
Learning to Improve Efficiency
for Adaptation Paths

David Leake and Xiaomeng Ye

Luddy School of Informatics, Computing, and Engineering
Indiana University, Bloomington IN 47408, USA

leake@iu.edu, xiaye@iu.edu

Abstract. The ability of case-based reasoning systems to deal with
new problems depends on the effectiveness of their case adaptation.
One approach to increasing flexibility for novel problems is to perform
adaptations by using adaptation paths—chains of adaptations—to ad-
dress differences beyond those addressable by applying single adaptation
rules. A recent approach to adaptation path generation, ROAD, pro-
poses building adaptation paths using heuristic search guided by simi-
larity, with a “reset” mechanism for recovering when similarity fails to
predict adaptability. The ROAD approach is beneficial when similarity
and adaptability are well aligned, but can make poor choices when sim-
ilarity and adaptability diverge, increasing adaptation cost. This paper
presents methods for increasing adaptation efficiency by maintenance ex-
ploiting information from adaptation path generation. The methods im-
prove the similarity measure to better reflect adaptability and condense
the adaptation rule set. Experimental evaluation supports the benefits
for improving adaptation efficiency while preserving accuracy.

Key words: Adaptation paths, Adaptation rule maintenance, Case adap-
tation, Case-based reasoning, Machine learning, Similarity maintenance

1 Introduction

Case-based Reasoning (CBR) solves new problems by adapting previous solu-
tions to fit new circumstances (e.g., [16]). The case adaptation process is critical
to the flexibility of CBR systems, enabling stored cases to cover a range of new
problems. Case adaptation is often rule-guided, based on a set of adaptation
rules designed to cover each possible class of difference between old and new
problems in a single step (e.g., [6]). However, relying on one-step adaptations
may require a large set of adaptation rules, and it may be hard to anticipate
which rules will be needed. The knowledge acquisition problem for case adap-
tation is a classic problem for CBR (e.g., [7]). Covering problems with one-step
adaptation may be especially problematic for sparse case bases and domains
with highly novel problems. This has motivated research on path-based case
adaptation using sequences of adaptation rules [2, 4, 14].

Making path-based adaptation effective depends on addressing two issues.
The first is selecting the sequence of adaptation rules to apply, given that adapta-
tion rules have varying reliability and that longer paths may be prone to quality
degradation [13]. The second is controlling the computational cost of search-
ing through sequences of adaptation rules. The RObust ADaptation (ROAD)
[14] approach proposes addressing these problems by using heuristics to guide
a greedy search process exploring alternative adaptation paths. As adaptation
rules are applied, ROAD generates intermediate ghost cases [12], and extends
the path from ghost cases closest to the target, based on similarity distance. This
process aims to control adaptation path generation cost by finding short paths
rapidly. To reduce the risk of solution quality degradation, ROAD uses a reset
mechanism that is triggered when the expected reliability of a path falls below
a threshold or when two paths are found to be developing divergent solutions.
Previous experiments showed that ROAD can increase accuracy compared to
relying on single-step adaptations. This paper presents methods aimed at in-
creasing efficiency of the ROAD process.

The efficiency of similarity-based search with resetting depends on the simi-
larity measure being a good proxy for adaptability. However, the correspondence
between similarity and adaptability is not guaranteed [19]. When similarity dis-
tances diverge from true adaptation distances, a similarity-based adaptation
path may proceed through ghost cases that are not easily adaptable, resulting
in longer paths. This paper presents two maintainance methods that use infor-
mation from the ROAD adaptation process to improve future performance. The
first refines the system’s similarity measure, bringing it closer to reflecting true
adaptability. We call this Reset-induced Similarity Adjustment (RISA). RISA
uses knowledge of the final path to determine which prior cases should have
been retrieved to minimize adaptation cost, and adjusts similarity criteria ac-
cordingly to improve future retrievals. This can be seen as ongoing CBR system
maintenance [21] of similarity criteria, based on failures revealed by resetting.
The RISA approach can be applied to any similarity measure that supports ad-
justing distances between pairs of cases (e.g., based on a ranking loss function).

The second maintenance method compacts the set of adaptation rules. Espe-
cially with the use of large-scale automatic rule generation methods, large sets of
adaptation rules may be generated, making rule filtering potentially important
to CBR system performance [9]. Also, in path-based adaptation using heuris-
tic search, decreasing the number of rules to consider decreases the branching
factor—and consequently, the computational cost—of the search. To compact
the adaptation rule set, we propose Compatibility-based Adaptation Rule Selec-
tion (CARS), which prioritizes adaptation rules for retention based on analysis
of pairwise compatibility of adaptation rules in adaptation paths.

Experimental results in this study support that RISA, in conjunction with a
local weighting scheme, can improve the similarity measure to produce shorter
adaptation paths requiring fewer resets. They also show that trimming the adap-
tation rule set with CARS can decrease resets and result in shorter adaptation
paths while maintaining comparable error rates.

The paper begins by reviewing the ROAD adaptation approach. It then
presents the RISA algorithm and evaluation, followed by CARS and its eval-
uation. It closes by summarizing related work and discussing future directions.

2 The ROAD Adaptation Approach

Using adaptation paths is a promising way to increase adaptation flexibility, but
depends on effective methods to guide path generation. ROAD [14] generates
paths by similarity-guided greedy search and improves accuracy with a retrieval-
based method for resetting the starting points of problematic paths.

2.1 Generating Adaptation Paths by Similarity-Guided Search

ROAD solves problems by retrieving the case most similar to the current problem
and applying an adaptation path. It builds the path by greedy search, guided by
similarity distance to the target, with the goal of generating short paths. When
an adaptation rule is applied to a case, ROAD adapts both its solution and
problem description to generate a hypothetical case, called a “ghost case” [12].
The next adaptation rule is selected in the context of that ghost case. After
applications of adaptation rules to a case, the resulting ghost cases are compared
to the target case, and the adaptation rule leading to the ghost case most similar
to the target is used as the next adaptation step in the path. ROAD can pursue
multiple paths simultaneously. Paths are prioritized based on their length where
the shortest path (unless terminated) is developed first.

An adaptation path is a list containing the retrieved case, a sequence of ghost
cases generated by adaptation, the adaptation rules applied, and the target case.
The ROAD algorithm is described in detail in Leake and Ye [14].

To illustrate a use of path-based adaptation, we consider the problem of
generating a recipe for making buttermilk pancakes from available ingredients,
starting from a recipe for regular pancakes, when the agent has no buttermilk
available. A first adaptation would be to substitute buttermilk for regular milk
in the recipe, thus generating the ghost case of a recipe for buttermilk pancakes.
That ghost case is more similar to the target, but still differs, because it does not
satisfy the constraint to use available ingredients. However, it is possible to make
buttermilk by mixing milk and vinegar. Consequently, a second adaptation could
be applied to the ghost case, substituting milk and vinegar for the buttermilk.
This two-step adaptation path would result in a recipe matching the target.

2.2 Improving Accuracy by Path Resetting

For a similarity measure that perfectly captures adaptation distance—i.e, that
enables perfect adaptation-guided retrieval [19]—the initially retrieved source
case would always have the smallest adaptation distance to the target of all
cases in the case base. However, if the similarity measure does not perfectly
capture adaptability, another case might be easier to adapt than the retrieved

Fig. 1. Illustration of Path Resetting, from Leake and Ye [14]

case. As the adaptation path generation process generates new ghost cases, the
ghost cases may be near existing cases in the case base which are closer to the
target than the retrieved case in terms of adaptation distance. To recover, ROAD
“resets” the path to start from the nearby case by moving the head of the path to
its nearby case. The rationale for such resets is to increase accuracy, by starting
from a solution known to be correct, rather than relying on the solution of a
ghost case generated from a sequence of adaptations. The accuracy benefit has
been supported experimentally [14].

The resetting process is illustrated in Figure 1. C0 and C1 are two cases in
the case base. Given a query Q, for which the solution case would be T , the
source case C0 is retrieved. C0 is closer to T than C1 according to the similarity
measure (indicated by the dashed arc indicating a radius of equal similarity
values). As adaptation rules are applied successively, ghost cases G1 and G2 are
generated. The ghost case G2 is found to be more similar to C1 than C0. In this
situation, ROAD resets the path to C1. This is expected to increase reliability,
because C1’s reliability is guaranteed (as it is a real case), while G2 is a ghost
case produced after adapting C0 twice. At this point, the path continues from
C1 and yields the ghost case G3, which is then adapted to T .

3 Reset-induced Similarity Adjustment

The quality of a CBR system’s retrieval plays a critical role in system perfor-
mance. Retrieval is generally based on similarity, which is used as a proxy for
adaptability: the goal of retrieval is to retrieve the most adaptable cases [19].
With a perfect similarity measure, ROAD would never need to reset a path.
Consequently, when resets are needed, it reveals deficiencies in the similarity
measure. These are opportunities for similarity learning.

RISA uses generated adaptation paths to guide similarity learning. The goal
of learning is to adjust the similarity measure so that the case to which the path
was reset will become the initial retrieval in the future, enabling adaptation to
be performed with fewer steps and decreasing the processing cost of future adap-
tations. The example in Figure 1 illustrates the potential benefit of ROAD for
adaptation path length. In the figure, ROAD would generate the same solution
regardless of whether it retrieves C1 or C0 in its initial retrieval. However, if the

system started by retrieving C1, it would avoid the effort of building the path
from C0 to C1.

3.1 The Reset-induced Similarity Adjustment Algorithm

The RISA algorithm is shown in Algorithm 1. RISA takes as input (1) infor-
mation recorded about resets during adaptation, and (2) a procedure to adjust
feature weightings for similarity based on the stored information.

Information recorded about resets: To support RISA, the ROAD implementa-
tion was augmented with instrumentation to record its reset behaviors. Each
time the system resets a path, it also stores a path segment record of the form
(Cstart, Creset, T) where Cstart is the case most recently retrieved prior to the
reset, Creset is the case retrieved by adapting and resetting from Cstart, and T
is the target case. For the first reset record for a path, Cstart is the case the
CBR system retrieved for the original problem. In each subsequent path seg-
ment record that is generated during resetting, Cstart is the case retrieved for
the previous reset—from which the path is continuing—and Creset is the case to
which it is reset.

There are two situations in which a path segment record may not include
a reset: When the path from the initially retrieved case can be pursued to the
target without resetting, and when the path from a reset case can be pursued to
the target without further resetting. In those cases the record uses null for Creset.
The presence of Creset indicates a potential defect in the similarity measure. One
strategy for addressing similarity defects, pursued in this paper and elsewhere
[3], is to adjust feature weights. Other issues such as insufficient vocabulary
knowledge and noisy cases might also lead to resets, but are beyond the scope
of this paper.

Adjusting feature weights: For a record (Cstart, Creset, T) produced by a path
reset, RISA adjusts similarity criteria to increase the similarity of Creset and T
(pulling them closer), and to decrease the similarity of Cstart and T (pushing
them away from each other). As a result, the case retrieval process is more likely
to retrieve Creset directly for future problems similar to T .

A potential issue is that this adjustment may have ramifications for other
retrievals, possibly affecting situations in which prior retrievals were correct.
Consequently, for a (Cstart, null, T) record produced by a path not involving re-
set, RISA pulls Cstart and T closer, to help preserve the current correct retrieval.
The goal is to preserve the ability to generate high quality adaptation paths for
similar starting and ending points in the updated similarity measure.

In general, there are many ways in which the push/pull effect could be
achieved. For example, a feature weight updating policy can adjust the simi-
larity distance between two cases. In our testbed RISA system for evaluation,
we follow the approach of Bonzana, Cunningham and Smyth’s ISAC [3]. To pull
two cases closer, ISAC increases weightings of their matching features and de-
creases weightings of differing features. Similarity scores between the two cases

Algorithm 1 Reset-induced Similarity Adjustment

Input:
Paths: records of paths (Cstart, Creset, T). If the path is never reset Creset = null
SM: similarity measure
Pull(SM,A,B): Updating procedure for SM that pulls A and B closer
Push(SM,A,B): Updating procedure for SM that pushes A and B away
Output:
SM: the modified similarity measure

for all (Cstart, Creset, T) in Paths do
if Creset = null then

Pull(SM,Cstart, T)
else

Push(SM,Cstart, T)
Pull(SM,Creset, T)

return SM

are thus increased. Similarly, to push two cases away from each other, ISAC de-
creases weightings of matching features and increases weightings of unmatching
features. ISAC adjusts feature weightings using the update formula:

wi(t+ 1) = wi(t) ± δ ∗ Fc

Kc
, (1)

where wi(t) is the i-th feature weighting at time step t. δ is a fixed value. Fc

is the number of times the case has been “falsely retrieved”—retrieved when
another case would have been more suitable—and Kc is the number of times the
case has been successfully retrieved. In the following evaluation, we apply this
update procedure in ROAD, with failed retrievals corresponding to retrievals
prompting a reset, and successful retrievals those for which no reset was needed.

3.2 Evaluation of RISA

The evaluation of RISA tested the effect of its similarity adjustment on adap-
tation efficiency and solution accuracy. Adaptation efficiency was measured by
the ability to generate shorter adaptation paths and to decrease the number of
resets required during adaptation. Solution accuracy was measured by relative
error for a numerical prediction task.

The criteria for adaptation efficiency directly measure the ability of the sys-
tem to retrieve adaptable cases; we expected RISA to increase the system’s
ability to do so. We did not expect a strong effect on accuracy, but sought to
observe whether the decreased path length brought accuracy benefits. The ex-
periments tested RISA for two alternative similarity schemes: Global weighting
and local weighting. Because RISA’s feature weight adjustments could have un-
expected side-effects on retrievals of distant cases when the adjusted weights are
global, we expected better performance for local weightings.

Experimental Design

Task Domain: The evaluation task was automobile price prediction, using the
Kaggle automobile dataset [10]. The first two features were removed because
they relate to insurance risk. Cases with missing features were removed as well,
leaving 193 cases, each with 13 numeric and 10 nominal features in addition
to price. Because the need for adaptation paths and difficulty of adaptation
are affected by case-base sparsity, the experiments simulated varying levels of
sparsity by removing the closest N cases to the target case before each trial, for
varying N . For additional discussion of that process, see Leake and Ye [14].

Similarity measure: The similarity between two cases is a weighted sum of fea-
ture similarity, with each feature weighted by either global or local weighting.
Similarity of nominal features is 1 if they are identical and 0 otherwise; similarity
between numerical features is their absolute difference normalized into [0, 1]. All
feature weights were initialized to the same value.

Global vs. local similarity: We test the effect of RISA for two feature weighting
methods: (1) Global weighting relies on a single set of feature weights applied
for all similarity comparisons; (2) Instance-specific weighting allows each case to
have its own set of feature weightings, used for comparisons to that case [1, 3, 5].

Adaptation Rules: Adaptation rules were generated automatically from the case
base using the case difference heuristic (CDH) approach [7]. This approach com-
pares pairs of cases and generates rules that apply when a retrieved case and
target case have similar problem differences, and adjusts the solution of the re-
trieved case according to the solution difference in the case pair from which
the rule was learned. The process used here follows the algorithm in Leake and
Schack [12]. The rule set generated depends on following parameters:

1. Rule Count: The number of rules to generate.
2. Rule Specificity: Rule specificity is determined by the number of feature

differences to record in the rules. For example, rspec = 0.1 if 10% of all
feature differences between two cases are included in the rule. Smaller rspec
values result in rules that are more generally applicable but less accurate,
because their antecedents take into account fewer features.

3. Rule Generating Distance: The distance between pairs of cases generat-
ing rules. For example, if ruleGenDist = 0.1, rules are generated from cases
whose difference is less than 10% of the maximum possible difference. A small
ruleGenDist value leads to rules covering only small inter-case differences.

A set of 300 rules is generated from pairs of random cases (ruleGenDist =
1.0), using half of the feature differences (rspec = 0.5). These configuration
parameters were chosen based on a simple preliminary experiment to identify
rule characteristics for which path lengths were high and increased efficiency
would be most useful. In every run of the preliminary experiments, the closest 150

Rule Specificity Rule Gen Dist Avg Path Len Avg Path Len after Last Reset

1 0.5 1.0 6.523 2.208

2 1.0 1.0 2.476 1.079

3 1.0 0.2 1.992 0.830

4 0.8 0.2 2.111 0.974

Table 1. Rule Set Configurations and Corresponding Path Lengths

Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Path Length 6.975 6.687 6.204 6.101 6.064 5.431

Sd of Path Length 1.670 1.682 1.666 1.683 1.688 1.663

After RISA
Average Path Length 6.581 6.572 5.850 5.548 5.651 5.195

Sd of Path Length 1.671 1.687 1.620 1.643 1.648 1.666

P Value .021 .505 .035 .001 .015 .17

Table 2. Effect of RISA on Path Length under Global Weighting

stored cases were removed around the query case to increase the need for longer
paths. The average length of full paths and the average length of the paths after
their last resets are recorded. The difference between the two measures shows
the potential saving in efficiency: If the last reset case were retrieved directly,
the system would avoid building the path from the original source case to the
last reset case. The preliminary experiment used four rule sets of 300 rules. As
shown in Table 1, rule set #1 has the longest average length and the biggest
proportional benefit, so was chosen as the testbed rule set.

ROAD configuration for experiments: All experiments are based on adaptation
path generation by the ROAD system, described in Leake and Ye [14]. The per-
formance of ROAD depends on multiple parameters. The test version of ROAD
had the following configurations: (1) Multiple adaptation paths are generated
simultaneously (at most 5 paths); (2) Maximum path length is 10; (3) Paths are
reset when reliability decays below a threshold or when two paths disagree on
the solutions.

Experimental Results

Effect of RISA with Global Weighting Using every case in the case base as a
target, by 10-fold cross validation, Table 2 and Table 4 show that the effect of
RISA with global weighting consistently decreases average path length and the
number of resets. As shown, most differences are significant (p < 0.05).

Table 3 shows the effect of RISA with global weights on the average relative
error. After RISA, the effect on error is mixed. The rates tend to become worse,
but the differences are not significant. We hypothesize that this is due to the
coarse-grained nature of updating weights for global weighting. Updating global

Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Error 0.481 0.461 0.388 0.410 0.282 0.275

Sd of Error 0.816 0.814 0.724 0.890 0.544 0.527

After RISA
Average Error 0.465 0.452 0.406 0.419 0.319 0.345

Sd of Error 0.734 0.799 0.848 0.868 0.672 0.747

P Value .83 .92 .82 .92 .55 .29

Table 3. Effect of RISA on Error under Global Weighting

Number of Cases Removed 150 125 100 75 50 25

Before RISA Total Number of Resets 221 261 224 225 248 160

After RISA Total Number of Resets 177 248 202 182 196 145

Table 4. Effect of RISA on Resets under Global Weighting

weighting influences the similarities between all cases, which can have adverse
effects on similarities for cases other than those prompting the updates. Thus
with global weighting, RISA decreases path lengths as desired, but with possible
degradation of accuracy.

Effect of RISA with Instance-specific Weighting To address the issue of side-
effects for adaptation, we tested RISA for local weighting. With local weighting,
updating the feature weighting for a case only influences the similarities between
this case and other cases, but not the similarities among other cases.

Table 6 and Table 7 show the effects of RISA on efficiency in the instance-
specific weighting configuration. In all runs, the number of resets and average
path length consistently drop. Most path length results are significant, while the
change in error is statistically insignificant, as shown in Table 5.

4 Compatibility-based Adaptation Rule Selection

Commonly, adaptation rules are assumed to be independent, and selected with-
out regard for interactions with other rules. However, it is well known that rules

Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Error 0.438 0.381 0.430 0.410 0.340 0.293

Sd of Error 0.691 0.617 0.835 0.832 0.683 0.529

After RISA
Average Error 0.451 0.393 0.372 0.410 0.321 0.265

Sd of Error 0.709 0.631 0.673 0.828 0.700 0.501

P Value .85 .85 .45 .99 .78 .60

Table 5. Effect of RISA on the Error under Instance-Specific Weighting

Number of Cases Removed 150 125 100 75 50 25

Before RISA Total Number of Resets 296 261 254 232 233 181

After RISA Total Number of Resets 261 238 237 201 219 160

Table 6. Effect of RISA on Resets under Instance-Specific Weighting

Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Path Length 7.154 6.712 6.502 6.218 6.003 5.794

Sd of Path Length 1.706 1.649 1.654 1.698 1.689 1.718

After RISA
Average Path Length 6.652 6.278 6.205 5.737 5.672 5.494

Sd of Path Length 1.645 1.585 1.618 1.631 1.607 1.673

P Value .004 .009 .08 .005 .05 .08

Table 7. Effect of RISA on Path Length under Instance-Specific Weighting

may not capture all aspects of a situation, resulting in uncertain outcomes, po-
tentially resulting in degradation of adaptation results [13]. An adaptation path
might further compound the cumulative error by applying multiple rules. In re-
sponse, we propose a method for using information about the interactions of
adaptation rules to learn which adaptation rules to favor.

Given a case base and an adaptation rule set, it is possible to estimate reli-
ability of adaptation rules by building paths with resetting disabled, and then
comparing the final solution from the path with the actual solution of the near-
est neighbor. The path’s error can then be used to represent the reliability of
the rules involved. This is the approach of CARS.

4.1 Compatibility-based Adaptation Rule Selection Algorithm

Algorithm 2 shows the process that CARS uses to assess rule compatibility. It
computes a rule compatibility matrix representing the compatibility between ev-
ery pair of rules, calculated from a set of adaptation paths of length 2, generated
based on test adaptations of a selected set of cases. This set of cases could be
the entire case base or a subset (for efficiency).

Given rcount rules, the compatibility matrix has dimension rcount×rcount.
The entry (i, j) in the matrix records that rulei and rulej are compatible if
rulei and rulej can be applied in sequence to a case. If adaptation rules are
commutative (e.g., if each rule is multiplying a numerical solution value by a
feature difference in a single dimension), entry (i, j) is equal to entry (j, i) and
the matrix is symmetric. However, in many domains rules depend on each other
and must be applied in a particular order (e.g., recipe generation).

CARS estimates compatibility between two rules based on an estimated error
value after the two rules are successively applied to a case in a 2-step adaptation
path. Error is estimated by retrieving the stored case closest to the ghost case
generated by the adaptation path, and comparing the stored case and ghost case

Algorithm 2 Assessing Rule Compatibility

Input:
CaseSet: Cases for testing
rules: List of adaptation rules
Output: Rule compatibility matrix

R = size(rules), N = size(CB)
Initialize matrix M of size R×R
for i← 1 to R do

for j ← 1 to R do
M [i][j] ← undefined

for i← 1 to R do
for j ← 1 to R do

totalError = 0
errorCount = 0
for all case in CaseSet do

if rule[i].isApplicableTo(case) then
ghost1 = rule[i].applies(case)
if rule[j].isApplicableTo(ghost1) then

ghost2 = rule[j].applies(ghost1)
target = CaseSet.nearest(ghost2)
totalError+ = errorInSolution(ghost2, target)
totalCount+ = 1

else
continue

else
continue

if totalError 6= 0.0 then
M [i][j] = totalError/totalCount

return M

solutions. After computing the compatibility matrix, CARS uses the average
value of each row as a proxy for the overall reliability of the corresponding rule.

CARS compresses the adaptation rule set by retaining only the most reliable
rules. To do so, it sorts all rules based on reliability and trims the rule set by
retaining only those falling above a selected percentile of the original rule set.

4.2 Evaluation of CARS

The evaluation of CARS addresses two questions:

– How does CARS rule deletion affect efficiency of adaptation path generation?

– How does CARS rule deletion affect solution accuracy?

Efficiency is measured in three ways: number of resets prompted by path reli-
ability decay, number of resets prompted by disagreement between alternative

paths being explored, and average adaptation path length. Tests assess the ef-
fect of CARS both on ROAD and on a baseline ablated version of ROAD that
performs single-rule adaptation instead of using adaptation paths.

Experimental Design

As in the previous experiment, tests used the Kaggle automobile data set [10].
In all runs, after building the compatibility matrix based on the entire case
base, 75 cases around the target query are removed to simulate situations where
multiple adaptations are needed but the adaptation paths have moderate average
length. The experiment uses the previous rule set configuration (Rcount = 300,
RuleGenDist = 1.0, Rspec = 0.5), again with 10-fold cross validation. In the
experiments, CARS is applied to assess compatibility and retain the top 80%,
60%, 40%, and 20% of rules; these conditions are compared to a baseline of 100%
retention. We note that because of the case removals to simulate a sparse case
base, as well as the rule retention and path building mechanisms in ROAD, the
case bases and rules used to solve the test problems are different from those used
when building the rule compatibility matrix.

Experimental Results

Table 8 shows the experimental results. We observe:

– The number of resets consistently decreases when fewer rules are used. With
fewer rules the path searching algorithm explores fewer options, decreasing
the number of prior cases near the path. In addition, we hypothesize that
because the retained rules are more reliable, paths tend to agree with each
other more often, decreasing resets due to path disagreement.

– The average path lengths become smaller as fewer rules are retained, because
of fewer resets.

– The error improves markedly as the worst 20% of the rules are deleted (80%
retention). Observed error is better than the initial rule set for 60% and
40% retention, with the benefit dropping compared to 80% retention, but
the differences below 80% are not statistically significant.

Thus the results support the efficiency benefits of rule set compression, as well as
improved accuracy at low compression rates. Effects for higher compression rates
are an interesting question for future study. We expect a tradeoff between higher
average rule quality and lower coverage with the compressed rule sets, resulting
in decreasing accuracy when the rule set is too sparse. However, refining the
reliability estimate process might help to delay serious accuracy loss.

In summary, using CARS increases the efficiency of both the baseline and
ROAD by reducing the number of resets and reducing path lengths, with a
stronger effect on ROAD. Also, deletion of an initial set of the worst rules benefits
accuracy for both. Beyond that deletion level there is weak or no significant effect
on the accuracy until accuracy falls for very high deletion levels.

Percent of Rules Retained 100% 80% 60% 40% 20%

Using Single-Rule Reliability (baseline)

Resets due to Reliability Decay 227 152 99 37 14

Resets due to Path Disagreement 137 81 72 42 22

Average Error 0.372 0.268 0.323 0.324 0.427

SD of Error 0.407 0.229 0.321 0.281 0.365

P Value (Comparing to no Trimming) N/A .002 0.19 0.18 0.16

Average Path Length 6.126 4.689 3.841 2.662 1.932

SD of Path Length 3.011 2.575 2.366 1.630 1.200

P Value (Comparing to no Trimming) N/A <.001 <.001 <.001 <.001

Using Reliability from Compatibility Matrix (CARS)

Resets due to Reliability Decay 227 49 17 1 0

Resets due to Path Disagreement 137 83 41 10 1

Average Error 0.372 0.303 0.305 0.356 0.420

SD of Error 0.407 0.267 0.244 0.281 0.316

P Value (Comparing to no Trimming) N/A .049 .05 .65 .19

Average Path Length 6.126 3.322 2.346 1.548 1.231

SD of Path Length 3.011 2.053 1.366 0.719 0.468

P Value (Comparing to no Trimming) N/A <.001 <.001 <.001 <.001

Table 8. Performance by Rule Retention Level

5 Related Work

RISA is a learning method for refining similarity criteria; CARS is a method for
prioritizing adaptation rules for retention.

Learning to Refine Similarity Criteria: An extensive body of CBR research has
addressed similarity learning (see, for example, Wettschereck et al. [20], and, for
a recent overview, Mathisen et al. [18]). RISA differs in aiming to refine existing
similarity criteria on the fly, rather than generating a similarity measure from
scratch. RISA’s failure-driven method for learning to refine similarity criteria
is most closely related to Bonzano, Cunningham and Smyth’s ISAC [3], which
adjusts similarity weights in response to failed and successful retrievals, and
whose updating strategy is applied by RISA. This work is also in the spirit of
work on building similarity measures by Xiong and Funk [22], which adjusts
local similarity to reflect the utility of pairs of cases.

Learning to Prioritize Adaptation Rules: Hanney and Keane’s initial proposal
for generating adaptation rules by the case difference heuristic also proposed
selective retention, based on the frequency with which particular rules were gen-
erated from cases [8]. Adaptation rule maintenance to remove duplicates and
resolve conflicts was proposed by Li et al. [15]. Additional work focuses on how
to prioritize rule selection, without deleting rules from the rule set [11], and on
combining systematic accuracy testing with retention of top-ranked rules [9]. The

current work differs in addressing adaptation paths, rather than only individual
rules, and in focusing on minimizing adaptation path length.

6 Conclusion and Future Directions

This paper presents an initial investigation of applying information from adap-
tation paths to improving efficiency of path-based adaptation. It proposes two
knowledge-light approaches, focusing on similarity measures and adaptation
rules. By learning from path generation failures, as shown by path resets in
ROAD, RISA helps align the similarity measure with adaptability. Experimen-
tal results support its value for retrieving more adaptable cases. By favoring
pairs of rules that have participated in successful adaptation paths, CARS com-
presses the adaptation rule set while retaining useful rules. Experimental results
support its value for increasing adaptation efficiency and that deletion of least
reliable rules can improve accuracy, subject to an efficiency/coverage tradeoff.

A next step is to test the methods for additional domains and to gather
information on the domains for which the methods are most appropriate. For
similarity maintenance, we also plan to compare the alternative strategy of learn-
ing only from the final reset rather than all intermediate resets. Learning from
the final reset would focus on a more definitive retrieval, but would also reduce
the amount of data available to the learning algorithm. For adaptation rule set
compression, an interesting question is whether the criteria for assessing rule
usefulness could be refined, for example, by considering compatibility and result
accuracy separately, to prioritize rule retention based on a composite criterion.
Another interesting question is the possible benefit of retaining rules with limited
compatibility but adding constraints to avoid their use in combination.

A future opportunity is to apply information from adaptation paths for main-
taining the case-base. Mathew and Chakraborti [17] show the value of taking po-
tential adaptation chains into account when guiding case retention. In ROAD,
parts of the problem space for which ghost cases are generated suggest gaps in
the case base. Based on the CBR premise that similar problems are likely to re-
cur in the future, those gaps are good candidates for case acquisition to increase
efficiency by shortening commonly-used adaptation paths.

References

1. Aha, D.W., Goldstone, R.L.: Concept learning and flexible weighting. In: In Pro-
ceedings of the Fourteenth Annual Conference of the Cognitive Science Society.
pp. 534–539. Erlbaum (1992)

2. Badra, F., Cordier, A., Lieber, J.: Opportunistic adaptation knowledge discovery.
In: Case-Based Reasoning Research and Development, ICCBR 2009. pp. 60–74.
Springer, Berlin (2009)

3. Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve
retrieval in CBR: A case study in air traffic control. In: Proceedings of the Sec-
ond International Conference on Case-Based Reasoning (ICCBR-97). pp. 291–302.
Springer, Berlin (1997)

4. D’Aquin, M., Lieber, J., Napoli, A.: Adaptation knowledge acquisition: a case study
for case-based decision support in oncology. Computational Intelligence 22(3/4),
161–176 (2006)

5. Friedman, J.H.: Flexible metric nearest neighbor classification. Tech. rep., Stanford
University (1994)

6. Hammond, K.: Case-Based Planning: Viewing Planning as a Memory Task. Aca-
demic Press, San Diego (1989)

7. Hanney, K., Keane, M.: Learning adaptation rules from a case-base. In: Proceedings
of the Third European Workshop on Case-Based Reasoning. pp. 179–192. Springer,
Berlin (1996)

8. Hanney, K., Keane, M., Smyth, B., Cunningham, P.: What kind of adaptation
do CBR systems need? a review of current practice. In: Proceedings of the Fall
Symposium on Adaptation of Knowledge for Reuse. AAAI (1995)

9. Jalali, V., Leake, D.: On retention of adaptation rules. In: Case-Based Reasoning
Research and Development, ICCBR 2014. Springer, Berlin (2014)

10. Kaggle: Automobile dataset (2017), data retrieved from Kaggle, https://www.

kaggle.com/toramky/automobile-dataset
11. Leake, D., Dial, S.: Using case provenance to propagate feedback to cases and

adaptations. In: Proceedings of the Ninth European Conference on Case-Based
Reasoning. pp. 255–268. Springer (2008)

12. Leake, D., Schack, B.: Exploration vs. exploitation in case-base maintenance:
Leveraging competence-based deletion with ghost cases. In: Case-Based Reasoning
Research and Development, ICCBR 2018. pp. 202–218. Springer, Berlin (2018)

13. Leake, D., Whitehead, M.: Case provenance: The value of remembering case
sources. In: Case-Based Reasoning Research and Development: Proceedings of the
Seventh International Conference on Case-Based Reasoning, ICCBR-07. pp. 194–
208. Springer-Verlag, Berlin (2007)

14. Leake, D., Ye, X.: On combining case adaptation rules. In: Case-Based Reasoning
Research and Development, ICCBR 2019. pp. 204–218. Springer (2019)

15. Li, H., Hu, D., Hao, T., Wenyin, L., Chen, X.: Adaptation rule learning for case-
based reasoning. In: Semantics, Knowledge and Grid, Third International Confer-
ence on. pp. 44–49 (2007)

16. López de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.:
Retrieval, reuse, revision, and retention in CBR. Knowledge Engineering Review
20(3) (2005)

17. Mathew, D., Chakraborti, S.: Competence guided model for casebase maintenance.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. pp. 4904–4908. IJCAI (2017)

18. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures
from data. Progress in Artificial Intelligence (10 2019)

19. Smyth, B., Keane, M.: Adaptation-guided retrieval: Questioning the similarity as-
sumption in reasoning. Artificial Intelligence 102(2), 249–293 (1998)

20. Wettschereck, D., Aha, D., Mohri, T.: A review and empirical evaluation of feature-
weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review 11(1-5), 273–314 (February 1997)

21. Wilson, D., Leake, D.: Maintaining case-based reasoners: Dimensions and direc-
tions. Computational Intelligence 17(2), 196–213 (2001)

22. Xiong, N., Funk, P.: Building similarity metrics reflecting utility in case-based
reasoning. Journal of Intelligent and Fuzzy Systems 17(4), 407–416 (2006)

