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18.1. Introduction

Neuro-symbolic systems enable leveraging strengths of both neural and symbolic ap-
proaches [1]. Case-based reasoning (CBR) is a knowledge-based reasoning and learn-
ing methodology that exploits a memory of prior cases—records of prior instances or
experiences—by adapting their lessons to solve new problems [2, 3, 4, 5]. The integra-
tion of CBR with neural systems is appealing because of their complementary character-
istics. Neural models have achieved impressive performance for tasks such as categoriza-
tion, but reasoning and synthesis of structured solutions (e.g., for planning and design)
remain a challenge, as does incorporating existing knowledge into network processes.
Training network models—and retraining them for additional data—can be costly. In
addition, network models are opaque, functioning as “black boxes.” Much research has
addressed explanation of black box systems [6] but there are strong arguments for ben-
efits of applying inherently interpretable models, especially as Al is increasingly used
in critical domains [7]. Case-based reasoning can be effective with few examples, is
amenable to reasoning and synthesis tasks, and supports addition of expert knowledge; it
also provides inertia-free learning and is naturally interpretable [8]. However, its success
depends on knowledge—not only case knowledge, but also the indexing, similarity and
case adaptation knowledge required to retrieve and apply cases—which may be difficult
to obtain.

This chapter presents research on combining neural network methods with CBR, il-
lustrating how neural system components can reduce the knowledge engineering burden
for CBR and improve system performance. It also describes how the use of neural com-
ponents can benefit CBR system performance by enabling optimization of retrieval and
adaptation components in context of each other [9].
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Figure 1. The CBR cycle, based on Aamodt and Plaza [14]

Specifically, the chapter presents three research strands on neuro-symbolic integra-
tions to support CBR, addressing: (1) extracting features for case retrieval from deep
neural networks to use in concert with expert-generated features, (2) refining a CBR ap-
proach to case adaptation knowledge learning, the “case difference heuristic” approach,
by applying neural network learning, and (3) harmonizing retrieval learning with case
adaptation learning, in order to retrieve cases that are adaptable to address new problems.
It summarizes some strengths, weaknesses and tradeoffs of these approaches, and points
to future challenges for neuro-CBR integrations.

18.2. Case-Based Reasoning: Motivations and Method

Case-based reasoning (CBR) is a methodology for reasoning and learning by retrieving
and adapting the lessons of prior episodes, and storing the result as a new case for future
use. One of the inspirations for studying CBR comes from observations of human rea-
soning [3, 10, 11, 12]. Human experts—and others—are reminded of past experiences
as they encounter new problems; the sharing of “war stories” is a common way experts
transmit knowledge. In addition, CBR is an appealing methodology for knowledge-based
Al systems for pragmatic reasons, such as the relative ease of case acquisition—both
because cases may be easier to elicit than rules [8] and because, in some domains, cases
may be captured routinely as a byproduct of other processes. CBR models have been
developed for many knowledge-rich tasks and have been widely applied (e.g., [13]). An-
other benefit of case-based models is their interpretability (e.g., [7, 8]): The results of
a CBR system can be explained to users in terms of the prior cases on which they are
based.

The CBR Cycle: The CBR process is a cycle in which problems are solved by steps
often described as retrieve, reuse, revise, and retain [14]. Given a new problem, the most
relevant prior case is retrieved, its solution is reused—matched to the new situation—and
then revised—adapted to fit the new situation—and finally, retained—stored as a new
case learned by the system. The process is illustrated in Figure 1.

The CBR Knowledge Containers: The CBR process uses multiple forms of knowledge,
identified by Richter as the CBR knowledge containers [5, pp. 34-37]: representational
vocabulary, case knowledge, similarity knowledge, and case adaptation knowledge. The



knowledge in the containers can overlap, in the sense that placing knowledge in one can
decrease the need for knowledge in another. For example, increasing the case base size
can decrease the need for adaptation knowledge, if the additional cases enable retrieving
cases more similar to incoming problems (which reduces the need for adaptation). The
ability to choose where to place knowledge provides flexibility for knowledge acquisition
from humans and by automated learning methods.

Complimentary Strengths of CBR and Neural Networks: CBR can function success-
fully with very limited data, and facilitates integrating multiple forms of expert knowl-
edge. CBR is a lazy learning method with inexpensive learning: CBR systems learn by
simply storing new cases, without generalization until (and only if) needed to process a
new problem. However, CBR is not a panacea for knowledge acquisition [15]. Feature
engineering and acquisition of similarity knowledge may be difficult, and acquiring case
adaptation knowledge is a longstanding challenge for CBR [8, 16, 17]. Neural network
models, in contrast to CBR, do not easily exploit prior knowledge. They carry out eager
learning on large data sets, generalizing at training time, with expensive training and re-
training for new data. However, they can achieve high performance without feature engi-
neering (in the case of deep networks) and with minimal prior knowledge requirements.

The contrasting properties of CBR and network models make it appealing to com-
bine network methods and CBR. This pairing can involve either using networks to sup-
port CBR, or CBR to support networks [18]. For example, Das et. [19] present a neuro-
symbolic CBR question-answering approach that uses a neural retriever to retrieve simi-
lar cases. Their system outperforms the state of the art on sample data sets while enabling
the use of new human-labeled examples without retraining. Kenny and Keane propose
pairing neural networks with CBR in twin systems, in which indices extracted from net-
works are used to retrieve cases to explain network results [20]. When sufficient data is
available, both similarity knowledge and case adaptation knowledge can be learned by
network models, and the trained networks can themselves be used as components within
a CBR system. In the resulting hybrid system, the case retrieval and adaptation processes
are more opaque than symbolic retrieval and adaptation methods. However, the resulting
systems still have a level of inherent interpretability, via case presentation, that is not
present in end-to-end network-based models.

18.3. Learning CBR Similarity Criteria and Retrieval Features
18.3.1. Background on CBR Similarity Learning

Similarity assessment for CBR may involve complex processes, including inference and
assessment of structural similarity for complex cases (e.g., [17]). For many problems,
however, it is sufficient to characterize problems in terms of feature vectors and define
similarity based on a weighted distance function. For the remainder of this paper we
will assume feature-vector representations. Similarity learning in this context has long
been a research focus for CBR (e.g., [21]). Considerable recent work on neural network
similarity for CBR has applied siamese networks [22], which learn an embedding for
data points, which can then be used to calculate similarity based on the embedding space.
[23, 24, 25]. Mathisen, Bach, and Aamodt propose an extension that learns how to use
the embedding to calculate distances [26]. The focus of our work is instead on learning



to extract features and feature weights from input cases, to apply a (possible knowledge-
based) similarity function to that feature information.

18.3.2. Background on CBR Feature Learning

Much CBR research on feature learning applies symbolic learning methods (some of
these are ed in Mantaras et al. [17]). Recently, there has been much interest in combining
CBR with neural network components that perform feature extraction to support case
retrieval in an external CBR system (e.g., [27, 28, 29, 30]).

Sani et al. [31] present a system for human activity recognition that extracts features
from a sensor and then uses a convolutional neural network (CNN) to interpret the in-
put data, which is represented in three dimensions. The generated features are then com-
pared against known wave form cases to infer the type, duration, etc. of the activity that
generated the sensory input data. Other approaches go a level of abstraction higher and
consider the similarity functions themselves. Grace et al. [32] propose a hybrid system
for creating plausible yet unexpected, recipe designs. Their system applies deep learn-
ing (DL) techniques to learn relationships between cases in a case base; this provides
additional knowledge that can be patterned to expectations when attempting to address
the parameters of a presented goal. Mathisen et al. [26] use neural networks to learn
similarity measures.

Neural-network-based feature learning is especially appealing for domains such as
image recognition, for which CNNs have been used to extract feature data from complex
inputs to inform case-based reasoning systems. Turner et al. [33] apply this to novel ob-
ject recognition. In their work, a CNN architecture classifies inputs that correlate with
known classes with high confidence; when encountering novel inputs with a correspond-
ingly lower confidence, the image features are extracted from the CNN to be used in
similarity calculations to group the new input with other similar images. As a result,
the combined system can be sensitive to images without known classification labels by
loosely classifying them in terms of other cases. The Turner et al. model extracts fea-
tures for their CBR system from between the convolution/pooling and dense layers of
the CNN. Our model applies a different approach by extracting features just before the
output layer, as explained in Section 18.4.

Outside the focus of this chapter, Kraska et al. apply linear models and neural net-
works to feature aggregation and discrimination [34]. As an alternative to explicit feature
extraction, Das et al. apply network methods directly to retrieval [19]; Kim et al. explore
methods for selecting features to maximize interpretability by looking for features that
create clustering “gaps” between data points [35], and they also integrate CBR princi-
ples directly into network models to create inherently interpretable networks [36]. Such
networks leverage prototypes, which may represent whole classes/concepts [37, 38] or
elements that correlate with a class or subset of classes [39], to focus network learning
along potentially more human-understandable channels by using similarity information
across a field of prototypes for classification.

18.4. Combining Expert and Network-Learned Features

One of our research focuses concerns the integration of expert-generated and neural
network-generated feature information to guide case similarity assessment and retrieval.
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Figure 2. Illustration of data flow for integrating knowledge-engineered and network-learned features.

Traditional retrieval in CBR depends on case indexing, using atomic features and possi-
bly more complex indexing structures to characterize cases. Knowledge acquisition and
feature engineering (e.g., [40, 41, 42]) can provide high quality indices, but may be ex-
pensive or infeasible. For example, even domain experts may not be capable of providing
comprehensive feature vocabularies for poorly-understood domains or for tasks such as
image recognition. Given that DL systems can learn effectively from raw data, automated
indexing using features extracted from a DL system seems a natural supplement or alter-
native to feature engineering. The research described in this section explores using fea-
tures extracted from a trained convolutional neural network in concert with engineered
features. Section 18.5 presents work on alternative feature extraction strategies.

18.4.1. Extracting Features from Convolutional Neural Networks for Classification

The proposed DL-CBR hybrid model, illustrated in Figure 2, trains a CNN from scratch
for a classification task and then uses the trained network to extract features from input
data (e.g., images) to be used as indices for retrieval by a case-based classification system
[43]. Given a new input, another sequential network generates weights for both learned
and knowledge engineered features for the case-based classifier similarity calculation.
The case-based classifier then uses a combination of engineered features and extracted
features, weighted according to the generated weights, for case retrieval.

18.4.1.1. Testbed Extraction Model

The structure of the CNN used for feature extraction in our research derives closely
from the AlexNet architecture [44]. However, the bias node is removed from the CNN
output layer to avoid feature skew during training, because a bias node would factor
into the weighted sum used for prediction by the CNN but would not be extracted as a
feature itself. The proposed method deviates from other feature extraction approaches
(e.g., [31, 33, 45]) by extracting outputs from the dense layers of the CNN as features,



rather than extracting the inputs to the dense layers. This choice is motivated by the
potential for dense layers to modify and/or combine features from previous layers into
more complex values that may be for useful for CBR indices. Section 18.5 examines
this design choice. After extraction, features derived from the CNN are combined with
knowledge-engineered features from the raw data set.

18.4.2. Evaluation

Our evaluation of feature extraction concerned how use of network features can make
CBR more robust to flaws in knowledge-engineered features. Specifically, it addressed
how classification accuracy of the CBR system is affected by degradation of reliability
of knowledge-engineered (KE) features, and how using network-learned (NL) features
in concert with KE features affects classification accuracy, as quality of KE features
changes. For reasons of space, the following sections only briefly summarize key points.
Full quantitative results and experimental procedure (including explorations for weight
learning strategies when using NL features) are described in Wilkerson et al. [43].

Experiments used a case-based classifier with no adaptation component that re-
trieves the nearest neighbor (1-NN) using a weighted Euclidean distance metric for sim-
ilarity calculations. The test domain was the Animals with Attributes 2 data set (AwA2)
[46], which includes both non-symbolic information and engineered features. In AwA?2
all instances of a class are assigned the same KE feature vector, so these feature vectors
yield perfect classification accuracy when used for retrieval. Consequently, in our exper-
iments, these features are perturbed to simulate imperfect situation assessment assigning
symbolic feature values and/or a feature vocabulary that is not 100% predictive. This
artificial variance among feature values is used in our tests to simulate different degrees
of reliability in the knowledge-engineered feature information.

How using KE and NL Features in Concert Affects Accuracy: Retrieval accuracy val-
ues for various perturbations of KE features in concert with NL features are compared
against the values for each feature set individually. Each experiment is performed using
unweighted leave-one-out testing on a case base of 500 cases.

Predictably, retrieval accuracy decreases as the perturbation magnitude increases,
because a higher degree of noise is present in the KE feature set. Results of combined
tests suggest that classification accuracy improves when using both KE and NL features
together versus either feature set individually, supporting the assertion that features ex-
tracted from the CNN model capture aspects of the feature space not adequately covered
by KE features alone. Arguably, this is further supported by the fact that the accuracy
increase persists even when KE features are perturbed by large magnitudes, though this
outcome may also be due to the relatively large number of NL features (1024) compared
to KE features (85). As a result, the trend may be influenced by the dominating NL fea-
tures, and/or accuracy increases may be partially attributable to the existence of more
features in general.

18.4.3. Summary on Combining Network-Generated and Expert Features
This section has illustrated a DL-CBR hybrid system operating at a “middle ground”

between the powerful yet opaque learning capability of neural networks and the more
easily-explained but knowledge-intensive structure of traditional case-based reasoners.
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Figure 3. Comparison of classification accuracy values for different feature perturbations; left to right, the
degree of KE feature perturbation decreases. Error bars represent one standard deviation relative to thirty
iterations.

Experimentation suggests that features extracted from a CNN model can usefully aug-
ment existing knowledge-engineered features for CBR retrieval, especially when such
KE features are inconsistent or incomplete across classes in the domain. Additional top-
ics for research include further examination of where in the network features should be
extracted (addressed in the following section), how to tune the number of features to ex-
tract and how to weight the combined features in the CBR system. Because using large
numbers of network features could hamper explanation of system similarity judgments,
we have begun research on methods for feature pruning, as described in Section 18.5.4.1.

18.5. Where in a CNN to Extract Features for CBR

The previous section illustrates the value of using convolutional neural networks to ex-
tract features from inputs for case retrieval. The illustrated method, as well as most cur-
rent approaches for feature extraction for CBR, are based on plausible assumptions about
where in a CNN to extract features for maximal usefulness to CBR. To test those under-
lying assumptions, we compared three extraction methods for image processing: extract-
ing image features after the convolution layer (Turner et al. [33, 45], Sani et al. [31]); af-
ter the densely-connected layers (the authors’ previously described work [43]); and after
the densely-connected layers using multiple networks. Results show that the latter two
approaches substantially increase case retrieval accuracy in example-sparse domains, to
which case-based reasoning systems are commonly applied.

18.5.1. Candidate Feature Extraction Strategies

When extracting features from a neural network model for a CBR system, approaches
typically extract feature vectors after the convolution and pooling steps, before the
vectors are further processed by later densely-connected layers in the CNN (e.g.,
[31, 33, 45]). Convolution and pooling theoretically capture salient features from raw
data (e.g., shapes, edges, etc. from images), and because such features are traditionally
conceptualized as atomic elements of an image, it is appealing to map CNN feature vec-
tors post-convolution to features for CBR similarity assessment.
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By contrast, if convolution and pooling theoretically highlight atomic features of the
image, then the “mixing and matching” that occurs in densely-connected layers could
generate richer feature representations through the recombination of primitive elements
into more complex structures. As applied to CBR, this parallels the idea of atomic fea-
tures and richer, more complex indices. Indeed, extracting feature vectors from after the
densely-connected layers has led to success in generating counterfactual explanations
[47], so it is also appealing to apply such an approach to classification as well.

With these fundamental extraction ideas in mind, we proposed three methods to
compare these different feature extraction methods: extracting features after the convo-
lution layers, extracting them after the dense layers, and extracting them after the dense
layers from multiple CNN systems specialized to different classes (Figure 4). The latter
model is motivated by the goal of minimizing the number of features extracted while still
preserving CNN convergence [43].

Notes on Multi-Net Feature Extraction In CBR retrieval, certain features may become
more applicable for similarity calculations depending on the class of the case to which
the query is compared. This concept traditionally manifests through feature weighting,
but features themselves may also be capable of reflecting this variable applicability for
similarity. To this end, the multi-net feature extraction approach generates localized fea-
tures, as opposed to a uniform set of features used across the entire case base.

As opposed to training one n-class CNN model from which features are extracted,
multi-net leverages n binary CNN classifiers to distinguish between examples of a unique
class and examples that do not have that class. This results in a unique extracted feature
set for every ground truth class, from which a retrieval query case’s feature set is selected
based on the class of the candidate case to which it is compared (i.e., as if query and
candidate are both members of the same class).



18.5.2. Evaluation

We evaluated feature quality across the three extraction methods, using retrieval accu-
racy as proxy for feature quality. We compare retrieval accuracy of the three extraction
models and of an end-to-end CNN classifier. The end-to-end classifier was trained using
all training examples, versus leave-one-out testing for the CBR model, so the end-to-
end classifier can be informally considered an “upper bound” for network accuracy with
complete information. Accuracy values are calculated for a spectrum of extracted feature
set sizes. The following paragraphs highlight the principal findings only; full procedure,
results, and discussion can be found in Leake et al. [48].

The CBR component used for these experiments is similar to that described in the
previous section [43], with no adaptation component and performing retrieval using 1-
NN based on an unweighted Euclidean distance similarity metric. The CNN component
is identical, with only variations in the number of neurons in the feature extraction re-
gions. The Places data set [49] is used for training and evaluation image data.

18.5.3. Extraction Location Influence on Feature Quality

Figure 5 shows retrieval accuracy versus number of features extracted for the evaluated
methods [48]. In general, the post-dense extraction method outperforms post-convolution
extraction, with multi-net extraction leading to the highest retrieval accuracy overall. This
suggests that extracting features after the dense layers leads to superior feature quality; it
appears that the feature aggregation/recombination that happens in the densely connected
layers is useful for CBR retrieval indexing. Multi-net achieves superior performance at
the expense of additional training time, reflecting an accuracy-training time trade-off in
these retrieval methods.

Traditionally, CBR addresses relative feature importance through feature weighting,
but neural network index generation makes it feasible to adjust the feature space itself, as
illustrated by the multi-net design. The multi-net design strategy creates local models that
recast query case features into a feature vocabulary relevant to the class of the candidate
prior case being considered at that point in retrieval. Thus, the traditional CBR feature
extraction question of “what features are present in the query?” becomes “what features
related to class x are present in the query?”

18.5.4. Future Avenues for Maximizing Feature Quality

Beyond feature extraction location, promising avenues for improving extracted feature
quality include exploring different DL models for feature extraction and revisiting feature
weighting approaches.

Exploring different DL models for feature extraction: Both studies described previ-
ously use AlexNet as the base feature extraction model, while other computer vision al-
gorithms and DL architectures have been developed that may also be applicable in a DL-
CBR hybrid system. Other CNN architectures (e.g., VGGNet [50] or similar approaches)
and structures (e.g., InceptionNet [51], etc.) could potentially facilitate higher-quality ex-
tracted features, because they are considered more accurate when applied for end-to-end
image classification. Moving in the direction of newer CNN implementations, we have
begun a comparative study of architectures including VGGNet, which further refines
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the AlexNet architecture; InceptionNet, which applies convolution operations of various
sizes in parallel; and DenseNet [52], which focuses on block-based feature processing
rather than layer-based processing.

Revisiting feature weighting approaches: Wilkerson et al. [43] tested the effects of
sample feature weighting approaches from the literature, but found none to be effective at
increasing retrieval accuracy for those tests. We conjecture that the targeted algorithms,
which focus on weights of individual features, could not effectively handle the large fea-
ture sets extracted from the networks. However, studies on number of features and fea-
ture extraction locations provide fuller context on feature requirements for convergence;
as a result, it may be possible to reduce feature space dimensionality such that weight
learning algorithms become more applicable.

18.5.4.1. Feature Pruning for Dimensionality Reduction

In addition to methods described above, it may be possible to further reduce the dimen-
sionality of an extracted feature set using post-extraction feature pruning. This would
maintain the CNN’s capability for convergence while still reducing the size of a feature
set to better suit the CBR system (and to facilitate explanations of similarity as well).
Weight learning (e.g., perturbation methods, as in [47]) may then be applied. We have
begun to explore feature pruning strategies [53].

18.5.5. Summary on CBR Feature Extraction from Networks

The previous section illustrates the effects of feature extraction location and number of
features extracted on feature quality for a DL-CBR hybrid system. The results suggest
that extracting from after the densely-connected layers in a CNN generates the most
useful features, and there appears to be a quantifiable “sweet spot” for the number of
features extracted, such that the CNN has enough parameters to converge but that per-
formance is not impaired by the “curse of dimensionality.” These results highlight DL
model structure/parameters as critically important to CBR retrieval performance when
using extracted features.

18.6. Network-Based Case Adaptation

The “reasoning” in case based reasoning is primarily case adaptation—the process of
adjusting a prior solution to fit a new problem. Because CBR is often applied to domains
for which only partial domain knowledge is available, acquiring case adaptation knowl-
edge is a classic challenge for CBR [8, 16]. Such knowledge is often encoded in the form
of rules, whose effectiveness may depend on the quality of the domain theory charac-
terizing a domain. Early case-based reasoning research invested extensive effort to de-
velop case adaptation knowledge for certain domains and to identify general adaptation
methods (e.g., [54]). However, the difficulty of generating case adaptation knowledge
limited the application of full CBR systems, resulting instead in emphasis on case-based
aiding systems which retrieve cases to present to the user without adaptation [55]. Later
work recognized the potential of machine learning methods to capture case adaptation
knowledge. Such adaptation methods included the generation of rules by decision tree



learning [56, 57], and the use of case-based reasoning for the adaptation process itself
[58, 59, 60, 61]

The most influential CBR adaptation rule learning approach is the case difference
heuristic (CDH) approach [16]. This knowledge-light approach learns adaptation knowl-
edge from cases in the case base and has been widely studied, especially for regression
tasks (e.g. [16, 62, 63, 64, 65, 66, 67]). Given a pair of cases, the CDH approach cal-
culates the difference between their problem descriptions (generally represented as fea-
ture vectors) and the difference between their solutions (generally numerical values for
regression tasks). A rule is generated for the problem difference and solution difference.
The rule encodes that when an input problem and retrieved case have a problem differ-
ence similar to the one from which the rule was generated, the solution for the retrieved
case should be adjusted by the previously observed solution difference. For example,
in the real estate price prediction domain, an adaptation rule might be generated from
two similar apartments, one a two-bedroom and the other a three-bedroom, to adjust the
price given an additional bedroom. Normally, human knowledge determines the design
of how the adjustment should be done, which can involve additive, multiplicative, or
other changes (e.g., for the real estate example, price might be adjusted by a fixed or
percent increment). The process of CDH relies on the assumption that the old and new
contexts will be sufficiently similar for the rule to apply to future cases.

In their seminal work of network-based case adaptation, Liao, Liu and Chao [68]
applied deep learning to learn differences to assign to the solution of a retrieved case
for regression problems. Their method presents the problem difference of two cases to
a network which has been trained on pairs to output solution differences. Rather than
providing the network only with the problem difference, as in their work, our approach
provides the neural model with both the difference and the retrieved problem itself, as
the context in which the adaptation is performed, enabling the network to adjust adapta-
tions for that context. Craw, Wiratunga, and Rowe [69] showed that with careful tuning
of feature weights, superior performance can be achieved by taking more context into ac-
count for the case difference heuristic. We are investigating the use of network methods
to avoid the tuning step when adding context to the case-difference heuristic approach.

18.6.1. An Illustration of Network-Based Adaptation Performance

Liao, Liu and Chao [68] tested neural network adaptation for the NACA 0012 airfoil
dataset [70] from the UCI repository [71], demonstrating that neural networks can learn
adaptations for a CDH approach in that domain. To generate a fine-grained assessment
of CDH compared to alternatives we compared five different systems: a k-NN system
with k = 1, which can be seen as a CBR system with no case adaptation, a k-NN system
with £ = 3, which can be viewed as a CBR system with very simple adaptation (by
averaging solutions of 3 different cases), a CBR system using adaptation rules generated
using the case difference heuristic (“normal CDH”), inspired by Craw, Wiratunga and
Rowe [69], a CBR system using a neural network to learn rules from CDH and carry out
adaptation (“network CDH”), and, as a further baseline for comparison, a neural network
system that solves the regression problem directly. The following subsections present a
synopsis of design and results for this study; full details are available in Leake, Ye, and
Crandall [72].

The design of the network CDH system builds on the model of Liao, Liu and Chao
[68], but differs in two respects. First, as previously stated, in addition to taking as input



the problem differences, it takes as input the problem of the retrieved case, which pro-
vides context for the adaptation. Second, in addition to the CDH rule generation being
trained on pairs of similar cases, rule generation is trained on pairs of random cases, en-
abling generation of rules applicable to larger differences (cf. Jalali and Leake [73]). Our
experimental procedure differs from theirs in testing on data sets for which we restrict
the available training cases so that the test query is always novel with respect to cases
already seen by the system.

Implementations: The neural network system is implemented as a feedforward neural
network of four fully connected layers. Depending on the task domain for which perfor-
mance is being tested, there is minor variation in the number of neurons per layer. The
system is trained until the validation error converges. The same structure is used for the
adaptation network.

The CBR system with normal CDH follows the example from Craw, Wiratunga, and
Rowe [69]. To generate adaptations, a pair of cases is compared to produce an adaptation
example, with one case arbitrarily chosen as source case and the other as a target case.
The problem description of the source case is used as a context, indicating that a problem
difference in such a context can lead to such a solution difference. This system is denoted
as “CBR + normal CDH”, with subprocesses as follows:

* Case retrieval: Training cases are stored in a case base. Given a query, the case
retrieval process finds the most similar case from the case base using 1-NN.

Case adaptation: During training, adaptation examples are assembled from pairs of
training cases and stored in an adaptation case base CB,, distinct from the case base
used to store cases for solved problems. During testing, the problem difference
between the query and the retrieved case is calculated. The problem description
of the retrieved case is used as the context. Then a 1-nearest neighbor algorithm
retrieves the most similar adaptation example. This solution difference is added to
the retrieved solution to produce the final solution.

The second system, the CBR system using CDH assisted by a neural network, is denoted
as “CBR + network CDH”, and is based on both Craw, Wiratunga, and Rowe [69] and
Liao, Liu and Chao [74]. The system is implemented as follows:

* Case retrieval: Training cases are stored in a case base. Given a query, the case
retrieval process finds the most similar case from the case base using 1-NN. This
is the same as in CBR + normal CDH.

Case adaptation: During training, pairs of training cases are used to train an adap-
tation neural network NN, to produce a solution difference given a problem dif-
ference and a context. During testing, the problem difference between the query
and the retrieved case is calculated. The problem description of the retrieved case
is used as the context. The problem difference and context are provided as input
to NN,, which generates a solution difference. This solution difference is added to
the retrieved solution to produce the final solution.

We note that the experiments use a minimalistic design for all three systems. A CBR sys-
tem can take many forms involving design choices for aspects such as retrieval, adapta-
tion, case maintenance, user feedback and intervention, etc.; similarly, a neural network



Table 1. Average MSE of systems for different values of ncr on the Airfoil dataset

Number of cases removed (ncr)

100 200 300 400 500

3-NN 1.083  1.229 1387 1.600 1.742
1-NN 1.374 1.698 1.845 2.184 2.403
CBR +network CDH 0484 0.693 0.824 1.016 1.168
NN 0409 0.549 0.749 0.864 1.267

CBR + normal CDH 1.175 1.893 1919 2522 2.593

system can vary by using different layers, numbers of neurons, activation functions, and
connectivity. The CBR + network CDH and CBR + normal CDH systems are trained on
the same adaptation examples, and the CBR + network CDH and NN systems use the
same neural network structure for their networks. Our choices of models are based on
the goal of a simple yet fair comparison, for which all models are given the same case
base and similar computational characteristics.

All experiments are done under a constrained setting previously used by Leake and
Ye [75], and described there. In this setting, the training phase is done after a test case is
chosen. The top ncr (standing for number of cases removed) cases similar to the test case
are temporarily removed from the training cases, so the systems are only allowed to train
on not-too-similar cases. This procedure is repeated for each test case. In other words,
the systems are retrained with a reduced training set so that the test case is “forced” to
be novel with respect to cases previously provided to the system.

Experiment on Airfoil Data Set: For comparison with previous results [74], we per-
formed the above experiment for the airfoil self-noise data set. In this data set, a problem
description X is a vector of 5 numeric attributes describing wind and the airfoil blade
section, and a solution description y is the sound level of the noise generated by the air-
foil blade. The data set contains 1503 cases, 10% of which are used as the test cases. We
use neighboring pairs of each case and its neighbor and 5000 random pairs to train CDH
algorithms. The parameter ncr is chosen from the range of {100,200,300,400,500}.

The results are shown in Table 1. As ncr increases, all systems suffer to some extent
because the queries become harder to solve. The system with the best result for each ncr
is highlighted. We note that 3-NN consistently outperforms 1-NN, presumably because
multiple retrievals decrease the influence of a potentially misleading nearest case. CBR
+ network CDH consistently outperforms 1-NN and 3-NN, which is expected because
of the ability to do better adaptation. CBR + normal CDH performs poorly through all
experiments. Given the better performance of CBR + network CDH, we hypothesize
that the poor performance of normal CDH is due to inability to reliably select the right
adaptation. A similar effect was observed by Craw, Wiratunga, and Rowe [69], where a
suitable technique was needed to retrieve the best adaptation example. The NN system
consistently outperforms the other systems, and the CBR system ranks second, except
when ncr = 500 and the CBR + network CDH ranks first.

In this data set, there are plenty of samples for values in each dimension, and many
cases share the same attributes. In such a setting the NN system can learn to solve novel
queries. When enough cases are removed to impair the NN system, the adaptation knowl-
edge and overall performance of CBR + network CDH are also impaired.



Table 2. Average MSE of systems for different values of ncr on the Car Dataset

Number of cases removed (ncr)

0 1 2 10 50 100
3-NN 0.106 0.216 0560 1.623 1477 1.768
1-NN 0.065 0.040 0497 1.677 1527 2.039
CBR +network CDH ~ 0.029  0.030 0.049 0.257 0.237 0.256
NN 0.035 0.080 0.108 0413 0.544 0.560

CBR + normal CDH 0.076  0.067 0.489 1.672 1487 1973

Experiment on Car Features and MSRP Data Set The next experiment is carried out on
the Car Features and MSRP Data Set from Kaggle [76]. A problem description contains
fifteen numeric features of a car such as engine horse power, and nominal features such
as make and model. A solution description is the Manufacturer Suggested Retail Price
(MSRP) of the car. The cleaned data set contains 6629 cases, each with 1009 dimensions.
The high dimensionality is due to the variety of one-hot encoded values in nominal at-
tributes. 10% of the cases are used as test queries. We use neighboring pairs of each case
and its neighbor and 10000 random pairs to train CDH algorithms. The parameter ncr
is chosen from the range of {0, 1,2,10,50, 100}. Differently from previous experiments,
we evaluate systems when ncr = 0. Due to the time cost of the testing procedure, when
ncr is nonzero we only test 50 random queries per experiment.

Table 2 reports the text results. The best systems have comparable performance when
ncr = 0 or ncr = 1. The CBR system substantially outperforms all other systems when
ncr > 2. Due to the high dimensionality, removing cases heavily impacts the quality of
the nearest neighbor retrieval, as shown by the k-NN systems when ncr > 2. Without
similar cases, the NN system cannot learn effectively even if a minimal number of cases
is removed, as shown by the NN system when ncr > 2. Nonetheless, the CBR system
performs well for novel queries in such a high dimensional data set. Learning by the NN
system may be less suited to this novelty, while the adaptation knowledge learned by
the CBR + network CDH system from pairs of cases is less affected. Finally, we note
that CBR + network CDH is essentially adapting the results of 1-NN. By comparing the
two rows, we notice that often 1-NN performs poorly but the adaptation process often
successfully estimates a correct result. This illustrates the benefit to accuracy of including
the adaptation step.

18.6.2. Extending Neural Network CDH

Our initial architectures for NN-CDH were designed for adaptation of numeric attributes;
adapting nominal attributes was an open challenge, made harder because of the lack of
standard methods for expressing difference between nominal values and nominal adapta-
tions in network architectures. To this end, Ye, Leake and Jalali [77] modified NN-CDH
into an approach called C-NN-CDH which predicts a target solution (class label) based
on a source case and a target problem of a query, without calculating the problem differ-
ence involving nominal features. However, this leads to a second issue. Neural network
adaptation architectures such as C-NN-CDH take a query and retrieved case as input and
generate a solution. This raises a question about whether the networks such as C-NN-



CDH truly learn case adaptation—in principle, they could learn to ignore the retrieved
case and simply generate a solution based on the query.

In response, Ye, Leake and Crandall [62] introduced a simple method to express the
difference between two one-hot encoded nominal values as a vector, and extended the
NN-CDH adaptation approach [72] to predict a solution difference given a problem dif-
ference, where the differences can involve both numeric and nominal attributes. The new
model is referred as the unified NN-CDH approach (simply referred to as “NN-CDH” for
short in the rest of the text) as it unifies earlier work to handle both classification and re-
gression tasks. In contrast to the previous C-NN-CDH, the unified NN-CDH guarantees
learning adaptation knowledge from the difference between a pair of cases.

18.6.3. Evaluation of the Unified Model

Using the unified model we addressed two questions: Does NN-CDH consistently im-
prove the result of retrieval, and how does a CBR system using NN-CDH perform when
compared to a neural network of equivalent computational power? To address these ques-
tions, we compared the predictive accuracy of six methods: 1) a baseline neural network,
2) k-nearest neighbor (k-NN), 3) a CBR system whose retrieval is either 1-NN retrieval
or retrieval with similarity based on a siamese network (SN retrieval) and whose adapta-
tion is either a rule-based CDH or an NN-CDH. The rule-based CDH is a baseline adap-
tation method in which the case pairs are stored in an adaptation case base (as for normal
CDH in Section 18.6.1). The rule-based CDH uses a non-optimised 1-NN retrieval to
select the case pairs based on the adaptation context and problem difference and applies
the solution difference as the adaptation. Because there are two variations of retrieval and
two of adaptation, four variations of CBR systems are tested. The six different methods
are referred as “all models” in the following text.

Network structure and implementations: The test neural networks may have more or
fewer layers and neurons per layer to accommodate the varying complexity of different
data sets. In our implementation, the neural networks have 2-4 hidden layers, each of
which has 8-128 neurons. For every task domain, the baseline neural network is almost
identical to the NN-CDH and they share the same number of layers, neurons and acti-
vation functions, except for the first layer because the baseline neural network takes in a
problem description while NN-CDH takes in adaptation context and problem difference.
This is to ensure fair comparison of the two models when they share similar computa-
tional power. The structure of the NN-CDH is detailed in Ye, Leake and Crandall [62].
The last layer of the baseline neural network uses a sigmoid activation function for re-
gression or softmax activation function for classification. The baseline neural network
model is trained with the loss function of mean squared error for regression and of cate-
gorical cross entropy for classification. Such designs are widely used for neural networks
for regression and classification.

Both k-NN and 1-NN are default implementations from the scikit-learn package
[78]. They use Euclidean distance over problem feature values to calculate distance be-
tween cases. All cases are weighted equally. Our k-NN used k=3. When the CBR system
uses a siamese network for similarity measure, the siamese network first extracts features
from two cases, and then estimates their similarity based on the extracted features. The
feature extraction network is composed of three dense layers (of dimension 32, 32 and
16) with dropout layers (dropout rate = 0.1) between. For harder problems, the number of



neurons in each layer is multiplied by 4. Features extracted from pairs of cases are then
passed to a subtraction layer which outputs the element-wise feature distance. Last, this
is passed into a final dense layer to output a single similarity score. The final layer uses
a Rectified Linear Unit (ReLU) activation function for regression or a sigmoid activation
function for classification. The siamese network is trained with the mean average error
loss for regression or the contrastive loss for classification.

Data sets: Experiments were conducted on five standard regression data sets (Airfoil,
Car, Student Performance, Yacht, Energy Efficiency) and five classification data sets
(Credit, Balance, Car, Yeast, Seeds), as well as on a set of artificial data. They also com-
pared the extended NN-CDH with other models. Some trends of results paralleled those
obtained in previous tests [72, 77], providing additional support for those trends as gen-
eral characteristics of neural network adaptation.

18.6.4. When NN-CDH is Beneficial

Table 3 shows experimental results on regression data sets (additional results can be
found in Ye et al. [62]). Each data set is tested with 10-fold cross validation, and on three
different settings. The novel setting (X) simulates when problem descriptions of training
cases are not similar to the query problem. The novel setting (Y) simulates when the
solutions of training cases are not similar to the target query solution. The novel setting
(Y) is arguably harder than the novel setting (X) because a CBR system in the later
setting may still retrieve a case with good enough solution.

The results for 1-NN retrieval under the novel setting (Y) are not reported because
the trend is already clear in the novel setting (X). Both rule CDH and NN-CDH adapt
a case provided by the retrieval method. If, for example, retrieval error is 6.94% and
NN-CDH accuracy is 5.71%, it means that adaptation is improving the result of retrieval.

The experimental results suggest that NN-CDH is most useful when (1) retrieval is
relatively good, in the sense of providing a starting point harmonized to learned adapta-
tion knowledge (see [59, 79], and Section 18.7) and (2) queries are relatively novel, so
adaptation is needed, and yet not too novel, which could require adaptation capabilities
beyond the learned adaptation knowledge.

The results illustrated that multiple factors can affect performance. First, in some
cases, good case retrieval alone was sufficient to surpass the full CBR process (with
case adaptation) or the neural network. Second, counterintuitively, learned adaptation
may actually worsen the retrieval result if the two processes are not harmonized (an
example is row 2 in Table 3); we address this issue further and present an approach to
addressing it in the following section. Third, directly integrating neural networks into a
CBR system may lead to results comparable to the counterpart neural network, but when
CBR is implemented without expert knowledge to exploit, it is not a “magic bullet” for
superior performance. As discussed in the introduction, its appropriateness depends on
overall needs and circumstances, such as the availability of knowledge to integrate into
the system, the need to handle small data sets, and the need for interpretability.

18.7. Tuning CBR with Alternating Optimization of Network-Based Components

CBR research on learning for the case retrieval and adaptation steps generally focuses
on one or the other, learning for each step separately with the natural assumption that



Table 3. Comparison of Model Error Rates (%) on Regression Data Sets [62]

Setting Retrieval Neural k-NN | Retrieval | Rule CDH | NN-CDH
Network
Normal 1-NN 7.42 6.87 6.94 5.80 5.71
Normal Siamese 7.60 6.97 6.49 17.06 8.82
Airfoil Novel(X) | 1-NN 9.34 | 16.88 17.99 23.85 12.02
Novel(X) | Siamese 9.51 16.20 8.45 18.16 13.84
Novel(Y) | Siamese 8.90 | 16.49 17.18 22.29 13.44
Normal 1-NN 1.52 1.95 1.63 1.81 1.38
Normal Siamese 147 1.92 2.19 6.89 1.72
Car Novel(X) | 1-NN 5.00 7.42 8.48 8.87 4.31
Novel(X) | Siamese 5.41 7.36 2.76 8.45 3.61
Novel(Y) | Siamese 5.06 7.05 6.20 9.32 4.77
Normal 1-NN 21.61 | 25.47 31.59 31.03 29.63
Student Normal Siamese 21.38 | 25.64 26.39 31.66 30.62
Novel(X) | 1-NN 1642 | 18.73 23.30 27.00 24.33
Performance -
Novel(X) | Siamese 16.32 | 19.30 21.00 21.90 25.82
Novel(Y) | Siamese 23.73 | 26.17 32.00 28.70 33.38
Normal 1-NN 7.53 | 13.77 11.48 6.85 8.05
Normal Siamese 5.94 13.87 2.18 17.11 7.71
Yacht Novel(X) | 1-NN 10.50 | 13.15 16.72 26.96 10.50
Novel(X) | Siamese 10.14 | 12.96 3.52 24.25 6.43
Novel(Y) | Siamese 15.64 19.56 13.68 19.77 23.22
Normal 1-NN 7.36 7.53 14.62 15.06 13.04
Normal Siamese 7.20 7.55 2.17 12.51 4.89
E?gfgﬂcy Novel(X) | I-NN 17.96 | 2346 25.83 2229 14.88
Novel(X) | Siamese 17.82 | 23.44 16.40 22.41 13.20
Novel(Y) | Siamese 17.07 24.19 23.72 20.74 12.95

strengthening any component of a CBR system will strengthen the system as a whole.
However, the similarity/retrieval and case adaptation knowledge containers are inti-
mately connected. For example, Smyth and Keane [79] show that adaptation-guided re-
trieval (AGR), basing retrieval directly on adaptability, can increase system efficiency,
and Leake, Kinley, and Wilson [59] present a study in which uncoordinated case and
adaptation learning degrades system efficiency, but overall efficiency is improved when
case and adaptation knowledge are coordinated by learning adaptation-based similarity.

The choice of whether to strengthen retrieval of adaptation knowledge may also af-
fect explainability. For example, a CBR system with strong adaptation might be capable
of successfully adapting cases that are distant from an input problem, making retrieval
of the closest cases less important. However, if system results are to be explained to a
user based on retrieved cases (e.g., [80]), presenting distant cases might be less com-
pelling than presenting nearby ones. Therefore it may be preferable to learn to retrieve
closer cases rather than to strengthen adaptation, even if either provides equivalent so-
lution quality. On the other hand, if explaining by similarity is not important, it may be
best to retrieve the most adaptable cases, no matter how dissimilar they appear to the
user, for efficiency. If retrieval and adaptation are trained independently, or in a fixed
sequence of one before the other, the balance between the two cannot be optimized for
such considerations.



Because neural network based retrieval and adaptation have training procedures that
use gradient descent to iteratively minimize loss functions, alternating optimization (AO)
[81] can be applied to harmonize them for a desired balance. We tested the AO approach
on five regression tasks, using network-based learning methods for both retrieval and
adaptation. In the testbed system, retrieval is based on a siamese network for similarity
measure and adaptation based on a neural network based case difference heuristic (NN-
CDH) approach for adaptation learning [72]. Experiments compared prediction error for
three training schemes. The first is independent training of the two stages, where the
retrieval and adaptation are trained using separate loss functions. The second is training
adaptation first and then training retrieval, where both loss functions of retrieval and
adaptation are based on the accuracy of the solution after adaptation. In other words, the
adaptation process fully guides the retrieval and therefore the second scheme is referred
to as AGR training. The third is alternating optimization, where the loss function of the
retrieval is a weighted combination of the retrieval loss and adaptation loss. AO alternates
between training retrieval and adaptation in multiple iterations, with minor changes per
iteration.

The schemes are tested for five data sets. Experimental results show that under in-
dependent training, the two components may be poorly balanced; for example, retrieval
may be strong while adaptation may provide little benefit or sometimes may even worsen
the initial solution provided by retrieval. Results also show that under AGR training,
retrieval may learn to retrieve cases that are adaptable but that have distant solutions,
decreasing explainability. AO generally decreases the incidence of undesirable behav-
iors. Because AO harmonizes the retrieval stage and adaptation stage while training both
stages, the retrieval stage generally provides a good initial case, and adaptation further
modifies the solution to be closer to the correct solution. Full details and results are pre-
sented in Leake and Ye [82].

18.8. Conclusion and Next Steps

Case-based reasoning is an interpretable reasoning and learning method able to exploit
domain knowledge and to reason effectively from small data sets. However, its appli-
cation may be hampered by difficulties of characterizing case features and obtaining
knowledge to adapt cases. This chapter has illustrated how integrations with network ap-
proaches can help alleviate these issues. For feature generation, we have illustrated the
benefits and limitations with examples from experiments both on using features from
CNN s to supplement knowledge engineered features, and on using them on their own.
We have also presented work aimed at better understanding where in networks to extract
features and at increasing feature quality by local feature generation using multiple net-
works. We are now investigating how alternative network architectures affect the quality
of extracted features.

For adaptation knowledge generation, we have presented research on neural network
adaptation based on the case difference heuristic approach. Our approach trains a case
adaptation network using both problem differences and problem context to learn adap-
tations for both numerical and categorical solutions. We have illustrated the benefits and
limitations of this approach as well, showing that the approach is useful for increasing
the ability of the system to handle novel queries.



A next step will be to extend the CDH approach by exploiting the strength of deep
learning to generate feature descriptions. Rather than relying on a network to learn the
solution difference for a rule to apply to a given solution difference, we intend first to
use a deep network to derive the features to use to represent problems and solutions, and
apply the case difference heuristic to learn adaptation rules for that new representation.
This approach will use machine learning to refine both the vocabulary and adaptation
knowledge of the CBR system.

The integration of neural network components into CBR can provide an additional
benefit, in facilitating the adjustment of the components in concert, using alternating op-
timization. This realizes a longstanding goal of CBR of optimizing overall performance
by selecting the cases most suitable for adaptation, given the system’s case adaptation
knowledge, as well as providing capabilities to improve CBR system interpretability. In
future work we plan to extend the optimization process to guide choices for case retention
and indexing.
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