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Experience, Introspection, and Expertise:

Learning to Re�ne the Case-Based Reasoning Process

Abstract

The case-based reasoning paradigm models how reuse of stored experiences contributes

to expertise. In a case-based problem-solver, new problems are solved by retrieving stored

information about previous problem-solving episodes and adapting it to suggest solutions

to the new problems. The results are then themselves added to the reasoner's memory in

new cases for future use. Despite this emphasis on learning from experience, however, ex-

perience generally plays a minimal role in models of how the case-based reasoning process

is itself performed. Case-based reasoning systems generally do not re�ne the methods they

use to retrieve or adapt prior cases, instead relying on static pre-de�ned procedures. The

thesis of this article is that learning from experience can play a key role in building expertise

by re�ning the case-based reasoning process itself. To support that view and to illustrate

the practicality of learning to re�ne case-based reasoning, this article presents ongoing re-

search into using introspective reasoning about the case-based reasoning process to increase

expertise at retrieving and adapting stored cases.
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1 Introduction

Arti�cial intelligence models of expert reasoning often base their reasoning on �xed sets

of rules representing fundamental domain principles. Such models are aimed at re
ecting

a �xed body of knowledge that an expert possesses after having acquired expertise; their

design assumes that their rule libraries are complete and correct. However, this assumption

may be di�cult to realize in practice. Eliciting the needed rule libraries from experts can

be di�cult, and even a perfect rule library may suddenly become obsolete due to changes in

the task or domain.

One way to address the problem of maintaining adequate domain knowledge is to replace

the focus on acquiring �xed and �nal \expert" knowledge with a focus on the process by

which expertise is acquired and re�ned during problem-solving. Including the development

of expertise as an organic part of computer models of expertise is appealing both to help

alleviate the knowledge acquisition burden of having to reconstruct an expert's rules and to

help illuminate the development of human expertise.

One widely-investigated arti�cial intelligence account of the role of experience in expertise

is presented by the case-based reasoning (CBR) paradigm (e.g., Kolodner (1993), Riesbeck &

Schank (1989)). In CBR models, expert performance is viewed as arising largely from reuse of

appropriate cases from a rich library of previous problem-solving episodes.1 Proponents of the

case-based reasoning model observe that because case-based reasoning bases problem-solving

on entire prior situations rather than general rules, it obviates the need to extract general

rules from problem-solving experiences, which can simplify knowledge acquisition in poorly-

understood task domains. In addition, the case-based reasoning process naturally addresses

the need to update problem-solving knowledge in response to changing circumstances, in

that novel experiences are stored as new cases to guide future problem-solving.

Yet despite the bene�ts of reasoning from speci�c experiences, the availability of cases

does not entirely account for high levels of problem-solving performance. People with com-

parable levels of experience may exhibit widely divergent levels of skill, sometimes reaching

1This paper focuses on case-based reasoning for problem solving. We will not discuss another important

side of case-based research, case-based reasoning for interpretation and classi�cation (e.g., Ashley (1990),

Ashley & Rissland (1987), Bareiss (1989), Branting & Porter (1991)).
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plateaus of performance that fall short of mastery of their tasks (e.g., Bereiter & Scardamalia

(1993), Ericsson & Smith (1991), Lesgold, Rubinson, Feltovitch, Glaser, Klopfer, & Wang

(1988)). Thus expertise depends not only on experiences, but also on factors a�ecting how

that experience is used. For models of case-based reasoning, a key factor a�ecting the ben-

e�t of a given library of experiences is the reasoner's expertise at the case-based reasoning

process itself: its ability to retrieve the right cases and to adapt them appropriately to �t

new situations.

This article examines the requirements for successful case-based reasoning and presents

a method for acquiring expertise at the case-based reasoning process. The approach involves

learning from introspective reasoning about the reasoner's needs for information to adapt a

case, about the organization of the cases in memory, and about the desired behavior of the

case-based reasoning process itself. The article illustrates the approach with descriptions of

computational models being developed to use introspective learning as the basis for address-

ing two classic problems of case-based reasoning: how to adapt cases to �t new situations

and how to retrieve appropriate cases from memory.

2 Overview

The �rst section of this article outlines the relationship between our approach and other

perspectives on expertise. The next section highlights main points of the case-based rea-

soning paradigm with a simple \�rst-pass" view of how expertise arises from acquiring a

library of problem-solving cases. With that foundation in place, the following section takes

a more critical view, identifying the assumptions on which the �rst-pass model depends and

the related issues that must be addressed by case-based reasoning models of expertise. In

response to those issues, the next section suggests a \second-pass" account of case-based

reasoning in which introspective reasoning about the case-based reasoning process enables a

case-based reasoner to develop expertise at applying its cases. The remainder of the article

discusses ongoing research on two computational models that use introspection about their

reasoning processes to re�ne their use of case-based reasoning.
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3 Perspective

Several di�erent criteria enter into notions of what it means to be an \expert" at a partic-

ular task. One is a social criterion, depending on whether society is willing to bestow the

status of \expert" on a particular person (e.g., Agnew, Ford, & Hayes (1994), Fuller (1994),

Sternberg & Frensch (1992)). Another is a performance criterion, based on factors such as

that person's problem-solving speed and the quality of the solutions attained. Yet another is

a person's level of experience; for example, \novice/expert" comparisons implicitly contrast

inexperience with expertise. These three factors obviously tend to be interrelated|society

anoints as \experts" those it views as performing with particular skill, and acquiring that

skill may require long periods of practice|but they re
ect di�erent considerations and are

not equivalent. For example, neither social recognition nor experience assures expert-level

performance (e.g., Camerer & Johnson (1991)).

This article focuses on the relationship between two of the previous criteria for exper-

tise: performance and experience. Its basic perspective comes from research on case-based

reasoning, in which experience (in the form of stored prior problem-solving cases) is used

as the starting point for solving new problems. In most treatments of case-based reasoning,

case acquisition is the primary means by which problem-solving ability increases. The new

contribution of this article is to address how experience can also lead to re�nement of the

mechanisms for applying stored cases. In this way, it addresses the question of how expertise

at doing case-based reasoning is developed from introspective reasoning about the case-based

reasoning process.

Because our approach focuses on how expertise is re�ned, it is in sympathy with recent

perspectives from psychology and education that advocate focusing on the development of

expertise rather than treating expertise as a single �xed state to be achieved. For example,

Campbell, Brown, and DiBello (1992) argue for developmental studies of human expertise

and observe that traditional studies, which pigeonhole complex di�erences in levels of skill

into a novice/expert dichotomy, can blur important distinctions in performance. Likewise,

Bereiter and Scardamalia (1993) argue that the ongoing re�nement of abilities is an integral

part of the notion of being an expert (even if the expert has already achieved a high level

of performance). Whether or not one accepts their view in general, it is clear that for many
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tasks, the continual re�nement of skill plays an important role in expertise. (For example, a

scienti�c researcher who does not continually extend current skills will soon cease to be an

expert). This article presents a model of the role of experience and introspective reasoning

in the ongoing process of re�ning expertise.

4 Expertise and CBR

When case-based reasoning is applied to problem-solving, the problem-solving process is

based on the lessons suggested by a memory of speci�c problem-solving episodes.2 When

confronted with a new problem, a case-based problem solver generates a solution by retrieving

a previous solution for a similar problem and adapting it to �t the new circumstances. Thus

the problem-solving process depends on retrieving an appropriate prior case, performing

analogical reasoning to associate old and new solutions, and adapting the solution suggested

by the prior case in order to �t new constraints.

Also integral to case-based reasoning is learning from problem-solving episodes. After

a solution is generated, lessons from the current problem are added to the case library to

be available for future use. If a successful solution was generated, that solution is stored

for future re-use; if problems occurred, information on how to anticipate those problems is

stored to allow those problems to be remembered in similar future situations as warnings

of errors to avoid. As cases are added to the case-based reasoning system's memory, both

prior solutions and warnings of errors become available for a wider range of problems. This

increases the likelihood that appropriate prior lessons will be available in new situations and

the likely similarity of the retrieved case to the new situation, decreasing the amount of

adaptation that must be done and consequently increasing the speed of problem-solving.

As an illustration of how case-based reasoning applies to a particular task, consider

the problem of generating explanations in order to understand surprising events in news

2In most case-based reasoning systems the initial set of episodes is simply provided to the reasoning sys-

tem. In general it may be built by storing results of reasoning from scratch (e.g., Goel, Callantine, Donnellan,

& de Silva Garza (1993), Koton (1988), Veloso (1994)), gathered from observations of the performance of

other actors, or presented to the system in other ways. For example, a case-based reasoning system that

creates recipes can start with the recipes provided by a cookbook (Hammond, 1989).
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stories. Unlike explanation generation methods that build explanations from scratch (e.g.,

Hobbs, Stickel, Appelt, & Martin (1993)), the case-based approach to explanation generation

builds new explanations by adapting explanations of similar previous events to �t the new

situations (Leake, 1992b; Schank & Leake, 1989; Schank, Riesbeck, & Kass, 1994). This

phenomenon of \explanation based on remindings" is often observed in human explainers

who must explain despite partial information. For example, when newspapers �rst reported

the attack on Olympic �gure skater Nancy Kerrigan, many candidate explanations could be

generated. However, some readers were reminded of a previous attack on tennis star Monica

Seles and used that reminding as the basis of their explanations for the Kerrigan attack.

Seles was stabbed by an obsessed fan of one of her rivals, Ste� Graf; the fan hoped to assure

Graf's victory by preventing Seles from competing. That reminding suggested considering

the explanation that Kerrigan's attacker, Shane Stant, was an obsessed fan who wanted one

of Kerrigan's rivals to win. That explanation was only partially applicable|in fact, Stant

was hired to do the crime rather than being the instigator. However, it provided a starting

point by suggesting focusing on foul play to aid a competitor.

Eventually, it was determined that the husband of Kerrigan's rival Tonya Harding hired

Stant to attack Kerrigan, to prevent her from competing, so the suggestion provided by the

reminding was in fact correct. Although there is no guarantee that a given reminding will

actually be useful in a new situation (and we discuss later the factors that a�ect the relevance

of retrieved cases), experiments by Read and Cesa (1991) show that human explainers favor

explanations based on remindings of prior explanations for similar anomalies.

4.1 Motivations for research on the CBR model

Research on the case-based reasoning model of expertise is motivated by two types of factors:

cognitive considerations for modeling human reasoning and functional motivations based on

the desire to achieve improved problem-solving performance.

Psychological support as a cognitive model: Although a number of psychologically-

inspired models of problem-solving focus on the process of forming and applying generalized

rules or procedures (e.g., Anderson (1983), Laird, Rosenbloom, & Newell (1990)), there is

5



considerable evidence that the retrieval and reapplication of speci�c problem-solving expe-

riences also plays an important role in human problem-solving. People reason from prior

experiences both in the early phases of learning a domain and after they have achieved ex-

pertise (e.g., Campbell et al. (1992), Faries & Schlossberg (1994), LeFevre (1988), Pirolli

& Anderson (1985), Ross (1989)). For example, Lancaster and Kolodner (1987) show that

both novice and expert mechanics use speci�c experiences to help to generate hypotheses

about problems and to help select appropriate tests; Klein and Calderwood (1988) show that

expert decision-makers in complex and changing situations use analogs to suggest starting

points for problem-solving and to help evaluate candidate solutions.

Case-based reasoning also appears to play an important role in human reasoning for tasks

such as real estate appraisal (Burstein, 1994) and labor mediation (Sycara, 1987), in which

it is di�cult to enumerate and weigh all the factors that may be relevant, and in which

changing circumstances preclude reasoning from a �xed library of rules. For example, the

decision to build a prison in a particular neighborhood would have an important e�ect on

property values that might not have been anticipated in a prede�ned rule base, but that

would automatically be re
ected in an appraisal based on the recent selling prices of similar

houses in the area.

Functional support: Case-based reasoning o�ers three potential functional bene�ts com-

pared to problem-solving models based on static rule libraries. First, by storing prior solu-

tions rather than re-deriving them from scratch, it can increase problem-solving e�ciency

over time, as additional cases are stored and become accessible to be used in similar new

situations. For example, comparisons by Koton (1989) showed that the case-based diagnos-

tic system CASEY performed two to three orders of magnitude faster than the rule-based

system from which it was derived.

Second, in poorly-understood or changing domains, CBR helps overcome the lack of per-

fect domain knowledge by augmenting the reasoner's domain theory with records of speci�c

experiences. Instead of neutrally giving equal consideration to all solutions licensed by the

reasoner's domain theory (which may be inconsistent or incorrect), the case-based reasoning

process focuses on solutions that have proven successful in similar prior situations. In a

regular world, these may be more likely to apply than solutions based entirely on uncertain
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a priori knowledge.

The third functional motivation for case-based reasoning is to simplify the knowledge ac-

quisition process. Unlike rule acquisition, which requires analyzing the interactions between

all individual factors in a situation, in case-based reasoning an entire episode can be treated

as a unit from which to reason. Reports from developers of AI systems corroborate the

bene�ts of using cases as the primary unit of domain knowledge to acquire (e.g., Kolodner

(1993, pp. 93-94)).

Despite the appeal of these arguments for case-based reasoning, however, there has been

little examination of the factors a�ecting whether these desired bene�ts are actually realized

in practice. In the following section we address this issue as an introduction to our investi-

gation of introspective reasoning as a means to increase expertise at case-based reasoning.

5 Requirements for successful case-based reasoning

The performance of a case-based reasoning system depends on three types of factors: the

reasoner's experience at relevant problems; the reasoner's additional reasoning capabilities,

using methods other than case-based reasoning; and the reasoner's knowledge of how to

apply the cases in its memory.

Experience at relevant problems: Because case-based reasoning solves new problems

by applying reasoning from prior problems, it is obvious that the e�ectiveness of the reasoning

process will depend on the relevance of the lessons from prior problems to the new situation.

In a completely novel situation or a situation to which no prior experience applies, little

or no bene�t may accrue from using prior cases. For example, a library of planning cases

acquired for cooking stews may not be very helpful as the starting point for planning how

to cook a cake. (However, it has also been argued that even in novel situations to which

no prior case applies directly, the use of case-based reasoning can have bene�ts for creative

problem-solving; see Schank (1986) and Schank & Leake (1989).)
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Additional reasoning capabilities: Case-based reasoning is one of many reasoning

strategies. It is not necessarily appropriate for all tasks, and consequently can be applied

most e�ectively in conjunction with other reasoning methods. For example, in domains for

which a complete domain theory is available and for which optimal solutions are essential,

reasoning from �rst principles may be appropriate. The integration of reasoning from gen-

eral knowledge and from speci�c cases (e.g., Ashley & Rissland (1987), Branting & Porter

(1991), Hinrichs (1992), Redmond (1992)) can also play an important role in the reason-

ing process. For example, Lancaster and Kolodner (1988) show that expert mechanics use

both remindings of speci�c problems and reasoning from abstract domain models when they

diagnose automobile problems.

Knowledge of how to guide case application: The knowledge required for case-based

reasoning goes beyond cases alone: CBR systems depend both on their cases and on knowl-

edge of how to apply those cases. In order for a case-based reasoning system to function

e�ectively, it must retrieve appropriate cases and adapt those cases e�ectively.

In general, there is no guarantee that either human or arti�cial case-based reasoners

will apply stored cases e�ectively. For example, psychological experiments show that people

are not necessarily reminded of the most relevant prior cases and may fail to notice im-

portant similarities between old and new cases (Gentner, Ratterman, & Forbus, 1993; Gick

& Holyoak, 1980; VanLehn, 1989). However, there is evidence that remindings based on

goal-relevant features do occur in task-driven reasoning (Seifert, 1988), and that even novice

programmers can retrieve prior problem cases based on structural features of the problem

being addressed, rather than being misled by super�cial similarities (Faries & Schlossberg,

1994).

Nor are human case application abilities static. For example, developmental studies show

a shift in the criteria that children use when determining relevant features during adaptation

of previous stories to new circumstances. Experiments by Gentner and Toupin (1986) gave

children the task of adapting previously-encountered stories to �t new characters. In the

experiments, children �rst acted out stories with toy animals as the characters. They were

then presented with the same beginnings of the stories, with di�erent toys representing the

characters, and asked to act out the remainder. In some trials, corresponding characters in
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the �rst and second stories had similar appearances (e.g., a chipmunk and a squirrel might

play corresponding roles). In others, the characters in corresponding roles had lower surface

similarity (e.g., as if the role initially �lled by a squirrel were �lled by an elephant).

In adapting the stories to use the new characters, both older children (8-10 years old) and

younger children (5{7 years old) were in
uenced by surface similarities; both sets of children

did better at mapping when similar animals played similar roles. However, considerations

related to systematicity (e.g., that one character was a friend of another) aided the older

children in making the correct mappings between characters as they adapted the old stories

to the new characters. Gentner and Toupin observed that older children would sometimes

make mapping errors, having an animal act the same way that a similar-looking animal had

in the �rst story, and then correct themselves to focus on structural features (e.g., by noting

that the character was greedy and consequently should be the one to do greedy things,

regardless of whether it shared surface features with the greedy animal in the initial story).

Adult experts are better than non-experts at recognizing important similarities when

applying old experiences to new problems; for example, a study by Novick (1988) showed

that when given math problems for which the same solution procedure is appropriate but

which have very di�erent surface features, experts show a strong tendency to recognize the

relevance of the solution procedure despite the surface dissimilarities, while non-experts do

not. A survey of psychological literature on development of analogical reasoning by Goswami

(1991) stresses the importance of knowledge in the development of analogical reasoning

skills, which raises the question of how recognition of important features might be learned

as humans or machines acquire expertise. Learning relevant features is the focus of the

introspective reasoning process that we describe in the following sections.

6 Using introspection to re�ne case-based reasoning

As discussed in the previous sections, the quality of case-based reasoning depends on exper-

tise at retrieving the right cases from memory and adapting those cases to �t new situations.

In computational models of case-based reasoning, the standard approach to providing this

expertise is to attempt to \build in" the requisite case application knowledge for a particular
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domain. As Simoudis, Ford, and Canas (1992) point out, that task involves the same types

of knowledge acquisition problems that have proven a serious impediment to developing rule-

based expert systems. Given that one of the pragmatic motivations for modeling learning

from experience is to alleviate knowledge acquisition problems, a natural question is whether

learning from experience could be applied to re�ning expertise at the case-based reasoning

process itself.

In order to decide how to re�ne its reasoning process, a CBR system must be able to

reason about that process: to reason introspectively about the motivations for its reasoning,

the requirements that must be satis�ed in order for the results of the CBR process to satisfy

the reasoner's needs, and the way in which the CBR process is expected to perform.

A rich literature addresses issues such as re
ection, introspection, and metacognition

(see for example Piaget (1976), Campbell & Bickhard (1986)), and human experts appear

to have greater awareness of their own problem-solving process than less expert performers

(e.g., Chi, Bassok, Lewis, Reimann, & Glaser (1989)). However, introspective reasoning

has received little attention in studies of the case-based reasoning process. In the following

sections we discuss models of how introspective reasoning can be used to re�ne two aspects

of the case-based reasoning process. The �rst section discusses how reasoning about the

CBR system's memory organization can contribute to learning how to �nd the information

needed to adapt cases to new situations. The second section discusses how, after a case has

been applied to a situation, introspective reasoning about prior processing can be used to

detect and repair sub-optimal case retrieval criteria. Initial computer implementations of

both models have been developed and are now being extended and re�ned.

6.1 Using introspection about memory search to increase exper-

tise at case adaptation

A case-based reasoning system's 
exibility comes from its ability to adapt prior cases to �t

new situations. Unfortunately, pre-de�ning the needed knowledge is a hard problem (Alle-

mang, 1993; Kolodner, 1991; Leake, 1994b). The di�culty in hand-coding case adaptation

knowledge is so acute that many CBR applications do not even include case adaptation,

leaving adaptation to be performed manually by the users of the systems (e.g., Bayles & Das
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(1994), Blevis, Burke, Glasgow, & Duncan (1991), Domeshek & Kolodner (1992), Hennessey

& Hinkle (1991), Simoudis & Miller (1991), Slator & Riesbeck (1991)). This makes the sys-

tems into \expert memories" without the capability to apply the contents of those memories

themselves. We are addressing the problem of de�ning adaptation criteria by modeling how

a case-based reasoning system can, starting from limited case adaptation knowledge, learn

from experience to re�ne its case adaptation process.

6.1.1 The case adaptation problem

Case adaptation involves performing operations such as adding, deleting, and substituting

components of a retrieved solution, in order to generate a new solution that applies to

the current problem. The types of structural transformations involved in modifying an

encoded solution can generally be described in terms of a very small set of basic operations

that are then combined as needed to perform complex adaptations (e.g., Carbonell (1983),

Hammond (1989), Hinrichs (1992), Kass (1990), Kolodner (1993)). However, applying those

transformations to particular cases can require retrieving a wide range of supplementary

domain-speci�c knowledge. For example, if part of the evidence that applied to a previous

explanation of a crime is implausible in the current situation, a possible transformation is

to substitute evidence (Koton, 1988) to replace the implausible evidence with evidence that

is more believable. In order to do that replacement, it is necessary to �nd new supporting

evidence, which may be quite di�cult.

The problem is illustrated by the previous example in which case-based reasoning was

applied to explaining the attack on Nancy Kerrigan. In that example, the reminding of the

attack on Monica Seles suggested an explanation|an attack instigated and carried out by a

crazed fan of an opponent. That explanation only partially �ts the Kerrigan attack, because

Shane Stant, Kerrigan's attacker, was hired to perform the crime; he did not instigate that

attack. Consequently, applying the retrieved explanation depends on adapting it to re
ect

that Stant was hired by someone else. That adaptation requires adding the new instigator's

role to the causal chain leading to the attack. Despite the di�erences, the explanation for

the attack on Seles still suggests a motive to consider when searching for an instigator: That

the attack was instigated by a fan who hired Shant to carry out the attack.
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In order to complete the explanation it would be necessary to identify a fan who might

have carried out the attack. In general there is no guarantee that relevant information will

be in memory (and for this example, it is very unlikely that a newspaper reader would know

enough about those involved to even form a reasonable conjecture). Even if the appropriate

information were in memory, however, it could be di�cult to retrieve it. No pre-existing

category in an average reader's memory is likely to group \fans of competitors in Kerrigan's

upcoming competitions." Consequently, it is necessary to �nd the information through an

indirect search method, perhaps �rst searching for possible future competitors of Kerrigan

(which is a memory search problem in its own right and might require using additional

strategies such as trying to retrieve episodes of skating competitions in which Kerrigan was

involved, to see who competed there, or trying to retrieve information about the Olympic

skating team). Next, it is necessary to �nd ways to focus on the competitors' fans who are

su�ciently deranged or obsessive to resort to violence. The Kerrigan example shows that

�nding the speci�c information needed to apply an adaptation rule can be a di�cult part of

the case adaptation process.

We can view the problem of �nding the information needed to adapt cases as a prob-

lem in operationalizing (Mostow, 1983) abstract structural transformations by gathering the

domain-speci�c information needed to apply them Leake (1993). The need to search mem-

ory for information to operationalize abstract adaptation rules arises not only during case

adaptation for explanation, as in the previous example, but for any task being solved by

case-based reasoning. For example, in case-based planning, one problem that can arise in

reapplying a previous plan is that a side-e�ect of a step in a retrieved plan has bad e�ects

in the current context. An abstract adaptation rule to repair that problem is add a step to

remove harmful side-e�ect (Hammond, 1989). In that abstract form, the rule is not oper-

ational; applying it requires searching memory for the plan step to add, and determining

that step may be a hard problem. If the case-based planning system is attempting to build

a plan for X-ray treatment, and the X-ray dose needed to destroy a tumor will result in an

excessive radiation dose to healthy tissue, considerable domain expertise may be needed to

decide what steps should be added to the treatment plan.

A common way of addressing the problem of gathering the information needed for case

adaptation is for the developer of the CBR system to de�ne domain-speci�c adaptation
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rules with the needed information built in. For example, more speci�c versions of add a step

to remove harmful side-e�ect can be tailored to adaptation problems for X-ray treatment

plans, resulting in rules such as add the step \rotate radiation sources" to remove harmful

side-e�ect \excess radiation", a rule used in the ROENTGEN system (Berger & Hammond,

1991). In general, a case-based reasoner whose adaptation rules are tailored to its task can

adapt cases more e�ectively. However, developing domain-speci�c adaptation rules requires

knowledge of the domain and of the types of adaptation problems that the reasoner is likely

to encounter. Neither type of knowledge may be available a priori, which makes knowledge

acquisition a particularly di�cult problem for the case adaptation process.

6.1.2 Acquiring adaptation expertise by introspective learning

We address the problem of acquiring expertise at case adaptation by focusing on how to learn

to �nd the domain-speci�c information needed to adapt cases. Given a novel adaptation

problem, our model uses introspective reasoning to generate a new memory search plan to

�nd needed information (Leake, 1995c). The search plan is then stored as a case in memory.

As similar adaptation problems are encountered, the search plan is re-applied by case-based

reasoning to deal with the new problem. Thus our model addresses both the formulation of

original memory search plans and their reuse (Leake, 1994a, 1995b; Leake, Kinley, & Wilson,

1995).

The following sections discuss the major phases of this process: How the need to adapt a

case results in a \knowledge goal" to retrieve a particular type of information from memory;

how that knowledge goal is the starting point for a planning process to search for needed

information; and how the results are stored and reused to facilitate future case adaptation.

Generating knowledge goals: In order to search for the information needed to adapt a

case, a reasoner must be able to describe the goal of its search. This section discusses how

our model identi�es the type of information it needs for an adaptation problem in order to

represent it as an explicit knowledge goal (Leake & Ram, 1993; Ram, 1987)|a goal to acquire

a particular type of knowledge|to guide the later information search process. The only input

information required is the standard type of input that case-based reasoning systems provide
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to their adaptation components: a description of the problem that necessitates adapting

the case. (We use a vocabulary of problem types based on Leake (1992b).) The problem

description is used as an index to attempt to retrieve stored cases for similar adaptation

problems. If one has been encountered previously, the same adaptation method used in

the previous episode is re-applied, as described later in this section. Otherwise, the model

uses simple heuristics to select an abstract transformation to repair the problem (e.g., if

part of the explanation does not apply to the new situation, one heuristic is to try to apply

substitute component to �nd an alternative playing a similar role in the explanation). Once

a transformation is selected, the transformation determines information that must be found

in order to apply the transformation. For example, when substituting a component in an

explanation, memory search must �nd a component that plays the same causal role that the

original component played in the explanation.

To provide a concrete example, we return to the Kerrigan episode. The explanation for

the attack on Monica Seles only partially �ts the Kerrigan incident, because Shane Stant

does not �t the role of instigator. The need to identify a substitute instigator corresponds to

a knowledge goal: the goal to �nd someone excessively devoted to the victory of a competitor

to Kerrigan.

Reasoning introspectively about how to search memory to satisfy knowledge

goals: Our model's memory search process builds on Kolodner's (1984) approach to mem-

ory search as a deliberative process. In her model, queries to memory that cannot be

answered directly are transformed into new queries, according to elaboration rules, in order

to eventually obtain a query that can be used successfully as a retrieval index. In a similar

spirit but using a more general mechanism, we model the memory search process for �nd-

ing the information needed to perform case adaptation as a process of knowledge planning

(Hunter, 1990). In knowledge planning, information search is conducted by a planning pro-

cess in which \mental" operations are selected based on explicit reasoning about needs for

information and how to satisfy them.

In our model of reasoning about memory search, generating a plan depends on using

knowledge of the interrelationships between concepts in memory. Given information about

the meanings of memory links and the type of information sought by memory search, a
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planning process can reformulate queries and follow sequences of links to extract the infor-

mation it needs (Leake, 1995c). This is illustrated by the reasoning required to �nd a fan

who might have instigated the attack on Kerrigan. First, to �nd a fan of one of Kerrigan's

potential competitors, it is necessary to identify who those competitors are. That requires

a memory search process to locate potential competitors (e.g., by retrieving information

about prior skating competitions in which Kerrigan competed and noting who competed

against her there, which might involve �rst �nding general information about the schedules

of �gure-skaters, etc.) After identifying the competitors, it is necessary to search for their

fans, who may not be explicitly represented in memory, but for whom candidates may be

generated by considering people devoted to them, such as spouses, lovers, siblings, or close

friends. Finally, after candidates have been identi�ed, evaluation of the candidates is needed

to decide whether they are plausible attackers.

In order to decide which memory links to traverse during its search for information, a

reasoner must have self-knowledge about the relationships that its memory links represent.

This contrasts with most memory models, in which relationships are labeled by naming the

links in memory but the names have no meaning to the memory search system itself. For

example, to reason about whether a spouse is appropriate to consider when searching for

fans, the memory must represent not only that a link named \spouse" exists, but the meaning

that the link re
ects: the memory searcher must have metaknowledge of the relationships

underlying its memory organization.

Being able to treat memory search as a planning process and to reformulate queries

increases the 
exibility of the memory search process but also increases potential processing

cost. In a rich memory, there will be numerous possible paths to any particular piece

of information, and numerous possible wrong turns during memory search. Consequently,

building up a memory search chain from scratch each time new information is needed is likely

to be prohibitively expensive, especially for long search paths. The next section addresses

the question of how a reasoner can learn from its memory search process, acquiring expertise

at memory search and case adaptation.

Learning memory search strategies: Many sophisticated memory search schemes have

been developed in CBR research, but they are normally driven by opaque procedures, rather
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than being accessible to explicit reasoning and learning. The planful memory search process

described in the previous section makes it possible to reason about the memory search

procedures as plans. A key bene�t is that memory search plans can be subject to the same

learning methods that have been applied to planning in other contexts (e.g., Segre (1988),

Hammond (1989), Birnbaum, Collins, Freed, & Krulwich (1990)).

A question is which of these learning methods to apply. Initially, it appears that

explanation-based generalization (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong &

Mooney, 1986) is the method of choice, because it has been widely used for forming opera-

tional generalizations of speci�c plans. However, explanation-based generalization requires

a perfect domain theory to form valid generalizations. The memory search rules described

previously are just heuristics for �nding concepts with particular relationships; whether they

succeed in a given instance depends not only on the rules themselves but on the idiosyncratic

contents of memory. Consequently, what is needed is a learning process that can start from

those unreliable general rules and form more speci�c and reliable rules re
ecting the speci�c

contents of memory. This suggests recursively applying case-based reasoning to the memory

search task within case-based reasoning.

By recursively applying case-based reasoning to a CBR system's own memory search

process, it is possible to build up a library of cases re
ecting how particular heuristics apply

to the idiosyncratic contents of a particular memory. For example, in a memory re
ecting an

athlete's knowledge it might be reasonable to search for competitions as part of a knowledge

structure for a competitive season, while in a memory re
ecting the knowledge of an apathetic

stadium employee it might be necessary to search memory under another category, such as

\overtime days." Thus the memory search cases that are learned re
ect speci�cs of the

system's knowledge, task, and memory organization.

The blame assignment problem: We note that the success of the memory search process

depends both on using the right search strategies and on whether memory actually contains

the needed information. When there is insu�cient information in memory, or when the wrong

memory search strategies are used, the search process will fail to �nd the needed information.

Determining what was the source of the failure is important for guiding remedial learning.

For example, if the failure was caused by insu�cient knowledge, augmenting the contents of
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memory by consulting reference sources, etc., is appropriate; no new search strategies need to

be learned. (In fact, the series of questions that a detective might ask during interviews when

investigating a crime can be viewed as a way of applying the memory search strategies of

the detective to a memory richer in relevant knowledge than the detective's own.) However,

when the failure results from a de�cient search strategy not �nding available information,

new search strategies are needed.

Distinguishing between a search failure resulting from lack of information and one re-

sulting from a bad choice of search strategy is the \blame assignment" problem for memory

search. In general, it is di�cult to resolve: How can a reasoner know that its search strategy

is de�cient (i.e., that its memory actually contained the needed information but memory

search failed to �nd it)? A method we are investigating for addressing the blame assign-

ment problem is to try as many search plans as are possible within a limit on the number

of memory links traversed, until the desired information is found or the resource limit is

exceeded. If the information is found by one memory search plan but was not found by

previous plans, the previous plans were 
awed; learning can re
ect that the �nal plan was

superior and that the previous plans failed. If the information is not found by any plan, the

problem could be either the search plans used or a lack of information in memory, and no

immediate learning can be done unless external feedback is available to identify the source

of the problem. However, if failed search plans are stored in memory, indexed by the infor-

mation they sought, learning can be done opportunistically if the needed information is later

found to be in memory.

A summary of knowledge sources: In our model, introspective reasoning about case

adaptation depends on four types of knowledge. The �rst is knowledge of types of abstract

transformations, that can be used to make structural changes when adapting a case (e.g.,

the transformation that substitutes a new component for an existing component in the case).

The second type of knowledge is knowledge about the reasoner's own memory organization,

encoded as memory search rules. Memory search rules re
ect information about the types

of memory links to follow to gather particular types of information and how queries can be

transformed into other queries. For example, a memory search rule would represent that

a way to identify the abstractions of a concept is to follow the \IS-A" links connected to
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that concept. Thus memory search rules form the building blocks for generating plans to

search memory. Both abstract transformations and memory search rules are provided to the

system.

When memory search rules have been combined in a plan to �nd a particular type of

information, the plan as a whole is stored in a third structure, a memory search case.

Memory search cases store knowledge about speci�c episodes of memory search. They include

information about the knowledge goal that motivated the memory search, the memory search

plan that was used, and information about its success or failure. By retrieving memory search

plans for similar previous searches, the reasoner can re-use successful reasoning and avoid

unsuccessful paths when generating memory search plans for novel adaptation problems.

The fourth type of knowledge, adaptation strategies (Kass, 1990), stores knowledge about

the entire episode of case adaptation. An adaptation strategy includes the adaptation prob-

lem being addressed, the abstract transformation used for it, and the memory search case

used to �nd the information needed for that transformation. This allows the reasoner to re-

use the information from an entire previous case adaptation when a similar problem arises.

We view the availability of appropriate adaptation strategies (and, when none are available,

appropriate memory search cases) as fundamental to expertise at case adaptation.

As we continue development of the model we are re�ning this framework for the content

and organization of memory search knowledge. Because it has been shown that in some

cases, the learning of control knowledge may actually degrade processing speed (Minton,

1985), another question to be examined is the factors a�ecting utility of learning as memory

search cases are acquired.

The process for applying each knowledge source is summarized in �gure 1. (This high-

level description omits details concerning issues such as how to deal with failures of the

memory search plans to �nd the needed information.) Through this process, a case-based

reasoning system simultaneously adapts a case and learns information to facilitate future

case adaptation. The model is being developed and extended with Andrew Kinley and

David Wilson of Indiana University; the implementation of the model is discussed in (Leake,

1994a, 1995b; Leake et al., 1995).
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Knowledge Sources

Input case and description of problem to adapt

Try to retrieve adaptation strategy
indexed under problem type

Generate "knowledge goal" for information 
to apply selected transformation

Processing Steps

Memory search cases

Adaptation strategies

Memory search rules

Select transformation to repair problemTransformations

Flow of control

No relevant strategy found

Knowledge goal:  Find competitor’s fan
who could have instigated attack

Transformation:  Substitute component
(Find new instigator)

Generate and apply memory search plan

Evaluate results; store memory search
case and adaptation strategy (search
case+transformation) for future use.

Outline of plan:  First find competitors,
then find those loyal to them.  After
generating subplans the process
results in retrieving suspects such as
family and good friends of competitors.

Retrieval and storage of adaptation and memory search information

An example

Input case:  Explanation for attack on Seles.
Problem to adapt:  Kerrigan’s attacker is not
  a competitor’s fan

Figure 1: The basic process for learning adaptation strategies.
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6.2 Acquiring retrieval expertise by introspective reasoning

In a second project, with Susan Fox at Indiana University, we are investigating how intro-

spective analysis of the e�ectiveness of the case-based problem-solving process can guide

re�nement of retrieval criteria. As a benchmark for this self-analysis, we endow a case-based

reasoning system with a model of the desired behavior of its own case-based reasoning pro-

cess and the processes underlying that behavior. When its performance falls short of the

desired behavior, that failure triggers learning aimed at developing performance closer to the

idealized model. Our primary focus is not on the learning triggered by failures in the outcome

of processing, which has been extensively studied in the case-based reasoning literature, but

instead on how a reasoner can learn from sub-optimal reasoning performance even when it

results in wasted reasoning e�ort rather than bad �nal results.

Using a model of the CBR process itself to detect processing failures: Model-

based reasoning is a widely-studied method for diagnosing device failures (for an overview, see

Davis (1988)). In that work, faults are identi�ed by comparing a model of how the device is

expected to perform to the device's actual behavior. Birnbaum, Collins, Freed and Krulwich

(1991) point out that model-based reasoning can also be used in a di�erent way: Rather

than having the model re
ect the expected behavior of a system, they suggest using a model

of the ideal behavior of a reasoning system|behavior that may be beyond expectations for

actual performance|as a benchmark against which to compare actual system performance.

Discrepancies identify points for improvement.

Although Birnbaum et al. applied the method to the task of re�ning a rule-based planning

system, they proposed its application to self-improving case-based reasoning systems as well

(Birnbaum et al., 1991). The remainder of this section discusses the application of that

method to re�ning indexing criteria in a case-based path planning system (Fox & Leake,

1994, 1995b, 1995c, 1995a). By this process, the system acquires expertise at case retrieval.

Identifying hidden retrieval problems by model-based reasoning: In most CBR

systems, the success of reasoning is judged entirely by whether the system's solution results in

a successful problem-solving outcome. When attempts to apply the system's solution result
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in a failure, the failure reveals that the solution was 
awed and prompts the system to learn

in order to avoid similar future failures (e.g., Hammond (1989)). Such learning is important,

but another important issue in acquiring expertise at case-based reasoning is how to detect

and learn from what we call \hidden failures"|de�ciencies in the reasoning process that

make the process more costly but that do not necessarily cause erroneous problem-solving

results. The reason that these de�ciencies may remain hidden is that each component of

a case-based reasoning system can compensate to some extent for 
aws in the others. For

example, a correct solution can result even if the retrieved case is not the best precedent in

memory, provided that case adaptation can still �t the retrieved case to the new situation.

If so, the result of retrieving the wrong case is not an execution failure but instead that case

adaptation is unnecessarily costly, because the retrieved case was not the one most similar

to the new situation, even if the eventual solution is nevertheless correct.

To allow learning in response to 
aws in the problem-solving process, as opposed to 
aws

only in the outcome of problem-solving, we augment traditional failure-driven learning from

bad outcomes with learning based on analysis of the solution process itself. A key problem

is how to perform that analysis: how to determine whether the problem-solving process was


awed even though it generated a correct solution. In general, the knowledge required to

judge the problem-solving process will not be available while the problem is being solved.

(If that knowledge were available, the reasoner could simply use it during initial problem-

solving to avoid following an incorrect problem-solving path.) For example, when a CBR

system attempts to retrieve a case to apply to a new situation, case retrieval must usually

be based on partial knowledge of the relevant features of the problem, because the features

that are relevant to retrieval may not be apparent until the problem has been solved (e.g.,

Kolodner (1993, pp. 371-372) and Leake (1992a, 1995a)).

However, after the problem has been solved, additional information is available, and that

information can be used to determine features that should be considered during future case

retrieval. Consequently, our approach uses \hindsight" to identify incorrect problem-solving

paths: the information provided by the successful solution is used to illuminate how the

solution should have been generated.

We are applying this approach to determining whether retrieval criteria were su�cient
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to retrieve the right case or if new types of features should be considered during future case

retrieval. The process is as follows. After problem-solving, the execution of the case-based

reasoning process is compared to assertions about its desired performance; deviations prompt

learning. For example, one of the assertions about desired performance is that the retrieved

case should be the case \closest" to the new situation (i.e., that it will be the case easiest

to adapt to the new situation). To verify this assertion, our method compares the solution

to other cases in memory, to decide whether the retrieved case was really the best case to

retrieve (i.e., the case most similar to the solution). If not, it adjusts its retrieval criteria to

re
ect the features that should have been considered in order to retrieve the right case. In

this way, it is possible to learn new similarity criteria that enable case retrieval to focus on

cases that are likely to be easiest to adapt.

An example: As an illustration of this process, consider the task of generating plans for

traveling within a city. A natural criterion for retrieving relevant prior plans is to retrieve the

prior plans whose starting and ending points are geographically closest to the desired origin

and destination points. Intuitively, it seems obvious that this should result in retrieving the

plan for the path that is \closest"|easiest to adapt|to the desired path.

However, sometimes this criterion will lead a planner astray. For example, suppose that

the city is divided by a river that can only be traversed at a single bridge, and the goal requires

reaching a point across the river from the point of origin. For this task, a plan retrieved

by the criteria in the previous paragraph might have very little in common with the �nal

solution. Figure 2 illustrates this situation for two possible stored plans, plan A and plan B.

Plan A is the plan favored by the retrieval strategy we described. However, straightforward

re-use of plan A would result in arriving at a point close to the destination but on the wrong

side of the river, requiring backtracking to a point near the starting point to cross the bridge

and then additional adaptation to cross the bridge and reach the destination. Plan B, which

is not most similar according to the retrieval criteria, better matches the solution to the

problem and is a much more useful starting point towards a plan for the goal.

If the planner does not initially know that the side of the river is an important feature to

consider when planning paths, it will have no way to avoid retrieving the wrong case. Once

the path to the destination has been generated, however, that solution can be analyzed to
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Origin

Destination

Plan A

Plan B

Figure 2: An illustration of the need to learn new features to guide case retrieval: How the

location of bridges a�ects the relevance of path plans.

judge which case in memory, given knowledge of the solution, would have been the best start-

ing point for generating that solution. Based on that analysis, the CBR system can explain

the features that were signi�cant|in this case, the fact that the origin and destination were

on opposite sides of the river|and can use them to re�ne future retrieval criteria.

We performed initial tests of this type of learning in a path planning system with very

limited adaptation capabilities. In tests involving a library of 20-25 cases and a randomly-

selected set of origin and goal points for which to plan, the learning of new indexing criteria

resulted in the system narrowing the set of prior cases that it considered relevant to a given

problem (the average number of cases considered for a problem decreased by 33%), and

the cases that were retrieved required less adaptation than the cases retrieved initially or

when learning was restricted to acquiring new cases without learning new indexing criteria.

Without introspective learning of new retrieval criteria, 25% of the plans retrieved could

not be adapted by its limited adaptation component; with learning of retrieval criteria to

improve the appropriateness of the cases retrieved, all plans in the experiments could be

successfully adapted. For details on the experiments and results, see (Fox & Leake, 1994).

More extensive experimental tests are described in (Fox & Leake, 1995a, 1995c).

6.3 Related Work

Some previous case-based reasoning systems have the capability to learn knowledge useful

for guiding case adaptation. For example, the program CHEF (Hammond, 1989), which

does case-based planning for the task of generating recipes, has a static library of domain-
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independent plan repair strategies but augments that library with learned ingredient critics

that suggest adaptations appropriate to particular ingredients. Likewise, PERSUADER

(Sycara, 1988) uses a combination of heuristics and case-based reasoning to guide adapta-

tion, searching memory for similar prior adaptations to apply. In these systems, however, the

adaptation information learned is quite domain and task speci�c|the cases learned must be

applied to future problems in the same domain and with very speci�c similarities. The intro-

spective reasoning model we are developing increases the 
exibility of the learning process:

The search strategies generated in response to current constraints can also be re-applied to

a wider range of new situations.

In a similar spirit to our method is research by Veloso and Carbonell (1993) on storing

and replaying the reasoning used to derive solutions for problems. However, that research

does not address the knowledge planning problems speci�c to the case adaptation task. Also

related, with respect to the memory search process, is the approach to 
exible memory

search in a heuristic search framework described in Rissland, Skalak, and Friedman (1994),

but that research does not address the learning issues needed to acquire expertise in the

search process.

It is also useful to contrast our approach to other methods for failure-driven re�nement

of reasoning criteria. For example, systems such as CHEF re�ne their indexing criteria when

bad outcomes result from applying an incorrect case, and other projects apply introspective

monitoring to detect reasoning failures in order to respond to them (Cox, 1994; Ram & Cox,

1994). The focus of that work di�ers from our approach to re�ning retrieval, however, in that

their approaches trigger learning only in response to failures in the outcomes of processing

steps. Our method of index re�nement enables learning to occur not only in response to bad

outcomes, but|and perhaps even more importantly for re�ning established expertise|in

response to processing errors from which the reasoner successfully recovered.

7 Conclusion

Case-based reasoning research generally focuses on the role of case acquisition in the develop-

ment of expertise. The bene�ts accrued from new cases, however, depend on the case-based
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reasoner's level of expertise at using its cases|on the quality of its strategies for retrieving

and adapting the cases in its memory.

Modeling the role of introspective reasoning and learning in case-based reasoning is a step

towards accounting for how case-based reasoners, whether human or machine, can become

more expert at applying their experiences to new problems. This article describes ongoing

research on developing models of how introspective reasoning about the case-based reasoning

process can contribute to expertise at case retrieval and adaptation. In this research, self-

knowledge concerning the tasks, memory organization, and reasoning processes of the case-

based reasoning system guide learning about how to be an e�ective case-based reasoner. As

problems are solved, the solution process itself becomes an object of learning to allow more

e�ective use of prior cases in the future. In this way, learning from experience plays a key

role in acquiring expertise at applying prior experience to new situations.

References

Agnew, N., Ford, K., & Hayes, P. (1994). Expertise in context: personally constructed,

socially selected, and reality-relevant?. International Journal of Expert Systems, 7 (1),

65{88.

Allemang, D. (1993). Review of the �rst European workshop on case based reasoning

EWCBR-93. Case-Based Reasoning Newsletter, 2 (3). Electronic newsletter published

by the special interest group AK-CBR of the German Society for Computer Science.

Anderson, J. (1983). The Architecture of Cognition. Harvard University Press, Cambridge,

MA.

Ashley, K. (1990). Modeling legal argument: reasoning with cases and hypotheticals. MIT

Press, Cambridge.

Ashley, K. & Rissland, E. (1987). Compare and contrast, a test of expertise. In Proceedings

of the Sixth Annual National Conference on Arti�cial Intelligence, pp. 273{284 Palo

Alto. AAAI, Morgan Kaufmann, Inc.

25



Bareiss, R. (1989). Exemplar-Based Knowledge Acquisition: A Uni�ed Approach to Concept

Representation, Classi�cation, and Learning. Academic Press, Inc., San Diego.

Bayles, S. & Das, B. (1994). Using arti�cial intelligence to support tra�c 
ow manage-

ment problem resolution. In Proceedings of the AAAI-94 Workshop on Case-Based

Reasoning, pp. 133{137 Seattle, WA. AAAI.

Bereiter, C. & Scardamalia, M. (1993). Surpassing Ourselves: An Inquiry into the Nature

and Implications of Expertise. Open Court, Chicago.

Berger, J. & Hammond, K. (1991). ROENTGEN: a memory-based approach to radiation

therapy treatment. In Bareiss, R. (Ed.), Proceedings of the Case-Based Reasoning

Workshop, pp. 203{214 San Mateo. DARPA, Morgan Kaufmann, Inc.

Birnbaum, L., Collins, G., Brand, M., Freed, M., Krulwich, B., & Pryor, L. (1991). A

model-based approach to the construction of adaptive case-based planning systems.

In Bareiss, R. (Ed.), Proceedings of the Case-Based Reasoning Workshop, pp. 215{224

San Mateo. DARPA, Morgan Kaufmann, Inc.

Birnbaum, L., Collins, G., Freed, M., & Krulwich, B. (1990). Model-based diagnosis of

planning failures. In Proceedings of the Eighth National Conference on Arti�cial Intel-

ligence, pp. 318{323 Boston, MA. AAAI.

Blevis, E., Burke, R., Glasgow, J., & Duncan, N. (1991). The life analysis & depreciation

integrated exemplar system (ladies). International Journal of Expert Systems, 4 (2),

141{155.

Branting, K. & Porter, B. (1991). Rules and precedents as complementary warrants. In Pro-

ceedings of the Ninth National Conference on Arti�cial Intelligence, pp. 3{9 Anaheim,

CA. AAAI.

Burstein, M. (1994). Case age: selecting the best exemplars for plausible reasoning using

distance in time or space. In Proceedings of the Sixteenth Annual Conference of the

Cognitive Science Society, pp. 106{111 Atlanta, GA. Cognitive Science Society.

26



Camerer, C. & Johnson, E. (1991). The process-performance paradox in expert judgement.

In Ericsson, K. & Smith, J. (Eds.), Toward a General Theory of Expertise, chap. 9.

Cambridge, New York.

Campbell, R. & Bickhard, M. (1986). Knowing levels and developmental stages. S. Karger,

Basel, Switzerland.

Campbell, R., Brown, N., & DiBello, L. (1992). The programmer's burden: developing ex-

pertise in programming. In Ho�man, R. (Ed.), The Psychology of Expertise: Cognitive

Research and Empirical AI, chap. 16, pp. 269{294. Springer Verlag, New York.

Carbonell, J. (1983). Learning by analogy: formulating and generalizing plans from past

experience. In Michalski, R., Carbonell, J., & Mitchell, T. (Eds.), Machine Learning:

An Arti�cial Intelligence Approach. Tioga Publishing Company, Cambridge, MA.

Chi, M., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanations: how

students study and use examples in learning to solve problems. Cognitive Science, 13,

145{182.

Cox, M. (1994). Machines that forget: learning from retrieval failure of mis-indexed expla-

nations. In Proceedings of the Sixteenth Annual Conference of the Cognitive Science

Society, pp. 225{230 Atlanta, GA.

Davis, R. (1988). Model-based reasoning: troubleshooting. In Shrobe, H. (Ed.), Explor-

ing Arti�cial Intelligence: Survey Talks from the National Conferences on Arti�cial

Intelligence. Morgan Kaufmann, Palo Alto.

DeJong, G. & Mooney, R. (1986). Explanation-based learning: an alternative view. Machine

Learning, 1 (1), 145{176.

Domeshek, E. & Kolodner, J. (1992). Towards a case-based aid for conceptual design.

International Journal of Expert Systems, 4 (2), 201{220.

Ericsson, K. & Smith, J. (1991). Prospects and limits of the empirical study of expertise:

an introduction. In Ericsson, K. & Smith, J. (Eds.), Toward a General Theory of

Expertise, chap. 1. Cambridge, New York.

27



Faries, J. & Schlossberg, K. (1994). The e�ect of similarity on memory for prior problems.

In Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society,

pp. 278{282 Atlanta, GA. Cognitive Science Society.

Fox, S. & Leake, D. (1994). Using introspective reasoning to guide index re�nement in case-

based reasoning. In Proceedings of the Sixteenth Annual Conference of the Cognitive

Science Society, pp. 324{329 Atlanta, GA.

Fox, S. & Leake, D. (1995a). Learning to re�ne indexing by introspective reasoning. In Pro-

ceedings of First International Conference on Case-Based Reasoning Sesimbra, Portu-

gal. In press.

Fox, S. & Leake, D. (1995b). Planning for repairing reasoning failures. In Proceedings of

the 1995 AAAI Spring Symposium on Representing Mental States and Mechanisms

Stanford, CA. AAAI. Available from ftp.cs.indiana.edu:/pub/leake/p-95-02.ps.Z.

Fox, S. & Leake, D. (1995c). Using introspective reasoning to re�ne indexing. In Proceedings

of the Thirteenth International Joint Conference on Arti�cial Intelligence Montreal.

IJCAI. In press.

Fuller, S. (1994). The constitutively social character of expertise. International Journal of

Expert Systems, 7 (1), 51{64.

Gentner, D., Ratterman, M., & Forbus, K. (1993). The roles of similarity in transfer:

separating retrievability from inferential soundness. Cognitive Psychology, 25, 524{

575.

Gentner, D. & Toupin, C. (1986). Systematicity and surface similarity in the development

of analogy. Cognitive Science, 10 (3), 277{300.

Gick, M. L. & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12,

306{355.

Goel, A., Callantine, T., Donnellan, M., & de Silva Garza, A. (1993). From models to

cases: where do cases come from and what happens when a case is not available?. In

28



Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, pp.

475{480 Boulder, CO. Cognitive Science Society.

Goswami, U. (1991). Analogical reasoning: what develops? a review of research and theory.

Child development, 62, 1{22.

Hammond, K. (1989). Case-Based Planning: Viewing Planning as a Memory Task. Aca-

demic Press, San Diego.

Hennessey, D. & Hinkle, D. (1991). Initial results from clavier: a case-based autoclave loading

assistant. In Bareiss, R. (Ed.), Proceedings of the Case-Based Reasoning Workshop,

pp. 225{232 San Mateo. DARPA, Morgan Kaufmann, Inc.

Hinrichs, T. (1992). Problem Solving in Open Worlds: A Case Study in Design. Lawrence

Erlbaum Associates, Hillsdale, NJ.

Hobbs, J., Stickel, M., Appelt, D., & Martin, P. (1993). Interpretation as abduction. Arti�cial

Intelligence, 63 (1-2), 69{142.

Hunter, L. (1990). Planning to learn. In Proceedings of the Twelfth Annual Conference of

the Cognitive Science Society, pp. 261{268 Cambridge, MA. Cognitive Science Society.

Kass, A. (1990). Developing Creative Hypotheses by Adapting Explanations. Ph.D. thesis,

Yale University. Northwestern University Institute for the Learning Sciences, Technical

Report 6.

Klein, G. & Calderwood, R. (1988). How do people use analogues to make decisions?. In

Kolodner, J. (Ed.), Proceedings of the Case-Based Reasoning Workshop, pp. 209{223

Palo Alto. DARPA, Morgan Kaufmann, Inc.

Kolodner, J. (1984). Retrieval and Organizational Strategies in Conceptual Memory.

Lawrence Erlbaum Associates, Hillsdale, NJ.

Kolodner, J. (1991). Improving human decision making through case-based decision aiding.

The AI Magazine, 12 (2), 52{68.

Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA.

29



Koton, P. (1988). Reasoning about evidence in causal explanations. In Proceedings of the

Seventh National Conference on Arti�cial Intelligence, pp. 256{261 Minneapolis, MN.

AAAI, Morgan Kaufmann Publishers, Inc.

Koton, P. (1989). Evaluating case-based problem solving. In Hammond, K. (Ed.), Pro-

ceedings of the Case-Based Reasoning Workshop, pp. 173{175 San Mateo. DARPA,

Morgan Kaufmann, Inc.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1990). Chunking in Soar: the anatomy of a

general learning mechanism. In Shavlik, J. W. & Dietterich, T. G. (Eds.), Readings in

Machine Learning, pp. 555{572. Kaufmann, San Mateo, CA.

Lancaster, J. & Kolodner, J. (1987). Problem solving in a natural task as a function of

experience. In Proceedings of the Ninth Annual Conference of the Cognitive Science

Society, pp. 727{736 Seattle, WA. Cognitive Science Society.

Lancaster, J. & Kolodner, J. (1988). Varieties of learning from problem-solving experience. In

Proceedings of the Tenth Annual Conference of the Cognitive Science SocietyMontreal.

Cognitive Science Society.

Leake, D. (1992a). Constructive similarity assessment: using stored cases to de�ne new

situations. In Proceedings of the Fourteenth Annual Conference of the Cognitive Science

Society, pp. 313{318 Bloomington, IN. Cognitive Science Society.

Leake, D. (1992b). Evaluating Explanations: A Content Theory. Lawrence Erlbaum Asso-

ciates, Hillsdale, NJ.

Leake, D. (1993). Learning adaptation strategies by introspective reasoning about memory

search. In Proceedings of the AAAI-93 Workshop on Case-Based Reasoning, pp. 57{63

Washington, DC. AAAI. AAAI Press technical report WS-93-01.

Leake, D. (1994a). Towards a computer model of memory search strategy learning. In

Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society, pp.

549{554 Atlanta, GA.

30



Leake, D. (1994b). Workshop report: the AAAI-93 workshop on case-based reasoning. The

AI Magazine, 15 (1), 63{64.

Leake, D. (1995a). Adaptive similarity assessment for case-based explanation. International

Journal of Expert Systems, 8 (2), 165{194.

Leake, D. (1995b). Combining rules and cases to learn case adaptation. In Proceedings of the

Seventeenth Annual Conference of the Cognitive Science Society, pp. 84{89 Pittsburgh,

PA.

Leake, D. (1995c). Representing self-knowledge for introspection about memory

search. In Proceedings of the 1995 AAAI Spring Symposium on Representing

Mental States and Mechanisms, pp. 84{88 Stanford, CA. AAAI. Available from

ftp.cs.indiana.edu:/pub/leake/p-95-01.ps.Z.

Leake, D., Kinley, A., & Wilson, D. (1995). Learning to improve case adaptation by in-

trospective reasoning and cbr. In Proceedings of First International Conference on

Case-Based Reasoning Sesimbra, Portugal. In press.

Leake, D. & Ram, A. (1993). Goal-driven learning: fundamental issues (a symposium report).

The AI Magazine, 14 (4), 67{72.

LeFevre, J. (1988). Processing instructional texts and examples. Canadian Journal of

Psychology, 41, 351{364.

Lesgold, A., Rubinson, H., Feltovitch, P., Glaser, R., Klopfer, D., & Wang, Y. (1988).

Expertise in a complex skill: diagnosing X-ray pictures. In Chi, M., Glaser, R., &

Farr, M. (Eds.), The nature of expertise, chap. 11. Erlbaum, Hillsdale, NJ.

Minton, S. (1985). Selectively generalizing plans for problem-solving. In Proceedings of

the Ninth International Joint Conference on Arti�cial Intelligence, pp. 596{599 Los

Angeles, CA. IJCAI.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based generalization: a

unifying view. Machine Learning, 1 (1), 47{80.

31



Mostow, J. (1983). Machine transformation of advice into a heuristic search procedure. In

Michalski, R., Carbonell, J., & Mitchell, T. (Eds.), Machine Learning: An Arti�cial

Intelligence Approach, pp. 367{403. Tioga Publishing Company, Cambridge, MA.

Novick, L. (1988). Analogical transfer, problem similarity, and expertise. Journal of Exper-

imental Psychology: Learning, Memory and Cognition, 14, 510{520.

Piaget, J. (1976). The grasp of consciousness. Harvard University Press, Cambridge, MA.

Pirolli, P. & Anderson, J. (1985). The role of learning from examples in the acquisition of

recursive programming skills. Canadian Journal of Psychology, 39, 240{272.

Ram, A. & Cox, M. (1994). Introspective reasoning using meta-explanations for multistrat-

egy learning. In Michalski, R. & Tecuci, G. (Eds.), Machine Learning: A Multistrategy

Approach. Morgan Kaufmann.

Ram, A. (1987). AQUA: asking questions and understanding answers. In Proceedings of the

Sixth Annual National Conference on Arti�cial Intelligence, pp. 312{316 Seattle, WA.

Morgan Kaufmann Publishers, Inc.

Read, S. & Cesa, I. (1991). This reminds me of the time when . . . : expectation failures in

reminding and explanation. Journal of Experimental Social Psychology, 27, 1{25.

Redmond, M. (1992). Learning by Observing and Understanding Expert Problem Solving.

Ph.D. thesis, College of Computing, Georgia Institute of Technology. Technical report

GIT-CC-92/43.

Riesbeck, C. & Schank, R. (1989). Inside Case-Based Reasoning. Lawrence Erlbaum Asso-

ciates, Hillsdale, NJ.

Rissland, E., Skalak, D., & Friedman, M. (1994). Heuristic harvesting of information for

case-based argument. In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence, pp. 36{43 Seattle, WA. AAAI.

Ross, B. (1989). Some psychological results on case-based reasoning. In Hammond, K. (Ed.),

Proceedings of the Case-Based Reasoning Workshop, pp. 144{147 San Mateo. DARPA,

Morgan Kaufmann, Inc.

32



Schank, R. (1986). Explanation Patterns: Understanding Mechanically and Creatively.

Lawrence Erlbaum Associates, Hillsdale, NJ.

Schank, R. & Leake, D. (1989). Creativity and learning in a case-based explainer. Arti�-

cial Intelligence, 40 (1-3), 353{385. Also in Carbonell, J., editor, Machine Learning:

Paradigms and Methods, MIT Press, Cambridge, MA, 1990.

Schank, R., Riesbeck, C., & Kass, A. (Eds.). (1994). Inside Case-Based Explanation.

Lawrence Erlbaum Associates, Hillsdale New Jersey.

Segre, A. (1988). Machine learning of robot assembly plans. Kluwer Academic Publishers,

Boston.

Seifert, C. (1988). A retrieval model for case-based memory. In Kolodner, J. (Ed.), Proceed-

ings of the Case-Based Reasoning Workshop, pp. 120{125. DARPA.

Simoudis, E., Ford, K., & Canas, A. (1992). Knowledge acquisition in case-based reasoning:

\...and then a miracle happens". In Dankel, D. (Ed.), Proceedings of the 1992 Florida

AI Research Symposium. FLAIRS.

Simoudis, E. & Miller, J. (1991). The application of cbr to help desk applications. In Bareiss,

R. (Ed.), Proceedings of the Case-Based Reasoning Workshop, pp. 25{36 San Mateo.

DARPA, Morgan Kaufmann, Inc.

Slator, R. & Riesbeck, C. (1991). Taxops: a case-based advisor. International Journal of

Expert Systems, 4 (2), 117{140.

Sternberg, R. & Frensch, P. (1992). On being an expert: a cost-bene�t analysis. In Ho�man,

R. (Ed.), The psychology of expertise: Cognitive research and empirical AI, chap. 11,

pp. 191{203. Springer-Verlag, New York.

Sycara, K. (1987). Resolving Adversarial Con
icts: An Approach Integrating Case-based

and Analytic Methods. Ph.D. thesis, School of Information and Computer Science,

Georgia Institute of Technology. Georgia Institute of Technology, Technical Report

GIT-ICS-87/26.

33



Sycara, K. (1988). Using case-based reasoning for plan adaptation and repair. In Kolodner,

J. (Ed.), Proceedings of the Case-Based Reasoning Workshop, pp. 425{434 Palo Alto.

DARPA, Morgan Kaufmann, Inc.

VanLehn, K. (1989). Problem solving and skill acquisition. In Posner, M. (Ed.), Foundations

of Cognitive Science. MIT Press, Cambridge, MA.

Veloso, M. (1994). Planning and Learning by Analogical Reasoning. Springer Verlag, Berlin.

Veloso, M. & Carbonell, J. (1993). Derivational analogy in prodigy: automating case acqui-

sition, storage, and utilization. Machine Learning, 10 (3), 249{278.

34


