
CASE-BASE MAINTENANCE BEYOND CASE DELETION

Brian Schack

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science,

Indiana University

November 28, 2023

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Doctoral Committee

David Leake, PhD

David Crandall, PhD

Ken Shan, PhD

Curt Bonk, PhD

November 28, 2023

ii

Acknowledgments

I acknowledge the contributions of my advisor, Dr. David Leake; my minor advisor, Dr. Curt Bonk;

and my other committee members, Dr. David Crandall and Dr. Ken Shan. I also acknowledge

the contributions of my mentors, Dr. Michael Floyd and Dr. David Aha, at the Center for

Applied Research in Artificial Intelligence at the Naval Research Laboratory. I also acknowledge

the contributions of my colleagues: Vahid Jalali, Eriya Terada, Larry Gates, Caleb Kisby, Rin

Metcalf, Xiaomeng Ye, Zach Wilkerson, and Kaitlynne Wilkerson. Finally, I acknowledge the

support of my parents, Drs. Mark and Edna Schack.

This dissertation follows a LaTeX template from the Department of Mathematics.1 “Chapter

3: Subdividing Cases for Deletion” (on page 26) is adapted from Leake and Schack (2015) and

Schack and Summers (2017). “Chapter 4: Prioritizing Deletion by Recoverability via Adaptation

Knowledge” (on page 44) is adapted from Leake and Schack (2016) and Schack (2016). “Chapter

5: Data Augmentation to Expand Choices for Deletion” (on page 61) is adapted from Leake and

Schack (2018) and Schack (2019). “Chapter 6: Predictive Case Discovery for Problem-Distribution

Drift” (on page 82) is adapted from Leake and Schack (2023) and Schack (2023).

The International Conference on Case-Based Reasoning provided travel funding to present this

research. The Professional Development Grant from the Ursuline Center for Teaching and Learning,

the Hart Travel Stipend from Brescia University Academic Affairs, and the Marshall Heuser and

Mimi Gatus Mazzier-Heuser International Travel Grant from Brescia University Academic Affairs

provided funding to co-present the research in Chapter 5. The Department of Defense (Contract

W52P1J2093009) and the Office of Naval Research in the Department of the Navy (Award N00014-

19-1-2655) provided funding for the research in Chapter 6.

1https://math.indiana.edu/student-portal/graduate/iu-thesis-class.html

iii

Brian Schack

CASE-BASE MAINTENANCE BEYOND CASE DELETION

Case-based reasoning, a method of artificial intelligence, solves a problem by adapting the solution

to a similar problem already solved. Case-base maintenance strategies support a compact,

competent case base by deleting, modifying, or discovering cases. This dissertation presents four

case-base maintenance strategies: flexible feature deletion, adaptation-guided feature deletion,

expansion-contraction compression, and predictive case discovery. Flexible feature deletion deletes

components of cases instead of whole cases. Adaptation-guided feature deletion prioritizes

components for deletion according to their recoverability via adaptation knowledge.

Expansion-contraction compression, in addition to deleting cases, also adds cases in unexplored

regions of the problem space. And predictive case discovery anticipates and acquires cases

expected to be useful for solving future problems. Evaluation of these case-base maintenance

strategies compared to appropriate baselines on suitable data sets generally shows improvements

in adaptation cost, competence, or solution quality.

David Leake, PhD

David Crandall, PhD

Ken Shan, PhD

Curt Bonk, PhD

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

1.1 The Case-Based Reasoning Cycle and Knowledge Containers 1

1.2 Comparison to Other Machine Learning Methods . 4

1.3 The Swamping Utility Problem and Case-Base Maintenance 7

1.4 A Broader View of Case-Base Maintenance . 8

1.5 Thesis Statement . 10

1.6 Dissertation Outline . 11

1.7 Subdividing Cases for Deletion . 12

1.8 Prioritizing Deletion by Recoverability via Adaptation Knowledge 14

1.9 Data Augmentation to Expand Choices for Deletion 16

1.10 Predictive Case Discovery for Problem-Distribution Drift 17

2 Evolution of Case-Base Maintenance 20

2.1 Historical Context and Modern Developments . 20

2.2 Partitioning Approaches and Algorithm Adaptations 21

2.3 Enhancements to Case-Base Maintenance Algorithms 21

2.4 Restructuring Case Bases . 22

2.5 Preference Modeling and Temporal Maintenance . 22

2.6 Concept Drift-Tolerant Maintenance (Drift-CBM) 23

2.7 Navigating Computational Complexity in Case-Base Maintenance 23

2.8 Case-Base Near Insertion (CBNI) . 24

v

2.9 Multi-Objective Evolutionary Case-Base Maintenance (MOE-CBM) 24

3 Subdividing Cases for Deletion 26

3.1 When Feature Deletion Is Appropriate . 28

3.1.1 When to Apply Feature Deletion to Indices 30

3.1.2 When to Apply Feature Deletion to Solutions 30

3.2 Bundling Features for Deletion . 31

3.3 Evaluation . 35

3.3.1 Test Data . 35

3.3.2 Indexing and Similarity Criteria . 36

3.3.3 Hybrid Strategies . 36

3.3.4 Evaluation Procedure . 37

3.3.5 Experimental Results . 39

3.3.6 Retrieval Speed . 41

3.4 Future Research Questions . 41

3.5 Summary . 43

4 Prioritizing Deletion by Recoverability via Adaptation Knowledge 44

4.1 Building on Flexible Feature Deletion . 46

4.2 Applying Case Adaptation Knowledge . 47

4.3 A Case Study on Adaptation-Guided Feature Deletion 49

4.3.1 Testbed Domain . 49

4.3.2 Adaptation Strategies . 50

4.3.3 Flexible Feature Deletion Strategies . 52

4.4 Evaluation . 53

4.4.1 Experimental Design . 55

vi

4.4.2 Question 1: Competence Retention . 56

4.4.3 Question 2: Solution Quality Retention . 57

4.4.4 Question 3: Processing Time . 58

4.4.5 Creative Destruction . 58

4.5 Summary . 60

5 Data Augmentation to Expand Choices for Deletion 61

5.1 Background . 63

5.1.1 Compressing the Case Base . 63

5.1.2 Knowledge Container Transfer . 64

5.1.3 Exploration vs. Exploitation . 64

5.2 The Expansion-Contraction Compression Algorithm 66

5.3 Evaluation . 69

5.3.1 Experimental Questions . 69

5.3.2 Experimental Design . 70

5.4 Experimental Results . 72

5.4.1 Question 1: Relative Preservation of Quality 72

5.4.2 Question 2: Relative Preservation of Competence 75

5.4.3 Question 3: Effect of the Length of the Adaptation Path 75

5.4.4 Question 4: Effect of the Sparsity of the Case Base 77

5.4.5 Question 5: Applying Sample Adaptation Rule Sets 79

5.5 Future Work . 80

5.6 Summary . 80

6 Predictive Case Discovery for Problem-Distribution Drift 82

6.1 Regularities Underpinning Case-Based Reasoning . 83

vii

6.2 How Regularity May Degrade: Types of Drift . 85

6.2.1 Concept Drift . 86

6.2.2 Problem-Distribution Drift . 86

6.2.3 Adversarial Drift . 87

6.3 Addressing Problem-Distribution Drift with Guided Case Discovery 88

6.3.1 Prior Work on Drift Detection . 88

6.3.2 Case Discovery . 90

6.3.3 Clustering-Based Case Discovery . 92

6.4 Managing Multiple Strategies . 93

6.5 Evaluation . 93

6.5.1 Testing Scenario . 94

6.5.2 Variations on the Testing Scenario . 97

6.5.3 Experimental Results . 98

6.6 Summary . 102

7 Conclusion 103

7.1 Key Contributions . 103

7.2 Implications . 104

7.3 Future Work . 104

Glossary 105

Bibliography 112

viii

Chapter 1

Introduction

Case-based reasoning (CBR) is a method of artificial intelligence which solves a problem by adapting

the solution to a similar problem already solved (Aamodt & Plaza, 1994; de Mantaras et al., 2005;

Kolodner, 1993; Leake, 1996a; Riesbeck & Schank, 2013). Case-based reasoning works similarly to

how a judge decides a legal case by applying precedents (Ashley, 1986). Or how an unknown illness

reminds a doctor of another patient with similar symptoms (Holt et al., 2005). Or, going back to

the sixth century, how a priest decided a penance for a parishioner by referring to a penitential

describing the sin under similar circumstances (Jonsen & Toulmin, 1988).

A large case base contains many cases that could potentially solve a wide range of future

problems. On the other hand, a small case base takes less storage, less time to search through, less

time to trasmit over a network, and less time to manually review. Case-base maintenance strategies

navigate this trade-off by choosing the most valuable cases to retain and the least valuable cases to

delete in order to yield a case base that is both competent and compact. This dissertation proposes

and evaluates four case-base maintenance strategies: flexible feature deletion, adaptation-guided

feature deletion, expansion contraction-compression, and predictive case discovery.

1.1 The Case-Based Reasoning Cycle and Knowledge Containers

Case-based reasoning is considered a methodology for problem solving because it describes a set of

guiding principles rather than prescribing a specific technology (Watson, 1999). It traces its roots

(Richter & Aamodt, 2005) back to both cognitive science (Kolodner, 1996; Leake, 1998; Ross, 1989)

and casuistry (Searing, 2009) –– specifically studying how people remember and solve problems.

While case-based reasoning can use various technologies such as nearest neighbor, induction, fuzzy

logic, or SQL, it is not limited to these specific technologies. Instead, case-based reasoning can

1

be implemented using any technology that adheres to its guiding principles. Therefore, case-based

reasoning is best viewed as a general methodology for building knowledge-based systems rather

than an isolated technology for specific tasks.

Dynamic memory is an open-ended model of learning which uses remindings to explain failures

of expectations instead of categories to classify knowledge (Schank, 1982, 1999). It formed the

basis for the earliest case-based reasoning software like CYRUS and IPP. The Computerized Yale

Retrieval and Updating System (CYRUS) modeled long-term memory and fact retrieval for events

in the lives of important people (Kolodner, 1983), and the Integrated Partial Parser (IPP) read and

generalized from news stories using memory-based parsing techniques (Lebowitz, 1983). Since then,

case-based reasoning has been applied to a wide variety of domains, including medicine (Bichindaritz

& Marling, 2006; Holt et al., 2005), law (Rissland et al., 2005), engineering (Shokouhi, 2012; Waheed

& Adeli, 2005), and finance (Oh & Kim, 2007). Today, case-based reasoning continues to be an

active area of research, with ongoing work on new algorithms, representations, and applications.

The case-based reasoning cycle (shown in Figure 1.1 on page 3) consists of four phases: retrieval,

reuse, revision, and retention (Aamodt & Plaza, 1994; de Mantaras et al., 2005). Each phase works

in turn to ultimately solve a given problem. First, the retrieval phase searches the case base for

other problems similar to the given problem. Second, the reuse phase identifies the differences

between the given problem and the retrieved case in order to adapt the solution to the retrieved

case to account for those differences. Third, the revision phase attempts to apply the adapted

solution in a simulation or the real world. Based on the performance of the solution, at times worse

than expected, this phase modifies the solution to improve it. Finally, the retention phase packages

the given problem and the revised solution as a new case. If the case base has sufficient space and

the new case provides sufficient value, then this phase saves the case into the case base. Future

iterations of the case-based reasoning cycle may use this new case to solve future problems.

Case-based reasoning has four knowledge containers (shown in Figure 1.2 on page 3) which each

2

8

1. RETRIEVE the most similar case or cases
2. REUSE the information and knowledge in that case to solve the problem
3. REVISE the proposed solution
4. RETAIN the parts of this experience likely to be useful for future problem solving

A new problem is solved by retrieving one or more previously experienced cases, reusing the case
in one way or another, revising the solution based on reusing a previous case, and retaining the new
experience by incorporating it into the existing knowledge-base (case-base). The four processes
each involve a number of more specific steps, which will be described in the task model. In figure
1, this cycle is illustrated.

RETRIEVE

RE
US

ER
ET

AI
N

Problem

New
Case

Retrieved
Case

General
Knowledge

Previous
Cases

Suggested
Solution

Solved
Case

Learned
Case

REVISE

Tested/
Repaired
Case

Confirmed
Solution

New
Case

Figure 1. The CBR Cycle

An initial description of a problem (top of figure) defines a new case. This new case is used to
RETRIEVE a case from the collection of previous cases. The retrieved case is combined with the new
case - through REUSE - into a solved case, i.e. a proposed solution to the initial problem. Through
the REVISE process this solution is tested for success, e.g. by being applied to the real world
environment or evaluated by a teacher, and repaired if failed. During RETAIN, useful experience is
retained for future reuse, and the case base is updated by a new learned case, or by modification of
some existing cases.

As indicated in the figure, general knowledge usually plays a part in this cycle, by supporting the
CBR processes. This support may range from very weak (or none) to very strong, depending on
the type of CBR method. By general knowledge we here mean general domain-dependent
knowledge, as opposed to specific knowledge embodied by cases. For example, in diagnosing a
patient by retrieving and reusing the case of a previous patient, a model of anatomy together with

Figure 1.1: The case-based reasoning cycle consists of four phases: retrieval, reuse, revision, and

retention (Aamodt & Plaza, 1994).

• How to use the containers for problem solving and improving the system?
• How to shift knowledge between containers?
The paper is partially based on an invited talk of the author at the ICCBR95 at Sesimbra, Portugal 1995, see also
(Richter 1998).
.

2. Knowledge Containers in Case-Based Reasoning

In CBR we identify four major knowledge containers as represented in the following diagram.

 There is an interaction between the containers:

The available knowledge is distributed over the containers, as indicated by the arrows. In a more detailed view
the containers may be split up into different subcontainers. Because no container is able to solve completely a
task the containers depend on each other. Therefore an inadequately filled container may provide a burden to
other containers. The term inadequately filled refers to deficiencies in a knowledge container that affect quality
aspects of a CBR system such as: Correctness of solutions, competence of the system, and efficiency of problem
solving or maintenance aspects. Here the competence is roughly the ratio between the number of solvable
problems and the number of possible problems, see e.g. (Smyth, & McKenna 1998).
On the other hand we face the fact that some knowledge can be more easily represented in some containers and
is much more difficult to represent in others. This leads to a central aspect of CBR: One can start with a working
system of lower quality and improve the system by reorganizing the containers over time.
Next we will discuss the different containers.

2.1 The Vocabulary

One of the first questions to be handled in a knowledge representation system is which data structures and which
elements of the structures are used to represent primitive notions. These may be e.g. predicates, attributes,
functions or related constructs. The structure most common in CBR is the attribute-value representation. Other
structures, e.g. taxonomic ones can be built up from attributes. In addition, predicates are often used. For our
purposes it is, however, sufficient to consider attributes.
For an attribute-value representation it is relevant to find out which attributes with which semantics are chosen.
The completeness of the set of attributes can by judged by two criteria:
• Principal completeness: All relevant properties can be formulated. If the attribute set is incomplete in this

sense then certain aspects or properties of interest cannot be represented in the system. This is known as the

Available Knowledge

Vocabulary Similarity
Measure

 Case Base Solution
Transformation

Figure 1.2: Case-based reasoning has four knowledge containers which each contain knowledge to

support an aspect of the case-based reasoning cycle: vocabulary, case base, similarity measure, and

solution transformations (Richter, 2003).

3

contain knowledge to support the case-based reasoning cycle: vocabulary, case base, similarity

measure, and solution transformations (Richter, 2003). The vocabulary container stores the poten-

tial features of a problem or solution, the range of potential values, and the relationship between

dependent features. The case base contains problems with known solutions either seeded by the

training data or solved in the past. A case contains features and their values and has more or less

structure depending on the domain. The similarity measure contains the function for calculating

the resemblance between problems. It may compare the values of features with a specific weight-

ing. The solution transformation container stores potential adaptations to a solution to account

for differences between problems.

1.2 Comparison to Other Machine Learning Methods

Machine learning, a field of artificial intelligence, studies how to develop computer software that

can progressively improve with experience and without explicit programming for a specific task

(Mitchell, 1997). Case-based reasoning and various methods of machine learning like analogical

reasoning, artificial neural networks, decision trees, explanation-based learning, k-nearest neigh-

bors, and rule induction share similarities, but case-based reasoning also has key differences from

alternative approaches (Leake, 1996b).

Analogical reasoning discovers and maps parallels between the relational structure of systems

or reasoning steps usually from different domains (Burstein, 1989; Forbus et al., 1995). Analogical

reasoning and case-based reasoning share similar processes, but they focus on different aspects.

The standard schema for analogical reasoning, the four-element comparison, follows the syntactic

form “W : X :: Y : Z” (Collins & Burstein, 1987). The difference heuristic approach in case-based

reasoning applies this schema as “Saved Problem : Saved Solution :: Given Problem : Adapted

Solution” in order to learn adaptation rules (Hanney & Keane, 2005; McSherry, 2006).

Analogical reasoning focuses primarily on the similarity of the compared structures, whereas

4

case-based reasoning also adds a focus on retrieval and adaptation. Analogical reasoning can apply

both across different domains and within the same domain (Carbonell, 1985), whereas the cases

within a case base usually fall into the same domain, with the exception of case-based creativity

(Schank & Leake, 1989) and cross-domain transfer learning (Sharma et al., 2007). In addition to

specific cases, analogical reasoning can manipulate generalized concepts or domain principles. In

contrast, while a case-based reasoning system may index its case base with generalized structures,

the cases normally describe specific examples.

Inspired by animal brains, artificial neural networks loosely model interconnected neurons which

process signals and then signal their neighbors (Haykin, 2004). Neural networks have garnered con-

siderable interest from academia and industry for their effectiveness in computer vision (Krizhevsky

et al., 2012), natural language processing (Collobert & Weston, 2008), and speech recognition (Hin-

ton et al., 2012). Application of neural networks has outpaced theory, however, so researchers

usually take a black box approach with empirical confirmation of methods and limited explanation

for results (Samek et al., 2017). In contrast, explainable artificial intelligence, such as case-based

reasoning, differs from neural networks because it follows a white box model which allows for

human-interpretable justification of its methods and results (Core et al., 2006; Gunning & Aha,

2019; Leake & McSherry, 2005).

Decision tree learning constructs a tree from training data where each internal node tests an

attribute and each leaf node draws a conclusion (Quinlan, 1986; Safavian & Landgrebe, 1991).

Decision trees and case-based reasoning both share a common advantage of explainability. On the

other hand, minor changes or additions to the training data can require reconstruction of a decision

tree, whereas case-based reasoning can add and remove cases incrementally.

Explanation-based learning generalizes from instances by exploiting a strong domain theory to

analyze why each specific instance exemplifies a broader concept (Minton et al., 1989). Explanation-

based learning tends to generalize as much as possible, whereas case-based reasoning tends to keep

5

its cases specific. Both explanation-based learning and case-based reasoning can suffer from the

swamping utility problem (described in “Section 1.3: The Swamping Utility Problem and Case-Base

Maintenance” on page 7) as either the proof macros or the cases, respectively, grow too numerous

(Minton, 1990; Smyth & Cunningham, 2005).

The k-nearest neighbors algorithm (kNN) determines the label of an instance depending on the

majority vote or average of the labels of its neighbors without maintaining any abstractions (Aha

et al., 1991; Kramer, 2013). Both k-nearest neighbors and case-based reasoning search for training

examples within a multi-dimensional feature space. In a way, the k-nearest neighbors algorithm

specializes case-based reasoning by limiting the structure of cases to feature vectors and limiting

the adaptation rules to voting and averaging. The k-nearest neighbors algorithm represents each

potential neighbor as a feature vector with a class label, but case-based reasoning can represent

cases with more or less structure depending on the domain. Also, the k-nearest neighbors algorithm

chooses a solution by voting or averaging between the neighbors –– often weighted according to

their distance from the query –– but case-based reasoning adapts the retrieved case to the problem

via one or more solution transformation rules.

Rule induction, another area of machine learning, extracts formal rules which model patterns

in training examples (Cohen, 1995). Both rule induction and case-based reasoning generalize from

examples but in very different ways. Rule induction eagerly extracts rules from the training data,

whereas case-based reasoning lazily postpones the generalization until given a problem to solve. In

a rich domain with many possible generalizations, rule induction faces a difficult decision of which

direction or directions to generalize in anticipation of an unknown future problem. Case-based

reasoning defers this decision by always generalizing in the direction of a given problem.

6

1.3 The Swamping Utility Problem and Case-Base Maintenance

After the initial engineering of a knowledge-based system, how does the system sustain effective

performance over its lifetime? Knowledge maintenance refers to the process of updating and refining

a knowledge base to ensure that it remains accurate, relevant, and useful (Menzies, 1999). This

process involves identifying and correcting errors or inconsistencies in the existing knowledge, as

well as adding new information and insights as they become available. Knowledge maintenance

is important for ensuring the long-term effectiveness of knowledge-based systems, as outdated or

inaccurate information can reduce the system’s usefulness and credibility. It typically involves a

range of activities, such as data cleaning, knowledge validation, and knowledge updating, and may

be automated or performed manually depending on the complexity of the knowledge base and the

resources available for maintenance.

A case base can contain cases from training data, knowledge engineered by human experts, and

the retention phase of the case-based reasoning cycle. On one hand, each case could potentially,

through adaptation, solve future problems. If other cases could not solve these problems or could

only solve them with greater adaptation cost or inferior solution quality, then that case contributes

to overall problem-solving competence. On the other hand, each retained case makes the case base

larger. A larger case base requires more storage, more time to search through, more bandwidth to

transmit over a network, and more attention to manually review.

The swamping utility problem describes the trade-off between competence contribution and

retrieval cost (Francis & Ram, 1993; Minton, 1990; Smyth & Cunningham, 2005). More broadly,

this trade-off could also involve other factors such as solution quality, storage cost, and bandwidth

requirements. Legacy systems, embedded systems, and unreliable networks worsen the problem

by constraining resources. Big data and streaming data also worsen the problem by increasing

resource usage.

Much research over the years has attempted to mitigate the utility problem (Juarez et al., 2018).

7

Case-base maintenance strategies judiciously choose the most valuable cases to retain and the least

valuable cases to delete in order to maintain a compact, competent case base. The strategies

differ in the order that they delete cases, and like machine learning algorithms in general, their

effectiveness depends on their suitability to a particular dataset (Aha, 1992).

A popular maintenance strategy involves estimating the trade-off between coverage and reach-

ability (Smyth & Keane, 1995). Coverage approximates the number of neighboring problems that

a case can solve through adaptation. Reachability approximates the number of neighboring cases

that can solve a problem through adaptation. More coverage tends to make a case more valuable to

retain, and more reachability tends to make a case more expendable through deletion. The coverage

and reachability sets of cases can intersect in interesting ways, so deleting a case while minimizing

the resulting loss in overall problem-solving competence is like playing a game of n-dimensional

Jenga where removing any brick could cause the tower to topple.

No maintenance strategy can calculate coverage and reachability exactly because the compe-

tence contribution of a case depends on its applicability to problems encountered in the future

which the strategy cannot predict with certainty in the present. Therefore, case-base maintenance

strategies rely on the representativeness assumption which states that future problems encountered

will follow the same distribution within the domain as existing cases in the case base (Smyth, 2005).

For domains where case-based reasoning works effectively, this assumption tends to hold reasonably

well in practice.

1.4 A Broader View of Case-Base Maintenance

Research in case-based reasoning normally justifies case-base maintenance as solving two problems:

reducing the size of the stored case base and reducing the retrieval time for solving problems (Francis

& Ram, 1995; van Someren et al., 2005). But improvements to indexing and parallelization have

substantially mitigated the swamping utility problem in all but the largest case bases (Houeland &

8

Aamodt, 2010). And, although it may not continue indefinitely, since the inception of Moore’s Law,

the number of transistors in an integrated circuit has doubled about every two years –– leading

to faster speeds and reduced costs (Schaller, 1997). In light of this technological progress, does

case-base maintenance still matter? This dissertation asserts that, despite these improvements, the

problem of maintaining a compact and competent case base remains.

Imagine, if you will, an ideal scenario in which storage space approaches infinity and processing

time approaches zero. In what ways could the maintenance phase contribute to performance? This

section proposes four potential directions for researching a broader view of maintenance: bandwidth,

creativity, licensing cost, and diversity.

The usage and importance of networked systems (especially the Internet) has grown massively

over the decades since Smyth and Keane (1995) –– leading to distributed case-based reasoning

systems (Plaza & McGinty, 2005). Furthermore, application requirements continue to outpace

available bandwidth –– especially for mobile devices. For a networked system, rather than mem-

ory or processing power, bandwidth and latency limit performance. These limitations necessitate

judicious decisions of which cases the nodes in the network should share with which neighbors and

at what level of detail.

Normally, the compactness of a case base requires a corresponding trade-off in competence.

But a recent finding shows that a kind of maintenance called creative destruction could, in limited

circumstances, actually improve both compactness and competence by subdividing cases to make

their components accessible to adaptations of limited power (Leake & Schack, 2016; Schack, 2016).

This finding suggests the potential to look for further opportunities for creative destruction when

developing maintenance strategies.

As generative artificial intelligence tackles difficult design tasks, it must face the same intellectual

property constraints as human designers. Different laws such as patents, copyrights, trademarks,

trade secrets, personal privacy, and sui generis (“of its own kind”) database rights may apply

9

to data depending on its domain and jurisdiction. Reasoning about this requires knowledge of

case provenance (Leake & Whitehead, 2007). Compositional adaptation strategies must check the

compatibility of the licenses of their component parts. One could imagine a maintenance strategy

that minimizes the licensing cost of a case base independently from its size. For example, Netflix

manually maintains their catalog of films and television shows for a dual purpose: to support the

competence of their recommender system and to stay within their licensing budget.

The performance of a case-based reasoning system depends not only on the problem-solving

time and the solution quality, but also the diversity of its solutions (Smyth & McClave, 2001).

For example, a travel agency employing a recommender system that perpetually proposes the

same destination would lose customers, regardless of the merit of its itineraries or the speed of

its response. Therefore a maintenance strategy could consider diversity as another factor when

deleting or refactoring cases or case components.

Considering the swamping utility problem, the maintenance strategies developed to mitigate it,

and this broader view of maintenance, several key questions are raised: How can a maintenance

strategy minimize the loss in competence as it compresses a case base further and further? How

do case bases compressed with different strategies to the same level of compression differ in their

ability to solve problems? How do they differ in the quality of the solutions retrieved? How do

they differ in the speed of retrieval? Which case bases call for the application of which maintenance

strategies?

1.5 Thesis Statement

Main Claim: Case-based reasoning can benefit from maintenance strategies that involve more

than merely deleting whole cases.

First Sub-Claim: The flexible feature deletion case-base maintenance strategy can compress suit-

able case bases with less loss in competence by deleting components of cases instead of whole

10

cases (Leake & Schack, 2015; Schack & Summers, 2017).

Second Sub-Claim: The adaptation-guided feature deletion case-base maintenance strategy can

compress suitable case bases with less loss in competence by prioritizing components of cases

for deletion according to recoverability via adaptation knowledge (Leake & Schack, 2016;

Schack, 2016).

Third Sub-Claim: The expansion-contraction compression case-base maintenance strategy can

compress suitable, unrepresentative case bases with less loss in competence by, in addition to

deleting cases, also selectively adding cases (Leake & Schack, 2018; Schack, 2019).

Fourth Sub-Claim: The predictive case discovery case-base maintenance strategy can reduce

adaptation cost for suitable case bases by predicting and acquiring cases expected to be

useful for solving future problems (Leake & Schack, 2023; Schack, 2023).

1.6 Dissertation Outline

The following outline gives an overview of the chapters in this dissertation, and Sections 1.7 - 1.10

on pages 12 - 17 provide a preview of Chapters 3 - 6.

1. Introduction: Introduce case-based reasoning, describe the case-based reasoning cycle and

knowledge containers, place case-based reasoning in the context of other methods of machine

learning, and explain the swamping utility problem which motivates case-base maintenance.

2. Evolution of Case-Base Maintenance: Offer an overview of the historical progression of

case-base maintenance, analyze modern approaches, and link past methodologies to present

ones.

3. Subdividing Cases for Deletion: Explain the assumptions of uniform storage cost and in-

divisible cases, propose the flexible feature deletion case-base maintenance strategy, and eval-

11

uate flexible feature deletion in comparison to per-case maintenance strategies in terms of

retrieval accuracy and time.

4. Prioritizing Deletion by Recoverability via Adaptation Knowledge: Define the concept

of recoverability, propose the adaptation-guided feature deletion case-base maintenance strat-

egy which prioritizes features by recoverability, explain the creative destruction phenomenon,

and evaluate adaptation-guided feature deletion in comparison to knowledge-light flexible

feature deletion in terms of competence retention, solution quality retention, and processing

time.

5. Data Augmentation to Expand Choices for Deletion: Explain the representativeness as-

sumption, overfitting, and case discovery; propose expansion-contraction compression which

applies data augmentation to case-base maintenance; evaluate expansion-contraction com-

pression in comparison to condensed nearest neighbor in terms of retention in competence

and solution quality.

6. Predictive Case Discovery for Problem-Distribution Drift: Explain competence groups

and competence holes, propose a case-base maintenance strategy which targets data augmen-

tation to fill competence holes between nearby competence groups, and evaluate the targeted

strategy in comparison to untargeted expansion-contraction compression in terms of compe-

tence and solution quality.

7. Conclusion: Discuss the implications of the four proposed strategies, envision future work on

case-base maintenance, and conclude by restating the key contributions of this dissertation.

1.7 Subdividing Cases for Deletion

Case-base maintenance (D. C. Wilson & Leake, 2002) is an active area of case-based reasoning

research. Much of this work develops methods to compress the case base, such as competence-based

12

case deletion (Smyth & Keane, 1995), deletion methods taking class boundaries into account by

considering local complexity (Craw et al., 2007), optimizing the trade-off between size and accuracy

(Lupiani et al., 2013), deletion aimed at preserving diversity (Lieber, 2005), strategies for case

retention and forgetting (Muñoz-Avila, 1999; Ontañón & Plaza, 2003; Romdhane & Lamontagne,

2008; Salamó & López-Sánchez, 2011b), deletion aimed at preserving adaptation efficiency (Leake

& Wilson, 2003), and deletion aimed at increasing accuracy (Marquer et al., 2023).

Case-base maintenance strategies, whether based on coverage and reachability or not, normally

make two assumptions: (a) that all cases have a uniform storage cost and (b) that they must retain

or delete whole cases. This dissertation proposes and evaluates flexible feature deletion (FFD), a

knowledge-light case-base maintenance strategy which, in contrast, subdivides variable-size cases

for deletion of their components (Leake & Schack, 2015; Schack & Summers, 2017).

Cases can have varying storage cost when they contain varying amounts of information at vary-

ing levels of detail. The storage cost of both the problem and the solution can vary independently

because a simple problem may have a complex solution and vice versa. This suggests balancing

the competence contribution of a case against its storage cost.

A case-base maintenance strategy could delete an entire case, but it could also delete a single

feature across all cases, or a single feature from a single case. Each of these alternatives presumably

degrades problem-solving competence but not necessarily to the same degree. Compared to per-

case strategies, flexible feature deletion can reduce the size of the case base with less reduction in

the number of cases. It can also vary in the metric that it uses to order features for deletion. Each

of the variations uses a knowledge-light metric like the size of a case, the rarity of a feature, or a

hybrid of multiple metrics.

Research on maintenance of case contents has generally focused on quality improvement rather

than case base compression (Racine & Yang, 2005; Salamó & López-Sánchez, 2011a). However,

research on case abstraction, in aiming to compact the case base by removing concrete cases sub-

13

sumed by abstractions (Bergmann & Wilke, 2005), can be seen as in the spirit of replacing cases

with more compact versions.

Domains with large cases and multiple representations call for the application of flexible feature

deletion. For example, cases based on medical imagery (D. C. Wilson & O’Sullivan, 2008) may have

various resolutions and a large number of features of which only some are relevant to the diagnosis.

Flexible feature deletion can also apply to indexing features as well as cases. Maintenance of

indexing features has been extensively studied in case-based reasoning, applying methods such as

feature deletion, addition, and reweighting, but again with the goal of improving retrieval accuracy

rather than decreasing the storage required for the indices themselves (Arshadi & Jurisica, 2005;

Fox & Leake, 2005; Muñoz-Avila, 2002; Zhang & Yang, 2006). Feature set reduction has been

combined with case selection to improve accuracy while compressing the case base (Li et al., 2006).

1.8 Prioritizing Deletion by Recoverability via Adaptation Knowledge

The adaptation-guided feature deletion case-base maintenance strategy builds on flexible feature

deletion (described in “Section 1.7: Flexible Feature Deletion” on page 12 and “Chapter 3: Sub-

dividing Cases for Deletion” on page 26). Whereas flexible feature deletion orders the features

according to a knowledge-light metric, adaptation-guided feature deletion (AGFD) integrates ad-

ditional knowledge from the solution transformation container about the recoverability of features

(Leake & Schack, 2016; Schack, 2016). Similar to how reachability measures the ability of adap-

tation knowledge applied to other cases to restore the solution to a case considered for deletion,

recoverability measures the ability of adaptation knowledge applied to other features to restore a

feature considered for deletion.

A solution with recovered features may either match exactly the original uncompressed solution,

or it may solve the same problem in a different way. Compression to smaller sizes can increase

the time required for recovery and decrease the quality of the recovered solution until adaptation

14

knowledge can no longer recover any solution at all. Therefore, in order to preserve problem-solving

competence, adaptation-guided feature deletion deletes features in order from most recoverable to

least.

In addition to deleting features, adaptation-guided feature deletion can also replace them with

a smaller substitution or abstraction. Occasionally, this reorganization can make case contents

more accessible to an adaptation rule of limited power. Even though case-base compression nor-

mally reduces competence, compression under these circumstances, termed creative destruction,

can improve competence instead (Leake & Schack, 2016).

Adaptation-guided feature deletion relates to the many approaches in case-based reasoning

which address the construction of compact competent case bases (several are surveyed in D. C.

Wilson and Leake, 2002). These approaches include case retention and forgetting strategies (Muñoz-

Avila, 1999; Ontañón & Plaza, 2003; Romdhane & Lamontagne, 2008; Salamó & López-Sánchez,

2011b), diversity-preserving deletion strategies (Lieber, 2005), making a trade-off between accuracy

and case base size (Lupiani et al., 2013), taking into account local complexity in order to consider

class boundaries (Craw et al., 2007), and competence-based deletion of cases (Smyth & Keane,

1995). Unlike adaptation-guided feature deletion, however, all of these methods assume that cases

are indivisible.

When case-base maintenance research has considered internal contents of cases, its goal has

generally been to improve the quality of the contents (Racine & Yang, 2005; Salamó & López-

Sánchez, 2011a), whereas the goal of adaptation-guided feature deletion is to reduce case size.

Some research on case-based abstraction has replaced concrete cases with abstractions (Bergmann

& Wilke, 2005) which is similar to the more fine-grained substructure abstraction operation. Most

similar to adaptation-guided feature deletion is work to consider the removal of parts of cases in the

context of maintenance to control case-base size for preference-based case-based reasoning (Abdel-

Aziz & Hüllermeier, 2015). The idea of connecting adaptation directly to retention can be seen in

15

the same spirit as adaptation-guided retrieval, which connects adaptation to similarity assessment

(Smyth & Keane, 1998).

1.9 Data Augmentation to Expand Choices for Deletion

As described in “Section 1.3: The Swamping Utility Problem and Case-Base Maintenance” (on page

7), by the representativeness assumption, maintenance strategies predict that future problems will

follow the same distribution as the current case base, and this works reasonably well for mature case

bases in stable domains. But the representativeness assumption may apply less accurately during

early case base growth, to dynamically changing domains, or in cross-domain transfer learning.

In these situations, case-base maintenance strategies optimizing for assumed representativeness

may instead cause overfitting. Overfitting means that a statistical model or a machine learning

algorithm makes predictions based on peculiarities in the training data not reflected in the testing

data, thereby improving performance on the training data and sacrificing performance on the testing

data (Dietterich, 1995).

The overfitting problem has received significant attention in the context of artificial neural

networks (Lawrence et al., 1997). Among several potential mitigations, neural networks may employ

data augmentation which perturbs training data in order to supplement it with additional instances

(Wong et al., 2016). For example, cropping images without obscuring their subjects or other minor

deformations which maintain overall cohesion.

Case-based reasoning does not normally apply data augmentation, but the solution transforma-

tion container provides a natural source for such perturbations. Expansion-contraction compression

(ECC) explores unseen regions of the problem space using adaptation knowledge to generate ghost

cases and then exploits the ghost cases to broaden the range of cases available for competence-based

deletion (Leake & Schack, 2018; Schack, 2019).

16

1.10 Predictive Case Discovery for Problem-Distribution Drift

Case-based reasoning systems depend on problem-distribution regularity, a concept formalized by

(Leake & Wilson, 1999), which says that “future problems will resemble past problems.” This

regularity is vital for the relevance and applicability of learned cases in addressing future problems,

ensuring that the stored cases from past instances are informative and applicable to subsequent

instances. The assumption that future problems are reflective of past ones is necessary to ensure

that the case base maintains its utility and relevance over time.

However, the assurance of such regularity is not absolute. With the progression of time and

the evolution of systems, this regularity can degrade when the distribution of problems changes.

Drifts in problem distribution can significantly impact the coverage of a case base, necessitating

maintenance to uphold effectiveness.

When there is a lack of problem-distribution regularity, it leads to what is referred to as problem-

distribution drift (Leake & Schack, 2023; Schack, 2023). This form of drift is different from concept

drift, a well-researched phenomenon in machine learning, where the relationships between problems

and solutions change over time, rendering previous cases irrelevant or inaccurate (J. Lu et al.,

2018; Widmer & Kubat, 1996). Concept drift concerns the changes in the underlying concepts or

solutions, while problem-distribution drift involves changes in the occurrences and types of problems

encountered by the system.

Problem-distribution drift can occur in diverse domains like disaster management or recom-

mender systems. For example, climate change-induced alterations in weather patterns could in-

validate the response plans of a disaster management system that are based on historical weather

data. Likewise, shifts in consumer preferences could necessitate an overhaul in the range of recom-

mendations from a travel agency.

Furthermore, adversarial drift occurs when an adversary presents characteristically different

cases over time with the intention of degrading performance (Kantchelian et al., 2013). This form of

17

drift, characterized by intentional alterations and disruptions, can exacerbate problem-distribution

drift. And it can manifest in domains where strategic deceptions or obfuscations are advantageous,

such as in imperfect information games, cybersecurity, or junk mail filtering (Delany et al., 2005).

Drift detection can be categorized into four general strategies: error rate-based, data distribution-

based, multiple hypothesis-based, and competence-modeling strategies. For example, the ADWIN

algorithm is error rate-based and adapts the window size based on changes in the error rate (Bifet

& Gavaldà, 2007). The Kullback-Leibler divergence-based method, a data distribution-based strat-

egy, determines drift by measuring discrepancies between two probability distributions (Dasu et

al., 2006). Another example is Just-in-Time adaptive classifiers (JIT), a multiple hypothesis-based

strategy, utilizing a sequence of hypothesis tests to detect changes in data distribution (Alippi &

Roveri, 2008). Competence modeling is a strategy in case-based reasoning which provides descrip-

tions and quantification of changes as well as statistical guarantees on reliability (N. Lu et al.,

2014).

However, the effectiveness of drift detection can be impacted by the curse of dimensionality.

The curse of dimensionality refers to the problem of high dimensionality in a problem space leading

to sparsity and high computational costs (Köppen, 2000). The increase in dimensions makes cases

more dispersed, and changes in their distribution become challenging to detect. One way to address

this is to select relevant features to reduce dataset dimensionality before applying drift detection

algorithms.

To counteract decreasing problem-distribution regularity, cases can be added to the case base.

By calling upon a generative component or requesting cases from external sources, such as domain

experts, gaps in case distribution can be filled, reducing potential future slow-downs or failures in

those gaps. For example, solutions generated in advance by systems like Prodigy / Analogy do

not increase competence but speed up learning by mitigating the need to create solutions from

scratch during runtime (Veloso, 1994). The effectiveness of case discovery, given the high cost of

18

case solicitation, relies on precise targeting.

The strategy proposed by McKenna and Smyth (2002) focuses on identifying competence holes

to fill by discovering spanning cases. Methods like the SMOTE oversampling algorithm generate

synthetic instances to address class imbalance (Fernández et al., 2018). Similar to data augmen-

tation in neural networks, adaptation rules in case-based reasoning can create “ghost cases” that

maintain case cohesion and improve efficiency (Leake & Schack, 2018; Schack, 2019).

This dissertation proposes a predictive case discovery strategy which involves dividing the prob-

lem space into parts, predicting the most active part, selecting a point in that part, and then

discovering that case (Leake & Schack, 2023; Schack, 2023). This approach is applied through

k-means discovery, where the problem space is divided into N regions. A random cluster is cho-

sen, and a case at the centroid is altered to generate a variant. Clustering-based case discovery is

beneficial where domain knowledge is scarce or costly, offering a representative variant of a cluster

which is hypothesized to reflect “hot spots.” Alternative methods like spherical k-means or affinity

propagation can replace k-means as needed, depending on the domain.

Each strategy for drift detection and case discovery can have varying effectiveness, and choosing

suitable strategies and parameters is pivotal for accuracy and efficiency. A possible solution is

developing a library of strategies and selecting them via a bandit meta-strategy. This allows for

refining choices to favor successful strategies based on the problems addressed in the past. However,

swift changes in problem distribution may render this knowledge obsolete, necessitating further

research on this topic.

19

Chapter 2

Evolution of Case-Base Maintenance

Case-based reasoning learns from experience and adapts to changing environments by incrementally

saving cases that it acquires into the case base. As case-base maintenance manages, deletes, and

condenses those cases, this provides the benefit of the continuous availability of an up-to-date

case base. Given the advent of big data, novel maintenance strategies have addressed the evolving

needs of scenarios with varied and voluminous data. This chapter offers an overview of the historical

progression of case-base maintenance, analyzes modern approaches, and links past methodologies to

present ones. For further comparison and contextualization of approaches to case-base maintenance,

please see Juarez et al. (2018) and D. C. Wilson and Leake (2002).

2.1 Historical Context and Modern Developments

The case base serves as a reservoir of cases, which are used to address and solve new problems

(Craw, 2011). The design and maintenance of case bases is particularly important in the age of big

data, ensuring the accuracy and effectiveness of case-based reasoning systems (Goel & Diaz-Agudo,

2017).

Conventional case-base maintenance algorithms have largely focused on reducing the number

of cases by identifying redundant and noisy cases. Early efforts were directed towards studying

nearest neighbor and instance-based learning methods, using algorithms such as Condensed Nearest

Neighbor (CNN), considered one of the first algorithms for case-base maintenance (Hart, 1968),

and other similar models like Reduced NN (RNN), Edited NN (ENN), and Selective NN (SNN)

(Salamó & López-Sánchez, 2011a). However, these encountered challenges, particularly regarding

sensitivity to noisy cases.

The idea of competence models diverged from viewing case-base maintenance as merely an

20

instance selection problem (Smyth & Keane, 1995; Smyth & McKenna, 2002). It highlighted the

significant role of each case in the cycle of case-based reasoning. The Smyth-Keane-McKenna

Competence Model was influential, emphasizing the need to include cases based on their ability to

solve problems in a case-based reasoning system context. Numerous algorithms were inspired by

or directly based on the competence model, such as COV, RFD, RC, CTE, CRR, ICF, and CBE

(Craw et al., 2007; Delany & Cunningham, 2004; Smiti & Elouedi, 2014).

2.2 Partitioning Approaches and Algorithm Adaptations

Several approaches and algorithms focus on the partitioning of the case base. These consider the

case base as a whole and select cases to remove by dividing the case base into subsets. Each

subset is then treated as an independent case-base (Smiti & Elouedi, 2014, 2018). An exemplary

algorithm following this approach is WCOID-GM, which combines machine learning techniques

to learn the weights of case attributes, apply DBSCAN-based clustering methods, and employ

univariate outlier detection methods. Furthermore, the SCBM algorithm, an advanced version of

WCOID-GM, integrates a competence model. It uses a fuzzy-based DBSCAN method for clustering

the case-base and evaluates the competence of each cluster by analyzing different types of cases,

including noisy, similar, and isolated cases.

2.3 Enhancements to Case-Base Maintenance Algorithms

Highlighting the importance of maintaining competent case bases, N. Lu et al. (2014) pointed

out that the current competence group method is not optimal specifically critiquing its allowance

for disjoint partitions within each group without ensuring complete splitting. To address these

limitations, they introduced an extended model that consists of two new concepts: competence

closure and related closure.

In this enhanced model, competence closure focuses on defining groups that exhibit a shared

21

coverage path, emphasizing the exclusion of any shared coverage with elements outside the group.

Related closure, on the other hand, broadens the related set concept. These extensions are used to

propose two new competence measures, aiming to weigh the related sets within a related closure

and to offer a competence-based empirical weight to assess case distribution within a competence

cluster. This approach results in more defined and disjoint sets in comparison to previous methods,

effectively improving the structure and clarity of competence clusters.

2.4 Restructuring Case Bases

Many case-base maintenance algorithms emphasize the uniformity of case structure. However, the

integration of varied data sources may necessitate a redefinition of such structures. In response,

several methods have been introduced. One notable method is compositional adaptation (CA),

which focuses on representing the dependency between cases (Mathew & Chakraborti, 2017). This

approach adopts an AND-graph representation, where nodes symbolize cases and edges represent

solving capacities of single or combined cases. This approach thereby offers a refined comprehension

of case dependencies and solution formation.

2.5 Preference Modeling and Temporal Maintenance

The preference model (Pref-CBM) introduced by Abdel-Aziz and Hüllermeier (2015) offers a nu-

anced version of case-based reasoning by integrating preference as a component of a case. It rede-

fines the conventional problem-solution relationship by decomposing cases into smaller knowledge

chunks and examining preference in solutions. The authors evaluated this method on the traveling

salesman problem.

Further, Lupiani et al. (2014) focus on how case-based reasoning systems evolve over time and

how this impacts case-base maintenance, emphasizing the necessity of temporal maintenance (T-

CBM). This method extends the classic case structure to accommodate a sequence of heterogeneous

22

events over time, requiring new distance measures and review of existing algorithms. T-CBM has

proven effective at maintaining temporal case bases in risk scenario detection in commercial home-

monitoring systems.

2.6 Concept Drift-Tolerant Maintenance (Drift-CBM)

The evolving nature of real-world data and the dynamic goals of intelligent systems necessitate

the implementation of maintenance methodologies that can adapt to unforeseen changes, collec-

tively termed the concept-drift problem. Such systems must mitigate accuracy degradation over

time, a subject actively researched in machine learning but with minimal exploration in case-base

maintenance literature (N. Lu et al., 2016).

Drift-CBM operates in two steps: Enhancement and Preservation. The Enhancement step

ascertains whether a newly acquired case is noise, especially noise arising from concept drift, using

the NEFCS algorithm. The subsequent Preservation step, contingent upon existing storage limits,

employs the SRR algorithm to discard redundant cases. In this approach, competence-based drift

detection uses related set density and competence-based weight. An essential feature of NEFCS is

its ability to discern and retain novel cases in a detected drift-concept competence area, preventing

their premature removal as noise. It employs the competence definition of a liability set (Delany &

Cunningham, 2004).

2.7 Navigating Computational Complexity in Case-Base Maintenance

The computational complexity of case-base maintenance depends upon varying factors. Generally,

case-based reasoning systems are employed in domains that lack comprehensive theoretical frame-

works, rendering the efficacy of case-base maintenance algorithms dependent on either intricate

heuristics or substantial computational costs (Smyth & McKenna, 2002). Even though absolute

optimization is not always guaranteed, case-based reasoning algorithms typically yield reasonable

23

results, often converging to satisfactory fitness values. The exploration of genetic algorithms (GAs)

in this realm has shown prominence in solving complex problems where the knowledge base is

relatively weak and analytical solutions are elusive.

2.8 Case-Base Near Insertion (CBNI)

Yamamoto et al. (2015) combines genetic algorithms with case-based reasoning for intelligent route

optimization. This approach, referred to as Case-Based Human Oriented Genetic Algorithms (CB-

HOGA), uses solutions to past problems as a basis for generating new solutions. The key contribu-

tion is a case-base maintenance strategy that attempts to maintain diversity and fitness within the

case base. This is achieved by selecting and using previous genetic algorithm solutions to similar

problems, which are then modified by human expert support.

The paper emphasizes reducing the role of chance (“accidence”) in favor of an intentional and

balanced search for fitness and diversity, particularly in cases related to human or cultural factors.

The case base is combined with a Nearest Insertion (NI) method to incorporate and preserve human

/ cultural knowledge in the genetic algorithm. This knowledge, which is challenging to formally

express, is maintained and inherited as the initial population for the genetic algorithm. Experiments

are conducted to demonstrate the effectiveness of this approach in creating intentionally good

solutions, rather than relying on accidental discoveries. The results show the benefits of this

approach for route optimization problems, particularly those influenced by human and cultural

factors.

2.9 Multi-Objective Evolutionary Case-Base Maintenance (MOE-CBM)

The performance of case-base maintenance algorithms significantly depends on the proportion of

noisy and redundant cases within the case base. Lupiani et al. (2015) perceives general case-base

maintenance as a multi-objective optimization problem with goals to minimize redundant cases

24

and distance to non-redundant cases while maximizing the competence of the case-based reasoning

system.

MOE-CBM is an adaptation of the multi-objective genetic algorithm, NSGA-II, and directs its

focus towards exploring potential case bases in the problem space. It leverages noise and redun-

dancy indicators to optimize its goals, recognizing that minimizing size and maximizing accuracy

are conflicting objectives (Craw et al., 2007). Although MOE-CBM does not guarantee optimal

solutions within finite time, practical implementations demonstrate its capability to approach ac-

ceptable solutions, albeit with extended runtime, constraining its use to offline processes.

25

Chapter 3

Subdividing Cases for Deletion

The performance of case-based reasoning systems depends on the coverage of their case bases and

the quality of their cases. As the number of cases in the case base grows, increased retrieval costs

(Francis & Ram, 1993; Smyth & Cunningham, 2005) or storage constraints may require controlling

case base size. Extensive case-based reasoning research has aimed to address this problem through

case-base maintenance (D. C. Wilson & Leake, 2002). A key focus of this work has been on

strategies for selecting cases to retain in the case base to maximize the competence achieved for

a given number of cases. Approaches include strategies for guiding the deletion of cases from

an existing case base (Smyth & Keane, 1995), for determining when to retain a new case during

problem solving (Muñoz-Avila, 1999), and for ordering the addition of cases from a candidate case

set (Smyth & McKenna, 1999a; Zhu & Yang, 1999). All of these strategies treat cases as single

units, adding or deleting entire cases. This dissertation calls such strategies “per-case” maintenance

strategies.

Per-case strategies reflect two common implicit assumptions: (1) that all the cases in the case-

based reasoning system will be of sufficiently uniform size so that the size effects of deletion or

addition do not depend on the chosen case, and (2) that the size of the internal contents of cases

cannot be reduced. In domains for which each case must contain uniform knowledge, and therefore

removal of any case information would severely impair the ability to use the cases, per-case strategies

are the only appropriate choice. However, in some case-based reasoning domains, case contents are

more flexible.

This chapter questions the assumption of uniform case size in case-base maintenance. The

assumption of uniform size means that, if cases are of different size, it is not possible, for example,

to favor retention of smaller cases when those cases have comparable coverage. It also questions

26

the assumption of maintenance only on a per-case basis, proposing that compression strategies can

consider not only case deletion / addition but the deletion of components of particular cases. Rather

than pre-determining a static set of features to be used throughout the life of the CBR system,

the set of features to include in the case base could be adjusted based on requirements for storage,

processing speed, and accuracy. There need be no requirement that all cases in the case base

include the same set of features, just as there need not be uniform collections of components in the

solution parts of cases, and the solutions need not be represented at the same level of granularity.

This chapter proposes flexible feature deletion (FFD) in which selective compression can be done

at the level of the contents of individual cases, by removing selected features from either indexing

or solution information (Leake & Schack, 2015; Schack & Summers, 2017). This can be used to

maintain both indexing features and features of a solution.

The motivation for adjusting case contents arises from domains in which cases are large and

can be represented in multiple ways. For example, case-based reasoning has attracted interest for

reasoning from imagery such as medical images (D. C. Wilson & O’Sullivan, 2008). From any

image, different features may be extracted at different resolutions, and the amount of information

required to represent different images might vary dramatically. In diagnostic domains, numerous

features may carry information relevant to the diagnosis, with different pieces relevant to different

degrees for different problems. When case-based reasoning is applied to design support, stored

designs could selectively include different subsets of a full design or could include the design at

different levels of detail. In a case-based planner generating highly complex plans, it is possible

to retain the entire plan, or only key pieces, or to preserve full details for parts of the plans and

high-level abstractions for others. Likewise, when case-based reasoning is applied to tasks such

as aiding knowledge capture by supporting concept map construction (Leake et al., 2014), stored

concept map cases could be retained at different levels of completeness. Exploiting this flexibility

requires maintenance processes that can perform maintenance at a finer-grained level than simple

27

retention or deletion of cases.

Feature compression is especially appropriate for complex domains in which cases are large, may

contain extensive indexing or solution information, and in which partial information –– for either

indices or solutions –– may still be useful. Feature compression prompts the question of when to

delete an entire case versus when to achieve comparable space savings by abstracting, deleting, or

otherwise compressing some of the features contained in one or more cases in the case base. There

is no free lunch: either method may entail accuracy losses, case deletion, which removes what may

be the most relevant solution to a problem; or flexible feature deletion, which reduces retrieval

accuracy and solution quality. The interesting question is how these methods compare.

This chapter begins by discussing the range of applicability of flexible feature deletion and its

relationship to standard case-base maintenance. It then defines a set of simple feature deletion

strategies and evaluates their performance compared to per-case strategies for three domains, two

with cases containing varying amounts of information and one with uniform size cases. This chap-

ter analyzes competence as a function of compression, and this analysis supports flexible feature

deletion for domains with variable-size cases.

3.1 When Feature Deletion Is Appropriate

Feature compression is appropriate for a particular class of domains: Those in which a particular

case can be represented at varying levels of detail and still be useful. Feature deletion impacts the

similarity metric, so it may reduce the retrieval accuracy. But even if retrieval accuracy is reduced,

the retrieved cases will provide value if they are still adaptable to usable solutions with an acceptable

level of adaptation effort. Even if some poor retrievals result, they may be acceptable given savings

in space; just as per-case maintenance usually involves a trade-off of case base compactness against

competence, feature deletion does as well.

The range of problems to which the case can be applied, and the reliability of its application,

28

may vary with the specific information stored. Consequently, different feature deletion domains

will exhibit different trade-offs between per-case maintenance strategies and feature-maintenance

strategies, as well as different trade-offs between compression and quality. For some domains, such

as a regression or numerical prediction task, feature deletion may only be possible for indexing

information. In domains in which indexing information is based on many features, it may be pos-

sible to reduce case size by removing information about the values of some indices. Note that

feature deletion of indices contrasts with the extensive work on selecting indexing vocabularies in

the case-based reasoning literature, in that feature maintenance is aimed not at selecting an index-

ing vocabulary or maximizing retrieval accuracy, but instead at selectively compressing indexing

information by deleting particular features, potentially from individual cases, with the recognition

that some accuracy loss may result.

The deletion done by feature deletion is not necessarily limited to particular indexing dimensions

(e.g., deleting the “age” attribute from all patient cases). Alternatively, it may delete specific

attribute values (e.g., deleting the “age” attribute-value pair for specific patients, or only for a

particular range of age values, such as those patients who fall into a default set for which age is not

considered significant).

Feature deletion for indices could be especially relevant to situations in which extremely rich

indexing information is available, as when a case-based agent responds in a real-time strategy game,

or a prediction system for driver behavior, where the situation in which a plan was applied could be

described with extremely rich detail –– with fine-grained details which might be helpful to finding

the perfect case, but not essential to finding a good case. Likewise, in a movie recommender domain,

with movies characterized by their list of actors and the goal of recommending similar movies, a

subset of the actors might be sufficient for good retrievals.

29

3.1.1 When to Apply Feature Deletion to Indices

Tasks are potential targets for feature deletion of indices if their cases have large indexing structures

which can be reduced while retaining an acceptable level of indexing / similarity performance.

Specifically, domains are appropriate if:

• Indexing or similarity assessment depends on information about detail-rich situations from

which many features could be generated. If any low-level features of the current situation, or

of a sequence of situations, might be available and potentially relevant to deciding a response,

then, due to the potential for large amounts of indexing information, feature deletion could

significantly impact the size of the case base.

• Indexing or similarity assessment features are sufficiently closely related that acceptable accu-

racy is possible after removal of some features. If features are closely related –– even if they

are not redundant –– feature removal may have limited effects on system accuracy, helping

to boost the amount of compression possible per unit of retrieval accuracy loss.

The case-based reasoning community has devoted substantial effort to methods for refining

the indices used for cases, as well as on developing methods for assigning weights to features for

similarity assessment. However, work in index / similarity refinement differs from feature deletion

in a key way: The focus of index / similarity refinement is generally on increasing retrieval accuracy,

rather than on compression of case data. Consequently, research on such methods does not address

space / accuracy trade-offs. Feature deletion is a primary focus of research on dimensionality

reduction for case-based reasoning. However, such deletion is done uniformly across all cases; this

work does not attempt selective deletion of a feature from some cases but not others.

3.1.2 When to Apply Feature Deletion to Solutions

Feature deletion is useful for domains in which the solution to a single problem can capture varying

levels of information and still be useful. In such domains, parts of a large or complex solution may

30

be removed or abstracted while still retaining the usefulness of a case, even if the level of usefulness

varies with the specific information retained.

For example, as previously mentioned, in case-based planning, certain parts of a plan could be

elided or abstracted to reduce storage. When a new planning problem is precisely covered by the

retained material, there is no solution quality or efficiency loss. When it is not, the maintenance

may result in increased adaptation cost to reconstruct the plan, or if adaptation power is insufficient

for perfect reconstruction, then some competence would be lost. However, partial deletion of case

contents might still cause less competence loss than deletion of an entire case by per-case methods.

Case-based support for concept mapping (Leake et al., 2014) provides another example. Con-

cept maps are informal two-dimensional visual representations of concepts and their relationships,

representing the conceptualization of a domain from the perspective of a particular user (Novak

et al., 1984). The goal of a support system is to aid humans using electronic tools to build concept

maps. It accomplishes this by monitoring the concept map under construction, retrieving rele-

vant past concept maps, and using those to suggest extensions. Concept map cases contain rich

structures of interconnected concepts, from which deletion of some parts may reduce the range of

problems for which suggestions can be provided, but for which the remaining parts can still be

useful.

For supporting concept map extension, any part of a concept map case may be viewed as the

index or the solution, depending on which features are available as the input problem and the

context of the retrieval (Leake et al., 2003). Thus, in the concept mapping domain, the same

feature deletion process can be seen as simultaneously maintaining indices and solutions.

3.2 Bundling Features for Deletion

Consider cases as composed of a set of primitive features which cannot be further decomposed.

The following explanation, for simplicity, will consider these to be attribute-value pairs. However,

31

Figure 3.1: Feature selection with case-bundled, feature-bundled, and un-bundled strategies (Leake

& Schack, 2015).

other representations are possible. Both indexing and solution information are defined by sets of

features. For example, basic features could be combined to form complex structured cases, from

which flexible feature deletion could remove multiple features corresponding to substructures.

Maintenance approaches for case-base compression can be seen as “bundling” different types

of information together to treat as a unit. Conventional per-case maintenance for case-base com-

pression bundles together all features associated with a particular case and deletes the entirety

of features associated with a particular case. In contrast, feature-bundled maintenance does an

orthogonal bundling, deleting a single feature in all cases for which it appears. Flexible feature

deletion can also apply an “unbundled” approach, simply deleting specific features from selected

individual cases. To distinguish un-bundled individual features from feature-based bundles, this

chapter calls the individual features of a specific case “case-features.” Figure 3.1 (on page 32)

illustrates the case-bundled, feature-bundled, and un-bundled approaches.

Figure 3.2 (on page 33) summarizes eleven simple candidate strategies for selecting the next case

or feature to delete, spanning case-bundled, feature-bundled, un-bundled, and hybrid strategies,

which we describe in more detail below. Random deletion strategies are included as a baseline.

The simplicity of these strategies enables comparing case-bundled and feature-bundled strategies

32

Strategy Type of Bundling Hybrid or Non-Hybrid

Random Case-Features Unbundled Non-Hybrid

Random Cases Case-Bundled Non-Hybrid

Large Cases Case-Bundled Non-Hybrid

Least Coverage Case-Bundled Non-Hybrid

Most Reachability Case-Bundled Non-Hybrid

Random Features Feature-Bundled Non-Hybrid

Rarest Features Feature-Bundled Non-Hybrid

Most Common Features Feature-Bundled Non-Hybrid

Largest Cases / Least Coverage Case-Bundled Hybrid

Rarest Features / Least Coverage Unbundled Hybrid

Rarest Features / Large Cases Unbundled Hybrid

Figure 3.2: Strategies for selecting the next case, feature, or case-feature to delete (Leake & Schack,

2015).

on an equal footing. “Section 3.4: Future Research Questions for Feature Deletion” (on page 41)

discusses future paths for more sophisticated flexible feature deletion strategies.

1. Case-Bundled Strategies

Case-bundled strategies follow the traditional CBR compression approach of removing entire

cases, i.e., the bundle of features determined by the case. A key question for case deletion

is the order in which to delete cases. A classic approach is to consider coverage, the set of

target problems that a case can solve, and reachability, the set of cases that can solve a given

target problem (Smyth & McKenna, 1999a). Cases with higher coverage are considered more

valuable to preserve; cases with lower reachability are considered harder to replace. This

chapter considers simple strategies favoring each criterion. Another simple criterion is to

include removing the largest cases first (aiming to maximize size reduction).

2. Feature-Bundled Strategies

Feature-bundled strategies ignore the boundaries of cases, replacing deletion of cases with

33

deletion of common features across cases. For example, in a movie recommendation domain,

one feature might be the presence of a particular (little-known) individual; if that was unim-

portant to recommendations, that feature could be deleted from all cases without impairing

recommendation performance. This chapter considers the baseline strategy of random dele-

tion, a strategy of removing the most common features (which might be expected to have

the least information content), and an inverse strategy of removing the rarest features (which

might be expected to be useful in fewer instances).

3. Un-bundled Strategies

Un-bundled strategies ignore the boundaries of both cases and features. Deletion need not

be done uniformly on a per-case or per-feature basis; individual features may be deleted

from some cases and retained in others. For example, in the movie domain, the feature

corresponding to a particular actor could be deleted only from selected cases (e.g., those

in which the actor had a walk-on role). This chapter considers only one basic un-bundled

strategy, removing random features of random cases.

4. Hybrid Strategies

This chapter also considers three hybrid strategies, each combining two strategies with equal

weight (weightings could also be tuned). The strategies are Large Cases / Least Cover-

age, Rare Features / Least Coverage, and Rare Features / Large Cases. Combining two

case-bundled strategies, as in Large Cases / Least Coverage, yields a case-bundled strategy,

and combining two feature-bundled strategies yields a feature-bundled strategy. However,

combining two differently bundled strategies (e.g., Rare Features / Least Coverage) yields

an un-bundled strategy in which the scores of the constituent parts are used to determine

case-features to delete.

Strategies can have substantially different computational costs. Case size and feature rarity can

be calculated rapidly because they do not require problem solving. However, coverage depends on

34

the ability of a case to solve the problems associated with other cases, and so requires more costly

testing involving other cases in the case base.

3.3 Evaluation

In an attempt to understand the relationship between per-case and flexible feature deletion strate-

gies, the evaluation tested the compression / competence trade-off for the strategies in Figure 3.2

(on page 33), across three domains. The evaluation addressed the following two questions:

1. For a given level of compression, how does the retrieval accuracy of the strategies compare?

2. How does the retrieval time change as the number of case-feature pairs decreases, and does

this depend on the retrieval strategy?

The author hypothesized that at higher levels of compression, accuracy would tend to decrease

for all strategies, but that non-case-bundled maintenance strategies would outperform case-bundled

strategies. The author also hypothesized that, as the total number of features decreases, retrieval

time would decrease as well, with decreases roughly independent of the strategy used.

3.3.1 Test Data

Tests used three data sets, from movie, legal, and travel domains. Movie data was drawn from

the Internet Movie Database (IMDb),1 in which each case was a film or television show, and each

feature was an actor in that film or show. The sample contained 100,000 case-feature pairs in 74,720

cases with 38,374 features.

Legal data was extracted from LegiScan2 on the 113th session of the United States Congress.

Each case was a bill, and each feature was a sponsor or co-sponsor of a bill. The sample contained

50,000 case-feature pairs in 7,785 cases with 552 features.

1http://www.imdb.com/interfaces
2https://legiscan.com/

35

Travel data was taken from the travel package case base on the Case-Based Reasoning Wiki.3

Each case was a travel package, and the features were the types, prices, regions, etc. (represented as

key-value pairs). This case base contained 14,700 key-value pairs in 1,470 cases, with 2,902 distinct

key-value pairs.

All features for the IMDb and law domains were Boolean; features corresponded to the presence

of a particular actor in a film or sponsor of a bill. The features for the travel domain were key-value

pairs, which were treated as Boolean features based on whether a particular pair was present.

3.3.2 Indexing and Similarity Criteria

In the experiments, when features were deleted from case content, the corresponding indices were

deleted as well, keeping indices and case content synchronized. Case similarity was calculated by

Jaccard similarity (Niwattanakul et al., 2013) on sets of case-features. For calculating competence,

problems were considered to be solved successfully if the system was able to retrieve a case for

which the Jaccard similarity of case-features exceeded 50%. Additional tests were run for a scenario

assuming minimal shared coverage, in which cases were considered to cover only the closest adjacent

case in the original case base. Therefore, successful retrieval was defined as the system retrieving

the same case retrieved during the initial leave-one-out testing. Results were similar under both

conditions. For reasons of space, this chapter reports only the results for traditional similarity.

3.3.3 Hybrid Strategies

The hybrid strategies in the experiments rank case-feature pairs by summing normalized scores

corresponding to each of their constituent strategies. The score assigned to a case for Large Cases

is the size of that case divided by the size of the largest case in the case base. The coverage score

assigned to a case for Least Coverage is the coverage of the case divided by the maximal case

coverage. The score for Rare Features is based on the commonality of the feature, defined as the

3http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Case Bases

36

Figure 3.3: Competence retention for varying compression levels on the IMDb case base (Leake &

Schack, 2015).

number of cases that contain that feature divided by the number of cases containing the maximally

common feature in the case base; rarity of a feature f is 1− commonality(f).

3.3.4 Evaluation Procedure

The evaluation first establishes baseline performance by leave-one-out testing for the entire case

base. Next, performance is tested for compression to nine different case base sizes, ranging from

90% to 10% of the case base. For each test, the entire original case base is used as test problems,

and a test problem is considered solved if there exists in the compressed case base a case (other

than the test case) within the 50% similarity threshold.

When compressing the case bases, if the desired number of case-feature pairs does not fall

exactly on a boundary between cases, then the single case in which this division falls is un-bundled

to delete features within a case.

37

Figure 3.4: Competence retention for varying compression levels on the law case base (Leake &

Schack, 2015).

Figure 3.5: Competence retention for varying compression levels on the travel case base (Leake &

Schack, 2015).

38

3.3.5 Experimental Results

Figures 3.3 - 3.5 (on pages 37 - 38) show accuracy after each round of maintenance. The graphs

compare the eleven strategies across the movie, law, and travel domains. For readability, the graphs

are divided into three parts with the same horizontal and vertical scales. The third graph compares

the best four strategies from the other two graphs. Each type of bundling has a different type of

connecting line. Solid lines indicate case-bundled strategies, dashed lines indicate feature-bundled

strategies, and dotted lines indicate un-bundled strategies.

Figure 3.3 (on page 37) shows results for the IMDb data, for which the best four strategies were

Large Cases, Rare Features / Large Cases, Rare Features, and Large Cases / Least Coverage. Three

of the best strategies consider the size of the cases, which supports having maintenance consider

not only the benefit of retaining a case (its solution coverage) but also its storage cost. Two of the

best strategies are hybrid strategies, and two are non-case-bundled. The worst strategy was Most

Reachability.

Given the established importance of coverage, that Least Coverage is outperformed by Large

Cases on the IMDb and law data sets might seem surprising, but this is explained by the substantial

case size variation in these domains. For example, the IMDb case base includes multi-episode

soap operas such as The Bill, which span hundreds of actors but also include numerous relatively

unknown actors who never appear widely.

Figure 3.4 (on page 38) shows results on the law data, for which the best four strategies were

Large Cases / Least Coverage, Large Cases, Rare Features / Large Cases, and Most Reachability.

These overlap with three of the best strategies on the IMDb case base, but in a different order.

The worst strategy was Random Case-Features. The law data set has a much smaller number of

features than the IMDb data set, therefore the author speculates that its features are more likely

to have comparable importance, making random deletion more likely to remove significant content.

Figure 3.5 (on page 38) shows results for the travel data. Because all cases are initially the same

39

Figure 3.6: Comparison of the retrieval times after each round of maintenance between the four

best strategies on the cinema data set (Leake & Schack, 2015).

size, the strategies Large Cases and Large Cases / Least Coverage do not apply and are omitted

from the graphs. However, the hybrid strategy Rare Features / Large Cases is still applicable

because, as the Rare Features strategy deletes features, only cases with those features will be

compacted, resulting in different case sizes. The best strategies were Least Coverage, Random

Features, Random Cases, and Rare Features. That deleting cases with least coverage is best is

consistent with the key role coverage has been ascribed in case-base maintenance research. That

Random Features is second is surprising but could be explained if many features in this domain have

comparatively low information content. Although Rare Features is one of the top four strategies,

its performance is quite poor, which could correspond to rare features tending to be important

for distinguishing relevant cases. As with the other two data sets, two of the best strategies were

non-case-bundled. However, in contrast, none of the best strategies were hybrid.

40

3.3.6 Retrieval Speed

Figure 3.6 (on page 40) compares the retrieval times after each round of maintenance for each of

the four best strategies for the IMDb case base, for retrieval from a MySQL database. It also

includes Random Case-Features as a baseline. The Average line shows the mean retrieval time of

the five strategies in the graph. All tests were run on a MacBook Pro with a 2.5 GHz Intel Core i5

processor and 8 GB of RAM.

Random Case-Features, the baseline, gave the best retrieval times, and Rare Features, the only

feature-bundled strategy, gave the worst. Both of the case-bundled strategies, Large Cases and

Large Cases / Least Coverage yield similar retrieval times, but the two un-bundled strategies, Rare

Features / Large Cases and Random Case-Features, yield very different retrieval times. Most of the

strategies have a fairly linear decline, but Rare Features declines slowly until the 10,000 case-feature

mark where it drops abruptly. Because the retrieval function uses Jaccard similarity, retrieval time

depends on the number of case features in the intersection between cases. However, the rarest

features would seldom fall into any intersections, which explains why removing them has the least

effect on retrieval time.

3.4 Future Research Questions

The feature deletion approach raises a rich range of questions for fully exploiting its potential.

A key question is how to develop knowledge-based feature deletion rules, especially for flexible

feature deletion for complex structured cases. Other questions include how feature deletion strate-

gies should interact with the indexing and adaptation knowledge containers, how feature deletion

can preserve case integrity, and how feature deletion should be reflected in case provenance and

explanation.

• Coupling feature deletion with index maintenance: As case contents are deleted, the relevance

of case indices may change. Consequently, feature deletion may need to be accompanied by

41

index maintenance to assure that as cases are compressed the system still retrieves the most

similar cases. Feature weight information might be used to suggest features which could be

deleted with limited harm.

• Benefiting from the relationship of feature deletion to case adaptation: Feature deletion can

be seen as a form of “before the fact” adaptation of cases, in which the adaptation is driven

not by a new problem to solve, but by a combination of (1) compression goals, and (2) per-

formance goals. Richer feature deletion methods could draw on the adaptation knowledge

of a case-based reasoning system to perform operations beyond simple deletion of case com-

ponents, such as abstractions or substitutions of alternatives requiring less space. Enabling

such methods requires reasoning about the competence effects of replacing a case with vari-

ous candidate adapted versions, as well as performance effects (whether replacing a case with

a given compressed version will decrease problem-solving speed), and the balance to strike

between them.

• Maintaining case integrity despite feature deletion: Another question is the relationship of

feature deletion to the cohesiveness of a case. From the early days, an argument for case-

based reasoning has been that cases can implicitly capture interactions among case parts.

Deleting portions of a case risks some of that cohesion, making it a concern to address in

feature deletion strategies. That case adaptation faces the same risks but is effective supports

optimism for some levels of compression, and research on hierarchical case-based reasoning has

supported the usefulness of sometimes considering sub-parts of complete cases individually.

However, how much compression can be done without excessive harm to case integrity, and

how to manage the process to avoid such harm, are interesting questions.

• Reflecting feature deletion in provenance and explanation: Because feature deletion results

in stored cases which differ from the cases originally captured, it (like case adaptation) may

weaken the ability to justify proposed solutions by past experience. Likewise, changes from the

42

original cases may make it difficult to apply provenance-based methods for predicting solution

characteristics such as solution accuracy and trust (Leake & Whitehead, 2007). Addressing

these complications might require maintaining records of the case maintenance process as

part of the provenance trace used for explanation, as well as reasoning about (and present-

ing to users) information about the parts of the case which have been affected by feature

maintenance.

3.5 Summary

This chapter proposed a new case-base maintenance approach, flexible feature deletion, which

questions the assumptions that cases are of uniform size and that maintenance must treat cases

as unitary objects. Flexible feature deletion selectively deletes the contents of cases rather than

restricting deletion to whole cases.

This chapter illustrated tasks for which flexible feature deletion may be desirable, such as

domains in which reasoning can be done with different amounts of information and in which flexible

feature deletion can selectively compress different parts of different cases. Experimental results show

that case-base maintenance needs to consider when case contents are non-uniform; in such contexts,

feature-based strategies may give better accuracy than per-case strategies. And experimental results

also show that case base size and retrieval times may not always align, giving a space / time trade-off

which may be exploited.

This chapter focused primarily on knowledge-light maintenance strategies. Interesting future

directions are to refine the strategies tested with additional knowledge, for example, leveraging case

adaptation knowledge, and to explore when other knowledge-light techniques for compression of

cases and feature bundlings could yield useful maintenance strategies.

43

Chapter 4

Prioritizing Deletion by Recoverability via Adaptation Knowledge

As described in the previous chapter (“Chapter 3: Subdividing Cases for Deletion” on page 26),

most research on case-base maintenance has focused on retention decisions at the case level, aimed

at guiding case retention or deletion decisions based on the overall competence contributions of

the cases. Per-case strategies are appropriate for the task domains to which they have been ap-

plied, which generally share two characteristics: (1) that cases are of fairly uniform size, and (2)

that preserving the usefulness of a case depends on retaining its entire contents. However, these

assumptions do not always hold and, in some circumstances, it may be useful to apply a finer-

grained approach, focusing on compacting the contents of cases themselves by selectively deleting

components. Flexible feature deletion (FFD) generalizes per-case maintenance by dropping the

assumptions of uniform case size and indivisible cases (Leake & Schack, 2015; Schack & Summers,

2017).

Flexible feature deletion applies when information can be removed from a case while retaining

some usefulness. For example, for cases capturing medical images, it may be possible to compact

cases while retaining usefulness by adjusting resolution; for traces in trace-based reasoning (Cordier

et al., 2013) or plans in case-based planning, it may be possible to compact while retaining usefulness

by deleting routine portions of the steps in a case that are easily regenerated; for large and rich

cases capturing recommendation information (e.g., movie recommendations), it may be possible

to compact while retaining usefulness by selectively deleting features likely to hold less interest.

In each of these instances, some information is lost –– just as information is lost when deleting

entire cases. However, the results showed that for suitable case bases, the flexible feature deletion

approach provided better competence retention for a given case base size than conventional per-case

deletion approaches (Leake & Schack, 2015; Schack & Summers, 2017).

44

The key question for flexible feature deletion is how to determine which features to remove.

Initial tests of flexible feature deletion selected deletion targets by simple knowledge-light methods

based on statistical feature properties. The tests demonstrated that for cases with varying sizes

and for which not all information was essential to case usefulness, even such simple approaches

can be sufficient to provide improved competence retention. However, a natural question is how to

integrate richer knowledge into flexible feature deletion.

Because flexible feature deletion revises internal case contents, its operations can be viewed as

performing a form of case adaptation, though with the goal of reducing case size rather than of

solving a particular problem. The competence loss from flexible feature deletion can be mitigated

if adaptation knowledge can recover the original case from the changed case. Consequently, this

chapter proposes adaptation-guided feature deletion (AGFD) which uses adaptation knowledge to

guide flexible feature deletion by focusing deletion on case components that can be recovered

by adaptation (Leake & Schack, 2016; Schack, 2016). From the perspective of Richter’s CBR

“knowledge containers” (Richter, 2003), this approach aims to delete case knowledge overlapping

with knowledge contained in the adaptation knowledge container. The perspective of storing and

recovering partial cases can also be seen as related to reconstructive models such as dynamic

memory theory (Schank, 1982) and constructive similarity assessment (Leake, 1992).

This chapter begins with a discussion of potential roles for adaptation in flexible feature deletion.

It next describes a sample domain and case study of the use of adaptation knowledge to guide

choices during flexible feature deletion and presents an evaluation of the approach. As expected,

the evaluation shows that adding recoverability considerations can enable flexible feature deletion

to improve competence retention for given levels of compression. It also shows, surprisingly, that in

some situations, case-base compression by flexible feature deletion may actually improve case-base

competence, a phenomenon this dissertation refers to as creative destruction.

45

4.1 Building on Flexible Feature Deletion

Flexible feature deletion removes components of cases. For flat feature representations, its function

may be as simple as deleting particular features from a feature vector. However, flexible feature

deletion for structured cases may include a wider space of possible operations, not restricted to

deleting individual features, or even limited to deletion per se. For example, flexible feature deletion

could include compressing cases through:

Substructure deletion: Removes components of any size, ranging from individual features to

larger feature collections such as sub-plans of a plan.

Substructure substitution: Replaces components with more compact components.

Substructure abstraction: A knowledge-guided form of substructure substitution. Rather than

deleting a substructure entirely, it replaces the substructure with a more compact abstraction.

For example, in case-based image recognition, abstraction could be applied to decrease the

resolution of some or all of the image, saving space. To reuse a case, it may sometimes

be necessary to do an inverse adaptation to replace the abstraction with a more specific

instantiation.

Flexible feature deletion may result in storing incomplete or un-elaborated cases. For example,

if a case records a path between points A and B, and some internal segments of the path are deleted,

then the case for the path would no longer be intact. However, such a deletion could still be allowed,

with an annotation recording the gap. In that situation, the case would require adaptation before

use to recover from the deletion.

Flexible feature deletion need not preserve the original usefulness of a case, or may transform

its usefulness, making it less useful for the original problem but more useful for a different problem.

For example, after substructure deletion, the case might require adaptation to solve the original

problem but might no longer require the adaptation it once required to solve some different problem.

46

For example, for a case containing a route plan, flexible feature deletion might delete some initial

segments. In that case, the plan would no longer be directly applicable to the same starting point,

but it could be directly applied to generate a shorter path with the new starting point.

4.2 Applying Case Adaptation Knowledge

All of the flexible feature deletion operators correspond to common operations for case adaptation.

Any such operations can be applied successively in an adaptation chain (Fuchs et al., 2014) to

provide varying levels of adaptation-based compression. If procedures for these are already available

in the adaptation component, then they can be applied directly for flexible feature deletion. If

the adaptation knowledge includes specific guidance on applicability, or on circumstances when a

particular adaptation is suitable, then the use of the adaptation knowledge for maintenance makes

that guidance available to the maintenance phase.

Even when adaptation knowledge is not framed in terms of deletion, it may still be useful for

compression. For example, consider a path planning system able to adapt plans to avoid roads that

are closed. If the adaptation results in a route that can be described more compactly, then that

adaptation contributes to compression of the case, and in principle could be applied as a flexible

feature deletion operation.

Exploiting adaptation knowledge for flexible feature deletion raises the key question of when

a particular adaptation should be applied. This depends crucially on four factors: compression

benefit, case / feature recoverability, quality retention, and recovery cost.

Compression benefit: The reduction effected in the size of the case base. Because flexible feature

deletion can change the sizes of individual cases, compression is measured not in terms of the

number of cases in the case base, but in terms of finer-grained sub-units directly related to

storage requirements. (For cases represented by feature vectors, a natural unit is a feature-

value pair.) Compression benefit reflects the advantage to the case-based reasoning system

47

of having a smaller case base. Often, this benefit is judged in terms of retrieval speed or

overall processing cost (Smyth & Cunningham, 2005). However, this could also reflect factors

such as hard limits on case base size (e.g., in a legacy or high-reliability system with limited

storage) or transmission cost, if the case base will be provided to other agents.

Case / feature recoverability: The ability of the system to regenerate its knowledge state prior

to compression from adaptation knowledge and the remaining case base. (Regenerating the

knowledge may not require regenerating identical solutions, if multiple solutions are satisfac-

tory, and the knowledge state might include knowledge not directly connected to competence,

such as features used in indexing to increase retrieval speed.) This chapter refers to flexible

feature deletion operations that are always recoverable as lossless; those that are not neces-

sarily recoverable are lossy. Whether a particular strategy is lossless or lossy depends on the

entire set of adaptations available to the system, on the length of adaptation chains allowed,

and on all the cases in the case base.

Quality retention: The quality of the solutions the system is able to generate, beyond simply

generating a correct solution. For example, in a path planning domain, a deletion from a

path would be recoverable if the system were still able to generate some path between the

same endpoints. Quality retention might be measured by the ratio of the costs of old and

new paths.

Recovery cost: The resources required to generate a new solution to the problem. For example,

in a case-based planner able to draw on a generative planner when necessary, all deletions

are theoretically recoverable, but recovery by reasoning from scratch may be computationally

expensive. In those instances, flexible feature deletion might be less appropriate. Likewise, in

some domains, a complete case that is deleted may be unrecoverable, while internal deletions

can be recovered. For example, consider a medical system whose cases are X-ray images.

48

If an image is deleted, then there may be no recourse other than re-taking the X-ray, at

considerable expense. However, if portions are stored at lower resolution, then it may be

possible to recover needed information by image processing algorithms at much lower cost.

Feature-centric recoverability is closely related to the notion of reachability –– with an important

difference: Reachability refers to the ability to adapt other cases in the case base to cover the problem

addressed by a case (Smyth & Keane, 1995); feature-centric recoverability refers to the ability to

adapt either other cases in the case base or the original case revised by flexible feature deletion to

cover the competence contributions of that case (which may require adapting an internal subpart

of the case) (Leake & Schack, 2016; Schack, 2016). This chapter will apply a restricted variant of

recoverability, termed local recoverability, which is the ability of a case to solve the problem that

it originally solved before applying flexible feature deletion but not necessarily all of the problems

in the original competence contribution of that case (Leake & Schack, 2016; Schack, 2016). Local

recoverability approximates recoverability but is more efficient to calculate.

4.3 A Case Study on Adaptation-Guided Feature Deletion

This evaluation studies recoverability-based flexible feature deletion in the context of a path plan-

ning task. The recoverability-based approach prioritizes the targets of flexible feature deletion

according to local recoverability. This section describes the underlying domain and system. “Sec-

tion 4.4: Evaluation” (on page 53) describes the experimental questions and results.

4.3.1 Testbed Domain

Path planning is a classic application of case-based reasoning (Anwar & Yoshida, 2001; Goel et al.,

1994; Haigh & Veloso, 2005; Li et al., 2012). Experiments in mobile robot path planning observed

that case-base growth is a serious problem, precluding retaining all cases (Kruusmaa & Willemson,

2003). The path planning task is carried out on a road network represented by a weighted graph

49

Figure 4.1: Sample graph for the path planning task (Leake & Schack, 2016).

with labeled vertices. The vertices represent neighborhoods, and they are collected into groups

representing boroughs, with each group having an equal number of vertices. Each vertex in a group

is intra-connected via an edge to another vertex in the same group.

The groups are also inter-connected with one or more vertices from each group having an edge

to another vertex in a different group. This design represents characteristics such as streets intra-

connecting neighborhoods in a borough and bridges inter-connecting boroughs in a city. To generate

a road network, connections are randomly selected, with the constraint that at least one path must

exist between any two vertices. Figure 4.1 (on page 50) illustrates a sample graph satisfying these

constraints. Each edge has a random integer weight in [0, 100], representing the cost (e.g., distance

or time) to travel across that edge. Problems to be solved by the system are described as lists of

vertices which the solution path must include in order, starting with the source and ending with

the destination.

4.3.2 Adaptation Strategies

The testbed system has five adaptation strategies, summarized in Figure 4.2 (on page 51). No

attempt was made to optimize the adaptation process, which is done by the exhaustive application

of adaptations. When adaptation must be done to generate solutions, all adaptations are tried;

50

Reuse Strategy Description

Reverse Reverse the given solution so the source swaps with the destination,

the destination swaps with the source, and the intermediate points

reverse.

Drop Vertices Drop the vertices in the given solution before the source of the given

problem.

Reverse Drop Vertices Drop the vertices in the given solution after the destination of the

given problem.

Cons Vertex Append the source of the given problem to the front of the given

solution.

Reverse Cons Vertex Append the destination of the given problem to the back of the given

solution.

Compose Fill in a gap in the given solution with the solution from another

case.

Figure 4.2: Testbed system adaptation strategies (Leake & Schack, 2016).

51

Strategy Type of Bundling Hybrid or Non-Hybrid

Random Case-Features Unbundled Non-Hybrid

Random Cases Case-Bundled Non-Hybrid

Large Cases Case-Bundled Non-Hybrid

Least Coverage Case-Bundled Non-Hybrid

Most Reachability Case-Bundled Non-Hybrid

Random Features Feature-Bundled Non-Hybrid

Rarest Features Feature-Bundled Non-Hybrid

Most Common Features Feature-Bundled Non-Hybrid

Rarest Cases / Least Coverage Case-Bundled Hybrid

Rarest Features / Least Coverage Unbundled Hybrid

Rarest Features / Large Cases Unbundled Hybrid

Figure 4.3: Strategies for selecting the next item to delete (Leake & Schack, 2015).

when the system assesses recoverability, the system attempts to adapt all cases until a solution

is found. The system does not combine adaptations, except for the special case of the compose

strategy, which can chain with one other strategy.

4.3.3 Flexible Feature Deletion Strategies

“Chapter 3: Subdividing Cases for Deletion” (on page 26) presented a set of knowledge-light flexible

feature deletion strategies, categorized according to how they prioritize items for deletion and the

type of item on which they operate (whether they delete cases, collections of features, or a mixture).

These are illustrated in Figure 4.3 (on page 52). For the descriptions of the flexible feature deletion

strategies, please see “Section 3.2: Bundling Features” (on page 31).

Given any flexible feature deletion strategy, it is possible to develop a recoverability-based

version by guiding deletion decisions according to recoverability. Specifically in the recoverability-

based flexible feature deletion approach, the system applies one of the original strategies to rank

items for deletion. It then tests deletion candidates in order to determine whether the deletion

52

is recoverable. This is done by attempting to solve the problems from the cases that would be

modified, either (1) by adapting the modified cases or (2) by case-based reasoning applied to cases

from the remainder of the case base. If these problems are solvable (and even if the solutions

are different but satisfactory), then the modifications are accepted as recoverable. Otherwise, the

process continues through the rest of the deletions according to the ordering specified by the given

strategy. The process stops after the first successful recovery (in which case the modification is

accepted), or after a maximum number of trials or when no untried cases remain, in which case the

strategy fails and no further compression can be done.

The testbed system applies the five deletion strategies in Figure 4.4 (on page 54), selected to

include high-performing flexible feature deletion strategies from “Chapter 3: Subdividing Cases

for Deletion” (on page 26). These include two lossy strategies, Largest Case (which first deletes

the largest cases, measured by the number of vertices in each solution) and Random Case-Feature

(which deletes a randomly-selected vertex from the solution to a randomly-selected case and marks

the gap for potential future recovery). Adding recoverability considerations leads to the strategies

Reachability-Based Largest Case and Recoverability-Based Random Vertex. (Reachability-Based

Largest Case deletes whole cases, and Recoverability-Based Random Vertex deletes components of

cases.) The recoverability-based variants aim to mitigate the lossiness of the strategies by using

recoverability to filter their deletion recommendations. The Shared Component strategy is lossless

because it extracts a component shared by the solutions to multiple cases into a separate case

before deleting the component from those solutions.

4.4 Evaluation

The evaluation focused on the following three questions:

1. Competence retention: How does the ability to solve problems for given levels of compres-

sion compare between adaptation-guided and non-adaptation-guided flexible feature deletion

53

Deletion Target Lossiness Description

Shared Component Lossless Extract components shared by the solutions

of multiple cases into separate cases. Mark

gaps for completion during recovery.

Reachability-Based Largest

Case

Lossy Delete cases in order from largest to smallest

number of case-features, deleting only recov-

erable cases.

Largest Case Lossy Delete cases in order from largest to smallest

number of case-features regardless of recover-

ability.

Recoverability-Based Random

Vertex

Lossy Delete randomly-chosen case-features from

the solutions to cases, deleting only recover-

able features.

Random Vertex Lossy Delete randomly-chosen case-features from

the solutions to cases regardless of recover-

ability.

Figure 4.4: Sample deletion strategies, including recoverability-based strategies (Leake & Schack,

2016).

54

strategies?

2. Solution quality retention: For problems that can be solved for a given level of com-

pression, how does solution quality compare between adaptation-guided and non-adaptation-

guided flexible feature deletion strategies?

3. Processing time: How does the choice of flexible feature deletion strategy impact the

processing time of the case-based reasoning cycle for different levels of compression?

4.4.1 Experimental Design

The case base was seeded with a set of training problems with randomly chosen vertices, with

beginning and ending vertices chosen from different groups which are not neighbors. This ensures

that solving a problem requires exiting the source group, traversing one or more other groups, and

then entering the target group. The Bellman-Ford path finding algorithm (AbuSalim et al., 2020)

was used to generate optimal solutions to the training problems, minimizing the sum of the weights

of the edges along the path.

Experiments averaged results of 12 trials, each one using a different randomly generated graph

of 28 vertices, initial case base of 33 randomly-generated seed cases and 17 test problems. Tests were

run for each retention strategy in Figure 4.4 on page 54, with three-fold cross-validation, averaging

the results by strategy and level of compression. Reported processing times reflect processing on a

MacBook Pro with a 2.5 GHz Intel Core i5 processor and 8 GB of RAM.

For lossy strategies, compression was continued until only a single case remained. Sometimes a

strategy can no longer compress a case base, either because the strategy is a lossless strategy and

cannot compress beyond full competence, or because it exceeded a preset limit of 100 trials to find

a recoverable deletion.

55

Figure 4.5: Competence retention (Leake & Schack, 2016).

4.4.2 Question 1: Competence Retention

Evaluation of competence retention measured how many problems the system could solve at in-

creasing compression levels (decreasing numbers of case-feature pairs) for five deletion strategies:

Shared Component, Recoverability-Based Largest Case, Largest Case, Recoverability-Based Ran-

dom Vertex, and Random Vertex. Figure 4.5 (on page 56) shows the percent of competence retained

from the uncompressed case base to the compressed case base, as a function of the percent of case-

feature pairs retained from the uncompressed case base to the compressed case base, ranging from

the full case base (100%) to 50% compression.

The best performing strategy for competence was Shared Component. Because it is lossless,

its high performance is expected. However, its ability to compress the case base stops at 70% size

when it cannot find any more shared components. To achieve more compression, one of the lossy

strategies must be used.

Recoverability-based largest case does next best, and enables compression to 50%. Compari-

son to the non-recoverability-based version shows that the recoverability-based approach improves

competence retention.

56

Figure 4.6: Relative average solution quality as a function of compression (Leake & Schack, 2016).

The worst-performing strategy was the simple unguided strategy Random Vertex. Considering

recoverability, in the Recoverability-Based Random Vertex strategy, markedly improves competence

over Random Vertex, but Recoverability-Based Random Vertex can only compress the case base

to 70%, after which it can no longer find recoverable vertices.

The author expected that as compression increases, competence would remain stable or decrease.

That was true for four of the five strategies. However, surprisingly, competence increased slightly

(103% of original competence) for the Shared Component strategy at 70% of the original case base.

For discussion of this phenomenon, please see “Section 4.4.5: Creative Destruction” (on page 58).

4.4.3 Question 2: Solution Quality Retention

The evaluation of solution quality retention measured the quality of the solutions by the sum of

their edge weights such that lower aggregate weights were preferred. Figure 4.6 (on page 57) shows

the relative average sum (percent of maximum) of the weights of the solutions generated at different

levels of compression with the five retention strategies, as a function of the percent of case-feature

pairs retained from the uncompressed case base. Here no strategies are clearly the best or worst.

This suggests that more knowledge would be needed to reliably ensure high-quality solutions.

57

Figure 4.7: Average total case-based reasoning path planning time (Leake & Schack, 2016).

4.4.4 Question 3: Processing Time

Figure 4.7 (on page 58) shows the average total processing time for both adaptation-guided feature

deletion and case-based problem-solving for the test problems at each stage of compression for each

of the five retention strategies, as a function of the percent of case-feature pairs retained from the

uncompressed case base. The Largest Case strategy was most efficient, and the Recoverability-

Based Random Vertex strategy was least efficient, with very rapid growth, due to checking many

alternatives before finding vertices to delete. The line for this strategy continues beyond the top

edge of the plot; the graph is cropped in order to show the performance on the other strategies in

detail.

4.4.5 Creative Destruction

In the competence retention experiment reported in “Section 4.4.2: Competence Retention” (on

page 56), the author expected that competence would always decrease with increased compres-

sion, as is normally expected for any case-base compression method. Surprisingly, occasionally

adaptation-guided compression applied to the case base could slightly improve the competence of

58

Figure 4.8: An example of the creative destruction phenomenon (Leake & Schack, 2016).

the system. The explanation is that compression strategies, by reorganizing the contents of cases,

can sometimes make case contents accessible to adaptations of limited power.

For example, if the Shared Component compression strategy finds a component of a solution

shared between several cases, it moves this shared component into a separate case, leaving a marker

in each of the cases from which it was removed. Later, the case-based reasoning process can manip-

ulate the shared component independently of the rest of the components of the case. Normally, the

Drop Vertices reuse strategy can only remove vertices at the ends of a path, not within the path.

However, after extraction, the middle of the case is “exposed” as its own case, and is therefore

available to the Drop Vertices strategy.

Similarly, any retention strategy that removes a component creates a gap which could be filled

by a different component which may be useful for further adaptation. Typically, the benefit of

this effect is small, but as shown in Figure 4.8 (on page 59), taken from a single iteration of

cross-validation, the effect can be large in some circumstances. This suggests that it could be

worthwhile, when designing flexible feature deletion strategies, to consider creative destruction

opportunities that they might provide. However, further study is needed to corroborate these

results more generally and understand the characteristics and potential for creative destruction in

59

different domains.

4.5 Summary

This chapter proposed a symmetry between compression and reuse for flexible feature deletion,

such that the compression strategy draws on adaptation knowledge and is guided by the extent

of the reversibility of deletions by adaptation. Evaluation of recoverability-based compression in a

path-finding domain supported that recoverability-based methods can provide superior retention of

competence compared to flexible feature deletion at the same level of compression. An interesting

area for future research is exploring recoverability-based methods for richer adaptation knowledge.

A smaller case base can reduce retrieval cost, but a compressed case may require adaptation to

recover an acceptable solution, so the reduced retrieval cost is balanced by a potentially increased

adaptation cost. Using this trade-off to guide maintenance decisions could be an interesting topic

for further study.

The experiments revealed an additional surprising result: that case-base compression (normally

expected to decrease competence) can sometimes actually improve problem-solving competence.

This creative destruction phenomenon suggests two interesting avenues for research. The first,

in the context of case-base compression, is how to prioritize flexible feature deletion to maximize

the chance of creative destruction occurring. The second arises because creative destruction, by

improving competence, would be valuable even when compression is not needed. This suggests

opportunities for maintenance aimed at improving competence by revising or restructuring cases

to make them more amenable to adaptation, given characteristics of the adaptation knowledge of

the system.

60

Chapter 5

Data Augmentation to Expand Choices for Deletion

Building on maintenance work by Smyth and Keane (1995) and many others (Angiulli, 2005;

Brighton, 2001; D. R. Wilson & Martinez, 2000), the previous two chapters (“Chapter 3: Sub-

dividing Cases for Deletion” on page 26 and “Chapter 4: Prioritizing Deletion by Recoverability

via Adaptation Knowledge” on page 44) proposed and evaluated two approaches for controlling

case base growth: flexible feature deletion and adaptation-guided feature deletion. Like their pre-

decessors, both of these methods prioritize deletion with the goal of maximizing the competence

retention of the case base.

Unfortunately, estimating the future competence contributions of a case is difficult because it

depends on predicting the problems a case-based reasoning system will encounter. Smyth and

McKenna (1999b) addressed this with the representativeness assumption which says that prior

problems are representative of problems to be encountered in the future. Under this assumption,

the future competence contribution of a case can be estimated as its competence contribution in the

existing case base. Although the assumption may not always hold, Smyth and McKenna advanced

an argument for its appropriateness in case-based reasoning systems: Because case-based reasoning

is based on the assumption of problem-distribution regularity –– that future problems will resemble

past problems (Leake & Wilson, 1999) –– domains for which the representativeness assumption fails

would presumably be ill-suited for case-based reasoning.

Case-base compression relying on the representativeness assumption has been shown effective

in many domains. However, in domains for which only a small part of the problem space has

yet been encountered, or in which data drift shifts the problem distribution (Cunningham et al.,

2003), representativeness may not hold, and in turn, competence may suffer (N. Lu et al., 2014).

Likewise, if a case base generated for one task is applied to a new task for cross-domain problem-

61

solving (Leake & Sooriamurthi, 2002), then there is no guarantee that the problems in the first

space will be representative of problems in the second.

A well-known strength of case-based reasoning is that it can draw on multiple knowledge contain-

ers whose contributions overlap, in the sense that strengths in one can compensate for weaknesses

in another (Richter, 2003). This chapter investigates how a case-based reasoning system can draw

on adaptation knowledge to handle gaps in experience when building a case base. By adapting

cases already in the case base, a case-based reasoning system can pre-populate sparsely populated

regions of the case base –– transferring some of the knowledge from its adaptation component into

the case component to expand the set of cases. This in turn enables the system to generate the

compressed case base from a set of candidates larger than its retained experience. This can be seen

as shifting from maintenance that only exploits existing experiences, to maintenance that explores

the space of future problems. Combining case base exploitation with problem space exploration is

a novel step for case-base maintenance.

To combine exploitation and exploration for the purpose of case-base compression, this chap-

ter proposes the expansion-contraction compression strategy. Expansion-contraction compression

(ECC) adapts existing cases to generate additional candidate cases called ghost cases, providing a

more diverse set of cases for compression to consider. Then the union of the case base and the ghost

cases is provided to the condensed nearest neighbor algorithm in order of competence contribution.

Condensed nearest neighbor (CNN) refers to a machine learning technique that reduces the size of

a dataset while preserving its representativeness and classification accuracy by selecting a subset of

the most informative and representative examples (Hart, 1968). This provides competence-based

deletion with a wider set of cases from which to select that can include cases from unseen but

solvable parts of the problem space. If case adaptation is considered sufficiently reliable, then the

result of expansion-contraction compression can be used as is. Otherwise, the selected ghost cases

can become targets for verification, e.g. by asking a human expert in an active learning process, or

62

provenance information (Leake & Whitehead, 2007) about the origin of ghost cases could be used

to predict confidence when they are used.

This chapter presents an evaluation of expansion-contraction compression for four standard data

sets manipulated to enable controlled comparisons with condensed nearest neighbor for case bases

with varying representativeness. The author hypothesized that expansion-contraction compression

would provide better competence retention than condensed nearest neighbor as representativeness

decreased, and the results supported this hypothesis. The author also hypothesized that expansion-

contraction compression would not provide benefit for standard case bases and would even impose

a competence penalty, due to ghost cases increasing the coverage density for non-representative

problems at the expense of coverage density for representative problems. Surprisingly, expansion-

contraction compression often improved competence retention even for standard case bases. This

can be attributed to the addition of ghost cases providing condensed nearest neighbor with more

extensive choices, enabling it to select a more effective mix of cases.

5.1 Background

5.1.1 Compressing the Case Base

A primary early motivation for case-base compression was the swamping utility problem for case-

based reasoning (Francis & Ram, 1995; Smyth & Cunningham, 2005; van Someren et al., 2005).

As the case base grows, case retrieval costs generally increase, while case adaptation costs tend to

decrease due to the increased similarity of retrieved cases. The swamping utility problem occurs

when the increased retrieval cost swamps the adaptation cost savings. Recent arguments propose

that current computing resources and limited case base sizes for many tasks can make this less

important in practice (Houeland & Aamodt, 2010). However, case-based reasoning for domains such

as large-scale e-commerce and big data health care (Institute for Health Technology Transformation,

2013), for which customer data can measure in the hundreds of millions of cases, will continue to

63

face challenges –– necessitating either case-base compression or big data retrieval methods (Jalali &

Leake, 2018). Likewise, provenance capture for e-science can result in extremely large provenance

cases (Cheah et al., 2011) making case-base compression potentially important for sheer case size.

In addition, controlling size can be important even before reaching extremes, if maintenance requires

manual intervention, or if the case bases will be transmitted or replicated, as possible in distributed

case-based reasoning.

5.1.2 Knowledge Container Transfer

The relationship of the four knowledge containers in case-based reasoning –– vocabulary, similarity

measure, case base, and adaptation knowledge –– has given rise to much research on knowledge

container transfer, such as improving adaptation knowledge by transfer from cases (Hanney &

Keane, 2005; Jalali & Leake, 2013; Jalali et al., 2016; McDonnell, 2006; McSherry, 2006; Wilke et

al., 1997), and from adaptation knowledge to similarity (Leake et al., 1996). Whenever a case-based

problem-solver adapts a previous case and stores the result, it can be seen as transferring some of

its adaptation knowledge into the case base, in a lazy manner, on demand. Expansion-contraction

compression, which generates ghost cases by adapting existing cases and adding them to the case

base, can be seen as performing eager knowledge transfer from the adaptation component to the

case base.

5.1.3 Exploration vs. Exploitation

The notion of exploration versus exploitation concerns how an agent should allocate effort between

exploiting existing resources versus exploring in search of others. The explore / exploit trade-

off has proven a useful framework in many fields (Hills et al., 2014). In traditional case-base

maintenance, all maintenance effort is focused on exploitation of existing cases; the expansion-

contraction compression process of generating ghost cases using adaptation knowledge explores

the space of potential cases. Expansion-contraction compression provides both existing cases and

64

the fruits of exploration to condensed nearest neighbor to select those cases expected to be most

valuable in the compressed case base.

Contrast between ghost case generation and adaptation on demand: Both expansion-

contraction compression and normal case-based reasoning do adaptation, but the effect of the former

is different from simply compressing the original case base and adapting the retained cases to solve

new problems. For expansion-contraction compression, the system selects new problems to solve.

This could potentially be guided by trend detection, to hypothesize areas in which additional case

coverage is especially important. For example, the system could note shifts in the types of problems

that the system is solving (D. C. Wilson & Leake, 2002) to focus ghost case generation there.

When a case-based reasoning system adds ghost cases to the case base, it must do so without

benefit of the feedback that often enables systems to detect and repair flaws in solutions. Conse-

quently, the solutions to ghost cases are not guaranteed to be correct. However, because the ghost

case is generated in advance, there is an opportunity to seek confirmation of its solution to avoid

future failure. (Even if the solution proposed by the ghost case remains unverified, and if later

application of the ghost case results in an erroneous solution, the same failure would have occurred

if the case had been adapted on the fly.)

Benefits of exploration: Augmenting the case base with ghost cases prior to compression has

four potential benefits:

1. Potential to improve competence preservation: The author hypothesizes that for less rep-

resentative case bases, expansion-contraction compression will enable increased compression

for a given competence retention level. “Section 5.4: Experimental Results” (on page 72)

shows the outcome of testing this hypothesis. (The author expects results to depend on the

representativeness of the original case base and on the density of the original case base: If

the original case base covers only a small region but all problems fall within that region, then

65

adding ghost cases for problems outside that region might exact a penalty as relevant cases

are “crowded out” by the ghost cases.)

2. Potential to improve adaptation efficiency: If expansion-contraction compression applies a

performance-based criterion for case retention that reflects not only competence but also

adaptation cost (Leake & Wilson, 2003), then a case compressed via expansion-contraction

compression could enable more efficient problem-solving, by adding ghost cases useful for

decreasing expected adaptation cost. Where adaptation is not fully reliable but reliability

can be estimated by similarity distance, such ghost cases can be chosen to reduce expected

average similarity distances, and consequently, to increase expected solution reliability.

3. Potential to focus active learning / external pre-verification of adaptations: If case adaptation

is unreliable, then the quality of ghost cases is not guaranteed. However, by selecting useful

ghost cases, expansion-contraction compression identifies good candidates for external case

acquisition / verification. For example, an expert could be asked to provide the solutions

to these problems, or to review system-generated solutions (this may be easier than solution

generation, e.g. verifying the routing of pipes in the design of a house is easier than finding

a routing).

4. Potential to extend the reach of adaptation: Many case-based reasoning systems restrict

the adaptation of any problem to a single adaptation step, limiting the problems they can

solve (d’Aquin et al., 2006). When ghost cases are generated by applying an adaptation,

future adaptations can start from that adapted state, effectively enabling two-step paths for

adaptations going through that case. Generating ghost cases from longer adaptation paths

further extends the range of problems and decreases adaptation costs.

5.2 The Expansion-Contraction Compression Algorithm

Figure 5.1 (on page 67) provides an intuitive visualization of ghost case generation. The pink

rectangle represents the problem space, and the black circles represent training cases. The white

66

Ghost Case Generation

30

Figure 5.1: An intuitive visualization of ghost case generation.

circle shows a gap where the case base does not have training cases. These missing cases mean

that the case base only partially represents the problem space. The arrows represent application

of adaptation rules, and the clouds represents the ghost cases yielded. A case can adapt into zero,

one, or more ghost cases. Ghost cases can occur both inside and outside of the gap in the case

base. Ghost cases can further adapt (in a chain) into additional ghost cases.

Figure 5.2 (on page 68) outlines the expansion-contraction compression algorithm in pseu-

docode. Inputs to the algorithm include the maximum length of adaptation paths for generating

ghost cases (ghostSteps) and the criterion for whether a case can be adapted to solve a given prob-

lem (coverageCriterion), which we implement as a similarity threshold. Expansion-contraction

compression first expands the case base by adapting selected cases, according to an adaptation

procedure which selects adaptations to perform.

Because expansion-contraction compression performs adaptations in the absence of a specific

problem to solve, many strategies are possible for choosing the adaptation, e.g. selecting a random

adaptation, selecting a high-confidence adaptation, selecting an adaptation expected to produce

the greatest difference between old and new solutions, etc. Also, when generating a ghost case,

expansion-contraction compression must adjust not only the solution, but also the problem descrip-

67

Input:

caseBase: the case base to compress

ghostSteps: the maximum number of adaptation steps for generating ghost cases from the case

base

targetSize: the target number of cases in the compressed case base

coverageCriterion: the test for whether a case can be adapted to solve another case

Output: the compressed case base

expandedCaseBase ← caseBase

ghostCases ← ∅

for ghostLevel = 0 to ghostSteps do

for all case in expandedCaseBase do

ghostCases ← ghostCases ∪ adapt(case)

end for

expandedCaseBase ← expandedCaseBase ∪ ghostCases

end for

expandedCaseBase ← sort(expandedCaseBase, coverageCriterion, descending)

contractedCaseBase ← cnn(expandedCaseBase, targetSize, coverageCriterion)

additionalCases ← limit(expandedCaseBase − contractedCaseBase, targetSize −

size(contractedCaseBase))

contractedCaseBase ← contractedCaseBase ∪ additionalCases

return contractedCaseBase

Figure 5.2: An outline of the expansion-contraction compression algorithm in pseudocode (Leake

& Schack, 2018).

68

tion of the case, to keep the new problem and solution consistent. The adjustment is derived from

the problem description part of the chosen adaptation rule –– if the rule normally addresses a given

difference D between an input problem and a retrieved case, then the problem part of the ghost

case should be the problem of the current case, adjusted by D.

After generating ghost cases, expansion-contraction compression then compresses the expanded

case base by condensed nearest neighbor, presenting cases in order of decreasing coverage (other

ordering criteria, such as relative coverage (Smyth & McKenna, 1999b), could be used as well). If

the resulting case base size is below the size limit, then expansion-contraction compression “fills out”

the additional capacity by adding cases up to the size limit, prioritized by estimated competence

contribution.

5.3 Evaluation

5.3.1 Experimental Questions

The evaluation of expansion-contraction compression considered five questions. The evaluation of

the first four questions used standard domains without associated adaptation knowledge, and there-

fore modeled adaptation based on similarity. The experiments considered the effects of compression

on both competence (measured by number of test problems solved) and solution quality (average

similarity between problems and the cases retrieved for them):

1. How does expansion-contraction compression affect preservation of quality compared to con-

ventional competence-based compression, for varying levels of representativeness?

2. How does expansion-contraction compression affect preservation of competence compared to

conventional competence-based compression, for varying levels of representativeness?

3. How does the number of steps in the adaptation path to generate ghost cases affect compe-

tence retention for expansion-contraction compression, and how does competence compare to

condensed nearest neighbor?

69

4. How does sparsity of the initial case base affect the relative preservation of competence for

expansion-contraction compression and condensed nearest neighbor?

The evaluation then tested expansion-contraction compression in a standard domain augmented

with automatically generated adaptation rules, to examine:

5. How does expansion-contraction compression affect preservation of competence and quality

when applying generated adaptation rules?

5.3.2 Experimental Design

Data Sets: The evaluation used five data sets: Houses, with 781 cases and 8 features, from the

Datasets Wiki of the California Polytechnic University Computer Science Department,1 and four

from the UCI Machine Learning Repository:2 Iris, with 150 cases and 5 features, Wine, with 178

cases and 14 features, Car Evaluation, with 1,728 cases and 7 features, and Wine Quality, with

1,599 cases and 12 features.

Generating the Case Base and Problem Stream: Each trial partitioned each case base into

three random subsets of equal size: (1) training cases –– 33%, (2) testing cases –– 33%, and (3)

potential ghost cases –– 33%. Because of the random selection of the subsets, initially the training

cases have normal representativeness for the data (the effectiveness of standard competence-based

compression suggests that these are reasonably representative). To test the effect of decreased

representativeness, one of the experimental conditions modifies the case bases to place a gap in a

region of the case base (as might exist, for example, if cases reflected seasonally varying outcomes

and no problems had yet been encountered for a particular season). The gap generation process

picks a random case as the starting point for the gap, and then removes all of the problems from

the training case base within a given similarity threshold (the gap radius). The testing cases and

potential ghost cases remain in their original distribution, without an added gap.

1https://wiki.csc.calpoly.edu/datasets/wiki/Houses
2http://archive.ics.uci.edu/ml

70

Modeling Adaptation and Generating Ghost Cases: None of the data sets include adap-

tation knowledge. The first four experiments simulate adaptation-driven generation of ghost cases

as follows: The experiment repeatedly chooses a random case in the training data and filters the

set of potential ghost cases for cases within a similarity threshold (the coverage criterion) required

for adaptability from the selected training case. Those cases are then treated as the result of an

adaptation and stored as ghost cases. This simulates deriving new cases by applying adaptation

rules of limited power to the training case base. To test the effects of more powerful adaptation,

additional experiments apply this process recursively, with selection of sequences of successive cases

to simulate applying chains of one, two, or three adaptation steps.

Generating Adaptation Rules: The fifth experiment applied the case difference heuristic ap-

proach (Hanney & Keane, 2005) to generate a set of adaptation rules from the data. These rules

were then used to generate ghost cases by adaptation, rather than drawing on potential ghost cases

as in Experimental Questions 1 - 4.

The rule generation approach repeatedly selects two random cases, ascribes the difference in

their solutions to the difference in their problems, and forms a rule to apply the same difference

to a solution. The rule is applied when the input problem and the problem of the retrieved case

have a difference similar to the one from which the rule was generated. Given a problem and

retrieved case, the single rule for the most similar difference was applied. For similarity, categorical

features in problem descriptions were only considered to match if identical. The rules adjusted the

solution values by the proportional difference of the solution values of the cases from which they

were generated.

Experimental Procedure: Compression by condensed nearest neighbor (Hart, 1968) was com-

pared to compression by expansion-contraction compression. For each iteration of compression,

both condensed nearest neighbor and expansion-contraction compression yield a case base match-

71

Figure 5.3: Absolute quality for condensed nearest neighbor (CNN) and expansion-contraction

compression (ECC) on the Houses data set, for four different sizes of gaps in the training data

(Leake & Schack, 2018).

ing the size limit, so that problem-solving has access to the same number of cases.

For both expansion-contraction compression and condensed nearest neighbor, cases were sorted

in descending order of coverage. Compression was done in steps of 10% from 100% to 10% of the

size of the uncompressed case base. Each level of compression starts from the uncompressed case

base (not the result of the previous level of compression). Each experiment runs for ten trials with

different randomly chosen partitions, with results averaged over those runs.

5.4 Experimental Results

5.4.1 Question 1: Relative Preservation of Quality

Figure 5.3 (on page 72) compares the absolute quality between condensed nearest neighbor and

expansion-contraction compression strategies for the Houses case base. The coverage criterion for

72

deriving ghost cases and solving testing problems is 5% –– meaning that the difference (calculated

according to the similarity metric) between pairs of cases must be less than 5% of the maximum

difference. Each of the four graphs in Figure 5.3 uses a different value for the gap radius. When

there is no gap, this value is 0%, a small gap is 5%, a medium gap is 10%, and a large gap is 20%.

The size of the gap is measured not in the number of cases that the experiment can remove but in

the similarity distance to the most different case that the experiment can remove. The horizontal

axis shows the proportionate size of the compressed case base, ranging from 100% to 10% in steps

of 10%.

In all four graphs of Figure 5.3, expansion-contraction compression uses adaptation paths with

a maximum length of two steps. The vertical axis shows the quality of the compressed case base.

Note that similarity of a retrieved case counts towards the average quality even when the coverage

criterion is not met. Quality can fall anywhere in the range from 0 to 1, inclusive. The top and

bottom graphs use different scales for the vertical axis (0.91 to 0.97 on the top, and 0.87 to 0.95 on

the bottom) in order to “zoom in” on the difference between the strategies.

When the training case base has no gap (top left), condensed nearest neighbor outperforms

expansion-contraction compression from 100% to 80% of the size of the original case base. How-

ever, from 70% to 10% size, expansion-contraction compression leads. Because neither the set of

training cases nor the set of testing problems has a gap, the training case base is expected to be

approximately representative of the testing problems. Therefore, in this graph, the author believes

that the addition of ghost cases cannot be improving quality by improving representativeness, and

must be doing so simply by providing a wider pool of cases from which condensed nearest neigh-

bor can select alternatives. This was a small effect, but the benefit of the increased choice is an

interesting result that contradicted the initial hypothesis. The results for Question 2 (in “Section

5.4.2: Relative Preservation of Competence” on page 75) show a similar, but more dramatic, effect

on competence.

73

60%

70%

80%

90%

100%
No Gap Small Gap

20%

40%

60%

80%

100%

10
0% 90

%
80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

Medium Gap

CNN ECC

10
0% 90

%
80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

Large Gap

Figure 5.4: Relative competence for condensed nearest neighbor (CNN) and expansion-contraction

compression (ECC) on the Houses data set with four different representativeness levels (Leake &

Schack, 2018).

When the training case base has a small gap (top right), condensed nearest neighbor outperforms

expansion-contraction compression only at 100% of the size of the original case base. Thereafter,

from 90% to 10%, the expansion-contraction compression strategy leads. For the medium (bottom

left) and large gap (bottom right), expansion-contraction compression dominates condensed nearest

neighbor throughout. Overall, as the size of the gap increases, and the training case base less

represents the testing problems, the quality difference increases between condensed nearest neighbor

and expansion-contraction compression. This suggests that part of the benefit comes from the choice

of additional cases for retention (as with the no-gap graph in the top left), and that part of the

benefit comes from correction for unrepresentativeness.

74

5.4.2 Question 2: Relative Preservation of Competence

Figure 5.4 (on page 74) compares the relative competence between condensed nearest neighbor

and expansion-contraction compression. The results are based on using the Houses case base and

a coverage criterion of 5% both for deriving ghost cases and for solving testing problems. As

for Figure 5.3 (on page 72), Figure 5.4 includes four graphs showing different sizes for the gap

in the training case base, and the horizontal axis shows the size of the case base. However, in

Figure 5.4, the vertical axis shows the relative competence, the ratio of the observed competence

to the maximum competence observed with any strategy and any size of case base. (Intuitively,

the maximum competence might be expected to be at the maximum size, but this need not always

hold). The top and bottom graphs use different scales for the vertical axis (60% to 100% on the top,

and 20% to 100% on the bottom) in order to “zoom in” on the difference between the strategies.

As shown in the no gap (top left) and small gap (top right) graphs, condensed nearest neighbor

outperforms expansion-contraction compression at 100% and 90% of the size of the original case

base. Thereafter, from 80% to 10%, expansion-contraction compression leads over condensed near-

est neighbor. For the medium gap (bottom left) and large gap (bottom right) graphs, expansion-

contraction compression dominates condensed nearest neighbor throughout all sizes of case bases.

The amount of the difference between the strategies increases as the size of the gap increases.

5.4.3 Question 3: Effect of the Length of the Adaptation Path

Figure 5.5 (on page 76) presents the relative competence using condensed nearest neighbor and

expansion-contraction compression for the Houses case base. The gap radius for this figure is 20%

(a large gap). The coverage criterion for deriving ghost cases and solving testing problems is 5%, i.e.,

simulated adaptations can adapt solutions to address problem differences of up to 5%. Therefore,

an adaptation path could require up to four steps to cross the gap. The horizontal axis shows the

relative size of the case base decreasing from 100% to 10% in steps of 10%. Each of the lines shows

75

40%

50%

60%

70%

80%

90%

100%

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Re
la

tiv
e

Co
m

pe
te

nc
e

Size of Case Base

No Adaptation (CNN) One Step Two Steps Three Steps

Figure 5.5: Relative competence for condensed nearest neighbor (CNN) and expansion-contraction

compression (ECC) on the Houses data set with three different lengths of adaptation paths (Leake

& Schack, 2018).

76

a different upper limit to the number of adaptations in the adaptation path to derive ghost cases.

No adaptation, which is equivalent to condensed nearest neighbor, is the baseline strategy.

The vertical axis shows the relative competence of the compressed case base. For all adaptation

path lengths and case base sizes, expansion-contraction compression dominates condensed nearest

neighbor. The largest difference in relative competence between condensed nearest neighbor and

expansion-contraction compression with one step of adaptation is 15% at 30% of the size of the

original case base. The smallest difference between these two strategies is 5.1% at 100% size. The

relative competence for each adaptation path length varies consistently, with longer paths associated

with greater competence retention. The largest difference in relative competence between condensed

nearest neighbor and expansion-contraction compression with three steps of adaptation is 27% at

40% of the size of the original case base. The smallest difference is 17% at 10% size.

5.4.4 Question 4: Effect of the Sparsity of the Case Base

Figure 5.6 (on page 78) compares the relative competence between condensed nearest neighbor and

expansion-contraction compression with a sparse case base; the sparse case base models a case base

in the early phases of case base growth. The basic presentation of results follows Figure 5.4 (on

page 74), but the underlying experiment uses different proportions for the partitions for training,

testing, and ghost cases. As described in “Section 5.3.2: Experimental Design” (on page 70), the

partitions for Figures 5.3, 5.4, and 5.5 are equal thirds, but for Figure 5.6, the proportions are 10%

training, 70% testing, and 20% potential ghost cases. The competence trend resembles Figure 5.4

but decreases more steeply because the case base begins with fewer cases.

Figure 5.7 (on page 78) shows the relative competence difference between expansion-contraction

compression and condensed nearest neighbor on five different case bases, each modified by adding

a medium gap in the training data, making it unrepresentative. For all five case bases, the gap

radius is set to twice the the coverage criterion. (For the Houses data set, this corresponds to

77

50%
60%
70%
80%
90%

100%
No Gap Small Gap

20%

40%

60%

80%

100%

10
0% 90

%
80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

Medium Gap

CNN ECC

10
0% 90

%
80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

Large Gap

Figure 5.6: Relative competence for condensed nearest neighbor (CNN) and expansion-contraction

compression (ECC) on the Houses data set with a sparse initial case base and four different levels

of representativeness (Leake & Schack, 2018).

Case Base No Compression 33% Compression 67% Compression

Houses 6.6% 11.2% 15.8%

Iris 1.2% 7.6% 7.0%

Wine 2.8% 9.6% 13.4%

Car Evaluation -3.5% 0.0% -8.0%

Wine Quality (Red) 9.4% 13.4% 14.9%

Figure 5.7: Difference in relative competence between expansion-contraction compression and con-

densed nearest neighbor on five different case bases (Leake & Schack, 2018).

78

30%

40%

50%

60%

70%

Co
m

pe
te

nc
e

88%

90%

92%

94%

96%

10
0% 90

%
80

%
70

%
60

%
50

%
40

%
30

%
20

%
10

%

Qu
al

ity

Case Base Size

CNN ECC

Figure 5.8: Competence and quality for expansion-contraction compression (ECC) and condensed

nearest neighbor (CNN) on Houses data set with adaptation rules (Leake & Schack, 2018).

the lower left graph in Figure 5.4). Expansion-contraction compression outperformed condensed

nearest neighbor on four of the five case bases (Houses, Iris, Wine, and Wine Quality), but not on

Car Evaluation. This suggests that the expansion-contraction strategy might benefit compression

across many domains and raises the question of which factors determine whether it will be beneficial.

5.4.5 Question 5: Applying Sample Adaptation Rule Sets

Experiments with adaptation rules used the Houses data set, with a gap radius of 20% (corre-

sponding to a large gap in the previous experiments), a 5% coverage criterion, and 40 automatically-

generated rules for each trial. Expansion-contraction compression used the adaptation rules both to

generate ghost cases and to adapt solutions. Figure 5.8 (on page 79) shows the average preservation

of competence and quality during expansion-contraction compression condensed nearest neighbor.

Expansion-contraction compression outperformed condensed nearest neighbor in both dimensions

at all compression levels. Thus expansion-contraction compression was beneficial both for modeled

adaptation and adaptation with generated adaptation rules.

79

5.5 Future Work

In the experiments, ghost case generation is an unguided process, generating ghost cases from

randomly-selected cases using randomly-generated adaptations. In addition, ghost cases are gen-

erated within neighborhoods of existing cases, making ghost cases most likely to be added near

regions that are already densely populated. Ghost cases can be useful there, for example, as span-

ning cases (Smyth & Keane, 1995), bridging two competence regions. However, such placement

may not help to populate a distant sparse region. Identifying and targeting sparse regions on which

to focus ghost case generation might increase the benefit of expansion-contraction compression.

On the other hand, populating such regions might be detrimental if representativeness generally

holds. Thus determining guidance strategies for ghost case generation and assessing their effects is

an interesting area for future study.

For example, areas to target for ghost generation could be selected by dividing the case base

into regions and applying Monte Carlo methods to assess case base density (Leake & Wilson, 2011).

Another interesting direction would be to develop maintenance strategies that tracked, reasoned

about, and responded to expected future case distributions, to explicitly determine the expected

utility of exploring unseen areas of the case space.

5.6 Summary

This chapter proposed and evaluated a novel approach to case-base maintenance, expansion-

contraction compression, aimed at achieving better competence retention when the representa-

tiveness assumption may not hold. Expansion-contraction compression contrasts with other ap-

proaches, which focus on how best to exploit the cases in the case base, in going outside problems

addressed by the case base to explore the larger problem space guided by case adaptation knowl-

edge. Expansion-contraction compression can be seen as applying a knowledge container transfer

strategy: It uses adaptation knowledge to generate case knowledge in the form of ghost cases which

80

are then added to the pool of cases available to the compression algorithm. Chosen ghost cases

can be retained as-is or can be used to guide verification or active learning of new cases. Exper-

iments support the expected result of expansion-contraction compression improving competence

retention for less-representative case bases. Surprisingly, expansion-contraction compression also

often improved competence retention even for standard case bases. Thus expansion-contraction

compression appears promising. Interesting questions remain for studying factors affecting perfor-

mance and guiding ghost case generation to maximize the effectiveness of expansion-contraction

compression.

81

Chapter 6

Predictive Case Discovery for Problem-Distribution Drift

“Chapter 3: Subdividing Cases for Deletion” (on page 26) questioned two assumptions of case-base

maintenance: (1) that cases are of uniform size, and (2) that cases cannot be subdivided. Setting

aside these assumptions gave rise to the flexible feature deletion case-base maintenance strategy

(Schack, 2016; Schack & Summers, 2017). “Chapter 4: Prioritizing Deletion by Recoverability via

Adaptation Knowledge” (on page 44) applied adaptation knowledge to flexible feature deletion ––

yielding adaptation-guided feature deletion (Leake & Schack, 2016; Schack, 2016). And “Chapter 5:

Data Augmentation to Expand Choices for Deletion” (on page 61) questioned the representativeness

assumption –– yielding expansion-contraction compression (Leake & Schack, 2018; Schack, 2019).

This chapter will question the assumption of regularity, and setting this aside will also lead to a

novel case-base maintenance strategy.

It is well known that the effectiveness of any case-based reasoning system depends on two types

of regularity, which have been formalized as problem-solution regularity and problem-distribution

regularity (Leake & Wilson, 1999). Problem-solution regularity can be informally characterized

as, “Similar problems have similar solutions,” and is needed in order for the adaptation of the

solutions to retrieved cases to be useful in similar situations. Problem-distribution regularity can

be informally be characterized as, “Future problems will resemble past problems.” This property

is necessary so that learned cases will tend to be useful in the future. In addition to these types of

regularity, another regularity is required by machine learning systems more generally: the regularity

that learned concepts tend to remain valid over time.

The effectiveness of applications of case-based reasoning suggests that a combination of careful

system design and suitable problem environment can provide these properties in practical situa-

tions. However, they are not guaranteed. As case-based reasoning is used in long-lived systems,

82

developments over time may diminish any of these regularities, presenting difficulties for those sys-

tems. When concepts change over time, the result is concept drift (Widmer & Kubat, 1996), which

makes prior cases no longer apply and requires case base updating (Cunningham et al., 2003).

When similarity criteria no longer reflect similarity for system needs, for example due to changes

in case adaptation knowledge, performance may degrade (Leake et al., 1997). When the distribu-

tion of problems changes over time, the quality of case base coverage may degrade, contravening

problem-distribution regularity and requiring maintenance to ensure that the system has the cases

that it needs going into the future.

This chapter first examines each of these types of regularity, and then focuses on problem-

distribution regularity, which to the author’s knowledge, has received little prior attention in case-

based reasoning. To mitigate problem-distribution regularity failures, it proposes predictive case

discovery to identify and anticipate problem-distribution drift to guide the selection of cases to

request from an external source.

This chapter identifies general requirements and classes of detection methods that may be used

to guide case discovery. It then illustrates with a clustering-based method aimed at identifying

“hot spots” in the problem space on which to focus discovery. It presents an evaluation of this

sample method in a path planning domain across four scenarios: no drift, non-cyclical drift, cyclical

drift, and drift from obsolescence. The results support the general effectiveness of the strategy and

also illustrate its limitations. The chapter concludes with future opportunities for predictive case

discovery.

6.1 Regularities Underpinning Case-Based Reasoning

Problem-Solution Regularity: The effectiveness of the reuse of past cases depends on problem-

solution regularity –– the property that solutions to similar problems will provide a useful starting

point for solving a new problem (Leake & Wilson, 1999). Often in the case-based reasoning lit-

83

erature, the assumption is that adapting the solution to a similar problem should reduce solution

generation cost compared to reasoning from scratch, for generating an acceptable solution. Systems

achieving this type of problem-solution regularity have been demonstrated in multiple scenarios

(Smyth & Keane, 1998; Veloso, 1994).

Problem-Distribution Regularity: The benefit to the case-based reasoning process of storing

past cases depends on problem-distribution regularity –– the property that the distribution of future

problems will tend to reflect that of past problems, such that accumulated stored cases from past

episodes tend to provide useful information for future problems (Leake & Wilson, 1999).

Formalizing the Properties: Leake and Wilson provide a formalization of these properties

(Leake & Wilson, 1999). They define problem-solution regularity as depending on four factors:

1. The retrieval function that the system uses to map problems to cases in the case base

2. A definition of the goals to be satisfied by retrieval –– what would make a case a good starting

point for solving a new problem

3. The initial set of cases available to the system

4. The problems that the system is called upon to solve

Retrieval goals are often defined in terms of a predefined similarity measure, such as the semantic

similarity between a target problem and the problem part of stored cases. However, they can be

based on other criteria, e.g. that the solution to the retrieved case should be inexpensive to adapt to

generate a correct solution to the new problem (Smyth & Keane, 1998). Another possible criterion

is that the retrieved case should be adaptable to generate a result within a certain accuracy.

Items (3) and (4) reflect that problem-solution regularity must be measured in terms of the

problems the system has to solve. Items (1), (2), and (3) are under the control of a system de-

signer. For example, to further problem-solution regularity, a retrieval function aimed at retrieving

adaptable cases could be hand-designed, or it could be learned (Leake & Ye, 2021). However, new

84

cases received by the system, as referenced in Item (4), may cause changes in problem-solution

regularity if the retrieval function is ill-suited to judging similarity for those cases.

Problem-distribution regularity reflects the correlation between the distribution of cases in the

case base and the distribution of future problems. Even a case base evenly distributed across the

problem space may have low problem-distribution regularity if upcoming problems are not evenly

distributed.

Problem-distribution regularity has been formalized in terms of the long-term behavior of a

case-based reasoning system: The probability that, at a given point in processing a stream of

problems, the system will be able to retrieve a case sufficiently close to an input problem (Leake

& Wilson, 1999). The assumption of problem-distribution regularity relates to the influential

representativeness assumption of case-base maintenance, “The case base is a representative sample

of the target problem space,” (Smyth & McKenna, 2002). This property is important for assessing

case competence for the possible range of future problems. However, problem-distribution regularity

only measures whether eventually the system will have a sufficient probability of containing the cases

needed to cover new problems; it measures (after the fact) whether it was possible to cover most

problems actually received by the system, rather than predicting whether the case base provides a

good sample of possible future problems.

6.2 How Regularity May Degrade: Types of Drift

Even in suitable domains, regularities may not always hold. Existing cases may become obsolete

(Leake & Wilson, 1999), space or time requirements may necessitate deletion (Smyth, 2005; Smyth

& Keane, 1995) with corresponding competence loss (Smyth & McKenna, 2002), or the system

may simply not have been provided with sufficient initial cases (or the experiences to acquire cases)

to address current problems. The following subsections consider how drift may affect concept

regularity and problem-distribution regularity.

85

6.2.1 Concept Drift

Concept drift, a widely explored phenomenon in machine learning, refers to the situation where

the underlying concepts or relationships between the problem and solution change over time (J.

Lu et al., 2018). For example, in a system for property valuation, inflation could cause prices to

increase over time, providing a gradual transition, or a chemical spill could cause an abrupt decrease

in valuations in a particular region. Or in a system for sentiment analysis, the evolution of slang

could change the interpretation of the sentiment of online messages. By making cases inaccurate,

concept drift can degrade the performance of a formerly accurate case-based reasoning system.

When inaccuracy arises from the time passed since acquiring a case, then this is characterized as

case obsolescence.

6.2.2 Problem-Distribution Drift

Another issue arises in domains for which the problem distribution changes over time. For a disaster

management system, climate change can lead to shifts in weather patterns, reducing the usefulness

of a case base containing response plans for historical weather patterns. For recommender system

for a travel agency, certain areas may become “hot” destinations –– resulting in a different range

of necessary coverage. For a real estate appraisal system, developers may build newer properties

with different characteristics from older properties and beyond the scope of reliable adaptation.

Problem-distribution drift refers to a change in the distribution of problems that the case-based

reasoning system must solve. If a customer support system has cases for certain problems and the

types of problems customers encounter change, then the existing case base may become less useful,

and the case-based reasoning system may need to acquire new cases that are relevant to the new

problem distribution. Because problem-distribution regularity is defined in terms of the limit of

case base growth, even when a domain satisfies problem-distribution regularity in the long term,

practical issues can still arise in the short term. Problem-distribution drift can be caused by various

86

factors, including changes in the environment, changes in user preferences, changes in technology,

or changes in the problem space itself:

Environmental changes The environment in which a case-based reasoning system operates can

change over time. For example, in a medical diagnosis system, changes in the prevalence of

certain diseases can lead to changes in the distribution of medical problems that the system

needs to diagnose and treat.

User preferences User desires or the problems that they wish to address may change. For ex-

ample, a recommender system for clothing or travel packages needs to change seasonally as

the problem distribution changes with user preferences. In some scenarios, changes in fashion

may also render prior cases obsolete.

Technological changes As technology advances, new problems can arise that were not present

before. For example, in a software support system, upgrades in the software can incorporate

new features with associated bugs for which the system needs to provide support.

Changes in the problem space Changes in the underlying physics or changes in the social or

economic context of a domain may affect problem distributions. For example, in a financial

prediction system, changes in the market conditions or regulations can lead to changes in the

distribution of financial problems that the system needs to predict.

6.2.3 Adversarial Drift

Adversarial drift refers to data drift in which a reasoner responds to cases presented by an adversary

which presents characteristically different cases over time with the intention of degrading perfor-

mance (Kantchelian et al., 2013). Adversarial drift could involve concept drift, problem-solution

regularity drift, or problem-distribution regularity drift. Adversarial drift can be observed in im-

perfect information games such as poker, in which players benefit from associating their opponents’

87

bets and “tells” to their strategic position or the strength thereof. In such games, the opponent

may bluff their bets or fake their tells, intentionally breaking regularity to gain an advantage. De-

lany et al. (2005) tracked and mitigated adversarial drift as spammers adapted their techniques to

circumvent spam filters.

6.3 Addressing Problem-Distribution Drift with Guided Case Discovery

Problem-distribution drift may be addressed in a two-step process. First, the case-based reasoning

system can detect and track drift. And second, it can extrapolate to anticipate the path of the drift

and request cases in that path. For example, in a case-based reasoning system for recommending

travel packages, if a new destination is published in a major magazine, then the number of requests

for packages to that destination may increase. If the trend of having more requests in that area

can be detected, then the system could request additional cases in that area to better prepare for

future requests.

6.3.1 Prior Work on Drift Detection

Drift detection algorithms generally fall into four categories: error rate-based drift detection,

data distribution-based drift detection, multiple hypothesis-based drift detection, and competence-

modeling strategies.

Error rate-based strategies compare the error rate of the model before and after a certain

time period. These algorithms are commonly used in classification tasks, where the error rate can

be calculated by comparing the predicted class labels to the true class labels. Increased error rate

over time can indicate data drift. One common error rate-based algorithm is the ADWIN algorithm

which adapts the window size based on observed changes in the error rate (Bifet & Gavaldà, 2007).

88

Data distribution-based strategies compare the data distribution before and after a certain

time frame. These algorithms can detect gradual changes in the data distribution which may not be

reflected in the error rate. One popular algorithm is the Kullback-Leibler (KL) divergence-based

method which measures the difference between two probability distributions. If the divergence

exceeds a threshold, then this can indicate data drift (Dasu et al., 2006).

Multiple hypothesis-based strategies test multiple hypotheses simultaneously, making it pos-

sible to detect complex drift patterns. These algorithms are useful when the data drift is not well

understood or cannot be modeled using a simple statistical model. One example of a multiple

hypothesis-based algorithm is the Just-in-Time adaptive classifiers (JIT) algorithm which uses a

sequence of hypotheses tests to detect changes in the data distribution (Alippi & Roveri, 2008).

Competence-modeling strategies detect drift based on changes in competence. For example,

N. Lu et al. (2014) applies a competence-modeling strategy to detected data drift in case-based

reasoning which provides descriptions and quantification of changes as well as statistical guarantees

of reliability.

Depending on the strategy, the curse of dimensionality can also impact the detection of data

drift. The curse of dimensionality refers to the problem of high dimensionality in a problem space

leading to sparsity and high computational costs (Köppen, 2000). As the number of dimensions

increases, cases can become widely dispersed in the high-dimensional space making changes in their

distribution difficult to detect. One approach to addressing the curse of dimensionality is to re-

duce the dimensionality of the dataset by selecting relevant features before applying drift detection

algorithms.

89

6.3.2 Case Discovery

When problem-distribution regularity decreases, a potential repair is to add cases to the case base.

Case discovery can fill gaps in the distribution of the cases in the case base to cover upcoming

problems that would otherwise fall into those gaps. In systems including a generative component

capable of solving problems from scratch, discovery can be done by calling upon that component. In

that situation, generating the solution in advance does not increase competence but provides speed-

up learning by avoiding the need to generate a solution from scratch at run time (e.g. Prodigy /

Analogy from Veloso (1994)). In other scenarios, discovery may be done by requesting cases beyond

system competence from an external source such as a domain expert.

Which Cases to Discover As the cost of case solicitation may be high, effectiveness of discovery

depends on targeting (Massie et al., 2005; McSherry, 2000, 2002; Owrang O., 1998). For example,

McKenna and Smyth (2002) identify competence holes in a case base to fill by discovering spanning

cases. Such approaches can be combined with problem prediction to further focus on the regions

of the problem space likely to be relevant to incoming problems.

Additional methods could be brought to bear from outside case-based reasoning. For example,

the SMOTE oversampling algorithm (Fernández et al., 2018) mitigates class imbalance by gener-

ating synthetic instances by interpolating between neighboring minority instances. Extensions to

SMOTE can handle concept drift on time series data (Hoens et al., 2012). Case discovery and

oversampling can also be seen as similar in spirit to data augmentation for neural networks (Iwana

& Uchida, 2021). Applying a similar spirit to case-based reasoning, adaptation rules provide a

knowledge-rich source of transformations that go beyond interpolation, yielding “ghost cases” that

tend to preserve case cohesion (Leake & Schack, 2018; Schack, 2019). Ghost cases generated by

adaptation can improve efficiency and compression but generally would not be expected to increase

competence.

90

CB: the case base,

part: a partition function,

active-part: a function selecting one of the subsets of a partition,

rep: a function generating a case to discover given a set of cases

generate-target-case(CB, part, active-part, rep):

1. parts ← part(CB)

2. chosen-part ← active-part(parts)

3. target-case ← rep(chosen-part)

4. Return target-case

Figure 6.1: General discovery procedure (Leake & Schack, 2023).

Let d be a distance metric, N the number of desired clusters, and CB the case base:

1. Divide the training cases into N clusters using the k-means algorithm for distance d.

2. Randomly choose a cluster CL of training cases.

3. Find cr = centroid case of CL.

4. Alter the value of a single feature of cr to yield a variation to request for discovery.

Figure 6.2: k-means discovery algorithm (Leake & Schack, 2023).

91

6.3.3 Clustering-Based Case Discovery

This chapter proposes a general case discovery strategy of dividing the problem space into parts,

predicting the most active part, selecting a point in that part, and then requesting discovery of that

case. This algorithm is illustrated in Figure 6.1 (on page 91). As an illustration and for empirical

evaluation, this chapter applies this strategy in a simple clustering-based approach called k-means

discovery.

The k-means discovery algorithm, shown in Figure 6.2 (on page 91), uses k-means clustering

to divide the problem space into N regions for a predefined value N . It then selects a random

cluster from the N regions, meaning that N determines the balance between exploration (for large

N , resulting in small regions) and exploitation (for small N , resulting in large regions). Alternative

methods could, for example, favor “up and coming” clusters with recent activity.

After a cluster is selected, k-means discovery finds the case at the centroid of that cluster. Then

it generates a variation on the centroid case by altering that case. In this simple demonstration,

it does so by altering the value of a single feature. For example, in the path planning domain, the

variation could be a path where one endpoint is the same as in the centroid path, and the other

endpoint is randomly chosen from the entire graph. Knowledge-rich methods could be used, such

as adaptation strategies simultaneously altering several features of the problem description. (Leake

and Schack (2018) discuss adaptation of both problem and solution parts of cases to generate ghost

cases.) The variation on the centroid case becomes the case to discover.

This chapter uses clustering-based case discovery as an illustration because it is simple and

requires minimal domain knowledge, making it suitable for domains where knowledge is scarce or

costly to obtain. And because, by choosing the case at the centroid of the cluster, the strategy

tends to discover a variant of a case representative of that cluster –– which the author hypothesized

would reflect “hot spots” because less representative cases would tend towards the edges. As

needed, k-means could be replaced with other methods. For example, spherical k-means, using

92

cosine similarity, could be used for textual cases, or affinity propagation could be used for clustering

based on pre-computed distances and without predetermining a specific number of clusters.

6.4 Managing Multiple Strategies

Drift detection and case discovery strategies may have different strengths and weaknesses depending

on the characteristics of the problem domain and the data drift (if any). Additionally, each strategy

may have parameters (such as window size or number of clusters) that need to be tuned to achieve

optimal performance. Choosing the “right” strategies and parameters can impact the accuracy and

efficiency of drift detection and case discovery.

A potential approach to dealing with this issue is to develop a library of strategies and select

which to apply via a bandit meta-strategy. If the strategies are initially selected at random, and

the choice between strategies is weighted based on the number of problems for which the cases

discovered by the strategy were successfully applied in the past, then choices could be refined

to favor successful strategies. However, for a rapidly-changing distribution, this knowledge could

quickly become obsolete. This is a subject for future study.

6.5 Evaluation

The experiments evaluate the proposed clustering-based case discovery strategy, examining the fol-

lowing question:

What effect does the k-means discovery strategy have on the adaptation cost of retrieved cases

compared to random case discovery across four scenarios: no drift, non-cyclical drift, cyclical drift,

and obsolescence?

93

6.5.1 Testing Scenario

The experiments are conducted in a simulated path planning domain. This is an established domain

for evaluating case-based reasoning systems (e.g. PathFinder from Smyth and Cunningham (2005)),

and it has practical applications such as for mobile robots (Hodál & Dvořák, 2008) and autonomous

underwater vehicles (Vasudevan & Ganesan, 1996). The intuitive motivation for the scenario is that

an agent needs to travel from place to place.

Cases are modeled with a problem part and a solution part. The problem part is the starting

and ending points of the path to travel, and the solution part is a list of nodes along the path from

the starting point to the ending point. Some routes and destinations will occur more frequently

than others, and the scenario can change over time due to moving homes, changing jobs, closing

roads, and so on, providing problem-distribution drift.

The experiments model the road and transit network as a graph in which each node is a

potential destination. Variations on the scenario explore obsolescence of cases and cyclical and non-

cyclical problem-distribution drift. Obsolescence is modeled by assigning an expiration age to cases;

cases are no longer available after a certain number of problems have been solved. The following

paragraphs in this section describe the details of the testing scenario, and code for replicating the

evaluation is available in a public GitHub repository.1

Constructing the Graphs Each iteration was done on a different graph generated with 100

nodes. Each node was positioned randomly in two-dimensional space. The edges were constructed

with k-edge augmentation where k = 1. The edge augmentation ensured that the graph could not

be disconnected unless k or more edges were removed. Although the graphs were unweighted, the

edge augmentation was weighted by the Euclidean distance between nodes. The number of edges

varied from graph to graph.

The edge augmentation method served three purposes: First, some path should exist between

1https://github.com/schackbrian2012/ICCBR-2023

94

Figure 6.3: An example of a graph modeling a randomly constructed transit network. Frequently

visited nodes are colored black, and infrequently visited nodes are colored light gray (Leake &

Schack, 2023).

any pair of nodes so that path planning is possible. Second, most paths should be longer than a

single edge so that path planning is non-trivial. And third, edges should be more common between

nearby pairs of nodes than between distant pairs of nodes, for a correlation between Euclidean

distance (for retrieval) and graph distance (for adaptation). Figure 6.3 (on page 95) illustrates a

graph constructed by this method.

Populating the Case Base For each iteration, the case base was populated by first randomly

choosing 10 distinct nodes from the graph, to serve as the frequently visited nodes. These were

unequally weighted from most frequent (10) to least frequent (1). A node was randomly chosen

from the frequently visited nodes, weighted by node weights. Another node was randomly chosen

from the whole graph, giving each node an equal probability. Either a departing path (from a

frequently visited node to a random node) or a returning path (from a random node to a frequently

visited node) was constructed. The process was repeated to generate 1,000 paths.

This method of populating the case base served three purposes: First, because the nodes are

randomly selected from the graph, the paths in the case base cover different parts of the graph.

95

This diversity is important for evaluating the ability of the case discovery strategy to adapt to

changes in the problem distribution. Second, by giving higher weights to frequently visited nodes,

the method accounts for the fact that some parts of the graph may be more important than others,

a realistic assumption for the path planning domain. Third, 1,000 paths is large enough to capture

the variability in the problem distribution and the ability of the case discovery strategy to adapt

to it.

Discovery Methods The evaluation compared three discovery methods. The No Discovery

method is a baseline that does not discover any cases. The Random Discovery and Clustering-

Based Discovery methods discover one case at each time step. The Random Discovery method

selects random values for each feature of the problem part of the case for discovery. In the path

planning domain, the starting and ending points of the path for discovery are two nodes randomly

chosen from the entire graph. The Clustering-Based Discovery method uses k-means discovery

with eight clusters and a categorical distance metric. Exploratory analysis of different numbers of

clusters showed that eight was effective for this task. The categorical distance metric treats each

node as a category (instead of a two-dimensional coordinate) and compares nodes by exact match.

Distance Metric for Retrieval The retrieval process yields the most similar training or dis-

covery case to the testing problem measured according to the Euclidean distance between two

four-dimensional vectors –– the x- and y-coordinates of the source and target nodes of each path

–– resolving ties arbitrarily.

Performance Assessment Methods The three discovery methods were compared using two

performance assessment methods: Leave One Out and Time Series Cross-Validation. For both

evaluation methods, at each time step, the reasoner is presented with the problem part of a different

testing case –– making the number of time steps equal to the number of cross-validation folds. The

order of testing is the same as the order of generation described in the “Populating the Case Base”

96

subsection (on page 95). For the Leave One Out method, the training cases include all cases other

than the testing case. For the Time Series Cross-Validation method, the training cases include all

cases encountered prior to the testing case. The experiment ran for 10 iterations with different

graphs and case bases in each iteration.

The Leave One Out method tests generalizability by iteratively training on all but one data

point, and then testing on the left-out data point, to prevent overfitting. The Time Series Cross-

Validation method is suited for temporal data, as it evaluates the performance on future time points

based on the training data available up to that point, simulating a real-world scenario where the

reasoner has to predict future events based on past data.

Distance Metric for Evaluation The distance metric for evaluating the adaptation cost of a

solution sums the number of edges in the shortest path to adapt the starting and ending points of

a training case to the starting and ending points of the testing case. Unlike the distance metric for

retrieval, the distance metric for evaluation ignores Euclidean distance. For an exact match, the

distance metric returns zero.

6.5.2 Variations on the Testing Scenario

The experiments evaluated four variations on the testing scenario: No Drift, Non-Cyclical Drift,

Cyclical Drift, and Obsolescence.

No Drift Scenario The frequently visited nodes remain the same throughout the time series.

The No Drift Scenario serves as a baseline for comparison with the other scenarios. It tests the

ability of the case discovery strategy to handle a stable problem distribution where the frequently

visited nodes remain the same throughout the time series.

Non-Cyclical Drift Scenario Halfway through the time series, at time step 500, the frequently

visited nodes are changed to a different set of frequently visited nodes constructed by the same

97

random sampling of the nodes. This in turn abruptly changes the paths constructed from the

frequently visited nodes. The Non-Cyclical Drift Scenario tests the ability of the case discovery

strategy to handle abrupt changes in the problem distribution.

Cyclical Drift Scenario This scenario alternates between two sets of frequently visited nodes

for two equal-length phases of each set. It tests the ability of the case discovery strategy to handle

cyclic changes in the problem distribution, which can occur due to seasonal changes or recurring

patterns in user behavior. Specifically, this scenario tests the ability of the case discovery strategy

to adapt to two different sets of frequently visited nodes and construct paths that switch between

the two sets.

Case Obsolescence Scenario This scenarios tests the adaptation cost of naively retrieving cases

without regard to case obsolescence. It simulates case obsolescence by only reusing cases stored or

discovered at less than 100 time steps before the testing problem that they solve (for the evaluation

that allows use of all cases in the case stream, future cases are also only considered within 100

time steps). Evaluation penalizes the retrieval of an obsolete case by re-planning the entire path

from the starting point to the ending point of the testing problem. The number of edges in the

re-planned path is treated as the cost of adapting from the obsolete case to the testing problem.

The distance metrics for retrieval and clustering do not consider obsolescence.

6.5.3 Experimental Results

Figure 6.4 (on page 99) shows the experimental results. The x-axis measures the time step of the

testing case under evaluation. The y-axis measures the adaptation cost of the solution. Each graph

presents the rolling average of adaptation cost over a window of 100 time steps. The order of the

discovery strategies in the legend roughly matches the adaptation cost from highest to lowest.

The none loo and none tscv series use the No Discovery strategy. The random loo and ran-

98

200 400 600 800 1,000
0

2

4

6

8

10

Time Step

Ad
ap

ta
tio

n
C

os
t

k-means_tscv
random_tscv
none_tscv

none_loo
random_loo
k-means_loo

(a) No Drift

200 400 600 800 1,000
0

2

4

6

8

10

k-means_tscv
random_tscv
none_tscv

none_loo
random_loo
k-means_loo

Time Step
Ad

ap
ta

tio
n

C
os

t

(b) Non-Cyclical Drift

250 500 750 12501000
0

1

2

3

4

Time Step

Ad
ap

ta
tio

n
C

os
t

1500 1750 2000

5

6

7

k-means_tscv
random_tscv
none_tscv

none_loo
random_loo
k-means_loo

(c) Cyclical Drift

200 400 600 800 1,000

6

7
8
9

10
11

k-means_tscv
random_tscv
none_tscv

none_loo
random_loo
k-means_loo

Time Step

Ad
ap

ta
tio

n
C

os
t 12

13
14

(d) Case Obsolescence

Figure 6.4: Evaluation of clustering-based case discovery across four scenarios (Leake & Schack,

2023).

99

dom tscv series use the Random Discovery strategy. And the k-means loo and k-means tscv series

use the Clustering-Based Discovery strategy. The none loo, random loo, and k-means loo series

use the Leave One Out evaluation method; the none tscv, random tscv, and k-means tscv series

use the Time Series Cross-Validation evaluation method.

No Drift Scenario –– Figure 6.4a The adaptation cost of Leave One Out evaluation remains

steady over time because both past and future cases make up its training. The adaptation cost of

Time Series Cross-Validation improves over time because the number of cases for training and dis-

covery increase over time. The adaptation cost of each discovery method evaluated by Time Series

Cross-Validation approaches the adaptation cost of the same discovery method evaluated by Leave

One Out. Random Discovery outperforms No Discovery because discovery yields additional cases

beyond the training cases. Clustering-Based Discovery outperforms Random Discovery because the

cases discovered by the former tend to match the distribution of problems, and cases discovered by

the latter tend towards an even distribution over the problem space.

Non-Cyclical Drift Scenario –– Figure 6.4b The earlier phase goes from time steps 0–500,

and the later phase goes from time steps 500–1,000. The plot does not show time steps 0–100

because of the rolling window of 100 time steps. The earlier phase resembles the No Drift Scenario

in Figure 6.4a (on page 99) because no drift has yet occurred. Halfway through, at time step

500, adaptation cost increases for the Time Series Cross-Validation evaluation method because

the problem distribution of training cases from the earlier phase does not match the problem

distribution of testing cases from the later phase.

Adaptation cost increases more steeply for the none tscv and k-means tscv series than the

random tscv series because the latter discovers cases unbiased by the problem distribution of the

earlier phase. The adaptation cost of k-means loo also increases because it discovers the same

cases as k-means tscv –– the majority of which follow the problem distribution of the earlier phase.

100

Around time step 600, adaptation cost for Time Series Cross-Validation begins to decrease again

as training cases arrive from the later phase and the k-means clustering algorithm incorporates

training cases from both phases. Like Figure 6.4a, approaching the end at time step 1,000, the

adaptation cost of each discovery method evaluated by Time Series Cross-Validation approaches

the adaptation cost of the same discovery method evaluated by Leave One Out.

Cyclical Drift Scenario –– Figure 6.4c The first phase, from time steps 0–500, resembles the

No Drift Scenario in Figure 6.4a (on page 99) because no drift has occurred yet. The first two

phases, from time steps 0–1,000, resemble the Non-Cyclical Drift Scenario in Figure 6.4b (on page

99) because the drift has not yet repeated an earlier phase. The first drift (from the first phase to

the second phase) and the third drift (from the third phase to the fourth phase) impact adaptation

cost more than the second drift (from the second phase to the third phase) because the problem

distribution of the training cases and the Guided Discovery cases in the first phase matches the

third phase.

Obsolescence Scenario –– Figure 6.4d Adaptation cost drops for the Time Series Cross-

Validation evaluation method before time step 200 as training and discovery cases arrive to solve

testing problems. Then the ratio of obsolete to contemporary training and discovery cases increases

–– causing an increase in the number of obsolete cases retrieved and an increase in the adaptation

cost. Adaptation cost increases for the Leave One Out evaluation method at the start and end

of the time series. The window of contemporary cases is 100 time steps before and after the test

problem, but the start (resp. end) of the time series has fewer cases before (resp. after) the test

problem.

101

6.6 Summary

This chapter discussed the regularities required by case-based reasoning and potential issues aris-

ing from various types of drift, including concept drift, problem-distribution drift, and adversarial

drift. Then it discussed different strategies for detecting drift, such as error rate-based, data

distribution-based, multiple hypothesis-based, and competence-modeling strategies. It illustrated

a case discovery strategy, k-means discovery, guided by k-means clustering, and evaluated its ef-

fectiveness on synthetic time series data in a path planning domain across four different scenarios.

The evaluation demonstrated that it outperforms baselines. However, because the effectiveness of

discovery strategies depends on characteristics of the drift itself, there is no universal strategy. An

important next step is to explore additional strategies for drift prediction and identifying cases to

discover, including drawing on methods from outside case-based reasoning, and investigating ways

to select the right strategy for the domain and task.

102

Chapter 7

Conclusion

This dissertation explored strategies for case-base maintenance that extend beyond the conventional

paradigm of case deletion. The focal point has been the development and evaluation of four

alternative maintenance strategies: flexible feature deletion, adaptation-guided feature deletion,

expansion-contraction compression, and predictive case discovery.

7.1 Key Contributions

The first strategy, flexible feature deletion, diverges from the assumption that cases are indivisible,

unitary objects and instead allows for the selective removal of case contents, thereby presenting

a nuanced approach to compressing the case base when cases vary in size and features differ in

importance. This approach is particularly beneficial in domains where different levels of detail can

be used for reasoning.

Adaptation-guided feature deletion builds on the foundations laid by flexible feature deletion,

applying adaptation knowledge to prioritize the deletion of features based on their recoverability.

The evaluation of this method in a path-finding domain demonstrated its ability to preserve compe-

tence under compression, thereby supporting its applicability in domains with sufficient adaptation

knowledge.

Expansion-contraction compression introduced the concept of ghost cases. These cases, gener-

ated through the adaptation-based exploration of unseen problem spaces, allow for the augmenta-

tion of the case base to improve competence-based deletion on unrepresentative case bases. This

approach proved beneficial not just for less-representative case bases but also offered improvements

in competence retention on representative case bases, making it a promising avenue for case-base

maintenance.

103

Finally, predictive case discovery aims at addressing the effects of problem-distribution drift by

anticipating and acquiring cases that are predicted to be beneficial in solving future problems, thus

aiding in reducing adaptation costs in evolving problem-solving landscapes.

7.2 Implications

These strategies have shed light on potential enhancements that can be made in the field of case-

based maintenance. By going beyond case deletion and exploring the granularity of feature dele-

tion, leveraging adaptation knowledge for recoverability, and utilizing ghost cases for competence

enhancement, there is a progression in the strategies available for maintaining the quality and

competence of case bases.

These strategies mitigate the immediate challenges posed by big data and enhance the ap-

plicability of case-based reasoning to diverse domains, balancing competence and computational

constraints. The approaches and applications examined in this dissertation support the necessity

and viability of advancing maintenance strategies, ensuring that case-based reasoning can continue

to adapt and evolve in response to ever-changing landscapes of problems and solutions.

7.3 Future Work

While this dissertation expanded the repertoire of maintenance strategies, it also opened several

avenues for future exploration and development. The creation and placement of ghost cases, in

the context of expansion-contraction compression, warrant further exploration to discern optimal

strategies for ghost case generation in varying densities of case bases.

Further exploration of creative destruction, as presented in the studies on recoverability-based

feature deletion, could yield maintenance strategies focused on improving competence by revising

or restructuring cases to enhance adaptability. Additionally, the intersection of adaptability and

recoverability in adaptation-guided feature deletion needs more extensive research to refine and

104

optimize the trade-off between retrieval from the case base and recovery cost.

Moreover, the exploration of nuanced and knowledge-rich strategies in areas where flexible fea-

ture deletion is applicable can be pursued, particularly focusing on the development of knowledge-

rich techniques for compression of cases and feature bundlings.

Lastly, the objective to track and predict different types of drifts, especially in the context of

case discovery, needs further attention to develop mechanisms that can effectively respond to shifts

in problem landscapes and ensure the sustained relevance and competence of case-based reasoning

systems in dynamic environments.

In conclusion, this dissertation has strived to explore and contribute modestly to the domain

of case-base maintenance by introducing and evaluating strategies that look beyond case deletion.

The insights gained from these strategies are stepping stones towards further advancements in the

field, aiming to fortify the adaptability and resilience of case-based reasoning in the face of evolving

challenges.

105

Glossary

adaptation-guided feature deletion (AGFD) case-base maintenance strategy which subdi-

vides cases and prioritizes their components for deletion according to their recoverability

via adaptation knowledge (Leake & Schack, 2016; Schack, 2016). 14, 45

adversarial drift data drift in which a reasoner responds to cases presented by an adversary

which presents characteristically different cases over time with the intention of degrading

performance (Kantchelian et al., 2013). 87

analogical reasoning method of artificial intelligence which discovers and maps parallels between

the relational structure of systems or reasoning steps usually from different domains (Burstein,

1989). 4

artificial neural network method of artificial intelligence inspired by animal brains which loosely

models interconnected neurons which process signals and then signal their neighbors (Haykin,

2004). 5

case element of the case base of a case-based reasoning system containing features and their values

and having more or less structure depending on the domain (Richter, 2003). 4

case base knowledge container of a case-based reasoning system which stores problems with known

solutions either seeded by the training data or solved in the past (Richter, 2003). 4

case obsolescence inaccuracy of a solution to a case arising from the time passed since acquiring

the case. 86

case-base maintenance mitigation for the swamping utility problem which chooses the most

valuable cases to retain and the least valuable cases to delete in order to maintain a compact,

competent case base (Juarez et al., 2018). 1, 8

106

case-based creativity area of case-based reasoning which aims to develop software capable of the

production of novel and interesting products or assisting humans in the production thereof

(Schank & Leake, 1989). 5

case-based reasoning (CBR) method of artificial intelligence which solves a problem by adapt-

ing the solution to a similar problem already solved (Aamodt & Plaza, 1994; de Mantaras

et al., 2005; Riesbeck & Schank, 2013). 1

case-based reasoning cycle problem-solving process for case-based reasoning consisting of four

phases: retrieval, reuse, revision, and retention (de Mantaras et al., 2005). 2

casuistry method of applied ethics and jurisprudence which solves a moral problem by extending

or distinguishing rules extracted from other instances (Searing, 2009). 1

Computerized Yale Retrieval and Updating System (CYRUS) an early case-based reason-

ing system which modelled long-term memory and fact retrieval for events in the lives of

important people (Kolodner, 1983). 2

concept drift refers to the situation in machine learning where the underlying concepts or rela-

tionships between the problem and solution change over time (J. Lu et al., 2018). 86

concept map informal two-dimensional visual representation of concepts and their relationships,

representing a particular user’s conceptualization of a domain (Novak et al., 1984). 31

condensed nearest neighbor (CNN) a machine learning technique that reduces the size of a

dataset while preserving its representativeness and classification accuracy by selecting a subset

of the most informative and representative examples which can be used to train classifiers

with reduced computational costs (Hart, 1968). 62

coverage approximation calculated by case-base maintenance strategies of the number of neigh-

boring problems that a case can solve through adaptation (Smyth & Keane, 1995). 8, 33

107

creative destruction replacement of features with a smaller substitution or abstraction by adaptation-

guided feature deletion which makes case contents more accessible to an adaptation rule of

limited power and thereby improves problem-solving competence (Leake & Schack, 2016). 15,

45

curse of dimensionality the problem of high dimensionality in a problem space leading to spar-

sity and high computational costs (Köppen, 2000). 18, 89

data augmentation mitigation for overfitting employed by artificial neural networks which per-

turbs training data in order to supplement it with additional instances (e.g. cropping or

deforming images) (Wong et al., 2016). 16

decision tree learning method of machine learning which constructs a tree from training data

where each internal node tests an attribute and each leaf node draws a conclusion (Quinlan,

1986; Safavian & Landgrebe, 1991). 5

difference heuristic method of learning an adaptation rule which computes the corresponding

differences between the problem and solution parts of a pair of cases –– effectively transferring

knowledge from the case base to the solution transformation container (Hanney & Keane,

2005; McSherry, 2006). 4

dynamic memory an open-ended model of learning which uses reminders to explain failures of

expectations instead of categories to classify knowledge (Schank, 1982, 1999). 2

expansion-contraction compression (ECC) case-base maintenance strategy which explores

unseen regions of the problem space using adaptation knowledge to generate ghost cases and

then exploits the ghost cases to broaden the range of cases available for competence-based

deletion (Leake & Schack, 2018; Schack, 2019). 16, 62

108

explainable artificial intelligence a white box model of artificial intelligence which provides

human-interpretable justification for its methods and results (Core et al., 2006; Gunning &

Aha, 2019; Leake & McSherry, 2005). 5

explanation-based learning method of machine learning which generalizes from instances by

exploiting a strong domain theory to analyze why each specific instance exemplifies a broader

concept (Minton et al., 1989). 5

feature-centric recoverability the ability to adapt either other cases in the case base or the

original case revised by flexible feature deletion to cover the competence contributions of that

case (which may require adapting an internal subpart of the case) (Leake & Schack, 2016;

Schack, 2016). 49

flexible feature deletion (FFD) knowledge-light case-base maintenance strategy which, in con-

trast to per-case strategies, subdivides variable-size cases for deletion of their components

(Leake & Schack, 2015; Schack & Summers, 2017). 13, 27, 44

four-element comparison standard schema for analogical reasoning which follows the syntactic

form “W : X :: Y: Z” (Collins & Burstein, 1987). 4

ghost case case generated by the expansion-contraction case-base maintenance strategy exploring

unseen regions of the problem space using adaptation knowledge and which broadens the range

of cases available for competence-based deletion to exploit (Leake & Schack, 2018). 16, 62

Integrated Partial Parser (IPP) an early case-based reasoning system which read and gener-

alized from news stories using memory-based parsing techniques (Lebowitz, 1983). 2

k-nearest neighbors algorithm (kNN) instance-based method of classification and regression

for determining the label of an instance depending on the majority vote or average of the

109

labels of its neighbors without maintaining any abstractions (Aha et al., 1991; Kramer, 2013).

6

knowledge container storage module of a case-based reasoning system containing knowledge

which supports an aspect of the case-based reasoning cycle such as the vocabulary, case base,

similarity, and solution transformations (Richter, 2003). 2

knowledge maintenance the process of updating, revising, and managing knowledge represen-

tations in a knowledge-based system to ensure that the knowledge remains relevant, accurate,

and effective over time, by adding new knowledge, removing outdated or irrelevant knowledge,

and modifying existing knowledge to improve its quality and usability (Menzies, 1999). 7

local recoverability the ability of a case to solve the problem that it originally solved before

applying flexible feature deletion but not necessarily all of the problems in the original com-

petence contribution of that case (Leake & Schack, 2016; Schack, 2016). 49

machine learning field of artificial intelligence which studies how to develop computer software

that can progressively improve with experience and without explicit programming for a spe-

cific task (Mitchell, 1997). 4

overfitting phenomenon where a statistical model or machine learning algorithm makes predic-

tions based on peculiarities in its training data not reflected in its testing data thereby im-

proving performance on the training data and sacrificing performance on the testing data

(Dietterich, 1995). 16

predictive case discovery methods that identify and anticipate problem-distribution drift to

guide the selection of cases to request from an external source (Leake & Schack, 2023; Schack,

2023). 19, 83

110

problem-distribution drift change in the distribution of problems to solve which violates problem-

distribution regularity (Leake & Schack, 2023; Schack, 2023). 86

problem-distribution regularity the property that the distribution of future problems will tend

to reflect that of past problems, such that accumulated stored cases from past episodes tend

to provide useful information for future problems (Leake & Wilson, 1999). 84

problem-solution regularity the property that solutions to similar problems will provide a use-

ful starting point for solving a new problem (Leake & Wilson, 1999). 83

reachability approximation calculated by case-base maintenance strategies of the number of

neighboring cases that can solve a problem through adaptation (Smyth & Keane, 1995).

8, 33, 49

recoverability measure of the ability of adaptation knowledge applied to other features to restore

a feature considered for deletion (Leake & Schack, 2016; Schack, 2016). 14

representativeness assumption proposition underlying most case-base maintenance strategies

stating that future problems encountered will follow the same distribution within the domain

as existing cases in the case base (Smyth, 2005). 8, 61, 85

retention phase final phase of the case-based reasoning cycle which packages the given problem

and revised solution as a new case which it may or may not store for solving future problems

(de Mantaras et al., 2005). 2

retrieval phase first phase of the case-based reasoning cycle which searches the case base for

other problems similar to the given problem (de Mantaras et al., 2005). 2

reuse phase second phase of the case-based reasoning cycle which identifies the differences be-

tween the given problem and the retrieved case in order to adapt the solution to the retrieved

case to account for those differences (de Mantaras et al., 2005). 2

111

revision phase third phase of the case-based reasoning cycle which attempts to apply the adapted

solution in a simulation or the real world and modifies the solution based on its performance

(de Mantaras et al., 2005). 2

rule induction area of machine learning which extracts formal rules which model patterns in

training examples (Cohen, 1995). 6

similarity measure knowledge container of a case-based reasoning system which contains the

function for calculating of the resemblance between problems perhaps with different features

having different weights (Richter, 2003). 4

solution transformation container knowledge container of a case-based reasoning system which

stores potential adaptations to a solution to account for differences between problems (Richter,

2003). 4

swamping utility problem the trade-off between the contribution to competence against the

cost for retrieval of storing a case in a case base (Francis & Ram, 1993; Minton, 1990; Smyth

& Cunningham, 2005). 7

transfer learning area of machine learning which applies knowledge gained from solving a source

problem to solve a different target problem in a different domain (Sharma et al., 2007). 5

vocabulary container knowledge container of a case-based reasoning system which stores the

potential features of a problem or solution, the range of potential values, and the relationship

between dependent features (Richter, 2003). 4

112

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological varia-

tions, and system approaches. AI Communications, 7 (1), 39–59. https://doi.org/10.3233/

AIC-1994-7104

Abdel-Aziz, A., & Hüllermeier, E. (2015). Case base maintenance in preference-based CBR. Case-

Based Reasoning Research and Development, 9343, 1–14. https://doi.org/10.1007/978-3-

319-24586-7 1

AbuSalim, S. W., Ibrahim, R., Saringat, M. Z., Jamel, S., & Wahab, J. A. (2020). Comparative anal-

ysis between Dijkstra and Bellman-Ford algorithms in shortest path optimization. Materials

Science and Engineering, 917, 1–11. https://doi.org/10.1088/1757-899X/917/1/012077

Aha, D. (1992). Generalizing from case studies: A case study. Machine Learning Proceedings, 1–10.

https://doi.org/10.1016/B978-1-55860-247-2.50006-1

Aha, D., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning,

6, 37–66. https://doi.org/10.1007/BF00153759

Alippi, C., & Roveri, M. (2008). Just-in-time adaptive classifiers, part I: Detecting nonstationary

changes. IEEE Transactions on Neural Networks, 19 (7), 1145–1153. https://doi.org/10.

1109/TNN.2008.2000082

Angiulli, F. (2005). Fast condensed nearest neighbor rule. Proceedings of the 22nd International

Conference on Machine Learning, 25–32. https://doi.org/10.1145/1102351.1102355

Anwar, M. A., & Yoshida, T. (2001). Integrating OO road network database, cases, and knowledge

for route finding. Proceedings of the 2001 ACM Symposium on Applied Computing, 215–219.

https://doi.org/10.1145/372202.372325

Arshadi, N., & Jurisica, I. (2005). Feature selection for improving case-based classifiers on high-

dimensional data sets. Proceedings of the FLAIRS Conference, 99–104. Retrieved November

113

13, 2023, from https : / /www . researchgate . net /profile /Niloofar - Arshadi / publication /

221438418 Feature Selection for Improving Case - Based Classifiers on High - Dimensional

Data Sets/links/5486f9bb0cf289302e2eaf46/Feature-Selection-for-Improving-Case-Based-

Classifiers-on-High-Dimensional-Data-Sets.pdf

Ashley, K. D. (1986, June 30). Modeling legal argument: Reasoning with cases and hypotheticals.

Defense Technical Information Center. Retrieved November 13, 2023, from https://apps.

dtic.mil/sti/pdfs/ADA175925.pdf

Bergmann, R., & Wilke, W. (2005). On the role of abstraction in case-based reasoning. Advances

in Case-Based Reasoning, 1168, 28–43. https://doi.org/10.1007/BFb0020600

Bichindaritz, I., & Marling, C. (2006). Case-based reasoning in the health sciences: What’s next?

Artificial Intelligence in Medicine, 36 (2), 127–135. https://doi.org/10.1016/j.artmed.2005.

10.008

Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing.

Proceedings of the 2007 SIAM International Conference on Data Mining, 443–448. https:

//doi.org/10.1137/1.9781611972771

Brighton, H. (2001). Identifying competence-critical instances for instance-based learners. In In-

stance selection and construction for data mining (pp. 1–18, Vol. 608). Springer Link. Re-

trieved November 13, 2023, from https://eucaslab.github.io/downloads/2001.Brighton.

Mellish.ISDM.pdf

Burstein, M. H. (1989). Analogy vs. CBR: The purpose of mapping. Proceedings of the DARPA

Case-Based Reasoning Workshop, 133–136. Retrieved November 13, 2023, from https://

www.bursteins.net/mark/docs/Burstein-CBR89.pdf

Carbonell, J. (1985, March 5). Derivational analogy: A theory of reconstructive problem solving

and expertise acquisition. Carnegie-Mellon University Department of Computer Science.

114

Pittsburgh PA. Retrieved November 13, 2023, from https : / / apps . dtic .mil / sti / pdfs /

ADA156817.pdf

Cheah, Y.-W., Plale, B., Kendall-Morwick, J., Leake, D., & Kamakrishnan, L. (2011). A noisy 10

GB provenance database. Business Process Management Workshops, 100. https://doi.org/

10.1007/978-3-642-28115-0 35

Cohen, W. W. (1995). Fast effective rule induction. Proceedings of the Twelfth International Confer-

ence on Machine Learning, 115–123. https://doi.org/10.1016/B978-1-55860-377-6.50023-2

Collins, A., & Burstein, M. (1987, December 1). A framework for a theory of mapping. BBN Labs

Inc. Cambridge MA. Retrieved November 13, 2023, from https://apps.dtic.mil/sti/pdfs/

ADA191071.pdf

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep

neural networks with multitask learning. Proceedings of the 25th International Conference

on Machine Learning, 160–167. https://doi.org/10.1145/1390156.1390177

Cordier, A., Lefevre, M., Champin, P.-A., Georgeon, O., & Mille, A. (2013). Trace-based reasoning:

Modeling interaction traces for reasoning on experiences, 1–15. Retrieved November 13,

2023, from https://hal.science/hal-00830444/file/Liris-5264.pdf

Core, M. G., Lane, H. C., Lent, M. v., Gomboc, D., Solomon, S., & Rosenberg, M. (2006, January

1). Building explainable artificial intelligence systems. University of Southern California.

Marina del Rey CA. Retrieved November 13, 2023, from https://cdn.aaai.org/AAAI/2006/

AAAI06-293.pdf

Craw, S. (2011). Case-based reasoning. In Encyclopedia of machine learning (pp. 147–154). Springer

Link. Retrieved November 20, 2023, from https://link.springer.com/content/pdf/10.1007/

978-0-387-30164-8 97.pdf?pdf=inline%20link

Craw, S., Massie, S., & Wiratunga, N. (2007). Informed case base maintenance: A complexity

profiling approach. Proceedings of the 22nd National Conference on Artificial Intelligence, 2,

115

1618–1621. Retrieved November 16, 2023, from https://cdn.aaai.org/AAAI/2007/AAAI07-

258.pdf

Cunningham, P., Nowlan, N., Delany, S. J., & Haahr, M. (2003). A case-based approach to spam

filtering that can track concept drift. Proceedings of the International Conference on Case-

Based Reasoning, 3. Retrieved November 20, 2023, from https://publications.scss.tcd.ie/

tech-reports/reports.03/TCD-CS-2003-16.pdf

d’Aquin, M., Lieber, J., & Napoli, A. (2006). Adaptation knowledge acquisition: A case study

for case-based decision support in oncology. Computational Intelligence, 22 (3), 161–176.

https://doi.org/10.1111/j.1467-8640.2006.00281.x

Dasu, T., Krishnan, S., & Venkatasubramanian, S. (2006). An information theoretic approach to

detecting changes in multi-dimensional data streams. Proceedings of the Symposium on the

Interface of Statistics, Computing Science, and Applications, 1–24. Retrieved November 20,

2023, from https://www.cse.ust.hk/∼yike/datadiff/datadiff.pdf

Delany, S. J., & Cunningham, P. (2004). An analysis of case-base editing in a spam filtering system.

Advances in Case-Based Reasoning, 3155, 128–141. https://doi.org/10.1007/978-3-540-

28631-8 11

Delany, S. J., Cunningham, P., Tsymbal, A., & Coyle, L. (2005). A case-based technique for tracking

concept drift in spam filtering. Applications and Innovations in Intelligent Systems XII, 3–

16. https://doi.org/10.1007/1-84628-103-2 1

de Mantaras, R. L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher,

M. L., Cox, M. T., Forbus, K., Keane, M., Aamodt, A., & Watson, I. (2005). Retrieval,

reuse, revision and retention in case-based reasoning. The Knowledge Engineering Review,

20 (3), 215–240. https://doi.org/10.1017/S0269888906000646

116

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing Sur-

veys, 27 (3), 326–327. Retrieved November 20, 2023, from https://dl.acm.org/doi/pdf/10.

1145/212094.212114

Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from imbal-

anced data: Progress and challenges, marking the 15-year anniversary. Journal of Artificial

Intelligence Research, 61, 863–905. https://doi.org/10.1613/jair.1.11192

Forbus, K. D., Gentner, D., & Law, K. (1995). MAC / FAC: A model of similarity-based retrieval.

Cognitive Science, 19 (2), 141–205. https://doi.org/10.1207/s15516709cog1902 1

Fox, S., & Leake, D. B. (2005). Learning to refine indexing by introspective reasoning. Case-Based

Reasoning Research and Development, 1010, 431–440. https://doi .org/10.1007/3- 540-

60598-3 39

Francis, A. G., Jr., & Ram, A. (1993). Computational models of the utility problem and their appli-

cation to a utility analysis of case-based reasoning. Proceedings of the Workshop on Knowl-

edge Compilation and Speedup Learning, 1–8. Retrieved November 20, 2023, from https:

//citeseerx.ist.psu.edu/document?doi=c204a97e59adfd8d1a6d14dd803d8ddc0c59b75d

Francis, A. G., Jr., & Ram, A. (1995). Comparative utility analysis of case-based reasoning and

control-rule learning systems. Machine Learning: ECML-95, 912, 138–150. https://doi.org/

10.1007/3-540-59286-5 54

Fuchs, B., Lieber, J., Mille, A., & Napoli, A. (2014). Differential adaptation: An operational ap-

proach to adaptation for solving numerical problems with CBR. Knowledge-Based Systems,

68, 103–114. https://doi.org/10.1016/j.knosys.2014.03.009

Goel, A. K., Ali, K. S., & de Silva Garza, A. G. (1994). Computational trade-offs in experience-

based reasoning. Proceedings of the AAAI-94 Workshop on Case-Based Reasoning, 55–61.

Retrieved November 20, 2023, from https://www-robotics.jpl.nasa.gov/media/documents/

Computational Trade-offs in Experience Based Reasoning.pdf

117

Goel, A. K., & Diaz-Agudo, B. (2017). What’s hot in case-based reasoning. Proceedings of the 31st

AAAI Conference on Artificial Intelligence, 31, 5067–5069. https://doi.org/10.1609/aaai.

v31i1.10643

Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence program. AI Mag-

azine, 40 (2), 44–58. https://doi.org/10.1609/aimag.v40i2.2850

Haigh, K. Z., & Veloso, M. (2005). Route planning by analogy. Case-Based Reasoning Research

and Development, 1010, 169–180. https://doi.org/10.1007/3-540-60598-3 16

Hanney, K., & Keane, M. T. (2005). Learning adaptation rules from a case base. Advances in

Case-Based Reasoning, 1168, 179–192. https://doi.org/10.1007/BFb0020610

Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information The-

ory, 14 (3), 515–516. Retrieved November 20, 2023, from https://citeseerx.ist.psu.edu/

document?repid=rep1&type=pdf&doi=7c3771fd6829630cf450af853df728ecd8da4ab2

Haykin, S. (2004). Neural networks: A comprehensive foundation (2nd ed.). Prentice Hall. Retrieved

November 20, 2023, from https://dl.acm.org/doi/abs/10.5555/521706

Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., & Cognitive Search Research

Group. (2014). Exploration versus exploitation in space, mind, and society. Trends in Cog-

nitive Sciences, 19 (1), 46–54. https://doi.org/10.1016/j.tics.2014.10.004

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V.,

Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. Signal Processing

Magazine, 29 (6), 82–87. https://doi.org/10.1109/MSP.2012.2205597

Hodál, J., & Dvořák, J. (2008). Using case-based reasoning for mobile robot path planning. En-

gineering Mechanics, 15 (3), 181–191. Retrieved November 20, 2023, from http://www.

engineeringmechanics.cz/pdf/15 3 181.pdf

118

Hoens, T. R., Polikar, R., & Chawla, N. V. (2012). Learning from streaming data with concept

drift and imbalance: An overview. Progress in Artificial Intelligence, 1, 89–101. https://doi.

org/10.1007/s13748-011-0008-0

Holt, A., Bichindaritz, I., Schmidt, R., & Perner, P. (2005). Medical applications in case-based

reasoning. The Knowledge Engineering Review, 20 (3), 289–292. https://doi.org/10.1017/

S0269888906000622

Houeland, T. G., & Aamodt, A. (2010). The utility problem for lazy learners: Towards a non-

eager approach. Case-Based Reasoning Research and Development, 6176, 141–155. https:

//doi.org/10.1007/978-3-642-14274-1 12

Institute for Health Technology Transformation. (2013). Transforming health care through big data:

Strategies for leveraging big data in the health care industry. New York NY.

Iwana, B. K., & Uchida, S. (2021). An empirical survey of data augmentation for time series

classification with neural networks. PLoS One, 16 (7), 1–32. https ://doi . org/10 .1371/

journal.pone.0254841

Jalali, V., & Leake, D. (2013). Extending case adaptation with automatically generated ensembles of

adaptation rules. Case-Based Reasoning Research and Development, 7969, 188–202. https:

//doi.org/10.1007/978-3-642-39056-2 14

Jalali, V., & Leake, D. (2018). Harnessing hundreds of millions of cases: Case-based prediction at

industrial scale. Case-Based Reasoning Research and Development, 11156, 153–169. https:

//doi.org/10.1007/978-3-030-01081-2 11

Jalali, V., Leake, D., & Forouzandehmehr, N. (2016). Ensemble of adaptations for classification:

Learning adaptation rules for categorical features. Case-Based Reasoning Research and De-

velopment, 9969, 186–202. https://doi.org/10.1007/978-3-319-47096-2 13

119

Jonsen, A. R., & Toulmin, S. (1988). The abuse of casuistry: A history of moral reasoning. Uni-

versity of California Press. Retrieved November 20, 2023, from https://philpapers.org/rec/

JONTAO-19

Juarez, J. M., Craw, S., Lopez-Delgado, J. R., & Campos, M. (2018). Maintenance of case bases:

Current algorithms after fifty years. Proceedings of the 27th International Joint Conference

on Artificial Intelligence and 23rd European Conference on Artificial Intelligence, 5457–

5463. https://doi.org/10.24963/ijcai.2018/770

Kantchelian, A., Afroz, S., Huang, L., Islam, A. C., Miller, B., Tschantz, M. C., Greenstadt, R.,

Joseph, A. D., & Tygar, J. D. (2013). Approaches to adversarial drift. Proceedings of the

2013 ACM Workshop on Artificial Intelligence and Security, 99–109. https://doi.org/10.

1145/2517312.2517320

Kolodner, J. (1983). Reconstructive memory: A computer model. Cognitive Science, 7 (4), 281–328.

https://doi.org/10.1016/S0364-0213(83)80002-0

Kolodner, J. (1993). Case-based reasoning. Morgan Kaufmann Publishers. Retrieved November 20,

2023, from https://folk.idi.ntnu.no/agnar/CBR%20papers/Kolodner-bok/Kolodner93

FirstPages.pdf

Kolodner, J. (1996). Making the implicit explicit: Clarifying the principles of case-based reasoning.

In Case-based reasoning: Experiences, lessons, and future directions (pp. 349–370). MIT

Press. Retrieved November 20, 2023, from https://homes.luddy.indiana.edu/leake/papers/

a-96-book.html

Köppen, M. (2000). The curse of dimensionality. Proceedings of the 5th Online World Conference

on Soft Computing in Industrial Applications, 1, 4–8. Retrieved November 20, 2023, from

https://www.class-specific.com/csf/papers/hidim.pdf

120

Kramer, O. (2013). K-nearest neighbors. In Dimensionality reduction with unsupervised nearest

neighbors (pp. 13–23, Vol. 51). Springer Link. Retrieved November 20, 2023, from https:

//link.springer.com/content/pdf/10.1007/978-3-642-38652-7 2.pdf?pdf=inline%20link

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional

neural networks. Advances in Neural Information Processing Systems, 25, 1–9. Retrieved

November 20, 2023, from https://www.nvidia.it/content/tesla/pdf/machine- learning/

imagenet-classification-with-deep-convolutional-nn.pdf

Kruusmaa, M., & Willemson, J. (2003). Covering the path space: A casebase analysis for mobile

robot path planning. Knowledge-Based Systems, 16 (5), 235–242. https://doi.org/10.1016/

S0950-7051(03)00024-8

Lawrence, S., Giles, C. L., & Tsoi, A. C. (1997). Lessons in neural network training: Overfitting may

be harder than expected. Proceedings of the National Conference on Artificial Intelligence,

540–545. Retrieved November 20, 2023, from https://www.researchgate.net/profile/Steve-

Lawrence-4/publication/221604796 Lessons in Neural Network Training Overfitting May

be Harder than Expected/links/00b7d531e476d171be000000/Lessons-in-Neural-Network-

Training-Overfitting-May-be-Harder-than-Expected.pdf

Leake, D. B. (1992). Constructive similarity assessment: Using stored cases to define new situations.

Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, 313–

318. Retrieved November 21, 2023, from https://citeseerx.ist .psu.edu/document?doi=

5be198a38bcd175b27bd91a425424d23c922a3f0

Leake, D. B. (1996a). Case-based reasoning: Experiences, lessons, and future directions. Retrieved

November 20, 2023, from https://dl.acm.org/doi/abs/10.5555/524680

Leake, D. B. (1996b). CBR in context: The present and future. In Case-based reasoning: Experi-

ences, lessons, and future directions (pp. 3–30). AAAI Press / MIT Press. Retrieved Novem-

ber 21, 2023, from https://citeseerx.ist.psu.edu/document?doi=f65acdb27d92dfcf44b240632eeb5a913a486226

121

Leake, D. B. (1998). Cognition as case-based reasoning. In A companion to cognitive science

(pp. 465–476). Blackwell.

Leake, D. B., Kinley, A., & Wilson, D. (1996). Linking adaptation and similarity learning. Pro-

ceedings of the Eighteenth Annual Conference of the Cognitive Science Society, 591–596.

Retrieved November 21, 2023, from https://citeseerx.ist.psu.edu/document?repid=rep1&

type=pdf&doi=faec91c612f88b089e3adc27ae293af632ec54ed

Leake, D. B., Kinley, A., & Wilson, D. (1997). Learning to integrate multiple knowledge sources for

case-based reasoning. Proceedings of the 15th International Joint Conference on Artificial

Intelligence, 1, 246–251. Retrieved November 21, 2023, from https://citeseerx.ist.psu.edu/

document?doi=b1a1ff47208f3fa86b60ddffc4864883e74b2af5

Leake, D. B., Maguitman, A., & Reichherzer, T. (2014). Experience-based support for human-

centered knowledge modeling. Knowledge-Based Systems, 68, 77–87. https://doi.org/10.

1016/j.knosys.2014.01.013

Leake, D. B., Maguitman, A., Reichherzer, T., Cañas, A. J., Carvalho, M., Arguedas, M., Brenes, S.,

& Eskridge, T. (2003). Aiding knowledge capture by searching for extensions of knowledge

models. Proceedings of the 2nd International Conference on Knowledge Capture, 44–53.

https://doi.org/10.1145/945645.945655

Leake, D. B., & McSherry, D. (2005). Introduction to the special issue on explanation in case-

based reasoning. The Artificial Intelligence Review, 24 (2), 103–108. https://doi.org/10.

1007/s10462-005-4606-8

Leake, D. B., & Schack, B. (2015). Flexible feature deletion: Compacting case bases by selectively

compressing case contents. Case-Based Reasoning Research and Development, 9343, 212–

227. https://doi.org/10.1007/978-3-319-24586-7 15

122

Leake, D. B., & Schack, B. (2016). Adaptation-guided feature deletion: Testing recoverability to

guide case compression. Case-Based Reasoning Research and Development, 9969, 234–248.

https://doi.org/10.1007/978-3-319-47096-2 16

Leake, D. B., & Schack, B. (2018). Exploration vs. exploitation in case-base maintenance: Lever-

aging competence-based deletion with ghost cases. Case-Based Reasoning Research and

Development, 11156, 202–218. https://doi.org/10.1007/978-3-030-01081-2 14

Leake, D. B., & Schack, B. (2023). Towards addressing problem-distribution drift with case discov-

ery. Case-Based Reasoning Research and Development, 14141, 244–259. https://doi.org/10.

1007/978-3-031-40177-0 16

Leake, D. B., & Sooriamurthi, R. (2002). Managing multiple case bases: Dimensions and issues.

Proceedings of the 15th International Florida Artificial Intelligence Research Society Con-

ference, 106–110. Retrieved November 21, 2023, from https://legacy.cs.indiana.edu/ftp/

leake/p-02-03.pdf

Leake, D. B., & Whitehead, M. (2007). Case provenance: The value of remembering case sources.

Case-Based Reasoning Research and Development, 4626, 194–208. https://doi.org/10.1007/

978-3-540-74141-1 14

Leake, D. B., & Wilson, D. C. (1999). When experience is wrong: Examining CBR for changing

tasks and environments. Case-Based Reasoning Research and Development, 1650, 218–232.

https://doi.org/10.1007/3-540-48508-2 16

Leake, D. B., & Wilson, D. C. (2003). Remembering why to remember: Performance-guided case-

base maintenance. Advances in Case-Based Reasoning, 1898, 161–172. https://doi.org/10.

1007/3-540-44527-7 15

Leake, D. B., & Wilson, M. (2011). How many cases do you need? Assessing and predicting case-

base coverage. Case-Based Reasoning Research and Development, 6880, 92–106. https://

doi.org/10.1007/978-3-642-23291-6 9

123

Leake, D. B., & Ye, X. (2021). Harmonizing case retrieval and adaptation with alternating opti-

mization. Case-Based Reasoning Research and Development, 12877, 125–139. https://doi.

org/10.1007/978-3-030-86957-1 9

Lebowitz, M. (1983). Memory-based parsing. Artificial Intelligence, 21 (4), 363–404. https://doi.

org/10.1016/S0004-3702(83)80019-8

Li, Y., Shiu, S. C., & Pal, S. K. (2006). Combining feature reduction and case selection in building

CBR classifiers. IEEE Transactions on Knowledge and Data Engineering, 18 (3), 415–429.

https://doi.org/10.1109/TKDE.2006.40

Li, Y., Su, L.-M., & He, Q. (2012). Case-based multi-task pathfinding algorithm. Proceedings of

the 2012 International Conference on Machine Learning and Cybernetics, 513–518. https:

//doi.org/10.1109/ICMLC.2012.6358976

Lieber, J. (2005). A criterion of comparison between two case bases. Advances in Case-Based

Reasoning, 984, 87–100. https://doi.org/10.1007/3-540-60364-6 29

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift:

A review. IEEE Transactions on Knowledge and Data Engineering, 31 (12), 2346–2363.

https://doi.org/10.1109/TKDE.2018.2876857

Lu, N., Lu, J., Zhang, G., & de Mantaras, R. L. (2016). A concept drift-tolerant case-base editing

technique. Artificial Intelligence, 230, 108–133. Retrieved November 21, 2023, from https:

//www.iiia.csic.es/∼mantaras/AIJ Concept Drift.pdf

Lu, N., Zhang, G., & Lu, J. (2014). Concept drift detection via competence models. Artificial

Intelligence, 209, 11–28. https://doi.org/10.1016/j.artint.2014.01.001

Lupiani, E., Craw, S., Massie, S., Juarez, J. M., & Palma, J. T. (2013). A multi-objective evolution-

ary algorithm fitness function for case-base maintenance. Case-Based Reasoning Research

and Development, 7969, 218–232. https://doi.org/10.1007/978-3-642-39056-2 16

124

Lupiani, E., Juarez, J. M., & Palma, J. (2014). A proposal of temporal case-base maintenance

algorithms. Case-Based Reasoning Research and Development, 8765, 260–273. https://doi.

org/10.1007/978-3-319-11209-1 19

Lupiani, E., Massie, S., Craw, S., Juarez, J. M., & Palma, J. (2015). Case-base maintenance with

multi-objective evolutionary algorithms. Journal of Intelligent Information Systems, 46,

259–284. https://doi.org/10.1007/s10844-015-0378-z

Marquer, E., Badra, F., Lesot, M.-J., Couceiro, M., & Leake, D. (2023). Less is better: An energy-

based approach to case-base competence. Proceedings of the ICCBR ATA ’23: Workshop

on Analogies, 27–42. Retrieved November 22, 2023, from https://inria.hal.science/hal-

04184905/document

Massie, S., Craw, S., & Wiratunga, N. (2005). Complexity-guided case discovery for case-based

reasoning. Proceedings of the 20th National Conference on Artificial Intelligence, 1, 216–

221. Retrieved November 22, 2023, from https://cdn.aaai.org/AAAI/2005/AAAI05-035.pdf

Mathew, D., & Chakraborti, S. (2017). Competence guided model for casebase maintenance. Pro-

ceedings of the 26th International Joint Conference on Artificial Intelligence, 4904–4908.

Retrieved November 22, 2023, from https://www.ijcai.org/proceedings/2017/0691.pdf

McDonnell, N. (2006, October). A knowledge-light approach to regression using case-based reasoning

[Doctoral dissertation, University of Dublin, Trinity College]. Retrieved November 22, 2023,

from http://www.tara.tcd.ie/bitstream/handle/2262/77638/McDonnell,%20Neil TCD-

SCSS-PHD-2006-04.pdf?sequence=1&isAllowed=y

McKenna, E., & Smyth, B. (2002). Competence-guided case discovery. Research and Development

in Intelligent Systems XVIII, 97–108. https://doi.org/10.1007/978-1-4471-0119-2 8

McSherry, D. (2000). Automating case selection in the construction of a case library. Research and

Development in Intelligent Systems XVI, 163–177. https://doi.org/10.1007/978-1-4471-

0745-3 11

125

McSherry, D. (2002). Intelligent case-authoring support in CaseMaker-2. Computational Intelli-

gence, 17 (2), 331–345. https://doi.org/10.1111/0824-7935.00148

McSherry, D. (2006). An adaptation heuristic for case-based estimation. Advances in Case-Based

Reasoning, 1488, 184–195. https://doi.org/10.1007/BFb0056332

Menzies, T. (1999). Knowledge maintenance: The state of the art. The Knowledge Engineering

Review, 14 (1), 1–46. https://doi.org/10.1017/S0269888999134052

Minton, S. (1990). Quantitative results concerning the utility of explanation-based learning. Arti-

ficial Intelligence, 42 (2), 564–569. https://doi.org/10.1016/0004-3702(90)90059-9

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, O., & Gil, Y. (1989).

Explanation-based learning: A problem-solving perspective. Artificial Intelligence, 40 (1),

63–118. https://doi.org/10.1016/0004-3702(89)90047-7

Mitchell, T. M. (1997, March 1). Machine learning. McGraw-Hill Science / Engineering / Math.

Retrieved November 22, 2023, from https ://ds .amu.edu .et/xmlui/bitstream/handle/

123456789/14637/Machine Learning%20-%20421%20pages.pdf?sequence=1&isAllowed=y

Muñoz-Avila, H. (1999). A case retention policy based on detrimental retrieval. Case-Based Reason-

ing Research and Development, 1650, 276–287. https://doi.org/10.1007/3-540-48508-2 20

Muñoz-Avila, H. (2002). Case-base maintenance by integrating case-index revision and case-retention

policies in a derivational replay framework. Computational Intelligence, 17 (2), 280–294.

https://doi.org/10.1111/0824-7935.00145

Niwattanakul, S., Singthongchai, J., Naenudorn, E., & Wanapu, S. (2013). Using of Jaccard co-

efficient for keywords similarity. Proceedings of the International MultiConference of En-

gineers and Computer Scientists, 1, 380–384. Retrieved November 22, 2023, from https:

//www.iaeng.org/publication/IMECS2013/IMECS2013 pp380-384.pdf

Novak, J. D., Gowin, D. B., & Kahle, J. B. (1984). Learning how to learn. Cambridge University

Press. Retrieved November 22, 2023, from https://cir.nii.ac.jp/crid/1363388846319416576

126

Oh, K. J., & Kim, T. Y. (2007). Financial market monitoring by case-based reasoning. Expert

Systems with Applications, 32 (3), 789–800. https://doi.org/10.1016/j.eswa.2006.01.044

Ontañón, S., & Plaza, E. (2003). Collaborative case retention strategies for CBR agents. Case-

Based Reasoning Research and Development, 2689, 392–406. https://doi.org/10.1007/3-

540-45006-8 31

Owrang O., M. M. (1998). Case discovery in case-based reasoning systems. Information Systems

Management, 15 (1), 74–78. https://doi.org/10.1201/1078/43183.15.1.19980101/31107.12

Plaza, E., & McGinty, L. (2005). Distributed case-based reasoning. The Knowledge Engineering

Review, 20 (3), 261–265. https://doi.org/10.1017/S0269888906000683

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, 81–106. https://doi.org/10.

1007/BF00116251

Racine, K., & Yang, Q. (2005). Maintaining unstructured case bases. Case-Based Reasoning Re-

search and Development, 1266, 553–564. https://doi.org/10.1007/3-540-63233-6 524

Richter, M. M. (2003). Knowledge containers. Readings in Case-Based Reasoning. Retrieved Novem-

ber 22, 2023, from https://www.researchgate.net/profile/Michael-Richter-4/publication/

225070310 Knowledge Containers/links/00b7d539b22aa7bc95000000/Knowledge-Containers.

pdf

Richter, M. M., & Aamodt, A. (2005). Case-based reasoning foundations. The Knowledge Engi-

neering Review, 20 (3), 203–207. https://doi.org/10.1017/S0269888906000695

Riesbeck, C. K., & Schank, R. C. (2013, May 13). Inside case-based reasoning. Taylor & Francis.

Retrieved November 22, 2023, from https://www.google.com/books/edition/Inside Case

Based Reasoning/tPxvuJDcPpEC

Rissland, E., Ashley, K. D., & Branting, L. K. (2005). Case-based reasoning and law. The Knowledge

Engineering Review, 20 (3), 293–298. https://doi.org/10.1017/S0269888906000701

127

Romdhane, H., & Lamontagne, L. (2008). Forgetting reinforced cases. Advances in Case-Based

Reasoning, 5239, 474–486. https://doi.org/10.1007/978-3-540-85502-6 32

Ross, B. H. (1989). Some psychological results on case-based reasoning. Proceedings of the Case-

Based Reasoning Workshop, 144–147. Retrieved November 22, 2023, from https://cir.nii.

ac.jp/crid/1570854174757235968

Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE

Transactions on Systems, Man, and Cybernetics, 21 (3), 660–674. https://doi.org/10.1109/

21.97458

Salamó, M., & López-Sánchez, M. (2011a). Rough set based approaches to feature selection for

case-based reasoning classifiers. Pattern Recognition Letters, 32 (2), 280–292. https://doi.

org/10.1016/j.patrec.2010.08.013

Salamó, M., & López-Sánchez, M. (2011b). Adaptive case-based reasoning using retention and

forgetting strategies. Knowledge-Based Systems, 24 (2), 230–247. https://doi.org/10.1016/

j.knosys.2010.08.003

Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable artificial intelligence: Understanding,

visualizing and interpreting deep learning models. https://doi.org/10.48550/arXiv.1708.

08296

Schack, B. (2016). Feature-centric approaches to case-base maintenance. Proceedings of the ICCBR

2016 Workshops, 287–291. Retrieved November 22, 2023, from https://ceur-ws.org/Vol-

1815/paper32.pdf

Schack, B. (2019). Case-base maintenance beyond case deletion. Proceedings of the ICCBR Work-

shops, 191–195. Retrieved November 22, 2023, from https://ceur-ws.org/Vol-2567/paper20.

pdf

128

Schack, B. (2023). Feature deletion and case discovery in case-base maintenance. Proceedings of

the Doctoral Consortium at ICCBR 2023, 1–6. Retrieved November 22, 2023, from https:

//ceur-ws.org/Vol-3438/paper 20.pdf

Schack, B., & Summers, R. (2017). Flexible feature deletion: Companion video. Proceedings of the

ICCBR 2017 Workshops, 293. Retrieved November 22, 2023, from https://ceur-ws.org/Vol-

2028/paper36.pdf

Schaller, R. R. (1997). Moore’s law: Past, present, and future. IEEE Spectrum, 34 (6), 52–59. https:

//doi.org/10.1109/6.591665

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers and

people. Cambridge University Press. Retrieved November 22, 2023, from https://cir.nii.ac.

jp/crid/1130000796887155328

Schank, R. C. (1999). Dynamic memory revisited. Cambridge University Press. Retrieved November

22, 2023, from https://cir.nii.ac.jp/crid/1362825895335459712

Schank, R. C., & Leake, D. B. (1989). Creativity and learning in a case-based explainer. Artificial

Intelligence, 40 (1), 353–385. https://doi.org/10.1016/0004-3702(89)90053-2

Searing, E. A. (2009). Casuistry: The tape measure in the cognitive toolbox. Retrieved November

25, 2023, from https://www.academia.edu/21855788/Casuistry The Tape Measure in the

Cognitive Toolbox

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C., & Ram, A. (2007). Transfer learning

in real-time strategy games using hybrid CBR / RL. Proceedings of the 20th International

Joint Conference on Artificial Intelligence, 1041–1046. Retrieved November 25, 2023, from

https://www.ijcai.org/Proceedings/07/Papers/168.pdf

Shokouhi, S. V. (2012). An overview of case-based reasoning applications in drilling engineering.

Artificial Intelligence Review, 41, 317–329. https://doi.org/10.1007/s10462-011-9310-2

129

Smiti, A., & Elouedi, Z. (2014). WCOID-DG: An approach for case base maintenance based on

weighting, clustering, outliers, internal detection and Dbsan-Gmeans. Journal of Computer

and System Sciences, 80 (1), 27–38. https://doi.org/10.1016/j.jcss.2013.03.006

Smiti, A., & Elouedi, Z. (2018). SCBM: Soft case base maintenance method based on competence

model. Journal of Computational Science, 25, 221–227. https://doi.org/10.1016/j.jocs.

2017.09.013

Smyth, B. (2005). Case-base maintenance. Tasks and Methods in Applied Artificial Intelligence,

1416, 507–516. https://doi.org/10.1007/3-540-64574-8 436

Smyth, B., & Cunningham, P. (2005). The utility problem analysed: A case-based reasoning per-

spective. Advances in Case-Based Reasoning, 1168, 392–399. https ://doi .org/10.1007/

BFb0020625

Smyth, B., & Keane, M. T. (1995). Remembering to forget. Proceedings of the 14th International

Joint Conference on Artificial Intelligence, 1, 377–382. Retrieved November 25, 2023, from

https://folk.idi.ntnu.no/agnar/CBR%20papers/smyth-keane-remembering-95.pdf

Smyth, B., & Keane, M. T. (1998). Adaptation-guided retrieval: Questioning the similarity assump-

tion in reasoning. Artificial Intelligence, 102 (2), 249–293. https://doi.org/10.1016/S0004-

3702(98)00059-9

Smyth, B., & McClave, P. (2001). Similarity vs. diversity. Case-Based Reasoning Research and

Development, 2080, 347–361. https://doi.org/10.1007/3-540-44593-5 25

Smyth, B., & McKenna, E. (1999a). Building compact competent case bases. Case-Based Reasoning

Research and Development, 1650, 329–342. https://doi.org/10.1007/3-540-48508-2 24

Smyth, B., & McKenna, E. (1999b). Footprint-based retrieval. Case-Based Reasoning Research and

Development, 1650, 343–357. https://doi.org/10.1007/3-540-48508-2 25

Smyth, B., & McKenna, E. (2002). Competence models and the maintenance problem. Computa-

tional Intelligence, 17 (2), 235–249. https://doi.org/10.1111/0824-7935.00142

130

van Someren, M., Surma, J., & Torasso, P. (2005). A utility-based approach to learning in a mixed

case-based and model-based reasoning architecture. Case-Based Reasoning Research and

Development, 1266, 477–488. https://doi.org/10.1007/3-540-63233-6 517

Vasudevan, C., & Ganesan, K. (1996). Case-based path planning for autonomous underwater ve-

hicles. Autonomous Robots, 3, 79–89. https://doi.org/10.1007/BF00141149

Veloso, M. M. (1994, December 7). Planning and learning by analogical reasoning (1st ed., Vol. 886).

Springer Link. Retrieved November 26, 2023, from https://link.springer.com/book/10.

1007/3-540-58811-6

Waheed, A., & Adeli, H. (2005). Case-based reasoning in steel bridge engineering. Knowledge-Based

Systems, 18 (1), 37–46. https://doi.org/10.1016/j.knosys.2004.06.001

Watson, I. (1999). Case-based reasoning is a methodology not a technology. Knowledge-Based

Systems, 12 (5), 303–308. https://doi.org/10.1016/S0950-7051(99)00020-9

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts.

Machine Learning, 23, 69–101. https://doi.org/10.1023/A:1018046501280

Wilke, W., Vollrath, I., & Bergmann, R. (1997). Using knowledge containers to model a framework

for learning adaptation knowledge. European Conference on Machine Learning Workshop

Notes, 68–75. Retrieved November 26, 2023, from https://www.wi2.uni-trier.de/shared/

publications/1997 WilkeVollrathBergmannECML.pdf

Wilson, D. C., & O’Sullivan, D. (2008). Medical imagery in case-based reasoning. In Case-based

reasoning on images and signals (pp. 389–418, Vol. 73). Springer Link. Retrieved November

26, 2023, from https://link.springer.com/chapter/10.1007/978-3-540-73180-1 13

Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algo-

rithms. Machine Learning, 38, 257–286. https://doi.org/10.1023/A:1007626913721

Wilson, D. C., & Leake, D. B. (2002). Maintaining case-based reasoners: Dimensions and directions.

Computational Intelligence, 17 (2), 196–213. https://doi.org/10.1111/0824-7935.00140

131

Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016). Understanding data augmenta-

tion for classification: When to warp? Proceedings of the 2016 International Conference on

Digital Image Computing: Techniques and Applications. https://doi.org/10.1109/DICTA.

2016.7797091

Yamamoto, Y., Kawabe, T., Kobayashi, Y., Tsuruta, S., Sakurai, Y., & Knauf, R. (2015). A refined

case based genetic algorithm for intelligent route optimization. Proceedings of the 11th

International Conference on Signal-Image Technology & Internet-Based Systems, 698–704.

https://doi.org/10.1109/SITIS.2015.36

Zhang, Z., & Yang, Q. (2006). Towards lifetime maintenance of case base indexes for continual

case based reasoning. Artificial Intelligence: Methodology, Systems, and Applications, 1480,

489–500. https://doi.org/10.1007/BFb0057469

Zhu, J., & Yang, Q. (1999). Remembering to add: Competence-preserving case-addition policies for

case-base maintenance. Proceedings of the 16th International Joint Conference on Artificial

Intelligence, 1, 234–239. Retrieved November 26, 2023, from https ://www.cse .ust .hk/

∼qyang/Docs/1999/ijcai99zhuyang.pdf

132

