent intellectual property
(IP) piracy [1, 2]. When encrypted, a bitstream encryption
key is stored in non-volatile memory inside the FPGA so that
the bitstream can later be decrypted during FPGA boot up.
This encryption key, hence, serves as a root of trust for an
FPGA-based system and must be protected accordingly.

Following the modern-day supply chain [3] for FPGA-
systems, we consider the scenario where a trusted system
designer designs a system requiring an FPGA to be procured,
assembled, and programmed with a bitstream for the final
product. To reduce both cost and production time, the designer
often relies on a separate and potentially untrusted system
assembler to purchase components and assemble the system,
as well as physically shares the FPGA encryption key for
programming the designer-provided bitstream into the FPGA.
However, since the assembler is untrusted, or there may remain
rogue employees in this untrusted environment, sharing this

secret key allows compromising the root-of-trust. The adver-
sary, with an access to the encryption key, can subsequently
execute the following major attacks:

– reverse engineering proprietary bitstream for piracy [4].
– tampering with the bitstream and insert Trojans [5].
– reusing the key for system overproduction or cloning [1].

To prevent such threats, the system designer could use an
in-house facility or an FPGA vendor [6] for key programming.
However, both approaches increase the cost and the time-to-
market with additional supply-chain complexity. Furthermore,
an in-house approach is not often feasible for design houses
that do not contain large-scale assembly and testing facilities.

In this work, we introduce the Secure Remote FPGA
Initialization (SeRFI) protocol to securely and remotely load
a secret encryption key into an FPGA without exposing the key
to the untrusted assembler. Our protocol combines the cost-
saving and time-saving benefits of using an untrusted assem-
bler and adheres to traditional supply chain without allowing
any access to the encryption key. Our protocol incorporates
multi-party secure communication and integrity checking to
perform key exchange from the designer directly to the FPGA
while it is in the possession of untrusted the assembler during
bitstream programming. To do so, a temporary tamper-resistant
shared secret is created within the FPGA fabric and sent
to the designer; which the designer uses to obfuscate and
transmit a partial bitstream to be loaded at run-time that
programs the actual encryption key into the FPGA non-volatile
memory. Immediately after the encryption key programming,
the shared secret and its means of regeneration are erased
from the FPGA fabric resources to ensure confidentiality. We
assume that once the key is physically programmed within the
FPGA, it is protected from extraction [7]. SeRFI is augmented
with capabilities to check against tampering with the partial
bitstream and it is evaluated against rigorous attack models,
assuming physical access by an untrusted assembler with state-
of-the-art bitstream reverse engineering capabilities.

In this paper, we make the following contributions:

• We present SeRFI to allow secure remote FPGA encryp-
tion key programming for the first time without using
external hardware security modules.

• We provide SeRFI with defenses against both bitstream-
level and protocol-level attacks.

• We provide a security analysis to quantify the timing
effort required by an attacker to bypass SeRFI.



Fig. 1: (a)-(c) Current initial FPGA encryption key programming approaches are shown. d) Our Secure FPGA Remote Initialization (SeRFI)
approach achieves high security at low cost.

The remainder of the paper is organized as follows.
FPGA encryption key programming approaches and associated
threats are discussed in Section II. The SeRFI protocol is
introduced in Section III. SeRFI implementation steps and
corresponding results are discussed in Section IV. Finally, we
conclude our work in Section V.

II. FPGA REMOTE INITIALIZATION

A. Background

The standard approaches for the initial FPGA encryption
key programming are shown in Figure 1. One possible ap-
proach is where the trusted designer programs the key at
its secure facility, achieving high security at the expense of
increased cost (see Figure 1(a)). Likewise, FPGA vendors such
as Xilinx and Microsemi offer encryption key programming at
affiliated facilities (see Figure 1(b)), again with an increased
cost [8]. However, in this model, the encryption key needs
to be shared with FPGA vendors. It also limits the usage of
FPGAs. Finally, the designer can outsource the programming
of the key to the untrusted assembler to reduce the cost at
the possible expense of security (see Figure 1(c)). This is the
most common trend for commercial products [3]. Our SeRFI
approach, as shown in Figure 1(d), combines the low cost of
utilizing the untrusted assembler for key programming with
the security of denying the assembler direct key access.

Microsemi recently released its Secure Production Program-
ming Solution (SSPS) for initial encryption key programming
which requires external Thales hardware security modules
(HSMs) [6]. SSPS uses the security features of external HSMs
to securely transmit a key from the designer to the off-site
FPGA. Unlike Microsemi’s, our SeRFI approach requires no
additional hardware modules. SeRFI also does not require a
pre-existing factory-programmed key, allowing for multiple
uses per FPGA. SeRFI is also applicable across all FPGA
brands and configuration memory variants. Finally, attack
surface is reduced by eliminating external HSMs as well as
allowing user customization during SeRFI implementation.

B. Threat Model

Our threat model assumes an untrusted system assembler
that targets to obtain the encryption key to be loaded into
the FPGA. Motivations for the attacker can be IP piracy,
tampering, and overproduction as mentioned in Section I.
We assume a strong attack model where the adversary has
physical access to the FPGA and has extensive computational
resources. In addition, we assume that the attacker can (and
will) reverse engineer previous protocol captures in attempts

to spoof various protocol components, and the system designer
has no control over the offline activity of the assembler.

III. SERFI PROTOCOL

Figure 2 shows a high-level overview of our proposed
Secure Remote FPGA Initialization (SeRFI) protocol. Step 0
establishes a communication interface between the designer
and the FPGA that is maintained for authentication, informa-
tion, and key exchange. Steps 1 and 2 performs a multi-step
authentication between the designer and FPGA to establish
a temporary FPGA-unique shared secret SS which acts as
the security base for the following step. The final step uses
SS to obfuscate and transmit the actual encryption key from
the designer to the FPGA, program the devices with the key,
and lastly delete SS. In our proposed scheme, protections
against both protocol attacks and physical attacks, such as
FPGA input-output (IO) monitoring and bitstream tampering,
are included to render any SeRFI attack moot, as it will require
a complete bitstream reverse-engineering combined with a
dynamic simulation component making attack times orders of
magnitude larger than the protocol execution time. A complete
version of the protocol is shown in Figure 3 detailing the
operations performed by the designer and the assembler. The
only hardware-specific blocks required for protocol implemen-
tation are for partial reconfiguration capability and run-time
encryption key programming. These features are common on
most Xilinx, Intel, and Microsemi FPGAs [8], [9], [10].

A. Step 0 – Process Initialization and Key Creation

The protocol begins with the designer creating the master
encryption key, KM intended to be loaded into the FPGA.
The designer also estimates a minimum time value t1max

that the untrusted assembler needs to perform a successful
attack against SeRFI to act as a protocol decision point
for potential abortion against any time-bound attack. (t1max

estimation is discussed in Section IV.) An asymmetric key
pair {KA,KB} is also generated for the authentication process
to be done in the following steps. A regular communication

Fig. 2: A high-level conceptual view of the SeRFI protocol.



Fig. 3: A detailed view of the SeRFI protocol.

link (which may be insecure at this point), such as internet
connectivity over Ethernet, is then established between the
designer and the FPGA at the untrusted assembly. An optional
plaintext bitstream B0 incorporating the necessary networking
infrastructure to communicate to the designer may be prepared
and shared to the assembler to establish this link. Tampering
with this channel for monitoring transmitted information does
not reveal any sensitive information about the SeRFI protocol
and underlying keys (as we will see in following sections),
and, therefore, it is safe to share this design with untrusted
assembler for easier implementation.
B. Step 1 – Authenticating the System Designer

In this step, the designer first targets a specific FPGA,
identified by the device-specific electronic component chip
ID (ECID) E0, which is to be programmed using the SeRFI
protocol. ECID is embedded into the device by the manu-
facturer, and may be collected from the assembler initially
during procurement or during initialization at Step 0. Then,
the designer generates a unique identifier nonce UI for the
target FPGA. E0 and UI are asymmetrically encrypted offline
into ciphertext C0 using KA, and a plaintext bitstream B1

is generated containing C0 as well as KB embedded as
a hardware-based stealthy opaque predicate (SOP) [11]. In
general, the SOP mechanism can obfuscate constants values
(i.e., the key KB for our case) within the bitstream using
finite-state machine (FSM) encoding so that the value (KB)
cannot be obtained using standard static bitstream analysis
techniques [12]. As shown in Figure 4, the next state logic
is used to transition an FSM from its initial register values

Fig. 4: a) Obfuscating constant inside the partial bitstream using hard-
ware SOP implementation utilizing 3 DFFs. b) Example DFF state
obfuscation by modifying LUT and switch matrix (SM) connections
illustrating resistance to static analysis.

into a design-dependent future state. The register values at this
future state are then used to provide KB within the hardware.
The SOP concept thus forces the attacker to perform a reverse
engineering and dynamic simulation to determine the register
value at the specific time when it is interpreted as a ‘constant’
by the hardware. The reverse engineering required by the
attacker to determine KB affects the time that the response
needs to be sent back. Therefore, the designer can detect the
breaching attempt to the protocol.

After this, B1 is sent to the assembler at time t0 to run
on the target FPGA. When B1 begins running, it unrolls
KB from the SOP and uses KB to decrypt C0 into UI and
E0. The ECID embedded in the FPGA is next extracted and
compared to a designer-known E0. The ECID comparison is
used to prevent an attacker from loading B1 on a different
FPGA. Upon successful ECID comparison, a hashed message
authentication code (HMAC) operation using our custom built-
in authentication HMAC (BIAHMAC) (see below) is initiated
over the entire B1 using UI as a key to produce hash digest
D0. A random number generator (RNG) implemented within
the FPGA fabric next produces a random number RN . A
concatenation of RN and D0 is performed to create the shared
secret SS.

To ensure that the untrusted assembly has not modified
the bitstream B1, we propose a custom BIAHMAC block
embedded in B1 that provides tamper detection and includes
protection from reverse engineering and offline computation
attacks. The basic BIAHMAC functionality is shown in Figure
5(a). We utilize the run-time configuration memory reading
capability included in most current FPGAs, such as the Xilinx
internal configuration access port (ICAP) [1], for BIAHMAC
implementation. Here, an ICAP block reads the entire FPGA
configuration memory at run-time while connected to an
HMAC block used to calculate a running hash digest. The
ICAP inputs are sourced by FSM to cycle through the different
configuration memory address ranges. For example, a simple
counter can be used to increment the address Q0 : QN and
exhaust the complete address range. Any tampering to B1,
such as adding additional circuity to spoof RN or to route
information off-chip, would require a change to the FPGA
configuration memory and, therefore, produce an incorrect D0.

Our BIAHMAC includes additional protection mechanisms
as shown in Figure 5(b). To prevent an adversary from
performing a reverse engineering effort on one instance of B1

and using it on future instances of B1, we both randomize and
obfuscate the order that configuration memory addresses are



Fig. 5: a) HMAC performing run-time computation over entire FPGA
fabric. b) BIAHMAC with added SOP structures so that the HMAC
algorithm reads the fabric in a unique manner for every bitstream.

accessed with the ICAP. We use the previously discussed SOP
concept to encode a constant in the hardware that is resistant
to static bitstream analysis [11]. We then use this constant
to determine whether or not each bit in our address counter
is inverted. As a result, for N counter bits, there exist 2N

permutations of address Q′0 : Q′N accesses. For the 23-bit ad-
dress range of a Xilinx 7-series frame address register (FAR),
this corresponds to 8.4 ∗ 106 different possible combinations
[9]. An attacker who reverse engineered an instance of B1, is
then unable to use this knowledge to accelerate the calculation
on the next instance of B1 as Q′0 : Q′N will change for the
subsequent programming and FPGA instances.

C. Step 2 – FPGA Authentication

The FPGA, still programmed with B1, next asymmetrically
encrypts SS using KB to produce ciphertext C1. An HMAC
signature D1 is also generated for SS using the key UI .
C1 is concatenated with D1 and sent to the designer. Note
that with asymmetric encryption, an attacker extracting KB

from the bitstream is not able to decrypt C1. Additionally, an
attacker attempting to spoof SS, would not be able to extract
UI without tampering B1, which would result in an incorrect
D0 calculated by the BIAHMAC in the previous step.

The designer uses KA to decrypt C1 into SS allowing for
both the designer and FPGA to now have possession of the
shared secret. An HMAC operation is conducted on SS using
key UI to verify the authenticity of the FPGA by comparing
D1. Next, D0 is extracted from the SS and compared with
the pre-computed reference D0REF . If both comparisons are
successful, the protocol continues to Step 3.

D. Step 3 – Transmission of KM to FPGA

The designer next uses SS to create a logic locked bitstream
B2 which contains functionality to program KM into the
FPGA. We assume a lookup table (LUT)-based logic locking
strategy similar to LUT-LocK [13] where k bits of a logic
locking key are pre-routed to k pins of an N -input LUT, with
N -k LUT pins utilized to implement the functional design.
Once SS arrives at the designer, SS is used to modify the LUT
initialization values such that the logic only functions correctly
if SS exists in B1. The designer implements this process by
first placing the FPGA software at a checkpoint awaiting the
logic lock key bits in the form of LUT initialization values.

Fig. 6: The timeline for the SeRFI protocol.

The designer then evaluates the system time t1, and sends B2

to the assembler if t1 < t1max. If t1 ≥ t1max, the protocol
aborts, and returns to step 0 with complete regeneration of
KA, KB , and UI .

The FPGA loads B2 using partial reconfiguration and un-
locks the logic locking with SS. Once unlocked, B2 programs
KM into the FPGA and subsequently deletes SS from the
FPGA memory space. At this point, the initial encryption key
programming of the FPGA is complete and the attacker has
no means of KM reconstruction.

E. Step 4 – Verification of KM Transmission):
To validate KM programming, the designer next uses KM

to create an encrypted bitstream B3 with an HMAC in place to
calculate a runtime hash digest of the configuration memory.
B3 is then sent to the FPGA, still in possession of the
assembler. The FPGA loads B3 which computes a run-time
hash digest D2 over B3 using key UI and sends D2 to the
designer. The designer compares D2 to a pre-computed digest
to verify that KM has been loaded correctly and marks this
time as t2.

F. Protocol Timeline:
A timeline is presented in Figure 6 to illustrate the timing

threshold decision points in the protocol. At t0, B1 is sent
from the trusted designer and is used as a point of reference.
The next checkpoint in the protocol occurs at t1 when the
designer evaluates whether t1 is within the t1max threshold
for the given attack model and determines whether to send the
locked bitstream B2. The final threshold occurs at t2 where
the designer receives and compares D2. If t2 is less than the
threshold for the given attack model, the encryption key can
be assumed as securely programmed. Otherwise, the process
is aborted.

IV. SERFI IMPLEMENTATION

To evaluate the SeRFI protocol a 256-bit KM was chosen
for loading into a mid-range Xilinx Artix-7 35T FPGA. Attack
resilience was conducted using multiple attack vectors to
determine attack time estimates.

A. FPGA Resource Utilization
The primary components bitstreams B1-B3 are shown in

Figure 7 and described with respect to each bitstream below.
Table I illustrates their corresponding resource utilization and
cycle counts. Utilization and cycle count data are obtained
from a combination of our own synthesis and simulation
results as well as results from the literature [14], [11]. Our
FPGA resource utilization is seen to be < 30 % for each



TABLE I: Resource utilization for SeRFI FPGA implementation on
a Xilinx Artix-7 35T device.

Bitstream Block LUTs FFs % Slices # Cycles

B1 RSA EncDec 932 559 2.8 % 3 ∗ 106
B1 HW SOP 256 1024 2.4 % 32
B1 BIA HMAC 4054 2341 19.5 % 9.6 ∗ 105
B1 Soft HMAC 1023 1022 4.9 % 256
B1 RNG 90 32 0.4 % 10000

B2 HW Predicate 256 256 1.5 % 32

B3 soft HMAC 1023 1022 4.9 % 9.4 ∗ 105

Combined - - - - 5 ∗ 106

of the three bitstreams. Combined cycle counts across all
bitstreams are shown as < 5∗106, resulting in a combined run-
time execution time of < 1 s with a modest 100 MHz clock
frequency. Specific details with regards to each bitstream are
included below.

Bitstream 1: For asymmetric encryption and decryption
estimation, a soft 1024-bit RSA implementation was chosen,
which has been shown to fit into 557 slices [15]. SOP [11]
structures to store a 1024-bit KB were estimated using 1024
DFFs to store the eventual constant, combined with 256 6-
input LUTs to realize 256 ∗ 26 permutations of next-state
logic for obfuscation. We designed, synthesized, and tested
our custom BIAHMAC module to produce D0 using a total of
1014 slices. Our BIAHMAC incorporated a SHA-3 open cores
project [16], combined with our FSM and counter to drive the
ICAP to incrementally access the entire configuration memory.
We also used this SHA-3 core independently as an estimate
for the HMAC producing D1. The RNG hardware estimate
to provide a 32-bit RN was based upon the TI-TRNG paper
[14] and thus estimated at 360 slices.

Bitstream 2: The logic locked bitstream B2 includes locked
gates that utilize SS as the unlocking key. After unlocking,
another SOP evaluation structure, with 256 DFFs, evaluates
the 256-bit KM . An FSM is also used to activate the fuse
burning circuitry to burn KM into the on-chip eFuse. Lastly,
circuitry is utilized to delete SS from the fabric.

Bitstream 3: The encrypted bitstream B3 includes just one
primary hardware block which is another BIAHMAC instance
to calculate the digest D2. Note that since KM is known in
advance by the designer, B3 is already generated at the time
t0 and is ready to transmit as soon as the protocol allows.

B. Protocol Time Estimation

Our protocol timeline starts with the transmission of B1

including network traffic delays, followed by the designer
parsing FPGA responses and applying logic locking to B2,
as well as run-time cycles of the FPGA executing B1-B3. We
provide a protocol time estimation of 6 seconds in our example
case study by examining the contribution of each component
involved in SeRFI. Our estimates are discussed below and
summarized in Table II.

Step 1: The first protocol step begins with the designer
transmitting a pre-computed 3 Mb Artix-7 bitstream file B1 to
the assembler. We estimate this at 0.16 seconds using network
transmission speed estimates of 19 Mbps, the slowest average
upload and download rates for the top 100 countries [17]. We

Fig. 7: The bitstream-level implementation of SeRFI.

next estimate the time to load B1 onto the FPGA at 3.125 ms,
assuming a 60 MHz configuration clock (CCLK) connected
to 16-bit byte peripheral interface (BPI) as specified in Xilinx
configuration documents [9]. Referring back to Table I, we
bound our cycle count for B1 during Step 1 at 106 cycles,
resulting in 4 ms of run-time execution.

Step 2: The second protocol step includes a run-time
contribution from B1, which we again conservatively estimate
at 4 ms. A network delay is incurred transmitting C1 and
D1, with size < 1 kB and bounded by 1 ms. There is also
a delay incurred by the designer to decrypt C1 and perform
comparisons on D0 and D1, which we bound to 100 ms.

Step 3: This step accounts the time for the designer to parse
the FPGA responses and lock B2. We experimentally estimate
this time contribution as around 5s by performing the bitstream
generation step after a LUT initialization-value modification
from a check-pointed state. It is performed on an Intel I5-
8250U processor with 24 GB of RAM. We note the potential
for speed increases during this step utilizing high-performance
computing, as well as direct bitstream manipulation techniques
[12]. Once B2 has been created, it is sent across the network
with an estimated 4 ms delay.

Once the FPGA receives B2 it uses the ICAP with a 32-bit
data bus to load B2. The loading time is estimated at 1.6 ms
with a 60 MHz ICAP clock with a 3 Mb B2. After loading, B2

requires approximately 51.2 ms to burn a 256-bit KM using
200 µs per fuse [18] time to blow estimates. To defend against
side-channel attacks during the eFuse burning, randomized
one-hot sequences of KM may be burned independently. For
example, if KM [4 : 0] = 0101, then sequences of 0001 and
0100 may be programmed in order to prevent simple power
analysis attacks from monitoring the distances between current
consumption spikes to infer specific programmed bits.

C. SeRFI Attack Resiliency
We assume that an adversary can launch different attacks

to circumvent our proposed SeRFI protocol with an ultimate
goal of obtaining KM . Potential attacks and respective in-built
countermeasures are listed as follows.
• Attack: Since KM is never transmitted in the clear,

the adversary must first reverse engineer B1 and B2



TABLE II: Time estimation for SeRFI FPGA implementation for
Steps 1-3.

Protocol Step Protocol Action Time (s)

1 network traffic: sending B1 to assembler 0.16
1 load B1 on FPGA 0.003
1 B1 running on FPGA 0.004

2 B1 running on FPGA 0.004
2 network traffic: sending C1 ‖D1 to designer 0.001
2 designer decrypt C1, compare D0, D1 0.1

3 B2 obfuscated by designer 5
3 network traffic: sending B2 to assembler 0.16
3 load B2 on FPGA 0.003
3 B2 running on FPGA 0.051

Complete Complete SeRFI Protocol < 6

to understand the construction of KM , and learn its
dependence on SS. Given enough time and resources
within a single protocol session, an attacker can perform
a detailed reverse engineering effort to determine the
bitstream location of critical components such as SS,
RN , UI , D0, and KB . However, this information cannot
be applied towards a future session, since all these values,
as well as their positions in the bitstream B1, change from
session to session. The attacker, therefore, must focus on
attack vectors within a given session with attempts to
extract SS or spoof information sent from the FPGA to
the designer.
Countermeasure: We estimate the minimum required
time for a combined reverse engineering and simulation
per session defined as t1max. We include a decision point
in SeRFI to abort if the designer has not received the
correct information from the FPGA within t1max in Step
2. To quantify t1max, we establish a lower bound by
noting that state-of-the-art published bitstream reverse
engineering tools [5] for Xilinx mid-range devices report
an average of 300 minutes to produce a usable netlist.
Furthermore, bitstream reverse engineering tools have not
been published for Microsemi and Intel FPGAs. SeRFI
protocol time estimation for a Xilinx mid-range device is
< 6s from Table II, or roughly 3000x less than t1max.

• Attack: An attacker can attempt to extract SS, or other
critical run-time protocol values, by adding targeted logic
(e.g., Trojans) to the bitstream B1 for leaking the infor-
mation through an FPGA I/O pin or other side-channels.
Countermeasure: Our proposed BIAHMAC can detect
any tampering to B1 by performing a run-time hash
throughout the entire FPGA configuration memory to
create D0. Step 2 of SeRFI performs a comparison at the
trusted designer’s facility between D0 and pre-calculated
D0ref known only to the designer. If a miscompare is
detected, B2 is never sent to the attacker, and the KM is
never exposed.

• Attack: An attacker may also attempt to spoof informa-
tion sent to the designer in Step 2 in hope of creating a
known SS value to de-obfuscate B2 outside of the FPGA.
Here, the attacker chooses RN , and performs (exhaus-
tive) computations outside of the FPGA to reconstruct
D0 and D1 such that comparisons by the designer with
pre-computed D0ref and D1ref are successful and a valid

B2 is sent to the attacker. The attacker can then use their
known RN to reconstruct SS, to de-obfuscate B2 and
expose KM .
Countermeasure: We defend against this spoofing attack
by enforcing D0 and D1 calculations to require a unique
reverse engineering effort and dynamic simulation with
every protocol session. SOP structure connections used
to obfuscate KB , as well as the algorithm used to access
the fabric resources with our BIAHMAC block, are
changed after each protocol session to defeat learning-
based attacks and enforce the session-specific reverse
engineering and simulation.

V. CONCLUSION

In this paper, we presented the Secure Remote FPGA
Initialization (SeRFI) protocol to securely program an initial
encryption key into an FPGA through the use of an un-
trusted system assembler entity without requiring the use of
any commercial hardware security modules. SeRFI includes
tamper detection and protection mechanisms to defend against
both protocol-level attacks and physical attacks on the FPGA.
Protocol simulations estimate complete protocol execution
times < 6 seconds, with adversarial attacks requiring upwards
of 300 minutes.

REFERENCES
[1] S. M. Trimberger and J. J. Moore, “Fpga security: Motivations, features, and

applications,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1248–1265, 2014.
[2] A. Lesea, “Ip security in fpgas,” Xilinx http://direct. xilinx. com/bvdocs/whitepa-

pers/wp261. pdf, 2007.
[3] S. J. Mason, M. H. Cole, B. T. Ulrey, and L. Yan, “Improving electronics

manufacturing supply chain agility through outsourcing,” International Journal of
Physical Distribution & Logistics Management, vol. 32, no. 7, pp. 610–620, 2002.

[4] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream reverse-
engineering,” in 22nd International Conference on Field Programmable Logic and
Applications (FPL), pp. 735–738, IEEE, 2012.

[5] T. Zhang, J. Wang, S. Guo, and Z. Chen, “A comprehensive fpga reverse
engineering tool-chain: From bitstream to rtl code,” IEEE Access, vol. 7, pp. 38379–
38389, 2019.

[6] Microsemi, “Secure production programming solution (spps) user guide,” Secure
Production Programming Solution (SPPS) User Guide v11.8 SP1, 2018.

[7] Microsemi, “Ug0443,” User Guide: SmartFusion2 and IGLOO2 FPGA Security
and Best Practices v10.0, 2019.

[8] Microsemi, “User guide polarfire fpga security.” Microsemi, User Guide UG07532,
2018.

[9] Xilinx, “7 series fpga configuration guide,” UG470 (v1.13.1) August 20, 2018,
2018.

[10] Intel, “Ug-s10security:intel stratix 10 device security user guide,” 2019.
[11] M. Hoffmann and C. Paar, “Stealthy opaque predicates in hardware-obfuscating

constant expressions at negligible overhead,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 277–297, 2018.

[12] K. D. Pham, E. Horta, and D. Koch, “Bitman: A tool and api for fpga bitstream
manipulations,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pp. 894–897, IEEE, 2017.

[13] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “Lut-lock: A
novel lut-based logic obfuscation for fpga-bitstream and asic-hardware protection,”
in Proceedings VLSI (ISVLSI) 2018 IEEE Computer Society Annual Symposium
on. EH-2001, pp. 405–410, IEEE, 2018.

[14] M. T. Rahman, K. Xiao, D. Forte, X. Zhang, J. Shi, and M. Tehranipoor, “Ti-trng:
Technology independent true random number generator,” in Proceedings of the 51st
Annual Design Automation Conference, pp. 1–6, ACM, 2014.

[15] A. S. Tahir, “Design and implementation of rsa algorithm using fpga,” Int. J. of
Computers and Technol, vol. 14, pp. 6361–7, 2015.

[16] https://opencores.org/projects/sha3, “Sha3 keccak design,” 2018.
[17] Speedtest, “Speedtest global index.” ”https://www.speedtest.net/global-index,

retrieved,September23,2019”.
[18] R. F. Rizzolo, T. G. Foote, J. M. Crafts, D. A. Grosch, T. O. Leung, D. J. Lund,

B. L. Mechtly, B. J. Robbins, T. J. Slegel, M. J. Tremblay, et al., “Ibm system z9
efuse applications and methodology,” IBM Journal of Research and Development,
vol. 51, no. 1.2, pp. 65–75, 2007.


