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Abstract. The difficulty of acquiring case adaptation knowledge is a classic
problem for case-based reasoning (CBR). One method for addressing this prob-
lem is to use the cases in the case base as data from which to learn adapta-
tion rules. For numeric prediction tasks, adaptation ruleshave been successfully
learned from the case base by using thecase difference heuristic,which gener-
ates rules based on comparisons of pairs of cases. However, because the case
difference heuristic could potentially generate a rule foreach pair of cases in
the case base, controlling growth of adaptation rules is potentially an even more
acute problem than controlling case base growth. This raises the question of how
to select adaptation rules to retain. The ability to generate adaptation rules from
cases also raises questions about the relative benefit of learning cases, learning
the adaptation rules generated from them, or learning both.This paper proposes
and evaluates a new adaptation rule retention approach and presents a case study
assessing the relative benefits of learning cases versus learning adaptation rules
derived from the cases, at different points in the growth of the case base.

Keywords: case adaptation learning, case-base maintenance, knowledge con-
tainers, rule retention

1 Introduction

Case adaptation is a classic challenge for case-based reasoning. Because acquiring
adaptation knowledge by hand may be difficult or expensive, much research has ex-
plored machine learning methods for generating case adaptation knowledge automati-
cally (e.g., [1–11]). The case difference heuristic approach, first proposed by Hanney
and Keane [3], is a popular approach to deriving adaptation rules from cases used for
numeric prediction (regression) tasks [1, 5, 7, 8, 11], by comparing pairs of cases in the
case base. For each pair of cases, it assesses the problem–problem differences between
the problems solved by the cases, and also assesses their solution–solution differences.
These two differences are used as the basis for generating the antecedent and conse-
quent of a new adaptation rule. The new rule applies to a retrieved case if the retrieved
case and new problem have similar problem–problem differences, and it adjusts the
solution of the retrieved case according to the previous solution–solution difference.
The case difference heuristic approach has received much study, but two fundamental
questions it raises have received little attention: How to control growth of the set of
adaptation rules, and how the benefit of learning new cases compares to the benefit of
learning rules derived from those cases.
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The utility issues associated with case base growth are widely recognized in the
CBR community, and methods for controlling case base growthare an important CBR
research area (e.g., [12]). The utility issues associated with growth of automatically-
generated adaptation knowledge may be even more acute. Whenthe case difference
heuristic is used to generate cases from the case base, each ordered pair of cases may
result in an adaptation rule. For a case base withn cases, the number of possible ordered
pairs of cases is2

(

n

2

)

, so as cases are added the number of candidate rules grows much
more rapidly than the case base. The need to select which rules to retain was noted when
the case difference heuristic was first proposed, but since then the problem has received
little attention. This paper proposes a new rule retention approach and demonstrates its
effectiveness compared to alternative methods.

The ability to use cases as a source for rules also raises an interesting question about
the relative benefits of learning cases and/or learning adaptation rules derived from
those cases. It is well known that CBR enables system developers to strategically place
knowledge in differentknowledge containers, and that knowledge in one container may
compensate for lack of knowledge in another [13]. However, the question of the relative
benefit of adding cases directly or applying the case difference heuristic to existing
cases, to add rules, is unexplored. This paper provides a case study as a first step towards
addressing these questions.

The paper proposes a general strategy for rule retention, based on a test process
for credit/blame assignment to automatically-generated adaptation rules. This strategy
can be used for any CBR task in which there is a trade-off between retaining adapta-
tion versus case knowledge, regardless of how the adaptation knowledge is generated.
The paper presents an evaluation of the strategy in the context of CBR for numerical
prediction, a task which has been widely studied for domainssuch as property value es-
timation, using the knowledge light “case difference heuristic” method to generate the
adaptation rules. Experimental results demonstrate the retention strategy’s effectiveness
compared to baselines and a previously-proposed frequency-based approach [4]. It also
provides an initial experimental exploration of how the knowledge content contribu-
tion of adding rules varies at different points in the growthof the case base, illustrating
that the knowledge contribution of adaptation rules generated using the case difference
heuristic may converge before the knowledge contributionsfrom simply adding new
cases, which suggests a knowledge growth strategy of retaining a more limited set of
learned adaptations but continuing to add new cases.

2 Related Work

Our research on adaptation rule retention falls within the broad category ofcase-based
reasoning system maintenance(e.g., [14]). Case-based reasoning system maintenance
extends maintenance considerations beyond the case base, to consider other knowledge
containers as well. The work in this paper is motivated by research on adaptation knowl-
edge generation and contributes to the study of adaptation rule ranking and retention,
and of the relationship between knowledge in different case-based reasoning knowledge
containers. This section briefly highlights relevant work in each of these areas.
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Adaptation Knowledge Generation:The CBR literature contains numerous examples
of automated adaptation knowledge generation. As a few examples, Craw et al. [15]
and Shiu et al. [10] propose building rules by decision tree learning; Leake, Kinley
and Wilson [6], Leake and Powell [16], and Minor, Bergmann, and Görg [17] propose
capturing cases from prior adaptations; numerous projectshave investigated the case
difference heuristic for adaptation rule generation (e.g.[3, 5, 7, 8, 11]). D’Aquin et al.
[1] combine the case difference approach with data mining methods to improve rule
quality and Fuchs et al. [18] present a framework for differential adaptation. In prin-
ciple, methods from the extensive CBR literature on case-base maintenance could be
applied to control retention of adaptation knowledge in theform of cases. However, for
systems which learn adaptation rules, methods are needed toguide rule retention.

Filtering and Ranking Adaptation Rules:Li et al. [19] propose filtering learned adap-
tation rules by removing duplicate rules and merging rules which conflict (i.e., rules
which have the same antecedents but different consequents). For rules with numeric
consequents, their approach aggregates rules into new rules whose consequents are the
average of those of the previous rules; for rules with symbolic features, their approach
clusters rules with the same antecedent and ranks them by frequency. This leaves open
the question of how to prioritize distinct rules for retention.

Leake and Dial [20] propose selecting the rules to apply to a particular adaptation
based on using provenance information to assign blame to theadaptation rules involved
in errors, to assess rule quality. They assume that all rulesare always present; their focus
is only on rule selection from the complete pool to maximize accuracy for a particular
problem, rather than determining which rules to retain for best overall performance on
future problems.

Hanney and Keane’s [3] seminal work on the case difference heuristic proposes
retaining the adaptation rules that are generated more frequently by the pair-wise com-
parison of cases. However, to our knowledge, this maintenance strategy has not been
formally evaluated; this paper evaluates it in comparison to our new approach.

We have proposed Adaptation-Guided Case Base Maintenance (AGCBM) [21], a
method for rule and case retention aimed at simultaneously controlling the number of
cases and adaptation rules generated from them. AGCBM considers the contribution
of each case both as (1) a source case to provide initial estimates for input queries,
and (2) as a building block for adaptation rules. It selects cases to retain based on a
ranking scheme considering both types of contributions. The work presented in this
paper differs in three ways. First, AGCBM is computationally expensive (O(n3) in the
initial size of the case base); this paper seeks an approach feasible to apply to large
case bases. Second, the approach in this paper focuses solely on rule retention, aiming
to minimize the adaptation knowledge container size given afixed case base. Third,
in contrast to AGCBM, and for added efficiency, the method introduced in this paper
uses single adaptation rules rather than ensembles of adaptation rules. As discussed
in Section 4.4, these changes make the training of the systemsubstantially faster than
AGCBM, enabling it to be applied to large case bases which would not be feasible for
AGCBM.
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Relationships Between CBR Knowledge Containers:Richter [13] observed that the
knowledge of CBR systems resides in multiple “knowledge containers:” the case vocab-
ulary, similarity measures, solution transformation knowledge (i.e. adaptation knowl-
edge) and the case base, and that the knowledge containers are overlapping: added
knowledge in one may reduce the need for knowledge in another(e.g., adding cases
may decrease the need for adaptation knowledge). However, there has been limited re-
search on how learning in different containers interacts.

Leake, Kinley, and Wilson [6] demonstrate that knowledge container interactions
during learning may be important, by showing that uncoordinated additions to case and
adaptation knowledge may interact negatively, degrading system performance even if
adding the same knowledge to one container individually, with the knowledge of the
other fixed, would improve performance. The benefits of both types of learning were
restored when similarity knowledge was learned as well. Shiu et al. [10] propose that
adaptation rules generated from cases can be used to transfer knowledge from the case
base container to the adaptation knowledge container, to compact the case base, and
demonstrate the approach for adaptation rules learned as decision trees.

The ability to generate adaptation rules by the case difference heuristic raises the
question of when knowledge should be retained in the form of cases, when it should be
retained in the form of adaptation rules derived from these cases, and when it should be
retained in both forms. This paper presents a case study on a facet of this question.

Case Knowledge Maintenance:The CBR community has investigated many meth-
ods for retaining/discarding cases, ascase base maintenance. One prominent trend of
case base maintenance is the use offootprint-basedcase base maintenance approaches,
originating in work by Smyth and Keane [22]. Such approachesguide maintenance ac-
cording to Reachability, Coverage and Relative Coverage, which respectively refer to
the set of cases that can solve a particular case, the set of cases that can be solved by a
particular case, and the set of other cases in the case base that can solve cases in the cov-
erage set of a particular case. Footprint-based methods favor retaining cases with strong
competence contributions not duplicated by other cases. Wewill not further survey the
extensive case-base maintenance literature here, but willapply footprint-based methods
as our baseline case base maintenance method for a comparative study of effects of rule
set and case base growth, in Section 5.2.

3 ARR: A General Approach to Adaptation Rule Retention

As the basis for our approach to adaptation rule retention, we first present a simple
framework, ARR (Adaptation Rule Retainer), aimed at automatically generating a com-
pact set of accurate case adaptation rules. ARR involves three steps:

1. Generate a preliminary subsetS of possible adaptation rules, based on a given rule
generator. The size of the subset may be limited, e.g., to generatex rules.

2. Do leave-one-out testing of the CBR system withS as its adaptation rule set, ap-
plying the system to the problem parts of a subset of the casesin the case base. For
each test, assess error, assign credit/blame for the error to the adaptation rule used
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Algorithm 1 ARR’s adaptation rule scoring algorithm
Input:
x: number of candidate adaptation rules to generate
k: number of source cases to adapt to solve each query (each generates a different solution)
CB: case base
Output: Scored adaptation rules

AdaptationRules← RuleGenerator(CB,x)
for r in AdaptationRules do

r.score← 0
end for
for c in CB do

for i in 1 tok do
RuleToApply← SelectRule(AdaptationRules,Neighbori(c),c.problem)
V alEst(c)← Adjust(Neighbori(c), RuleToApply)
EstErr(c.problem,Neighbori(c), r)← |c.value - V alEst(c.problem)|

end for
end for
for r in AdaptationRules do

r.score← ErrorScore(EstErr, r)
end for
returnAdaptationRules

to generate the solution, and retain error data. To enable generating data about mul-
tiple rules from each trial, multiple solutions may be generated for each problem,
one for each of thek nearest cases to the test problem, for some fixed value ofk.

3. Rank the rules according to a scoring function applied to their error data and retain
y highest-ranked rules, for some user-selectedy.

The parametersx andk adjust the amount of data considered in the generation process.
The parametery adjusts the final number of rules retained.

Alg. 1 presents ARR’s method in more detail.Neighbori(c) denotes theith closest
neighbor of c in the case base.RuleGenerator is a method for generating a subset of
the possible candidate adaptation rules (e.g.,RuleGenerator could apply the case dif-
ference heuristic to a desired number of the possible case pairs, randomly selected with-
out replacement).Adjust(case, rule) applies an adaptation rule to a case.c.problem

is the problem part of a case, andc.value its stored solution value.ErrorScore :
[0,∞) → [0,∞) is a function that maps raw error values to a transformed value reflect-
ing domain-specific error importance characteristics (e.g., ErrorScore could assign
the same scores to different error levels if the differencesare deemed inconsequential).

4 ARR1: An Instantiation of the ARR Approach

ARR is a general framework. For experimental tests, it is necessary to instantiate the
framework with specific choices for the rule generation procedure, rule selection, and
error scoring. ARR1 is an instantiation of ARR in whichRuleGenerator applies a
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specific form of the case difference heuristic,SelectRule is based on the rule selec-
tion process developed in our previous work on CAAR (Context-Aware Adaptation
Retrieval) [23], andErrorScore is designed to balance observed accuracy of each rule
by the amount of evidence acquired about that rule during testing. These functions are
described in the following sections.

4.1 ARR1’s Rule Generator

ARR1 generates adaptation rules using the case difference heuristic approach proposed
by Hanney and Keane [4] and further explored by others (e.g.,[5, 7, 8, 11]). The case
difference heuristic approach builds new adaptation rulesby comparing problem parts
and respectively solution parts of cases in the case base. Each rule maps the observed
differences in the problem descriptions of a pair of cases tothe observed difference in
their solutions. For example, in apartment rental domain, if two apartments differ in
that one has an additional bedroom, and its price is higher, the case difference heuristic
could generate a rule which would increase the rent estimated for a new apartment when
estimating based on a previous apartment with one bedroom fewer.

Applying the case difference approach depends on addressing questions such as
which pairs of cases will be used to generate adaptation rules, what function will be
derived from a given difference between the values estimated by the two cases (e.g., in
the rental domain, a $100 difference could prompt a rule to adjust the price by $100, to
adjust the price by the same percentage difference reflectedby the $100, or any of many
other alternatives), and how to select the rule to be appliedto a given new problem.

ARR1 is designed for cases whose problem parts are describedby numeric feature
vectors. ARR1’s rule generator generates rules whose antecedents are the vector differ-
ence between the problem parts of the two cases from which therule was generated,
and whose consequents are the numerical difference of thosetwo cases’ solution val-
ues. However, we note that nothing about ARR or the basic ARR1approach precludes
applying alternative methods.

The number of rules generated by ARR1’sRuleGenerator is determined by a
user-selected parameterk, a small fixed value which determines the number of neighbor
cases to which each source case should be compared to generate rules. For each source
cases in the selected source cases to consider, if{ci}i=1,...k is the set of thek nearest
cases tos, ARR1 generates one adaptation rule to adapts to eachci. For a case base
with n cases, if each case is compared with its topk neighbors,n × k adaptation rules
are generated.

4.2 ARR1’s Value Estimation

ARR1’s rule scoring is based on the errors in estimated values resulting from applying
the rules. Given a query, ARR1 generates an estimated value by adapting thek near-
est cases (for a fixed value ofk) and averaging the adapted values, following Alg. 2.
NeighborhoodSelector is a function for selecting cases in the neighborhood to adapt.
ARR’s SelectRule function applies the context-based method for adaptation rule se-
lection developed in our previous work on CAAR [23] (Context-Aware Adaptation Re-
trieval), which we selected because in previous evaluations it outperformed alternative
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Algorithm 2 ARR1’s Algorithm for Value Estimation
Input:
Rules: input adaptation rulesQ: input query
k: number of source cases to adapt to solve query
CB: case base
Output: Estimated solution value for Q

CasesToAdapt← NeighborhoodSelector(Q,k,CB)
for c in CasesToAdapt do

RuleToApply← SelectRule(Rules,c,Q)
V alEst(c)← Adjust(c, RuleToApply)

end for
return Averagec∈CasesToAdaptV alEst(c)

methods. The specific rule selection procedure used is not significant to the lessons of
our experiments, so for reasons on space, we do not describe the rule selection proce-
dure further here. However, we refer interested readers to previous work on CAAR for
the details [23].

4.3 ARR1’s Rule Scoring

ARR ranks adaptation rules based on anErrorScore function assigning blame/credit
scores to adaptation rules, based on the error that results when they are used to adapt
source case values. ARR1’sErrorScore function is designed to favor rules believed
to have low error from more extensive testing. Depending on the problems used in the
testing phase, some rules may be used multiple times, while others may be used seldom
or never, giving less information for predicting their performance. ARR1’sErrorScore

favors rules which showed reasonable accuracy for multipletraining cases over a rule
which was only applied in a single trial even if it showed excellent accuracy there; the
rationale is the expectation that results of multiple testswill be more reliable predictors
of future performance.

Specifically, ARR1’sErrorScore function is defined as follows. LetEstErr be
an array of estimated error values, withEstErr(q, c, r) the calculated error when case
c was adapted by adaptation ruler to solve queryq. If M represents the number of
timesr is applied to different source cases (ci’s) during ARR1’s error estimation phase,
andqi andci, for i = 1, ..., M represent the queries and source cases used in those
applications, ARR1’s error score is calculated as follows:

ErrorScore(EstErr, r) =

M
∑

i=1

1

EstErr(qi, Neighbori(c), r) + ǫ
(1)

whereǫ is a small positive value that determines a non-zero minimumvalue for per-
fect predictions. Rules are ranked by theirErrorScore values, in order of ascending
ErrorScore. Ties are broken arbitrarily.
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4.4 Time Complexity of ARR1

Given that ARR1 is aimed at reducing potentially large rule sets, its time complexity
is an important consideration. As explained previously, for a case base ofn cases and
for ARR1’s adaptation rule generation method, which considers a neighborhood ofm
cases (for some small fixedm) around each case in the case base, ARR generatesn×m

rules, so the time complexity of its adaptation generation process isO(n).
In Alg. 1, leave-one-out testing used for rule scoring will adaptn× k source cases,

for k a small fixed value. For each adaptation, the most relevant adaptation rule must be
selected. ARR1 does this by simply comparing the differencebetween the pair (input
query, source case) with all generated adaptation rules to select the adaptation to apply,
so its time complexity for the entire training process will be O(n2). (We assume that
k is set to a small value that is significantly less thann.) However, more efficient rule
retrieval methods could reduce rule retrieval complexity.

In addition, we note that the training process is not a routine process which means
it could only happen once for the life of the system, and that leave-one-out testing
could be replaced by sampling methods which could decrease the processing resources
required for ARR1.

5 Experiments

Our experiments address four questions:

1. Performance of ARR1: How does final accuracy compare using(1) adaptation rule
retention by ARR1, (2) frequency-based rule retention, (3)random rule retention,
and (4) k-NN using value averaging rather than adaptation rules?

2. Performance ofErrorScore: How does accuracy using a reduced rule set selected
based on ARR1’sErrorScore function compare to accuracy using a reduced rule
set selected based on simple averaging of errors?

3. Sensitivity to number of source cases adapted per problemduring training: How
does the number of cases adapted per problem during trainingaffect final system
accuracy?

4. Relative benefit of rule and case learning: How does the knowledge content con-
tribution of adding rules and cases compare, at different points in the knowledge
acquisition process?

5.1 Experimental Design

We evaluated ARR1’s performance on four sample domains fromthe UCI repository
[24]: Automobile (Auto), Auto MPG (MPG), Housing, and Computer Hardware (Hard-
ware). All records and features were used for Housing (506) and Hardware (209). Auto
and MPG contained some records with unknown feature values,which were removed
(46 out of 205 for Auto and 6 out of 398 for MPG). However, we note that the value
imputation methods used to enable k-NN to handle missing features could equally well
be applied to ARR1 to enable it to handle such records. CAAR, part of ARR1’s rule se-
lection process, uses locally weighted linear regression for defining context, so requires
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numeric features. All features of MPG and Housing were numeric, but 10 non-numeric
features were removed from Auto and 2 from Hardware, in orderfor all methods to be
provided with the same amount of information. We note that the numeric features are
not required by the general ARR method. For each feature, values were standardized
by subtracting that feature’s mean value from each individual feature value and divid-
ing the result by the standard deviation of that feature. Forthe Auto, MPG, Housing
and Hardware domains, the respective values to estimate areprice, MPG (automobile
fuel efficiency in miles per gallon), MEDV (median value of owner-occupied homes in
$1000’s), and PRP (published relative performance).

For all experiments, the set of adaptation rules was generated before query process-
ing, following the ARR process of Alg. 1, and values were estimated following Alg.
2. The value ofk, the number of cases to adapt, was set independently for eachalgo-
rithm to maximize its performance. In Alg. 1, we expect it to be desirable fork to be
set to a higher value, so that more adaptations have the chance to participate in the case
value estimation process, resulting (on average) in more data being available on the
performance of each adaptation rule. In Alg. 2, wherek is used for estimating the input
query value, we expect better accuracy for a smaller value ofk (as well as reducing
computation time), by focusing on more similar cases.

In our experiments, we tested a range ofk values, 10, 20, 40, 80, 100 and 200 for
Alg. 1, and 3, 8 and 13 for Alg. 2. Best performance was achieved for k in Alg. 1 set
to 80, 100, 80, and 80 for the Auto, housing, MPG and hardware domains respectively,
and in Alg. 2 to 3, 8, 8, and 8, for all domains in the same order.Same process with
different k values (ranging from 1 to 10 for all domains) was used to determine the
optimalk value for k-NN. The lower value ofk for the auto domain compared to the
other domains parallels the observation that even for k-NN,using lower numbers of
nearest neighbors yields higher accuracy in the Auto domain, suggesting more locality
for that domain compared to the other tested domains. The percent of possible rules
to generate for Auto, MPG, Housing and Hardware domains was set to 8%, 3%, 4%
and 8%, meaning that only a small portion of all possible rules was generated for each
domain. For questions 1 and 2, performance was compared for varying numbers of rules
retained from the set of possible rules, beginning at 20 rules and increasing to 1990
rules. All experiments used ten-fold cross validation. Adaptation rules were assigned
scores by applying Alg. 1.

We compared ARR1 to two alternative retention methods. The first method,Ran-
dom, replaces ARR1’s ranking strategy with randomly selectingadaptation rules to
retain. The second method,Frequency-Based Rule Retention(FBRR), follows Han-
ney and Keane’s [4] proposed approach of retaining adaptation rules based on their
frequency of occurrence. Because the case difference heuristic may generate multiple
rules with extremely small differences, to have a reasonable indication of frequency we
defined a threshold on the distance between the antecedents of the adaptation rules, and
treated rules with differences below that threshold as identical. Because the antecedents
of each rule are simply vectors of the numeric differences between the corresponding
features of the two cases from which the rule was generated, we used Euclidean distance
to measure rule similarity.
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Fig. 1. MAE of the tested methods for different numbers of retained adaptations

5.2 Experimental Results

Adaptation Retention Evaluation:To address question 1, how rule retention by ARR1
affects final system accuracy compared to rule retention by other methods, we compared
the Mean Absolute Error (MAE) of our test system using adaptation rules generated and
retained by ARR1 to that of k-NN using value averaging ratherthan adaptation rules,
random rule retention, and frequency-based rule retention. Figure 1 shows MAE of all
methods in four domains.

In all domains, ARR1 provides the highest accuracy. In all domains except Auto,
performance with ARR1 tends to improve as the number of retained rules increases.
However, the improvement is not significantly different from the accuracy achieved by
retaining a minimum number of adaptation rules. We discuss this further below. For the
Hardware and MPG domains, after a certain point increasing the number of adaptation
rules slightly degrades the performance. We hypothesize that this deterioration is due
to the introduction of less accurate rules, and that this issue could be ameliorated by
setting a lower bound threshold on the ranking score for rules to retain.

An interesting observation is that for three of the four domains, regardless of the rule
retention method, learning and applying adaptation rules provides substantially better
performance than simply averaging results with k-NN, supporting the value of adap-
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tation rule learning. Even for the exception domain, MPG, two of the three retention
methods provide substantially better performance than k-NN.

A surprising result is that frequency-based rule retentionfor the tested domains
usually performs worse than random rule retention. One possible explanation is that
the frequency-based approach may sacrifice rule diversity,resulting in poor coverage of
parts of the space. However, further study is needed.

Assessing ARR1’s Error Scoring for Blame/Credit Assignment: To investigate question
2, on the impact of ARR1’s error scoring method for blame/credit assignment to rules
during the retention process, we compared accuracy using rule sets selected by ARR1
and selected by an ablated version of ARR1, ARR1-AVG, that ranked rules by lowest
average error rather than ARR1’sErrorScore. ARR1’sErrorScore favors rules that
are more frequently used during the test phase and at the sametime yield accurate es-
timations; ARR-AVG’s scoring favors rules that yield accurate estimations on average,
regardless of the number of times the rules were applied in the training phase. Fig. 2
shows that in all test domains, retention by ARR1 resulted inlower MAE than retention
by ARR-AVG, supporting the benefit of ARR1’s scoring mechanism. The greatest gain
over ARR-AVG is observed for the Hardware domain and the gainis least for MPG and
Housing domains.

Sensitivity of Resulting Accuracy to Number of AdaptationsPer Problem During ARR’s
Training: As discussed previously, cost of ARR1 depends on the numberk of source
cases adapted for each test source case. Also, there is a tradeoff in adapting larger num-
bers of source cases for a given test case: Adapting additional source cases provides
more data about rule performance, but because the additional source cases are less sim-
ilar, the additional adaptations may result in more error, penalizing rules which might
have had higher rankings if only applied to more similar cases—and which might only
be applied to more similar cases in practice.

To study the effect of k’s value (in the training phase) on final system accuracy with
the retained rule set, we tested accuracy for 5k values, 10, 20, 40, 80 and 100. Fig. 3
shows results for the Auto and MPG domains. Best performancefor both domains was
achieved for ak value of 80. The performance of ARR1 for differentk values across
MPG and Auto domains shares some general patterns, with somevariation. For exam-
ple, although for the MPG domain the second best performanceis achieved whenk is
set to 100, the samek value in the Auto domain yields lower performance, especially
when the number of retained adaptation grows. The results suggest that the performance
of ARR1 improves ask’s value increases up to a certain point, determined by the do-
main, and then decreases ask increases further. The housing and MPG domains are not
shown for reasons of space, but also show this pattern.

We explain this pattern by the balance between the advantageof judging adaptation
rules based on their effectiveness for local cases (because, for a well populated case
base, it is more reasonable to select the source cases from the local neighborhood of the
input query), versus the previously-noted drawback that using a small number of source
cases (lower values fork) in the training phase decreases the number of rules examined
by ARR.
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Fig. 2. MAE for retention by ARR1 and ARR-AVG

Comparative Benefit of Increasing Case or Adaptation Knowledge: To investigate
question 4, on the comparative benefit of adding case or adaptation knowledge, we
tested how increases in the number of adaptation rules generated by ARR1 affect fi-
nal performance, versus how increases in the number of casesaffect final performance.
This experiment explores how sensitive performance is to additions of either type of
additional knowledge, which gives an indication of how rapidly the knowledge in that
container “converges” to an adequate set. In particular, the experiment measures the
gain in accuracy per addition to a target knowledge container (the case base or adap-
tation knowledge container), compared to the performance of the system for the target
knowledge container with minimum size.

Because the effect of case additions depends on the strategyused for selecting cases
to add, we tested three methods: (1) Smyth and McKenna’s [25](RelCov), as well as
two simplified methods, (2) Cov, which added the new case withthe highest competence
(Cov) and (3) Reach, which added the new case with the lowest reachability.

Fig. 4 summarizes the results. In the lefthand two graphs, the X axis shows the case
base size; in the righthand two graphs, the X axis shows the adaptation rule set size.
The Y axis shows the incremental percent improvement from adding another case (in
the lefthand graphs) or another rule (in the righthand graphs). The minimum knowledge
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Fig. 3. The effect of the number of source cases used in the training phase on ARR’s performance

container size for Auto, MPG, Housing and Hardware domains is 10, 20, 20, and 10
respectively.

As expected, increases in size of either target knowledge container generally im-
prove performance. However, ARR1 tends to show less improvement per addition than
Cov, Reach, and RelCov. We conclude that once a minimum number of adaptation
rules/cases critical for system performance has been retained, performance is less sen-
sitive to additions to the adaptation knowledge container than to additions to the case
base.

6 Conclusion and Future Directions

This paper introduced ARR, a general approach to guiding adaptation rule retention.
ARR uses a blame/credit assignment mechanism for guiding rule retention based on
testing sample adaptation problems. Empirical results forARR1, a specific instantiation
of ARR, showed improvement over k-NN, two other alternativerule retention methods,
and an ablated version of ARR with a baseline blame/credit assignment method. Ex-
perimental results also showed that ARR1’s rule retention process may converge faster
than case retention, suggesting a coordinated adaptation and case acquisition strategy
of retaining a limited number of rules but continuing case addition.

Future directions for this work include studying ARR’s performance for simulta-
neous maintenance of source case and adaptation knowledge containers (ARR assumes
that the source case knowledge container is fixed), and investigating how local coverage
characteristics of the case base may affect the choice of whether to retain cases or rules.
Another direction is to extend ARR1 by applying ensembles ofadaptations and study-
ing the resulting trade-offs in accuracy and time complexity of the algorithm, as well as
examining more sophisticated score assignment methods to balance the accuracy and
usage frequency of the applied rules in the training phase. Because the applicability of
the general ARR method is not restricted to adaptation knowledge generated by any
particular method, another interesting avenue would be to explore its use for adaptation
knowledge retention in other contexts and for other tasks.
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Fig. 4. Percent of improvement in MAE compared to the minimized knowledge container
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