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Abstract. The difficulty of acquiring case adaptation knowledge is assic
problem for case-based reasoning (CBR). One method foeaslithg this prob-
lem is to use the cases in the case base as data from whichrioddapta-
tion rules. For numeric prediction tasks, adaptation rhkage been successfully
learned from the case base by using thse difference heuristieyhich gener-
ates rules based on comparisons of pairs of cases. Howaause the case
difference heuristic could potentially generate a rule dach pair of cases in
the case base, controlling growth of adaptation rules iermiztlly an even more
acute problem than controlling case base growth. Thissdisequestion of how
to select adaptation rules to retain. The ability to gemesaataptation rules from
cases also raises questions about the relative benefitrofrigecases, learning
the adaptation rules generated from them, or learning Hdtis. paper proposes
and evaluates a new adaptation rule retention approachrasdris a case study
assessing the relative benefits of learning cases versudnigadaptation rules
derived from the cases, at different points in the growthheft¢ase base.

Keywords: case adaptation learning, case-base maintenance, krymwvitzgh-
tainers, rule retention

1 Introduction

Case adaptation is a classic challenge for case-basedhmegs8ecause acquiring
adaptation knowledge by hand may be difficult or expensivechresearch has ex-
plored machine learning methods for generating case ditaptanowledge automati-
cally (e.g., [1-11]). The case difference heuristic apphedirst proposed by Hanney
and Keane [3], is a popular approach to deriving adaptatitesrfrom cases used for
numeric prediction (regression) tasks [1, 5, 7, 8, 11], byparing pairs of cases in the
case base. For each pair of cases, it assesses the prolbddhenapdifferences between
the problems solved by the cases, and also assesses théorsedolution differences.
These two differences are used as the basis for generatngntiecedent and conse-
quent of a new adaptation rule. The new rule applies to aexetd case if the retrieved
case and new problem have similar problem—problem diffasenand it adjusts the
solution of the retrieved case according to the previoustswi—solution difference.
The case difference heuristic approach has received mudl, $iut two fundamental
questions it raises have received little attention: Howdatwl growth of the set of
adaptation rules, and how the benefit of learning new casepa®s to the benefit of
learning rules derived from those cases.
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The utility issues associated with case base growth arelyrdeognized in the
CBR community, and methods for controlling case base granghan important CBR
research area (e.g., [12]). The utility issues associaiéd growth of automatically-
generated adaptation knowledge may be even more acute. YWhaerase difference
heuristic is used to generate cases from the case base, maechdpair of cases may
resultin an adaptation rule. For a case base withses, the number of possible ordered
pairs of cases ig(g), S0 as cases are added the number of candidate rules grolus muc
more rapidly than the case base. The need to select whichtouletain was noted when
the case difference heuristic was first proposed, but shrerethe problem has received
little attention. This paper proposes a new rule retentipr@ach and demonstrates its
effectiveness compared to alternative methods.

The ability to use cases as a source for rules also raisesemasting question about
the relative benefits of learning cases and/or learningtatiap rules derived from
those cases. It is well known that CBR enables system dexeddp strategically place
knowledge in differenknowledge containerand that knowledge in one container may
compensate for lack of knowledge in another [13]. Howeverguestion of the relative
benefit of adding cases directly or applying the case diffegeheuristic to existing
cases, to add rules, is unexplored. This paper providesstady as a first step towards
addressing these questions.

The paper proposes a general strategy for rule retentie@edoan a test process
for credit/blame assignment to automatically-generatiptation rules. This strategy
can be used for any CBR task in which there is a trade-off batwetaining adapta-
tion versus case knowledge, regardless of how the adaptatimvledge is generated.
The paper presents an evaluation of the strategy in the xtooft€€BR for numerical
prediction, a task which has been widely studied for domsireh as property value es-
timation, using the knowledge light “case difference hgtic method to generate the
adaptation rules. Experimental results demonstrate thatien strategy’s effectiveness
compared to baselines and a previously-proposed frequigssyd approach [4]. It also
provides an initial experimental exploration of how the Whedge content contribu-
tion of adding rules varies at different points in the growthhe case base, illustrating
that the knowledge contribution of adaptation rules geeerasing the case difference
heuristic may converge before the knowledge contributiom® simply adding new
cases, which suggests a knowledge growth strategy of ieggnmore limited set of
learned adaptations but continuing to add new cases.

2 Redated Work

Our research on adaptation rule retention falls within ttead category ofase-based
reasoning system maintenan@eg., [14]). Case-based reasoning system maintenance
extends maintenance considerations beyond the case dasasider other knowledge
containers as well. The work in this paper is motivated bgaesh on adaptation knowl-
edge generation and contributes to the study of adaptaiierranking and retention,
and of the relationship between knowledge in different dzessed reasoning knowledge
containers. This section briefly highlights relevant warleach of these areas.
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Adaptation Knowledge Generatiorthe CBR literature contains numerous examples
of automated adaptation knowledge generation. As a few pkeaanCraw et al. [15]
and Shiu et al. [10] propose building rules by decision tesgeiing; Leake, Kinley
and Wilson [6], Leake and Powell [16], and Minor, Bergmamm] &06rg [17] propose
capturing cases from prior adaptations; numerous profents investigated the case
difference heuristic for adaptation rule generation (8¢5, 7, 8, 11]). D’Aquin et al.
[1] combine the case difference approach with data mininthods to improve rule
quality and Fuchs et al. [18] present a framework for diffitia adaptation. In prin-
ciple, methods from the extensive CBR literature on caseImaaintenance could be
applied to control retention of adaptation knowledge inftren of cases. However, for
systems which learn adaptation rules, methods are needgit® rule retention.

Filtering and Ranking Adaptation Ruled:i et al. [19] propose filtering learned adap-
tation rules by removing duplicate rules and merging rulégctv conflict .e., rules
which have the same antecedents but different consequéotsjules with numeric
consequents, their approach aggregates rules into neswwhilese consequents are the
average of those of the previous rules; for rules with syialfebtures, their approach
clusters rules with the same antecedent and ranks themdpyefiney. This leaves open
the question of how to prioritize distinct rules for retemti

Leake and Dial [20] propose selecting the rules to apply taréiqular adaptation
based on using provenance information to assign blame t&ddetation rules involved
in errors, to assess rule quality. They assume that all antealways present; their focus
is only on rule selection from the complete pool to maximizeusacy for a particular
problem, rather than determining which rules to retain festtoverall performance on
future problems.

Hanney and Keane’s [3] seminal work on the case differenceistec proposes
retaining the adaptation rules that are generated moradrdty by the pair-wise com-
parison of cases. However, to our knowledge, this maintematrategy has not been
formally evaluated; this paper evaluates it in comparisoour new approach.

We have proposed Adaptation-Guided Case Base MaintenA@ERM) [21], a
method for rule and case retention aimed at simultaneowsitralling the number of
cases and adaptation rules generated from them. AGCBM aenssihe contribution
of each case both as (1) a source case to provide initial &sarfor input queries,
and (2) as a building block for adaptation rules. It seleeises to retain based on a
ranking scheme considering both types of contribution® Work presented in this
paper differs in three ways. First, AGCBM is computatiopaikpensive Q(n?) in the
initial size of the case base); this paper seeks an appreasibfe to apply to large
case bases. Second, the approach in this paper focusgsmoleile retention, aiming
to minimize the adaptation knowledge container size givéixed case base. Third,
in contrast to AGCBM, and for added efficiency, the methodoidticed in this paper
uses single adaptation rules rather than ensembles ofaiaptules. As discussed
in Section 4.4, these changes make the training of the systibistantially faster than
AGCBM, enabling it to be applied to large case bases whichidvoat be feasible for
AGCBM.
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Relationships Between CBR Knowledge ContaindRichter [13] observed that the
knowledge of CBR systems resides in multiple “knowledgdaimers:” the case vocab-
ulary, similarity measures, solution transformation kiexge (i.e. adaptation knowl-
edge) and the case base, and that the knowledge contaireovertapping: added
knowledge in one may reduce the need for knowledge in an¢¢hgr, adding cases
may decrease the need for adaptation knowledge). Howéese has been limited re-
search on how learning in different containers interacts.

Leake, Kinley, and Wilson [6] demonstrate that knowledgetaimer interactions
during learning may be important, by showing that uncoaatid additions to case and
adaptation knowledge may interact negatively, degradystesn performance even if
adding the same knowledge to one container individuall$h whe knowledge of the
other fixed, would improve performance. The benefits of bggies of learning were
restored when similarity knowledge was learned as wellu @hial. [10] propose that
adaptation rules generated from cases can be used to trknefeledge from the case
base container to the adaptation knowledge container, mpaot the case base, and
demonstrate the approach for adaptation rules learneccasatetrees.

The ability to generate adaptation rules by the case diffsgdneuristic raises the
guestion of when knowledge should be retained in the fornaeés, when it should be
retained in the form of adaptation rules derived from theses, and when it should be
retained in both forms. This paper presents a case studyaxeadf this question.

Case Knowledge Maintenancefthe CBR community has investigated many meth-
ods for retaining/discarding cases,@se base maintenand®@ne prominent trend of
case base maintenance is the usofprint-basectase base maintenance approaches,
originating in work by Smyth and Keane [22]. Such approachéde maintenance ac-
cording to Reachability, Coverage and Relative Coveradpgiwrespectively refer to
the set of cases that can solve a particular case, the seted tizat can be solved by a
particular case, and the set of other cases in the case lasatisolve cases in the cov-
erage set of a particular case. Footprint-based methodsifataining cases with strong
competence contributions not duplicated by other casesviMeot further survey the
extensive case-base maintenance literature here, bppily footprint-based methods
as our baseline case base maintenance method for a compataty of effects of rule
set and case base growth, in Section 5.2.

3 ARR: A General Approach to Adaptation Rule Retention

As the basis for our approach to adaptation rule retentianfimgt present a simple
framework, ARR (Adaptation Rule Retainer), aimed at autiically generating a com-
pact set of accurate case adaptation rules. ARR involves gteps:

1. Generate a preliminary subsebf possible adaptation rules, based on a given rule
generator. The size of the subset may be limited, e.g., tergésx: rules.

2. Do leave-one-out testing of the CBR system wftlas its adaptation rule set, ap-
plying the system to the problem parts of a subset of the dashe case base. For
each test, assess error, assign credit/blame for the ertie adaptation rule used
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Algorithm 1 ARR’s adaptation rule scoring algorithm

Input:

x: number of candidate adaptation rules to generate

k: number of source cases to adapt to solve each query (eaehagena different solution)
CB: case base

Output: Scored adaptation rules

AdaptationRules « RuleGeneratot( B,z)
for r in Adaptation Rules do
r.score «— 0
end for
for cin CB do
foriinltok do
RuleToApply — SelectRulefldaptation Rules,Neighbor;(c),c.problem)
ValEst(c) < Adjust(Veighbor;(c), RuleToApply)
EstErr(c.problem, Neighbori(c),r) « |c.value - Val Est(c.problem)|
end for
end for
for r in Adaptation Rules do
r.score «— ErrorScore(EstErr,r)
end for
return Adaptation Rules

to generate the solution, and retain error data. To enablergéng data about mul-
tiple rules from each trial, multiple solutions may be gexted for each problem,
one for each of thé nearest cases to the test problem, for some fixed valie of

3. Rank the rules according to a scoring function applietiéir terror data and retain
y highest-ranked rules, for some user-selegted

The parameters andk adjust the amount of data considered in the generation gsoce
The parametey adjusts the final number of rules retained.

Alg. 1 presents ARR’s method in more detaileighbor;(c) denotes thé*" closest
neighbor of ¢ in the case basRuleGenerator is a method for generating a subset of
the possible candidate adaptation rules (&gleGenerator could apply the case dif-
ference heuristic to a desired number of the possible case pdomly selected with-
out replacement)Adjust(case, rule) applies an adaptation rule to a cas@roblem
is the problem part of a case, andalue its stored solution valueErrorScore :
[0,00) — [0, 00) is a function that maps raw error values to a transformedaviafiect-
ing domain-specific error importance characteristics. (&grorScore could assign
the same scores to different error levels if the differermresieemed inconsequential).

4 ARRI1: An Instantiation of the ARR Approach

ARR is a general framework. For experimental tests, it isseeary to instantiate the
framework with specific choices for the rule generation pohae, rule selection, and
error scoring. ARRL1 is an instantiation of ARR in whi@uleGenerator applies a
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specific form of the case difference heuristilect Rule is based on the rule selec-
tion process developed in our previous work on CAAR (Confexare Adaptation
Retrieval) [23], andErrorScore is designed to balance observed accuracy of each rule
by the amount of evidence acquired about that rule durintgntesThese functions are
described in the following sections.

4.1 ARR1'sRule Generator

ARR1 generates adaptation rules using the case differenaéstic approach proposed
by Hanney and Keane [4] and further explored by others (g7, 8,11]). The case
difference heuristic approach builds new adaptation riojesomparing problem parts
and respectively solution parts of cases in the case bash.rdke maps the observed
differences in the problem descriptions of a pair of casdébémbserved difference in
their solutions. For example, in apartment rental domditwe apartments differ in
that one has an additional bedroom, and its price is higheicase difference heuristic
could generate a rule which would increase the rent estihfate new apartment when
estimating based on a previous apartment with one bedroesr.fe

Applying the case difference approach depends on addgesgsiestions such as
which pairs of cases will be used to generate adaptatios,rulkat function will be
derived from a given difference between the values estidniayehe two cases (e.g., in
the rental domain, a $100 difference could prompt a rule josadhe price by $100, to
adjust the price by the same percentage difference reflbgtdok $100, or any of many
other alternatives), and how to select the rule to be appdiedgiven new problem.

ARRL1 is designed for cases whose problem parts are desdrjbedmeric feature
vectors. ARRL1’s rule generator generates rules whoseeaats are the vector differ-
ence between the problem parts of the two cases from whictutbevas generated,
and whose consequents are the numerical difference of thaseases’ solution val-
ues. However, we note that nothing about ARR or the basic ARRitoach precludes
applying alternative methods.

The number of rules generated by ARRRsileGenerator is determined by a
user-selected parametera small fixed value which determines the number of neighbor
cases to which each source case should be compared to gemdeat For each source
cases in the selected source cases to consid€lg;if;—1... x is the set of the: nearest
cases te, ARR1 generates one adaptation rule to adajot eache;. For a case base
with n cases, if each case is compared with itskapeighborsp x k adaptation rules
are generated.

4.2 ARR1'sValueEstimation

ARRL1’s rule scoring is based on the errors in estimated galesulting from applying
the rules. Given a query, ARR1 generates an estimated vglaedpting thek near-
est cases (for a fixed value #j and averaging the adapted values, following Alg. 2.
NeighborhoodSelector is a function for selecting cases in the neighborhood to adap
ARR'’s Select Rule function applies the context-based method for adaptatitese-
lection developed in our previous work on CAAR [23] (Contéxtare Adaptation Re-
trieval), which we selected because in previous evaluatiooutperformed alternative
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Algorithm 2 ARR21’s Algorithm for Value Estimation

Input:

Rules: input adaptation rule®: input query

k: number of source cases to adapt to solve query
CB: case base

Output: Estimated solution value for Q

CasesToAdapt — NeighborhoodSelectaf),kx,C B)
for cin CasesToAdapt do
RuleToApply«— SelectRuleRules,c,Q)
ValEst(c) «— Adjust(c, RuleToApply)
end for
return Average: casesToAdapt Val Est(c)

methods. The specific rule selection procedure used is goifisant to the lessons of
our experiments, so for reasons on space, we do not deshabale selection proce-
dure further here. However, we refer interested readersetdqus work on CAAR for
the details [23].

4.3 ARR1'sRuleScoring

ARR ranks adaptation rules based onfarrorScore function assigning blame/credit
scores to adaptation rules, based on the error that reshéa they are used to adapt
source case values. ARR1ErorScore function is designed to favor rules believed
to have low error from more extensive testing. Dependingherproblems used in the
testing phase, some rules may be used multiple times, wihiBg®may be used seldom
or never, giving less information for predicting their pmrhance. ARR1'€rrorScore
favors rules which showed reasonable accuracy for multipieing cases over a rule
which was only applied in a single trial even if it showed dbar@ accuracy there; the
rationale is the expectation that results of multiple teslisoe more reliable predictors
of future performance.

Specifically, ARR1'sErrorScore function is defined as follows. Lef'st Err be
an array of estimated error values, witst E'rr(q, ¢, r) the calculated error when case
c was adapted by adaptation rulgo solve query. If M represents the number of
timesr is applied to different source casegsg) during ARR1'’s error estimation phase,
andg; andc;, fori = 1,..., M represent the queries and source cases used in those
applications, ARR1’s error score is calculated as follows:

M

1
E S EstE =
rrorScore(EstErr,r) ; ToiErr

1
(gi, Neighbor;(c),r) + € 1)

wheree is a small positive value that determines a non-zero minimatae for per-
fect predictions. Rules are ranked by th&irrorScore values, in order of ascending
ErrorScore. Ties are broken arbitrarily.
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4.4 Time Complexity of ARR1

Given that ARR1 is aimed at reducing potentially large rdessits time complexity
is an important consideration. As explained previouslydease base of cases and
for ARR1’s adaptation rule generation method, which comisich neighborhood of:
cases (for some small fixed) around each case in the case base, ARR generates
rules, so the time complexity of its adaptation generati@tess iO(n).

In Alg. 1, leave-one-out testing used for rule scoring wilbatn x k& source cases,
for k a small fixed value. For each adaptation, the most relevapttation rule must be
selected. ARR1 does this by simply comparing the differdrateveen the pair (input
guery, source case) with all generated adaptation ruleddéotshe adaptation to apply,
so its time complexity for the entire training process wil @(n?). (We assume that
k is set to a small value that is significantly less tmapnHowever, more efficient rule
retrieval methods could reduce rule retrieval complexity.

In addition, we note that the training process is not a ra@upirocess which means
it could only happen once for the life of the system, and tkat/é-one-out testing
could be replaced by sampling methods which could decréagerbcessing resources
required for ARRL.

5 Experiments

Our experiments address four questions:

1. Performance of ARR1: How does final accuracy compare y&hadaptation rule
retention by ARRL1, (2) frequency-based rule retentionréBdom rule retention,
and (4) k-NN using value averaging rather than adaptatims?u

2. Performance oF'rrorScore: How does accuracy using a reduced rule set selected

based on ARR1'€)rrorScore function compare to accuracy using a reduced rule
set selected based on simple averaging of errors?

3. Sensitivity to number of source cases adapted per problging training: How
does the number of cases adapted per problem during traaffiect final system
accuracy?

4. Relative benefit of rule and case learning: How does thevledge content con-
tribution of adding rules and cases compare, at differeimtpan the knowledge
acquisition process?

5.1 Experimental Design

We evaluated ARR1’s performance on four sample domains franUCI repository
[24]: Automobile (Auto), Auto MPG (MPG), Housing, and ContpuHardware (Hard-
ware). All records and features were used for Housing (506 Hardware (209). Auto
and MPG contained some records with unknown feature valigish were removed
(46 out of 205 for Auto and 6 out of 398 for MPG). However, weettat the value
imputation methods used to enable k-NN to handle missingifes could equally well
be applied to ARRL1 to enable it to handle such records. CAAR,qf ARR1’s rule se-
lection process, uses locally weighted linear regressiodéfining context, so requires
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numeric features. All features of MPG and Housing were nignbut 10 non-numeric

features were removed from Auto and 2 from Hardware, in oimeall methods to be

provided with the same amount of information. We note thatrtbmeric features are
not required by the general ARR method. For each featuregsalvere standardized
by subtracting that feature’s mean value from each indadideature value and divid-
ing the result by the standard deviation of that feature.tRerAuto, MPG, Housing

and Hardware domains, the respective values to estimatgriaes MPG (automobile

fuel efficiency in miles per gallon), MEDV (median value of wgr-occupied homes in
$1000’s), and PRP (published relative performance).

For all experiments, the set of adaptation rules was gezetkafore query process-
ing, following the ARR process of Alg. 1, and values wereraated following Alg.
2. The value of, the number of cases to adapt, was set independently foradgoh
rithm to maximize its performance. In Alg. 1, we expect it ® desirable fok to be
set to a higher value, so that more adaptations have the elaparticipate in the case
value estimation process, resulting (on average) in mot& lkeing available on the
performance of each adaptation rule. In Alg. 2, whierg used for estimating the input
query value, we expect better accuracy for a smaller value (@ well as reducing
computation time), by focusing on more similar cases.

In our experiments, we tested a range:ofalues, 10, 20, 40, 80, 100 and 200 for
Alg. 1, and 3, 8 and 13 for Alg. 2. Best performance was achidge/ in Alg. 1 set
to 80, 100, 80, and 80 for the Auto, housing, MPG and hardwanesaihs respectively,
and in Alg. 2 to 3, 8, 8, and 8, for all domains in the same or8ame process with
different & values (ranging from 1 to 10 for all domains) was used to deites the
optimal k value for k-NN. The lower value of for the auto domain compared to the
other domains parallels the observation that even for k-tihg lower numbers of
nearest neighbors yields higher accuracy in the Auto donsaiygesting more locality
for that domain compared to the other tested domains. Theepeof possible rules
to generate for Auto, MPG, Housing and Hardware domains whats8%, 3%, 4%
and 8%, meaning that only a small portion of all possibleswu@as generated for each
domain. For questions 1 and 2, performance was comparedrging numbers of rules
retained from the set of possible rules, beginning at 20srated increasing to 1990
rules. All experiments used ten-fold cross validation. ptdéion rules were assigned
scores by applying Alg. 1.

We compared ARRL to two alternative retention methods. Trisefiethod Ran-
dom replaces ARR1’s ranking strategy with randomly selectwgptation rules to
retain. The second methoBrequency-Based Rule Retenti(flBRR), follows Han-
ney and Keane’s [4] proposed approach of retaining adaptatiles based on their
frequency of occurrence. Because the case differencestieuriay generate multiple
rules with extremely small differences, to have a reasaniablication of frequency we
defined a threshold on the distance between the anteced#msamlaptation rules, and
treated rules with differences below that threshold astidah Because the antecedents
of each rule are simply vectors of the numeric differencds/ben the corresponding
features of the two cases from which the rule was generatedsed Euclidean distance
to measure rule similarity.
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Fig. 1. MAE of the tested methods for different numbers of retaingapgations

5.2 Experimental Results

Adaptation Retention Evaluatiorito address question 1, how rule retention by ARR1
affects final system accuracy compared to rule retentiortigranethods, we compared
the Mean Absolute Error (MAE) of our test system using adéptaules generated and
retained by ARRL1 to that of k-NN using value averaging rathan adaptation rules,
random rule retention, and frequency-based rule retenfiigure 1 shows MAE of all
methods in four domains.

In all domains, ARR1 provides the highest accuracy. In athdms except Auto,
performance with ARR1 tends to improve as the number ofmethrules increases.
However, the improvement is not significantly differentrfrthe accuracy achieved by
retaining a minimum number of adaptation rules. We disduisstirther below. For the
Hardware and MPG domains, after a certain point increasiagnumber of adaptation
rules slightly degrades the performance. We hypothesgtethiis deterioration is due
to the introduction of less accurate rules, and that thiseisould be ameliorated by
setting a lower bound threshold on the ranking score fosrtdeetain.

An interesting observation is that for three of the four doreaegardless of the rule
retention method, learning and applying adaptation rutesiges substantially better
performance than simply averaging results with k-NN, suppg the value of adap-
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tation rule learning. Even for the exception domain, MPQ& tf the three retention
methods provide substantially better performance thamk-N

A surprising result is that frequency-based rule retenfamthe tested domains
usually performs worse than random rule retention. Oneiplesexplanation is that
the frequency-based approach may sacrifice rule diversgylting in poor coverage of
parts of the space. However, further study is needed.

Assessing ARR1’s Error Scoring for Blame/Credit Assigrimea investigate question
2, on the impact of ARR1’s error scoring method for blameditrassignment to rules
during the retention process, we compared accuracy usiagets selected by ARR1
and selected by an ablated version of ARR1, ARR1-AVG, thaked rules by lowest
average error rather than ARRIE&rorScore. ARR1's ErrorScore favors rules that
are more frequently used during the test phase and at thetsamgield accurate es-
timations; ARR-AVG’s scoring favors rules that yield acatg estimations on average,
regardless of the number of times the rules were applieddrirtining phase. Fig. 2
shows that in all test domains, retention by ARR1 resultddvrer MAE than retention
by ARR-AVG, supporting the benefit of ARR1’s scoring mectsami The greatest gain
over ARR-AVG is observed for the Hardware domain and the gdast for MPG and
Housing domains.

Sensitivity of Resulting Accuracy to Number of AdaptatiersProblem During ARR'’s
Training: As discussed previously, cost of ARR1 depends on the nuimbésource
cases adapted for each test source case. Also, there i®affriacadapting larger num-
bers of source cases for a given test case: Adapting adalitsmurce cases provides
more data about rule performance, but because the addisionice cases are less sim-
ilar, the additional adaptations may result in more errenglizing rules which might
have had higher rankings if only applied to more similar sasand which might only
be applied to more similar cases in practice.

To study the effect of k's value (in the training phase) onlfgystem accuracy with
the retained rule set, we tested accuracy féralues, 10, 20, 40, 80 and 100. Fig. 3
shows results for the Auto and MPG domains. Best performfmdeoth domains was
achieved for & value of 80. The performance of ARR1 for differéntvalues across
MPG and Auto domains shares some general patterns, with ganiation. For exam-
ple, although for the MPG domain the second best performaraehieved whet is
set to 100, the samievalue in the Auto domain yields lower performance, espBcial
when the number of retained adaptation grows. The resudtgest that the performance
of ARR1 improves a%’s value increases up to a certain point, determined by the do
main, and then decreasestaisicreases further. The housing and MPG domains are not
shown for reasons of space, but also show this pattern.

We explain this pattern by the balance between the advanfagdging adaptation
rules based on their effectiveness for local cases (becéarse well populated case
base, it is more reasonable to select the source cases fedocti neighborhood of the
input query), versus the previously-noted drawback thiaiges small number of source
cases (lower values fd) in the training phase decreases the number of rules exdmine
by ARR.
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Fig. 2. MAE for retention by ARR1 and ARR-AVG

Comparative Benefit of Increasing Case or Adaptation Kndgde To investigate
question 4, on the comparative benefit of adding case or afilaptknowledge, we
tested how increases in the number of adaptation rules aggeokeby ARR1 affect fi-
nal performance, versus how increases in the number of effsesfinal performance.
This experiment explores how sensitive performance is titiats of either type of
additional knowledge, which gives an indication of how dpithe knowledge in that
container “converges” to an adequate set. In particularettperiment measures the
gain in accuracy per addition to a target knowledge contgithe case base or adap-
tation knowledge container), compared to the performaftiesosystem for the target
knowledge container with minimum size.

Because the effect of case additions depends on the stiazegyor selecting cases
to add, we tested three methods: (1) Smyth and McKenna's(R&[Cov), as well as
two simplified methods, (2) Cov, which added the new casetié@ighest competence
(Cov) and (3) Reach, which added the new case with the lowashability.

Fig. 4 summarizes the results. In the lefthand two graplesXthxis shows the case
base size; in the righthand two graphs, the X axis shows thptation rule set size.
The Y axis shows the incremental percent improvement frodingdanother case (in
the lefthand graphs) or another rule (in the righthand gsagre minimum knowledge
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Fig. 3. The effect of the number of source cases used in the traitiaggon ARR'’s performance

container size for Auto, MPG, Housing and Hardware domainkd, 20, 20, and 10
respectively.

As expected, increases in size of either target knowledgtaawr generally im-
prove performance. However, ARR1 tends to show less impneve per addition than
Cov, Reach, and RelCov. We conclude that once a minimum nuofbadaptation
rules/cases critical for system performance has beemestaperformance is less sen-
sitive to additions to the adaptation knowledge contaihentto additions to the case
base.

6 Conclusion and Future Directions

This paper introduced ARR, a general approach to guidingtatian rule retention.
ARR uses a blame/credit assignment mechanism for guidilegreiention based on
testing sample adaptation problems. Empirical result&RIR1, a specific instantiation
of ARR, showed improvement over k-NN, two other alternativie retention methods,
and an ablated version of ARR with a baseline blame/credigament method. Ex-
perimental results also showed that ARR1’s rule retentioegss may converge faster
than case retention, suggesting a coordinated adaptattboase acquisition strategy
of retaining a limited number of rules but continuing casditoin.

Future directions for this work include studying ARR’s parhance for simulta-
neous maintenance of source case and adaptation knowledgéners (ARR assumes
that the source case knowledge container is fixed), andtige¢isg how local coverage
characteristics of the case base may affect the choice ahwhi retain cases or rules.
Another direction is to extend ARR1 by applying ensemblead#ptations and study-
ing the resulting trade-offs in accuracy and time complexdtthe algorithm, as well as
examining more sophisticated score assignment methodslaode the accuracy and
usage frequency of the applied rules in the training phaseasse the applicability of
the general ARR method is not restricted to adaptation kedgé generated by any
particular method, another interesting avenue would beptoee its use for adaptation
knowledge retention in other contexts and for other tasks.
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