
Flexible Feature Deletion:
Compacting Case Bases by Selectively Compressing

Case Contents

David Leake and Brian Schack

School of Informatics and Computing, Indiana University
Bloomington IN 47408, USA

leake@indiana.edu, schackb@indiana.edu

Abstract. Extensive research in case-base maintenance has studied methods for
achieving compact, competent case bases. This work has examined how to achieve
good solution performance while limiting the number of cases retained, using ap-
proaches such as competence-based case deletion. Two fundamental assumptions
of such approaches have been (1) that cases are approximately the same size and
(2) that the only way to affect case base size is by deleting or retaining entire
cases. However, in some domains different cases may contain different amounts
of information, causing widely varying case sizes, and case solutions may them-
selves be compressible, with the ability to selectively delete portions of indices
or solutions while still retaining varying levels of usefulness. In accordance with
this more flexible view, this paper proposes a new maintenance approach, flexible
feature deletion, which removes parts of cases, enabling compression of the case
base by selective—and possibly non-uniform—size reduction of individual cases.
It proposes and evaluates an initial set of feature deletion strategies. Experimen-
tal results support that when cases have varying size and compressible contents,
flexible feature deletion strategies may enable better system performance than
case-oriented strategies for the same level of compression.

Key words: Case-base maintenance, feature reduction, case deletion, case-base
compression

1 Introduction

The performance of case-based reasoning systems depends on the coverage of their
case bases and the quality of their cases. As the number of cases in the case base
grows, increased retrieval costs [1, 2] or storage constraints may require controlling
case base size. Extensive case-based reasoning research has aimed to address this prob-
lem through case-base maintenance [3]. A key focus of this work has been on strategies
for selecting cases to retain in the case base to maximize the competence achieved for
a given number of cases. Approaches include strategies to guide deletion of cases from
an existing case base [4], for determining when to retain a new case during problem-
solving (e.g., [5]), and for ordering addition of cases from a candidate case set (e.g., [6,
7]). All of these strategies treat cases as single units, adding or deleting entire cases. We
call such strategies “per-case” maintenance strategies.



Per-case strategies reflect two common implicit assumptions: (1) that all of the CBR
system’s cases will be of sufficiently uniform size that the size effects of deletion or ad-
dition do not depend on the chosen case, and (2) that the size of the internal contents of
cases cannot be reduced. In domains for which each case must contain uniform knowl-
edge, so that removal of any case information would severely impair the ability to use
the cases, per-case strategies are the only appropriate choice. However, in some CBR
domains, case contents are more flexible.

This paper questions the assumption of uniform case size in case-base maintenance,
The assumption of uniform size means that, if cases are of different size, it is not possi-
ble, for example, to favor retention of smaller cases when those cases have comparable
coverage. It also questions the assumption of maintenance only on a per-case basis,
proposing that compression strategies can consider not only case deletion/addition but
the deletion of components of particular cases. Rather than pre-determining a static set
of features to be used throughout the life of the CBR system, the set of features to in-
clude in the case base could be adjusted based on requirements for storage, processing
speed, and accuracy. There need be no requirement that all cases in the case base include
the same set of features, just as there need not be uniform collections of components in
the solution parts of cases, and the solutions need not be represented at the same level of
granularity. This paper proposes a new, more flexible maintenance approach in which
selective compression can be done at the level of the contents of individual cases, by
removing selected features from either indexing or solution information. Thus this can
be used to maintain both indexing features and features of a solution.

The motivation for adjusting case contents arises from domains in which cases are
large and can be represented in multiple ways. For example, CBR has attracted interest
for reasoning from imagery such as medical images (e.g., [8]). From any image, differ-
ent features may be extracted, at different resolutions, and the amount of information
required to represent different images might vary dramatically. In diagnostic domains,
numerous features may carry information relevant to the diagnosis, with different pieces
relevant to different degrees for different problems. When CBR is applied to design sup-
port, stored designs could selectively include different subsets of a full design or could
include the design at different levels of detail. In a case-based planner generating highly
complex plans, it is possible to retain the entire plan, or only key pieces, or to preserve
full details for parts of the plans and high-level abstractions for others. Likewise, when
CBR is applied to tasks such as aiding knowledge capture by supporting concept map
construction [9], stored concept map cases could be retained at different levels of com-
pleteness. Exploiting this flexibility requires maintenance processes that can perform
maintenance at a finer-grained level than simple retention or deletion of cases.

Feature compression is especially appropriate for complex domains in which cases
are large, may contain extensive indexing or solution information, and in which partial
information—for either indices or solutions—may still be useful. Feature compression
prompts the question of when to delete an entire case versus when to achieve com-
parable space savings by abstracting, deleting, or otherwise compressing some of the
features contained in one or more cases in the case base. There is no free lunch: Either
method may entail accuracy losses, case deletion by removing what may be the most



relevant solution for a problem; feature maintenance by affecting retrieval accuracy or
quality of the solutions. The interesting question is how these methods compare.

This paper begins by discussing the range of applicability of flexible feature deletion
and its relationship to standard case-base maintenance. It then defines a set of simple
feature deletion strategies and evaluates their performance compared to per-case strate-
gies for three domains, two with cases containing varying amounts of information and
one with uniform size cases. A comparison of competence as a function of compression
supports the value of flexible feature deletion for domains with variable-size cases.

2 When Feature Deletion is Appropriate

Feature compression is appropriate for a particular class of domains: Those in which a
particular case can be represented with varying levels of information and still be useful.
Even if indexing accuracy is reduced, the retrieved cases will provide value if they are
still adaptable to usable solutions with an acceptable level of adaptation effort. Even if
some poor retrievals result, they may be acceptable given savings in space; just as per-
case maintenance usually involves a tradeoff of case base compactness against compe-
tence, feature deletion does as well.

The range of problems to which the case can be applied, and the reliability of its ap-
plication, may vary with the specific information stored. Consequently, different feature
deletion domains will exhibit different tradeoffs between per-case maintenance strate-
gies and feature-maintenance strategies, as well as different tradeoffs between compres-
sion and quality. For some domains, such as a regression (numerical predication) task,
feature deletion may only be possible for indexing information. In domains for which
indexing information is based on many features, it may be possible to reduce case size
by removing information about the values of some indices. Note that feature deletion
of indices contrasts with the extensive work on selecting indexing vocabularies in the
CBR literature, in that feature maintenance is aimed not at selecting an indexing vocab-
ulary or maximizing retrieval accuracy, but instead at selectively compressing indexing
information by deleting particular features, potentially from individual cases, with the
recognition that some accuracy loss may result.

The deletion done by feature deletion is not necessarily limited to particular index-
ing dimensions (e.g., deleting the “age” attribute from all patient cases), but alterna-
tively may delete specific attribute values (e.g., deleting the “age” attribute-value pair
for specific patients, or only for a particular range of age values, such as those patients
who fall into a default set for which age is not considered significant).

Feature deletion for indices could be especially relevant to situations in which ex-
tremely rich indexing information is available, such as a case-based agent to respond in
a real-time strategy game, or a prediction system for driver behavior, for which the sit-
uation in which a plan was applied could be described with extremely rich detail—with
fine-grained details which might be helpful to finding the perfect case, but not essential
to finding a good case. Likewise, in a movie recommender domain, with movies char-
acterized by their list of actors and the goal of recommending similar movies, a subset
of the actors might be sufficient for good retrievals.



2.1 When to Apply Feature Deletion to Indices

Tasks are potential targets for feature deletion of indices if their cases have large in-
dexing structures which can be reduced while retaining an acceptable level of index-
ing/similarity performance. Specifically, domains are appropriate if:

– Indexing or similarity assessment depends on information about detail-rich situa-
tions from which many features could be generated. If any low-level features of the
current situation, or of a sequence of situations, might be available and potentially
be relevant to deciding a response. In such domains, due to the potential for large
amounts of indexing information, feature deletion could have significant effects on
case base size.

– Indexing or similarity assessment features are sufficiently closely related that ac-
ceptable accuracy is possible after removal of some features. If features are closely
related—even if they are not redundant—feature removal may have limited effects
on system accuracy, helping to boost the amount of compression possible per unit
of retrieval accuracy loss.

The CBR community has devoted substantial effort to methods for refining the indices
used for cases, as well as on developing methods for assigning weights to features for
similarity assessment. However, work in index/similarity refinement differs from fea-
ture deletion in a key way: The focus of index/similarity refinement is generally increas-
ing retrieval accuracy, rather than compression of case data. Consequently, research on
such methods does not address space/accuracy tradeoffs. Feature deletion is a primary
focus of research on dimensionality reduction for CBR. However, such deletion is done
uniformly across all cases; this work does not attempt selective deletion of a feature
from some cases but not others.

2.2 When to Apply Feature Deletion to Solutions

Feature deletion is useful for domains in which the solution to a single problem can cap-
ture varying levels of information and still be useful. In such domains, parts of a large
or complex solution may be removed or abstracted while still retaining the usefulness
of a case, even if the level of usefulness varies with the specific information retained.

For example, as previously mentioned, in case-based planning, certain parts of a
plan could be elided or abstracted to reduce storage. When a new planning problem is
precisely covered by the retained material, there is no solution quality or efficiency loss.
When it is not, the maintenance may result in increased adaptation cost to reconstruct
the plan, or some competence could be lost—in weak-theory domains, plan failures
could result if adaptation did not generate a perfect solution. However, partial deletion
of case contents might still cause less competence loss than deletion of an entire case
by per-case methods.

Case-based support for concept mapping [9] provides another example. Concept
maps [10] are informal two-dimensional visual representations of concepts and their
relationships, representing a particular user’s conceptualization of a domain. The goal
of support systems is to aid humans using electronic tools to build concept maps, by
monitoring the concept map under construction, retrieving a past concept map relevant



to the partial concept map they have constructed, and using it to suggest extensions
to the concept map. Concept map cases contain rich structures of interconnected con-
cepts, from which deletion of some parts may reduce the range of problems for which
suggestions can be provided, but for which the remaining parts are still useful.

We note that for supporting concept map extension, any part of a concept map case
may be viewed as the index or the solution, depending on which features are available
as the input problem and the context of the retrieval [11]. Thus in the concept mapping
domain, the same feature deletion process can be seen as simultaneously maintaining
indices and solutions.

3 Bundling Features for Deletion

We can consider cases as composed of a set of primitive features which cannot be fur-
ther decomposed. In what follows, for simplicity we will consider these to be attribute–
value pairs. However, other representations are possible. Both indexing and solution
information are defined by sets of features. For example, basic features could be com-
bined to form complex structured cases, from which flexible feature deletion could
remove multiple features corresponding to substructures.

Maintenance approaches for case-base compression can be seen as “bundling” dif-
ferent types of information together, to treat as a unit. Traditional per-case maintenance
for case-base compression bundles together all features associated with a particular case
and deletes the entirety of features associated with a particular case. In contrast, feature-
bundled maintenance does an orthogonal bundling, deleting a single feature in all cases
for which it appears. Flexible feature deletion can also apply an “unbundled” approach,
simply deleting specific features from selected individual cases. To distinguish unbun-
dled individual features from feature-based bundles, we call the individual features of
a specific case “case-features.” Figure 1 illustrates the case-bundled, feature-bundled,
and unbundled approaches.

Fig. 1. Feature selection with case-bundled, feature-bundled, and unbundled strategies.

Figure 2 summarizes eleven simple candidate strategies for selecting the next case
or feature to delete, spanning case-bundled, feature-bundled, unbundled, and hybrid



strategies, which we describe in more detail below. Random deletion strategies are in-
cluded as a baseline. The simplicity of these strategies enables comparing case-bundled
and feature-bundled strategies on an equal footing. Section 6 discusses future paths for
more sophisticated flexible feature deletion strategies.

Strategy Type of Bundling Hybrid or Non-Hybrid
Random Case-Features Unbundled Non-Hybrid
Random Cases Case-Bundled Non-Hybrid
Large Cases Case-Bundled Non-Hybrid
Least Coverage Case-Bundled Non-Hybrid
Most Reachability Case-Bundled Non-Hybrid
Random Features Feature-Bundled Non-Hybrid
Rarest Features Feature-Bundled Non-Hybrid
Most Common Features Feature-Bundled Non-Hybrid
Rarest Cases / Least Coverage Case-Bundled Hybrid
Rarest Features / Least Coverage Unbundled Hybrid
Rarest Features / Large Cases Unbundled Hybrid

Fig. 2. Strategies for selecting the next case, feature, or case-feature to delete

1. Case-Bundled Strategies
Case-bundled strategies follow the traditional CBR compression approach of re-
moving entire cases, i.e., the bundle of features determined by the case. A key
question for case deletion is the order in which to delete cases. A classic approach
is to consider cases’ coverage as the set of target problems that a case can solve, and
reachability as the set of cases that can solve a given target problem [7]. Cases with
higher coverage are considered more valuable to preserve; cases with low reacha-
bility are considered harder to replace. We consider simple strategies favoring each
criterion. Another simple criterion is to include removing largest cases first (aiming
to maximize size reduction).

2. Feature-Bundled Strategies
Feature-bundled strategies ignore the boundaries of cases, replacing deletion of
cases with deletion of common features across cases. For example, in a movie
recommendation domain, one feature might be the presence of a particular (little-
known) individual; if that was unimportant to recommendations, that feature could
be deleted from all cases without impairing recommendation performance. We con-
sider the baseline strategy of random deletion, a strategy of removing the most com-
mon features (which might be expected to have the least information content), and
an inverse strategy of removing the rarest features (which might be expected to be
useful in fewer instances).

3. Unbundled Strategies
Unbundled strategies ignore the boundaries of both cases and features. Deletion
need not be done uniformly on a per-case or per-feature basis; individual features
may be deleted from some cases and retained in others. For example, in the movie



domain, the feature corresponding to a particular actor could be deleted only from
selected cases (e.g., those in which the actor had a walk-on role). We consider only
one basic unbundled strategy, removing random features of random cases.

4. Hybrid Strategies
We also consider three hybrid strategies, each combining two strategies with equal
weight (weightings could also be tuned). The strategies are Large Cases / Least
Coverage, Rare Features / Least Coverage, and Rare Features / Large Cases. Com-
bining two case-bundled strategies, as in Large Cases / Least Coverage, yields
a case-bundled strategy, and combining two feature-bundled strategies yields a
feature-bundled strategy. However, combining two differently-bundled strategies
(e.g., Rare Features / Least Coverage) yields an unbundled strategy in which the
scorings of the constituent parts are used to determine case-features to delete.

We note that different strategies have substantially different computational cost. Case
size and feature rarity can be calculated rapidly because they do not require problem
solving. However, coverage depends on the ability of a case to solve the problems asso-
ciated with other cases, so requires more costly testing involving other cases in the case
base.

4 Evaluation

To help understand the relationship of per-case and flexible feature deletion strategies,
we tested the compression/competence tradeoff for the strategies in Table 2, across three
domains. Our evaluation addresses two questions:

1. For given compression, how does the retrieval accuracy of the strategies compare?
2. How does the retrieval time change as the number of case-feature pairs decreases,

and does this depend on the retrieval strategy?

We hypothesize that at higher compressions, accuracy will tend to decrease for all
strategies, but that non-case-bundled maintenance strategies will outperform case-bundled
strategies. We also hypothesize that, as the total number of features decreases, retrieval
time will decrease as well, with decreases roughly independent of strategy used.

4.1 Test Data

Tests used three data sets, from movie, legal, and travel domains. Movie data was drawn
from the Internet Movie Database (IMDb).1, in which each case is a film or television
show, and each feature is an actor in that film or show. The sample contained 100,000
case-feature pairs in 74,720 cases with 38,374 features.

Legal data was extracted from the LegiScan database on the 113th session of the
United States Congress.2 Each case is a bill, and each feature is a sponsor or co-sponsor
of a bill. The sample contained 50,000 case-feature pairs in 7,785 cases with 552 fea-
tures.

1 http://www.imdb.com/interfaces
2 https://legiscan.com/



Travel data was the CBR Wiki travel package case base.3 Each case is a travel
package and features are the types, prices, regions, etc. This case base contains 14,700
case-feature pairs in 1,470 cases, with 2,902 distinct feature-value pairs.

All features for the IMDb and law domains are Boolean; features correspond to the
presence of a particular actor in a film or sponsor of a bill. The features for the travel
domain are key-value pairs, which were treated as Boolean features based on whether a
particular pair was present.

4.2 Indexing and Similarity Criteria

In the experiments, when features were deleted from case content, the corresponding
indices were deleted as well, keeping indices and case content synchronized.

Case similarity was calculated by Jaccard similarity of case-features. For calculating
competence, problems were considered to be solved successfully if the system was able
to retrieve a case for which the Jaccard similarity of features exceeded 50%. Additional
tests were run for a scenario assuming minimal shared coverage, in which cases were
considered to cover only with the closest adjacent case in the original case base, so
successful retrieval was defined as the system retrieving the same case retrieved during
the initial leave-one-out testing. Results were similar in both conditions. For reasons of
space, only the results for traditional similarity are reported here.

4.3 Hybrid Strategies

The hybrid strategies in the experiments rank cases by summing normalized scores
corresponding to each of their constituent strategies. The score assigned to a case for
Large Cases is the size of that case divided by the size of the largest case in the case
base. The coverage score assigned to a case for Least Coverage is the coverage of the
case divided by the maximal case coverage. The score for Rare Features is based on
the commonality of the feature, defined as the number of cases that contain that feature
divided by the number of cases containing the maximally common feature in the case
base; rarity of a feature f is 1− commonality(f).

4.4 Evaluation Procedure

The evaluation first establishes baseline performance by leave-one-out testing for the
entire case base. Next, performance is tested for compression to nine different case
base sizes, ranging from 90% to 10% of the case base. For each test, the entire original
case base is used as test problems, and a test problem is considered solved if there exists
in the compressed case base a case (other than the test case) within the 50% similarity
threshold.

When compressing the case bases, if the desired number of case-feature pairs does
not fall exactly on a boundary between cases, then the single case in which this division
falls is unbundled to delete features within a case.

3 http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Case Bases



4.5 Experimental Results

Figures 3-5 show accuracy after each round of maintenance. The graphs compare the
eleven strategies across the IMDb, law, and travel domains. For readability, the graphs
are divided into three parts with the same horizontal and vertical scales. The third graph
compares the best four strategies from the other two graphs. Each type of bundling has
a different type of connecting line. Solid lines indicate case-bundled strategies, dashed
lines indicate feature-bundled strategies, and dotted lines indicate unbundled strategies.

Fig. 3. Competence retention for varying compression levels for the IMDb case base

Figure 3 shows results for the IMDb data, for which the best four strategies were
Large Cases, Rare Features / Large Cases, Rare Features, and Large Cases / Least Cov-
erage. Three of the best strategies consider the size of the cases, which supports having
maintenance consider not only the benefit of retaining a case (its solution coverage)
but also its storage cost. Two of the best strategies are hybrid strategies, and two are
non-case-bundled. The worst strategy was Most Reachability.

Given the established importance of coverage, that Least Coverage is outperformed
by Large Cases on the IMDb and law data sets might seem surprising, but this is ex-
plained by the substantial case size variation in these domains. For example, the IMDb
case base includes multi-episode soap operas such as The Bill, which span hundreds of
actors but also include numerous relatively unknown actors who never appear widely.

Figure 4 shows results on the law data, for which the best four strategies were Large
Cases / Least Coverage, Large Cases, Rare Features / Large Cases, and Most Reacha-
bility. Note that these overlap with three of the best strategies on the IMDb case base



Fig. 4. Competence retention for varying compression levels for the law case base

Fig. 5. Competence retention for varying compression levels for the travel case base



but in a different order. The worst strategy was Random Case-Features. The law data set
has a much smaller number of features than the IMDb data set, and we hypothesize that
its features are more likely to have comparable importance, making random deletion
more likely to remove significant content.

Figure 5 shows results for the travel data. Because all cases are initially the same
size, the strategies Large Cases and Large Cases / Least Coverage do not apply, so are
omitted from the graphs. However, the hybrid strategy Rare Features / Large Cases is
still applicable, because as the Rare Features strategy deletes features, only cases with
those features will be compacted, resulting in different case sizes. The best strategies
were Least Coverage, Random Features, Random Cases, and Rare Features. That delet-
ing cases with least coverage is best is consistent with the key role coverage has has
been ascribed in case-base maintenance research. That Random Features is second is
surprising, but could be explained if many features in this domain have comparatively
low information content. Although Rare Features is one of the top four strategies, its
performance is quite poor, which could correspond to rare features tending to be impor-
tant for distinguishing relevant cases. As with the other two data sets, two of the best
strategies were non-case-bundled. However, in contrast, none of the best strategies were
hybrid.

4.6 Retrieval Speed

Figure 6 compares the retrieval times after each round of maintenance for each of the
four best strategies for the IMDb case base, for retrieval from a MySQL database. It
also includes Random Case-Features as a baseline. The Average line shows the mean
retrieval time of the five strategies in the graph. All tests were run on a MacBook Pro
with a 2.5 GHz Intel Core i5 processor and 8 GB of RAM.

Random Case-Features, the baseline, gave the best retrieval times, and Rare Fea-
tures, the only feature-bundled strategy, gave the worst. Both of the case-bundled strate-
gies, Large Cases and Large Cases / Least Coverage yield similar retrieval times, but
the two unbundled strategies, Rare Features / Large Cases and Random Case-Features,
yield very different retrieval times. Most of the strategies have a fairly linear decline,
but Rare Features declines slowly until the 10,000 case-feature mark where it drops
abruptly. Because the retrieval function uses Jaccard similarity, retrieval time depends
on the number of case features in the intersection between cases. However, the rarest
features would seldom fall into any intersections, which explains why removing them
has the least effect on retrieval time.

5 Related Work

Case-based reasoner maintenance [3] is an active area of CBR research. Much of this
work develops methods to compress the case base, such as competence-based case dele-
tion [4], deletion methods taking class boundaries into account by considering local
complexity [12], optimizing the tradeoff between size and accuracy [13], deletion aimed
at preserving diversity [14], and strategies for case retention and forgetting (e.g., [5, 15–
17]. Such methods differ from flexible feature deletion that they retain or delete entire
cases without adjusting case contents.



Fig. 6. Comparison of the retrieval times after each round of maintenance between the four best
strategies on the cinema data set

Research on maintenance of case contents has generally focused on quality im-
provement rather than case base compression (e.g., [18, 19]). However, research on
case abstraction research, in aiming to compact the case base by removing concrete
cases subsumed by abstractions [20], can be seen as in the spirit of replacing cases with
more compact versions.

Flexible feature deletion applies to indexing features as well as cases. Maintenance
of indexing features has been extensively studied in CBR, applying methods such as
feature deletion, addition, and reweighting, but again with the goal of improving re-
trieval accuracy rather than decreasing the amount of storage required for the indices
themselves (e.g., [21–24]). Feature set reduction has been combined with case selection,
to improve accuracy while compressing the case base [25].

6 Future Research Questions for Feature Deletion

The feature deletion approach raises a rich range of questions for fully exploiting its
potential. A key question is how to develop knowledge-based feature deletion rules,
especially for flexible feature deletion for complex structured cases. Other questions
include how feature deletion strategies should interact with the indexing and adaptation
knowledge containers, how feature deletion can preserve case integrity, and how feature
deletion should be reflected in case provenance and explanation.



– Coupling feature deletion with index maintenance: As case contents are deleted,
the relevance of case indices may change. Consequently, feature deletion may need
to be accompanied by index maintenance to assure that as cases are compressed the
system still retrieves the most similar cases. Feature weight information might be
used to suggest features which could be deleted with limited harm.

– Benefiting from the relationship of feature deletion to case adaptation: Feature
deletion can be seen as a form of “before the fact” adaptation of cases, in which
the adaptation is driven not by a new problem to solve, but by a combination of
(1) compression goals, and (2) performance goals. Richer feature deletion methods
could draw on a CBR system’s adaptation procedures to perform operations be-
yond simple deletion of case components, such as abstractions or substitutions of
alternatives requiring less space. Enabling such methods requires reasoning about
the competence effects of replacing a case with various candidate adapted versions,
as well as performance effects (whether replacing a case with a given compressed
version will decrease problem-solving speed), and the balance to strike between
them.

– Maintaining case integrity despite feature deletion: Another question is the rela-
tionship of feature deletion to the cohesiveness of a case. From the early days of
CBR, an argument for CBR has been that cases can implicitly capture interactions
among case parts. Deleting portions of a case risks some of that cohesion, making
it a concern to address in feature deletion strategies. That case adaptation faces the
same risks but is effective supports optimism for some levels of compression, and
research on hierarchical CBR has supported the usefulness of sometimes consider-
ing subparts of complete cases individually. However, how much compression can
be done without excessive harm to case integrity, and how to manage the process
to avoid such harm, are interesting questions.

– Reflecting feature deletion in provenance and explanation: Because feature dele-
tion results in stored cases which differ from the cases originally captured, it (like
case adaptation) may weaken the ability to justify proposed solutions by past ex-
perience. Likewise, changes from the original cases may make it difficult to apply
provenance-based methods for predicting solution characteristics such as solution
accuracy and trust (e.g., [26]). Addressing these complications might require main-
taining records of case maintenance process as part of the provenance trace used
for explanation, as well as reasoning about (and presenting to users) information
about the parts of the case which have been affected by feature maintenance.

7 Conclusion

This paper has proposed a new case-base maintenance approach, flexible feature dele-
tion, which questions the assumptions that cases are of uniform size and that main-
tenance must treat cases as unitary objects. Flexible feature deletion enables selective
deletion of case contents rather than restricting deletion to the case level. It has illus-
trated tasks for which flexible feature deletion may be desirable, such as domains in
which reasoning can be done with different amounts of information, in which flexible
feature deletion enables selectively compressing different parts of different cases. Its



experimental results show that case-based maintenance may need to change when case
contents are non-uniform; in such settings feature-based strategies may give better ac-
curacy than per-case strategies, and that total case-base size and retrieval times may not
always be aligned, giving a space/time tradeoff which it may be possible to exploit.

The paper focuses primarily on knowledge-light maintenance strategies. Interesting
future directions are to refine the strategies tested here with additional knowledge, for
example, leveraging case adaptation knowledge, and to explore when other knowledge-
light techniques for compression of cases and feature bundlings could yield useful main-
tenance strategies.

References

1. Francis, A., Ram, A.: Computational models of the utility problem and their application to
a utility analysis of case-based reasoning. In: Proceedings of the Workshop on Knowledge
Compilation and Speed-Up Learning. (1993)

2. Smyth, B., Cunningham, P.: The utility problem analysed: A case-based reasoning perspec-
tive. In: Proceedings of the Third European Workshop on Case-Based Reasoning, Berlin,
Springer (1996) 392–399

3. Wilson, D., Leake, D.: Maintaining case-based reasoners: Dimensions and directions. Com-
putational Intelligence 17(2) (2001) 196–213

4. Smyth, B., Keane, M.: Remembering to forget: A competence-preserving case deletion pol-
icy for case-based reasoning systems. In: Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, San Mateo, Morgan Kaufmann (1995) 377–382

5. Muñoz-Avila, H.: A case retention policy based on detrimental retrieval. In: Proceedings of
ICCBR-99. (1999)

6. Zhu, J., Yang, Q.: Remembering to add: Competence-preserving case-addition policies for
case base maintenance. In: Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann (1999) 234–241

7. Smyth, B., McKenna, E.: Building compact competent case-bases. In: Proceedings of the
Third International Conference on Case-Based Reasoning, Berlin, Springer Verlag (1999)
329–342

8. Wilson, D., O’Sullivan, D.: Medical imagery in case-based reasoning. In Perner, P., ed.:
Case-Based Reasoning on Images and Signals. Volume 73 of Studies in Computational In-
telligence. Springer (2008) 389–418

9. Leake, D., Maguitman, A., Reichherzer, T.: Experience-based support for human-centered
knowledge modeling. Knowledge-based systems 68 (2014) 77–87

10. Novak, J., Gowin, D.: Learning How to Learn. Cambridge University Press, New York
(1984)

11. Leake, D., Maguitman, A., Reichherzer, T., Cañas, A., Carvalho, M., Arguedas, M., Brenes,
S., Eskridge, T.: Aiding knowledge capture by searching for extensions of knowledge mod-
els. In: Proceedings of the Second International Conference on Knowledge Capture (K-
CAP), New York, ACM Press (2003) 44–53

12. Craw, S., Massie, S., Wiratunga, N.: Informed case base maintenance: A complexity pro-
filing approach. In: Proceedings of the Twenty-Second National Conference on Artificial
Intelligence, AAAI Press (2007) 1618–1621

13. Lupiani, E., Craw, S., Massie, S., Juárez, J.M., Palma, J.T.: A multi-objective evolutionary
algorithm fitness function for case-base maintenance. In: Case-Based Reasoning Research
and Development - 21st International Conference, (ICCBR-13), Springer 218–232



14. Lieber, J.: A criterion of comparison between two case bases. In: Advances in Case-Based
Reasoning. Volume 984 of Lecture Notes in Computer Science. Springer, Berlin (1995)
87–100

15. Ontañón, S., Plaza, E.: Collaborative case retention strategies for CBR agents. In: Case-
Based Reasoning Research and Development: Proceedings of the Fifth International Confer-
ence on Case-Based Reasoning, ICCBR-03, Berlin, Springer-Verlag (2003)

16. Romdhane, H., Lamontagne, L.: Forgetting reinforced cases. In: Advances in Case-Based
Reasoning, 9th European Conference, ECCBR 2008, Trier, Germany, September 1-4, 2008.
Proceedings. (2008) 474–486

17. Salamó, M., López-Sánchez, M.: Adaptive case-based reasoning using retention and forget-
ting strategies. Know.-Based Syst. 24(2) (March 2011) 230–247

18. Racine, K., Yang, Q.: Maintaining unstructured case bases. In: Case-Based Reasoning
Research and Development, ICCBR 1997, Berlin, Springer (1997) 553–564

19. Salamó, M., López-Sánchez, M.: Rough set based approaches to feature selection for case-
based reasoning classifiers. Pattern Recognition Letters (2011) 280–292

20. Bergmann, R., Wilke, W.: On the role of abstraction in case-based reasoning. In: Advances
in Case-Based Reasoning, Third European Workshop, EWCBR-96, Lausanne, Switzerland,
November 14-16, 1996, Proceedings. (1996) 28–43

21. Arshadi, N., Jurisica, I.: Feature selection for improving case-based classifiers on high-
dimensional data sets. In: Proceedings of the Eighteenth International Florida Artificial In-
telligence Research Society Conference (FLAIRS-05), AAAI Press (2005) 99–104

22. Fox, S., Leake, D.: Learning to refine indexing by introspective reasoning. In: Proceedings of
First International Conference on Case-Based Reasoning, Berlin, Springer Verlag (October
1995) 431–440

23. Muñoz-Avila, H.: Case-base maintenance by integrating case-index revision and case-
retention policies in a derivational replay framework. Computational Intelligence 17(2)
(2001) 280–294

24. Zhang, Z., Yang, Q.: Towards lifetime maintenance of case base indexes for continual
case based reasoning. In: Artificial Intelligence: Methodology, Systems, and Applications.
Springer (1998) 489–500

25. Li, Y., Shiu, S., Pal, S.: Combining feature reduction and case selection in building CBR
classifiers. IEEE Transactions on Knowledge and Data Engineering 18(3) (March 2006)
415–429

26. Leake, D., Whitehead, M.: Case provenance: The value of remembering case sources. In:
Case-Based Reasoning Research and Development: Proceedings of the Seventh International
Conference on Case-Based Reasoning, ICCBR-07, Berlin, Springer-Verlag (2007) 194–208


