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Xiaomeng Ye

ROBUST ADAPTATION, MACHINE LEARNING DRIVEN ADAPTATION, AND THEIR

IMPLICATIONS IN CASE-BASED REASONING

Case-based reasoning is composed of four major aspects (“4 REs”): Retrieval, reuse, revision and

retention. The reuse, or the case adaptation process, is critical to the flexibility of CBR systems

and arguably the most difficult stage among the four. Traditional reuse makes use of single case

adaptation rules, but suffers when the query is novel for the case base and extensive adaptation is

needed.

This thesis focuses on the case adaptation process by first introducing Robust Adaptation

(ROAD). Instead of applying a single adaptation rule, ROAD allows combining multiple

adaptation rules in a sequence and applying them in order, forming a so-called adaptation path.

Chaining multiple adaptation rules renders new challenges, and ROAD attempts to solve them by

heuristic-guided path finding strategy. When multiple adaptation rules are combined, the

reliability of the final adapted solution is not guaranteed. ROAD also attempts to uphold the

reliability of the solution by resetting the adaptation path to a real stored case. This thesis

demonstrates that ROAD has significant implications in not just reuse, but also the other aspects

of the “4 REs”. In the aspect of retrieval, resets in adaptation paths indicate room for

improvement for more efficient case retrieval. In the aspect of reuse, quality of solutions reflects

the reliability of adaptation rules involved. All the above information gained through using

ROAD can be utilized for maintenance of the CBR system.

Additionally, this thesis explores combining machine learning techniques with CBR, and more

specifically, the case adaptation process. Adaptation knowledge is hard to learn in general. The

state-of-art approach, the case difference heuristic (CDH) approach, gathers case pairs to learn

adaptation knowledge, which attributes the solution difference in a case pair to its problem

difference. Traditionally CDH accumulates the adaptation knowledge in the format of rules.
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When a query is sufficiently different from the retrieved case and adaptation is needed, CDH can

find the rule with the most similar problem difference and apply the rule’s solution difference to

the retrieved solution, thus forming the final solution. Building upon the existing work of CDH,

this thesis uses a neural network to learn the adaptation knowledge for regression tasks. Instead

of accumulating rules from pairs, a neural network is trained to predict a solution difference from

a problem difference. This thesis continues expanding the above idea into classification domains,

resulting in a neural network learning adaptation knowledge for classification. Furthermore, these

two models are unified under one overarching model that can learn adaptation knowledge for both

classification and regression domains. We name this neural network based case difference

heuristics (NN-CDH).

Existing work implemented the case retrieval process using machine learning techniques.

NN-CDH takes one extra step of doing case adaptation using ML. In the experiments of

combining ML-driven retrieval and adaptation, adaptation sometimes unexpectedly reduce the

accuracy of the retrieved result. This is caused by the discrepancy between the retrieval and the

adaptation process. The retrieval process might retrieve a similar case that is not easily

adaptable. On the other hand, the adaptation process might be trained to adapt the difference

between random pairs but not that between close pairs. This discrepancy appeared and was

studied before in non-ML settings. Because they are now both implemented in ML techniques

(e.g. neural networks), their training process hinges on their corresponding loss functions. This

thesis tries to bridge the retrieval and the adaptation processes by two steps: 1) It integrates the

loss of adaptation into the loss of retrieval so that the retrieval process is trained to retrieve

adaptable result. This is inspired by the adaptation-guided retrieval approach. 2) It also

optimizes the retrieval and the adaptation processes using alternating optimization. Instead of

optimize one process fully between the other, this thesis optimizes both processes hand in hand.

Lastly, we explore the possibility of using the case adaptation in the field of computation
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creativity. More specifically, the adaptation process can be used to not just solve a query, but also

to adapt old cases to generate new samples.

David B. Leake, PhD

David Crandall, PhD

Chung-chieh Shan, PhD

Larry Moss, PhD

ix



Contents

Acknowledgments iii

Preface vi

Abstract vii

1 Background: Case-based Reasoning and Case Adaptation 1

1.1 Case-based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Rule-based Case Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution and Layout of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Robust Adaptation 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Models of Applying Multiple Case Adaptation Rules . . . . . . . . . . . . . . . . . . 9

2.3 Issues for Adaptation Paths and ROAD . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 ROAD’s Strategies for Building Adaptation Paths . . . . . . . . . . . . . . . . . . . 13

2.4.1 Avoidance of Prohibited Regions (Dead Zones) . . . . . . . . . . . . . . . . . 14

2.4.2 Extending a Single Adaptation Path . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Heuristics for Initializing and Pursuing Multiple Paths . . . . . . . . . . . . . 15

2.4.4 Path Termination and Resetting as a Heuristic for Maintaining/Increasing

Path reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5 Resetting a Ghost Case with a Nearby Retrieval . . . . . . . . . . . . . . . . 17

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

x



2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The Implication of ROAD in Case Retrieval:

Using Adaptation Paths to Improve Similarity Measure 29

3.1 Reset-induced Similarity Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 The Reset-induced Similarity Adjustment Algorithm . . . . . . . . . . . . . . 30

3.1.2 Evaluation of RISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Related Work in Learning to Refine Similarity Criteria . . . . . . . . . . . . . . . . . 38

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 The Implications of ROAD for Adaptation Rule Selection 39

4.1 Compatibility-based Adaptation Rule Selection . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Compatibility-based Adaptation Rule Selection Algorithm . . . . . . . . . . . 40

4.1.2 Evaluation of CARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Conclusion and Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Neural Network Based Cased Difference Heuristics: Supporting the Adaptation

Process with Neural Networks 46

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Neural Network Adaptation Learning by the Case Difference Heuristic . . . . 47

5.2.2 Case Adaptation Involving Nominal Attributes . . . . . . . . . . . . . . . . . 48

5.2.3 Initial Version of NN-CDH for Classification . . . . . . . . . . . . . . . . . . . 49

5.2.4 Siamese Networks for Similarity Assessment . . . . . . . . . . . . . . . . . . . 50

5.2.5 The Relationship Between Retrieval and Adaptation . . . . . . . . . . . . . . 51

5.3 NN-CDH for both Classification and Regression . . . . . . . . . . . . . . . . . . . . . 51

xi



5.3.1 The General Model of Case Adaptation . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 1-Hot/1-Cold Nominal Difference . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.3 Neural Network Structure of NN-CDH . . . . . . . . . . . . . . . . . . . . . . 53

5.3.4 Training and Adaptation Procedure . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Systems Being Compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.2 Assembling Case Pairs for Training . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.4 Artificial Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Post ML-driven CBR: Harmonizing Case Retrieval and Adaptation with Alter-

nating Optimization 67

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Alternating Optimization of Retrieval and Adaptation . . . . . . . . . . . . . . . . . 71

6.3 Testbed System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.2 Testbed Retrieval and Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.3 Testbed Training and Testing Procedures . . . . . . . . . . . . . . . . . . . . 76

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Guidelines for Applying AO to Train CBR Components . . . . . . . . . . . . . . . . 83

6.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



7 Using CBR Adaptation to Generate Creative Samples from Limited Data 87

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.1 Active Divergence with Generative Deep Learning . . . . . . . . . . . . . . . 90

7.2.2 Class-to-class Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.3 Measurement of Creativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.4 Creativity Inspired Zero-Shot Learning . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Creative Sample Generation with a Class-to-class Variational Autoencoder . . . . . . 94

7.3.1 Training a C2C-VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Evaluating Creativity for One-Shot Classification Domains . . . . . . . . . . . . . . . 97

7.4.1 Uniqueness and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4.2 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5.2 Comparison between the C2C-VAE and the CVAE . . . . . . . . . . . . . . . 103

7.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.6.1 Conditions for Success of the C2C-VAE Method . . . . . . . . . . . . . . . . 106

7.6.2 Relationship to CycleGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6.3 Relationship with CDH-Style Adaptation . . . . . . . . . . . . . . . . . . . . 109

7.7 Conclusion: Creativity from Inter-Class Patterns . . . . . . . . . . . . . . . . . . . . 110

8 Conclusions and Future Directions 113

8.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2.1 Interaction between Adaptation Rules . . . . . . . . . . . . . . . . . . . . . . 114

8.2.2 Extending AO to the Full CBR Cycle . . . . . . . . . . . . . . . . . . . . . . 115

xiii



8.2.3 Neural-Symbolic CBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2.4 Conditioning the Adaptation of C2C-VAE on the Source Sample . . . . . . . 116

Bibliography 117

Curriculum Vitae

xiv



Chapter 1

Background: Case-based Reasoning and Case Adaptation

1.1 Case-based Reasoning

Case-based Reasoning (CBR) is the AI methodology that solves new problems by adapting previous

solutions to fit new circumstances (Riesbeck and Schank, 1989; Kolodner, 1993; Aamodt and Plaza,

1994; Leake, 1996). CBR is inspired by the cognitive science of problem-solving through reminding

and remembering (Schank, 1982). In the spectrum of AI methods, CBR is memory-based, in

contrast to rule-based (e.g. expert systems) or statistics-based methods (e.g. deep learning).

In the core of CBR, a case is composite of a problem description and a solution, representing a

real-world episode. The problem description can be nominal/numerical features, text, constraints,

or images. The solution can take many forms, such as a class label, a workflow, a design, a plan,

or an explanation (Kolodner, 1992). The goal of a CBR system is to solve a new query, a case with

problem description but without solution, by finding its missing solution. This goal is fulfilled by

a cycle of four stages, or “4 REs” (Aamodt and Plaza, 1994; López de Mántaras et al., 2005):

• Retrieval: The system retrieves stored case(s) similar to the query case. Previous cases are

stored in a collection called the case base.

• Reuse: The system reuses the solution to the retrieved case(s) and adapts it to solve the

query case.

• Revise: The system evaluates the proposed solution (by evaluating the performance after

applying the solution to the query, or by a domain expert). The system then revises the

solution based on the evaluation.

• Retain: The system retains any new knowledge gained from solving the query. Upon a
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successful evaluation, the query along with the proposed solution can be stored as a new case

in the case base.

The retrieval stage is the first of the “4 REs”. Based on the assumption that similar problems

share similar solutions, a CBR system assumes the case most similar to the query contains the best

or the closest solution to the query problem. By the same assumption, the similarity between two

cases is often just the similarity between the problem descriptions of the cases. A function called

the similarity measure (SM) assesses the similarity between two cases. A SM is often defined based

on or as the complement of a distance measure, because the more distant two cases are away from

each other, the less similar they are. For example, a common SM used in CBR is the Euclidean

distance, where the distance between two cases, represented as two vectors p = (p1, p2, ..., pn) and

q = (q1, q2, ..., qn), is

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (1.1)

The reuse stage, or the case adaptation process, is critical in the flexibility of CBR systems,

enabling stored cases to cover a range of new problems. When the retrieved case’s solution does

not apply to the query, adaptation to the solution is needed. There are in general three kinds of

adaptations (Kolodner, 1993; López de Mántaras et al., 2005; Smyth and Cunningham, 1993): (1)

Substitution adaptation modifies individual components of the retrieved solution; (2) Transforma-

tion adaptation modifies the overall structure of the solution; (3) Generative adaptation generates

solution from ground up by replaying the process generating the retrieved solution, but with com-

ponents such as placeholders replaced with information from the query. For example, CHEF, a

CBR system for the cooking domain (Hammond, 1989), may utilize substitution adaptation to

change an ingredient from “chickent” to “beef”, and may also utilize transformation adaptation

to reorder the step “stir fry beef” before “adding veggies” because “stir fry beef” can make the

vegetable soggy (while “stir fry chicken” will not) (Hammond, 1989). In comparison with the two,

generative adaptation is often more complicated and requires derivation strategies used to generate
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solutions, as seen in Prodigy/Analogy (Veloso, 1994).

The revise stage requires an extra component or a domain expert to evaluate the system’s

proposed solution or performance of other aspects of the system. In the event that the system fails

to produce a satisfactory solution, the solution is revised. The reuse and revise stages are often

grouped as one component as both processes improve the quality of the retrieved solution. A more

creative revise stage may involve modifying the components of the system itself. For example, the

ROBBIE system (Fox and Leake, 2001) revises the case indexing after evaluating the proposed

solution, leading to faster and more adaptable solution in the future.

The retain stage, or retention, can be as simple as storing the solved query case. Case base

maintenance (Leake and Wilson, 1998; Leake et al., 2001) is the more general process of the retain

stage. Instead of simply storing newly solved case, case base maintenance may involve: (1) mod-

ifying existing cases and features, (2) deleting or adding cases, (3) modifying the representation

or accounting of cases. The goal of case base maintenance can be more efficient case retrieval or

better competence of the case base (Leake and Wilson, 1998; Smiti and Elouedi, 2011).

1.2 Rule-based Case Adaptation

In this thesis, we start by focusing on rule-guided case adaptation, or rule-based adaptation, where

adaptation rules are designed to adjust solutions for each possible difference between old and new

problems, enabling one-step adaptations of each difference.

Rule-based case adaptation is powered by adaptation rules. An adaptation rule describes how

to modify a case. Each adaptation rule has an antecedent component describing the precondition

needed to apply the rule, and an action component describing the effect of applying the rule. For

example, an adaptation rule can be “when beef is available but chicken is not, replace chicken with

beef”. Rule-based case adaptation easily falls under the category of substitution adaptation. It

may also involve transformation adaptation if a more sophisticated rule modifies the structure of

3



the case.

Relying on one-step adaptation increases the burden of acquiring adaptation rules, which is well

known as a classic problem for CBR. This problem is especially important when the case base is

sparse or when the query is novel and far from stored cases (Craw et al., 2006b). Because of this,

case adaptation is often considered the most difficult in the 4 REs of CBR. Many CBR systems do

not even include a case adaptation process or do so minimally.

Because of the limitation of the case adaptation, the overall performance of a CBR system

heavily relies on the result of case retrieval. If the system retrieves a case with perfect or close

to perfect solution, then the query can be successfully solved. For example, if the task domain

is a classification task and the case base contains sufficient amount of cases of every class, then

the system can often retrieve a similar case with the correct class label for the query. However, if

the task domain is a more complicated task, such as regression or design, or if the case base does

not contain enough cases to cover the potential case space of the query, the CBR system may be

incapable of retrieving a good solution and extensive adaptation is needed (Craw et al., 2006b).

Many existing efforts aim to reduce the burden of case adaptation. Leake et al. (2011) uses

introspective reasoning and web mining to learn adaptation knowledge just in time of need. Leake

et al. (1995) remembers previous adaptation episodes as adaptation cases, and reuses the most

suitable adaptation case when needed. Craw et al. (2006b) learns adaptation knowledge from the

case base, and its method is an extension of the case difference heuristic (CDH) (Hanney and

Keane, 1996).

The case difference heuristic is the most relevant work for the purpose of this thesis, with

specifics as described in Leake and Schack (2018). In this implementation of CDH, a pair of cases

are selected to generate an adaptation rule. Their difference in problem descriptions (problem

difference) is used as the antecedent of the rule and their difference in solution (solution difference)

is used as the action of the rule. This process is repeated multiple times to generate a certain
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number of rules, forming an adaptation rule set. Given a query and a case retrieved from the

case base, the system first calculates their problem difference. Then the system searches for the

rule which has the most similar problem difference and is applicable to the retrieved case. Next

the system applies the action of the rule by modifying the retrieved case’s solution based on the

solution difference of the rule. Lastly, the modified solution is used as the final proposed solution

after the retrieve and reuse processes.

This thesis reuses the same implementation to generate adaptation rules, but the usage of rules

is different, as detailed later.

The rule set generation process is influenced by following configuration parameters:

1. Rule Count: the number of rules to generate.

2. Rule Specificity: The level of rule specificity. The system may store only a portion of the

features in the problem difference as the antecedent of a rule. For example, rspec = 0.1 if

10% of all feature differences between two cases are included in the rule.

3. Rule Generating Distance: the distance between pairs of cases generating rules. For

example, if ruleGenDist = 0.1, rules are generated from cases whose difference is less than

10% of the maximum possible difference. A small ruleGenDist value means that the rules

are generated by pairs of cases close to each other.

1.3 Contribution and Layout of this Thesis

This work contributes to multiple research questions in the field of case adaptation and also the

bigger field of CBR. The research efforts span a range of topics, in some cases with later chapters

building directly on the previous ones, and in others where an earlier topic inspires a later one.

More specifically:

1. Starting from traditional rule-based adaptation, Chapter 2 first proposes RObust ADaptation
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(ROAD) to apply multiple rules in a chain to potentially cover for bigger problem differences

and make bigger adaptation. Robust adaptation introduces new challenges, which are met

with heursitic algorithms.

2. Chapters 3 and 4 examine the ramifications of ROAD. Chapter 3 shows that the case retrieval

process can be tuned to better align with ROAD, so that the system can retrieve a case that

requires easier adaptation. Chapter 4 shows that rules may not be compatible with each other

and rules may not be reliable once combined with other rules. It proposes to curate the rule

sets by retaining only the reliable/compatible rules.

3. Previous chapters show ROAD as an improvement to traditional rule-based adaptation and

also new challenges for ROAD. Adaptation rules are symbolic and often rigid. Too few rules

do not generalize well, and yet too many rules requires a collection effort to learn and store,

and an extensive search for the right rule to apply. Chapter 5 explores the option of using

neural networks to generalize rules and alleviate the burden of learning adaptation knowledge.

4. Both case retrieval and case adaptation can be implemented using machine learning tech-

niques. Case retrieval can use a siamese neural network as a similarity measure for cases.

Case adaptation, as described in Chapter 5, can be implemented using a neural network.

Chapter 6 discovers that when both case retrieval and adaptation are driven by machine

learning and trained for their own purposes, the two processes may not align: The retrieved

result may not be adaptable or the adaptation process may worsen the result. Chapter 6

proposes to harmonize the two processes using alternating optimization.

5. All the previous chapters focus on strengthening case adaptation with new algorithms and

examining their implications. Chapter 7 explores the possibility of using case adaptation for

purposes beyond solving a target query. This chapter uses case adaption in a creative process

of generating new unseen samples by adapting from seen ones. Oriented for the field of
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computational creativity, this chapter proposes a creative sample generation method inspired

by case adaptation. It also proposes an evaluation scheme that measures some aspects of

creativity of sample generators.

6. Lastly, Chapter 8 summarizes the most important conclusions and future directions of this

thesis.
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Chapter 2

Robust Adaptation

2.1 Introduction

The case adaptation process is commonly driven by a list of differences between the new problem

and the problem of the retrieved case, with adaptation rules retrieved according to the differences

to adapt. Models of the adaptation process often assume that a suitable adaptation rule will be

available for each difference the system may have to adapt, making adaptation for each difference

a one-step process. However, in practice it may be infeasible to provide a CBR system with

adaptation rules for every possible difference. Generating adaptation rules by hand is costly, and

it may be difficult or impractical to anticipate or capture a sufficiently extensive rule set. Another

issue is the potential need to address multiple differences between old and new problems. Rules may

be tailored for specific differences, but the number of potential difference combinations aggravates

the rule generation problem. In practice, CBR systems often address the problem of multiple

differences by treating the effects of differences along particular problem features as independent

and decomposing the difference set by generating a list of differences to adapt in turn, applying

one rule per difference.

For numerical problems, the decomposition approach has been formalized by Fuchs et al. (2014a)

as differential adaptation, which models case adaptation as the application of a sequence of adapta-

tion operators. In spirit of Fuchs et al. (2014a), this dissertation research develops Robust Adapta-

tion (ROAD), a search-based framework of the adaptation rule application process. ROAD allows

the combination of multiple adaptation rules into an adaptation path. An adaptation path can cover

the case differences that are unreachable by one-step adaptations. Additionally, ROAD pursues

multiple alternative adaptation paths, applies a flexible chaining process, and integrates ongoing
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retrievals to help guard against the degradation of adaptation performance that can occur for long

adaptation paths.

The main contribution of this chapter is:

When the query is novel, ROAD is a better way to do case adaptation than existing

methods.

ROAD also opens up new avenues of improvement for other aspects of CBR: For example, reset

histories of built paths can be used to improve adaptation guided retrieval; Accuracy of built paths

can be used to assess the compatibility and reliability of rules involved; High traffic section of built

paths can indicate valuable cases to retain.

2.2 Models of Applying Multiple Case Adaptation Rules

We begin by presenting three models of adaptation rule combination: adaptation by multiple

independent one-step adaptation rules, adaptation by multi-step adaptation paths, and ROAD—

robust adaptation by dynamically adjusted and reset adaptation paths.

Adaptation by multiple independent one-step adaptation rules: It is common for CBR

systems to adapt a collection of differences by selecting adaptation rules for each one, applying each

one, and combining the results. Given a set of independent features fi of a case, and corresponding

differences di between the value of the feature in the input problem and a retrieved case to adapt,

and a collection of adaptation rules ri, with each ri applicable to difference di, the adaptation

combination process combines the independent component results. For example, for a regression

task (e.g. real estate appraisal), combination might simply sum the price effect of each difference.

The one-step approach assumes that there will be an adaptation rule suitable for each difference.

However, this may not be the case. For example, if no sufficiently similar case is available, extensive

adaptation may be required to bridge the distance between cases, with no predefined rules that

bridge the gap. When a limited set of rules is available, a multi-step adaptation may be the only

way to address certain feature differences, even for a single feature.
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Figure 2.1: Adapting from Solution A to Solution C through Adaptation Path (f, g).

Adaptation by multi-step adaptation paths: Path-based adaptation discards the assump-

tion that there will exist an adaptation rule that directly addresses a given difference. Instead, the

system may have rules that incrementally provide the desired solution. In the cooking domain,

to change a recipe for regular pancakes to buttermilk pancakes, a cook might first adapt to use

buttermilk (by replacing the leavening with buttermilk and baking soda) and then, if buttermilk

is not available, adapt by substituting regular milk and vinegar for the buttermilk. This generates

an adaptation path, the composition of a sequence of adaptation rules resulting in intermediate

solution states (Fig. 2.1).

An adaptation path is a sequence of triples (ci, ai, ci+i), where ci is a case to adapt, ai is an

adaptation rule, and ci+1 is the result of applying ai to ci. In our formulation, as in that of

D’Aquin et al. (2006) and Leake and Schack (2018), the adaptation rule modifies both the solution

and the problem description, to keep the problem and solution descriptions consistent for a new

complete case. As this new case is generated from adaptation and does not correspond to a situation

encountered in the world, we call it a ghost case (Leake and Schack, 2018). The adaptation path

retains provenance information about how each case in the sequence is derived, which could be

used, e.g. for estimating result quality (Leake and Whitehead, 2007).

In an adaptation path, differences are not assumed to be independent; adaptations are performed

in a sequence. Issues with interaction problems are handled when the CBR cycle revision step

repairs the candidate solution (López de Mántaras et al., 2005).

In the adaptation path model of D’Aquin, Lieber, and Napoli, a similarity path is built first

and then a corresponding adaptation path to modify the source solution to the target solution.
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Badra et al. (2009) present an algorithm building an adaptation path by which the query

is modified to match at least one case from the case base. Inspired by differential calculus, the

differential adaptation model of Fuchs et al. (2014a) uses partial derivatives to make small variations

in the problem and solution. Adaptation knowledge is generated by computing derivatives of every

solution feature with respect to every problem feature. Differential adaptation can be applied to any

numerical task domain provided that the dependencies between descriptors can be computed. Under

differential adaptation, small-step adaptation is preferable to big-step adaptation as the former

introduces less error using derivatives. This assumption motivates their multi-step differential

adaptation.

Robust adaptation by dynamically adjusted and reset adaptation paths: The ROAD

approach to adaptation paths is based on three principles. First, rather than dividing difference

identification and adaptation into separate steps, after every adaptation rule application it re-

assesses differences and selects the next adaptation rule to apply. Incremental choices of each

adaptation rule are made in the context of the previous adaptations. Second, ROAD can simul-

taneously pursue multiple potential adaptation paths, enabling exploiting alternative adaptations

and comparing competing alternatives. Third, ROAD’s adaptation process is coupled to the case

base: As adaptation proceeds, if an incremental solution is similar to an existing case, ROAD can

“reset” the adaptation path to proceed from the existing case. This substitution effectively restarts

solution generation from a known solution in the case base, reducing the required adaptation. In the

common situation of imperfect adaptation knowledge, this is expected to increase solution quality.

2.3 Issues for Adaptation Paths and ROAD

Compared to applying single adaptations, adaptation path composition increases adaptation flex-

ibility and coverage. However, moving from single adaptations to adaptation paths complicates

multiple parts of the case adaptation process:
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1. Estimating adaptability: CBR commonly uses similarity as a proxy for adaptability. This

assumption has been questioned (Smyth and Keane, 1998), leading to methods for adaptation-

guided retrieval (Dı́az-Agudo et al., 2003; Leake et al., 1996; Nouaouria and Boukadoum, 2010;

Smyth and Keane, 1998). However, when adaptation could in principle involve long sequences

of adaptation steps, estimating adaptation cost could require consideration of many possible

alternatives, making adaptation-guided retrieval extremely expensive.

2. Guiding path construction: If many alternative adaptation sequences could be considered,

how to select them becomes important for adaptation efficiency and solution quality (e.g., if

some rules are known to be more reliable than others or shorter paths are more desirable for

quality (Leake and Whitehead, 2007)). In general, the adaptation path should approach the

query case. In other words, the retrieved case is adapted to become closer to the query. This

is not always true, as sometimes a path bypassing certain section is necessary even if the path

will be longer than a direct path.

3. Terminating unpromising paths: When a path is judged to be unpromising (e.g., because

its length suggests risk of excessive quality loss or explainability), it may be appropriate to

terminate; heuristics are needed to determine when to terminate.

4. Handling adaptation interactions: If adaptations may interact, the choice of adaptations must

be sensitive to side-effects of previous adaptations. In principle, in fully understood domains,

it would be possible to use standard AI methods to manage such interactions. However,

CBR is often applied to domains that are poorly understood or imperfectly formalized. An

adaptation approach practical for such domains must use other methods. ROAD combines

adaptation rules using heuristic-based methods. This thesis also addresses the interaction

between adaptation rules in Chapter 4.

The ROAD model of dynamically adjusting and resetting adaptation paths raises additional issues:
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1. Determining a strategy for exploring alternative adaptation paths: When multiple paths are

pursued, any search strategy could be used to manage the choice of partial paths to extend

(e.g., best-first, breadth-first).

2. Reconciling path intersections: If two adaptation paths lead to generating the same (or a

nearby) ghost case, various strategies could be used for merging those results in the final

path, such as selecting the single “best” path leading to the point of overlap or retaining both

paths.

3. Resolving path conflicts and path reinforcements: If two adaptation paths lead to overlapping

ghost cases with the similar problems and different (similar) solutions, the conflict could be

evidence for reducing (increasing) path reliability.

4. Determining when to reset the search: As described in section 2.4.5, when the ghost cases

in a path are similar to stored cases it may be beneficial to reset the path by replacing the

ghost case with a new retrieval. This requires determining criteria for resetting the search.

2.4 ROAD’s Strategies for Building Adaptation Paths

ROAD builds adaptation paths by a search process. Given a target problem p, the process begins

by retrieving one or more most similar cases as a starting point. The starting point may be reset

by new retrievals as the process progresses. The goal is to generate an adaptation path from the

initial case to one applicable to the new situation, while minimzing a cost function f : P → R+.

The function f could reflect criteria such as minimizing solution error, minimizing path length (as

a proxy for minimizing error, or for increasing explainability of the solution derivation), minimizing

adaptation cost (i.e., path construction cost), or domain-specific criteria such as, in case-based

planning, minimizing the execution cost of the generated plan. For example, for numerical domains,

Fuchs et al. (2014a) propose building the adaptation path by hill climbing using the derivative to
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reflect the relationship between the variation of problem features and the variation of solution

values.

ROAD uses four categories of strategies, for: 1) avoiding prohibited regions, 2) extending a

single adaptation path, 3) initializing and pursuing multiple paths, and 4) preserving the reliability

of paths.

2.4.1 Avoidance of Prohibited Regions (Dead Zones)

ROAD supports the avoidance of generation of ghost cases in certain regions of the problem space.

We call these regions dead zones. For example, in the housing price prediction domain, local housing

codes may prohibit houses in a certain area. Rather than allowing case adaptation to hypothesize

ghost cases in that area, ROAD’s can be provided with a test function to reject ghost cases there.

This has two motivations. First, for an adaptation rule to hypothesize a case in such a region shows

that the rule is missing portions of the relevant context; thus it might be expected to be less reliable

in that region, making it reasonable to favor a path with all steps within the realm of possibility.

Second, if the CBR system will present the adaptation path to the user as an explanation for its

result, presenting an impossible intermediate step might undermine confidence in the explanation.

Therefore ROAD builds adaptation paths bypasses dead zones.

We note that this prohibition is not required and might sometimes be undesirable. For example,

for a domain in which solutions are hard to generate but easy to evaluate, the path might not be

important to trust, and enabling adaptation to hypothesize impossible ghost cases might lead to

creative solutions.

2.4.2 Extending a Single Adaptation Path

An adaptation path is extended by adapting the case at the head of the path, using an adaptation

rule, and appending the triple of the original case, the rule, and the ghost case generated by

adaptation to the path. At the beginning of the process, the initially retrieved case is the head
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of a path. Because multiple adaptation rules may apply to a single case, heuristics are needed to

select the adaptation rule to apply. Our implementation of ROAD searches by a modified best-first

process, favoring adaptation rules that result in cases most similar to the target case.

Inspired by Fuchs et al. (2014a), ROAD extends paths by a best-first process, but it differs

in three respects. First, Fuchs et al. only addressed regression tasks, requiring the generation of

differential numerical adaptation operators, with the sequence of chosen operators always generating

the correct adaptation. ROAD, addresses adaptation for non-regression as well as regression tasks,

and does not assume that a best-first process will necessarily produce the best path. Second, ROAD

supports the simultaneous pursuit of multiple paths, with back-tracking as needed and with the

ability to block consideration of portions of the candidate adaptation space (dead zones). Third, as

described below, rather than simply applying the sequence of chosen adaptations, ROAD monitors

the ongoing results of partial adaptations to potentially re-start adaptation from a nearby case.

When extending a path, ROAD first retrieves all adaptation rules applicable to the case at the

head of the path. The rules are then applied, with the results ranked by applying the cost function

(e.g., closeness of the problem of the new ghost case to the target problem). The rule with the

best result is chosen and applied to the head (ties are broken arbitrarily). If the result has already

been visited by an adaptation path, or if the result is impossible in the task domain (falls in a dead

zone), then the next best rule is chosen.

The alternative to extend an adaptation path by breadth-first search is possible but too costly,

because high availability of adaptation rules at each step leads to exponential growth in the search

space of the whole path.

2.4.3 Heuristics for Initializing and Pursuing Multiple Paths

We considered three methods for the initial retrieval of source cases to use to initialize paths: (1)

using 1-nn to retrieve one case and start one path from it, (2) using k-nn to retrieve k cases and
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starting one path from each of the k cases, and (3) using a k-nn to retrieve k cases but starting

paths from a subset of those k cases selected for diversity. We expect (2) to perform better than

(1) as combining solutions from multiple paths averages out errors in individual paths. We expect

(3) to increase efficiency by reducing the number of paths considered by (2), with little quality loss

because similar cases result in less independent paths–they involve similar adaptation steps toward

the target–and less potential benefit from an ensemble of solutions. However, a trade-off is that we

would expect substantially non-similar cases to result in lower performance. Selecting the diverse

cases from the k nearest neighbors balances similarity and diversity. ROAD uses method (3).

ROAD stores all paths in a priority queue. In every iteration, the path with the highest priority

is removed from the queue, extended, assigned a new priority, and added back to the queue. Using

a priority queue ensures that computational resources are shared among all paths, thus avoiding

the thread starvation problem. In ROAD, the priority of a path is defined as the inverse of the

path length. Alternatively, the priority can be defined by the distance between the head and the

target case, or confidence of a path.

2.4.4 Path Termination and Resetting as a Heuristic for Maintaining/Increasing Path

reliability

One source of confidence in the results of CBR is that conclusions are derived from similar prior cases

known to have correct solutions. In imperfectly understood domains, adaptation rules are generally

imperfect, so adaptation is not guaranteed to generate correct solutions. Repeated application of

unreliable adaptation rules may compound errors; in some contexts, reliability may be estimated

by assigning a confidence decay rate to each adaptation rule and combining the decay effects of

multiple rules (Leake and Whitehead, 2007).

ROAD uses several simple methods to reduce the chance of compound error. First, its greedy

search process is aimed at finding a short adaptation path to the target (though as with any greedy
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search, the shortest path is not guaranteed). ROAD can limit adaptation path length, terminating

a path when the maximum path length is reached. It also uses a novel method, path resetting,

described in the following section, to bring the speculative path from adaptations back to case

knowledge grounded in experience.

2.4.5 Resetting a Ghost Case with a Nearby Retrieval

ROAD’s resetting process is triggered when heuristics suggest a potential solution quality problem.

Resetting moves the head from the current ghost case to a similar case (reset case) in the case

base. We note that changing to the reset case can result in a shorter or better adaptation path,

than the path generated from the initially retrieved case (source case), even when the source case

is the most similar to the query. Fig. 2.2 presents an intuitive example. In the figure, C0 and C1

are cases in the case base, where C0 is the initially retrieved case to solve target case T . The solid

arrows represent adaptation steps, with G1, G2 and G3 ghost cases produced by adaptation.

Because C1 is farther away from T than C0 (the dashed arc), C0 is initially used as the source

case for an adaptation path. By greedy search, C0 is adapted to G1. The path further expands

to G2. Notice that even though C1 is farther from T than C0, it is closer to G2 than C0. At this

point, the head of the path G2 is better estimated by C1 than by C0. The solution of T can be

predicted by either continuing adapting the path C0−G1−G2, which may have accumulated error

due to imperfect adaptation rules, or “resetting” the path to C1 (with C1’s correct solution) and

extending from there. The dashed arrow represents the reset to continue the path from C1. After

the reset, the path continues toward T by adapting C1 into G3.

ROAD triggers resetting in two conditions:

• Cumulative quality decay: Cases stored in the case base are associated with a perfect reliability

score, as they are previously encountered real-world episodes. A decay function decreases a

path’s reliability based on each adaptation rule applied, with reset triggered when reliability
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Figure 2.2: Illustration of Path Resetting

drops below a threshold. In the current implementation of ROAD, the reliability of a path is

simulated by the inverse of the path’s length since its most recent reset. The intuition is that

the longer a path is, the less reliable it becomes, and a reset modifies the head of the path

and restores its reliability to full.

• Conflicting adaptation paths: When the ghost cases at the heads of two adaptation paths are

within a preset similarity threshold but their solution difference exceeds a difference threshold,

the conflict puts their reliability in question. Because ROAD allows multiple adaptation paths

to start from different (nearby) cases, ROAD only resets if the new solution difference exceeds

their original solution difference. In other words, the disagreement between the two paths

increases as they are extending toward the query. In this situation, at least one of the

disagreeing paths is unreliable. ROAD chooses one of the disagreeing paths and reset it. The

choice is a design question by the researcher, where ROAD can choose the longer path, or the

path whose head is farther away from the target.

2.5 Evaluation

Our evaluation addressed the following questions:

1. How does the use of single adaptation paths vs. multiple adaptation paths affect solution
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accuracy?

2. What are the trade-offs between one-step adaptation and multi-step adaptation, for varying

degrees of case base sparsity around a target, and how is this affected by rule specificity?

3. How do rule specificity and locality affect the ROAD’s performance?

4. How does resetting paths affect performance compared to not resetting?

5. How does the combined effect of multiple adaptation paths, multi-step adaptation, and re-

setting affect solution accuracy?

2.5.1 Experimental Design

Task and data: We tested the performance of ROAD for an automobile price prediction task, using

the Kaggle automobile dataset (Kaggle, 2017). The original dataset contains 205 cases, each with

26 features. We removed the first two features because they concern insurance risk rather than

attributes of a car. We also removed cases with missing features, leaving 193 cases. Every case has

10 nominal features and 13 numerical features, plus price as the solution.

Adaptation rule generation: Case adaptation rules were generated automatically for this task

using a method based on the case difference heuristic (Hanney and Keane, 1996), with specifics as

described in Leake and Schack (2018).

Their method generated adaptation rules that were considered applicable only when all nominal

features in the source case used for learning were also present in the case to adapt. Such rules have

high specificity (which corresponds to low generality). An alternative approach is to generate rules

whose applicability is based on a smaller set of features, or even just one feature, making them more

generally applicable (low specificity). Our rule generation procedure can be tuned to record only

a subset of the features. A parameter rule specificity (rspec) governs the fraction of the original

features retained in the adaptation rule (both in antecedents and in the features to adapt). The
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specific features for a given rule are chosen at random.

Similarity criteria: Similarity of nominal features is 1 if the features are identical and otherwise

0; all numerical features are assigned equal weight and are normalized by the range of feature

values.

Controlling for case base sparseness: In general, the need for case adaptation depends on the

density of the case base: When the case base is dense, with a high probability of nearby similar

cases for any input problem, adaptation will be less crucial than when the case base is sparse and

distant cases must be brought to bear. To study this effect, experiments were done both with the

original case base, and with varying levels of case deletion in the neighborhood of the target case.

Testing each target case, 0, 10, 25, 50, 75, 100, 125, and 150 cases around the target are removed

from the case base to simulate situations where an initially retrieved source case is at a certain

distance from the target.

Experimental parameters: Parameters regulate adaptation rule generation and adaptation path

building for each experiment. Performance is measured by the relative error of price. Each exper-

iment is carried out 100 times, with 10-fold cross validation for each trial. Cases are considered

solved when either (1) no adaptation results in a ghost case closer to the target, or (2) the path

length limit is reached. Settings for all experiments are listed in Table 2.1. Experimental conditions

are determined by the following parameters (1–4 affect system behavior; 5–7 affect adaptation rule

generation, as already explained in 1.2):

1. k: Number of cases retrieved as path starting points (also k in baseline k-nn).

2. MaxLen: Maximum allowed path length.

3. ResetByDecay: Enables/disables resetting when paths reliability decay. In the experiments,

a path resets when a path grows longer than 3 steps since its initial retrieval or last reset.

4. ResetByConflict: Enables/disables resetting when paths disagree.
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Table 2.1: Experimental Parameter Settings

# k maxLen resetByDecay resetByConflict rcount rspec ruleGenDist

1 5 9 true true 300 1.0 1.0

2 5 9 true false 300 1.0 1.0

3 1 9 true false 300 1.0 1.0

4 1 1 true false 300 1.0 1.0

5 1 9 true false 300 0.5 1.0

6 1 9 false false 300 0.5 1.0

7 1 1 false false 300 0.5 1.0

8 5 9 true true 300 0.5 1.0

9 1 9 true false 300 1.0 0.2

10 1 1 true false 300 1.0 0.2

11 1 9 true false 300 0.8 0.2

12 1 1 true false 300 0.8 0.2

13 5 9 false true 300 0.5 1.0

14 5 9 false false 300 0.5 1.0

5. Rcount: Rule count.

6. Rspec: Rule specificity.

7. RuleGenDist: Rule generating distance.

2.5.2 Experimental Results

Question 1: Single adaptation path vs. combined results of multiple adaptation paths:

To assess the value of combining the results of multiple adaptation paths from multiple starting

points, we compared results when starting adaptations from a single case (experiments #3 and

#5) and from five cases (#1 and #8), adapting each, and averaging the solutions, for two levels

of rule specificity. Fig. 2.3 shows that using multiple adaptation paths lowered error at both levels
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of specificity.1 This result is not surprising as k-nn naturally improves upon 1-nn by averaging

multiple solutions.
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Figure 2.3: Error rate with increasing case base sparsity near target. Dashed red is one-path

adaptation; solid blue is five-path adaptation.

Question 2: Tradeoffs of one-step adaptations and adaptation paths: To assess the

tradeoffs between one-step adaptations and adaptation paths, we compared the performance of

ROAD for one-step adaptation (experiment #4) and adaptation limited to nine adaptation steps

(experiment #3), with adaptation rules reflecting the standard configuration of case difference

heuristic rule generation (all differences reflected in the rules (rspec = 1.0), for a rule set including

both short and long distance adaptations (ruleGenDist = 1.0)). As shown in Fig. 2.4(a), ROAD

with the longer path length limit has lower error than ROAD with one-step adaptation. It might

be expected that with a lower limit on distance covered, ROAD with longer path length limit

will generate a longer path, which reduces path reliability and decreases benefit over one-step

adaptation.

To illustrate the effect of rule distance coverage on the benefit of path-based adaptation,

1In the experimental comparisons of this chapter, when cases have been removed, all differences are statistically

significant (p < .05), except for: Fig. 4 (a) when more than 75 cases removed, Fig. 4 (b) when more than 25 have

been removed, Fig. 5 (b), which has no significant difference, and Fig. 6 (b), when fewer than 150 cases removed.
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Fig. 2.4(b) compares experiments #9 (maxLen = 9) and #10 (maxLen = 1) for a lower dis-

tance maximum (ruleGenDist = 0.2). Results are similar, with slightly higher error for rules with

lower distance coverage when the region around the target case is less sparse. This suggests that

the compounding of error from rules with less distance coverage may decrease the benefit of ROAD

with long paths. For both levels of rule specificity, the error rate with adaptation paths increases

more slowly than with one-step adaptation.

One interesting phenomenon observed in Fig. 2.4(b) is that for experiment #9, the error rate

increases as the number of cases removed increases from 0 to 100, but decreases when the number of

cases removed is 125 and 150. As more cases are removed, the initial retrieved cases become farther

from the target case. Adaptation paths have to cover a larger distance (measured by similarity

measure) to produce a ghost case close to the target case, and are therefore more prone to decay in

reliability. As even more cases are removed, the initial retrieved case may reside on the boundary

of the case space while the target case is in the middle. In such situations, an adaptation path

often has only one direction to work toward the target case. The path is less likely to wander

about, therefore leading to slightly less error. This phenomenon can be observed in experiments

#9, #10, #11, #12. A common characteristic of these experiments is that ruleGenDist is set to

0.2, meaning the rules only cover small feature differences.

Question 3: Sensitivity of result quality to adaptation rule specificity and locality:

To assess the dependence of ROAD on adaptation rule characteristics, we tested the effect of two

factors: rule specificity and locality.

Rule specificity: To test the effect of rule specificity on the benefit of longer paths compared to

one-step adaptations, we compared experiments #5 (maxLen = 9) and #7 (maxLen = 1), both

of which use low specificity rules (rspec = 0.5) but allow non-local rules (ruleGenDist = 1.0).

Non-local rules enable one-step adaptations to bridge long problem differences. Results are shown

in Fig. 2.5(a). Here one-step adaptations outperform longer paths, which contrasts with Fig. 2.4,

23



Cases Removed

Av
er

ag
e 

Re
la

tiv
e 

Er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150

(a) Standard Rule Generating Distance. #3 vs #4
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(b) Local Rule Generating Distance. #9 vs #10

Figure 2.4: Error rate with increasing case base sparsity near target. Dashed red is one-step

adaptation; solid blue has max of nine adaptation steps.

which shows ROAD with long paths consistently outperforms one-step adaptations for more specific

rules. Our explanation is that decreasing rule specificity decreases rule accuracy. It also broadens

rule applicability, and therefore increases average path length as more applicable rules are available

to apply. For example, the average path length is 2.5 when rspec = 1.0, and 7.3 when rspec = 0.5.

Longer paths further compound errors of individual rules. This nullifies the benefit of longer paths

seen in the previous experiment.

Rule locality: In our tests, the rule generating distance parameter determines the maximum

distance between the pair of cases from which an adaptation is generated, determining rule locality.

To illustrate the effect of rule locality, we compared experiment #11 (maxLen = 9) and #12

(maxLen = 1) in Fig. 2.5(b), for rspec = 0.8 and ruleGenDist = 0.2. ruleGenDist is set to 0.2

to favor generation of local adaptation rules, while rspec of 0.8 increases rule reliability. A local

rule generating distance limits one-step adaptation, because single rules cover shorter distances

than paths with multiple rules. Here the performance of ROAD closely matches that of one-step

adaptation for all sparsity levels.

Comparing to Fig. 2.5(a), experiments in Fig. 2.5(b) has higher rspec and lower ruleGenDist,
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(b) Local Rule Generating Distance, High Rule Speci-

ficity. #11 vs #12

Figure 2.5: Error rate with increasing case base sparsity near target. Dashed red is one-step

adaptation; solid blue has max of nine adaptation steps.

favoring ROAD over one-step adaptation. If the two parameters are tuned further to benefit ROAD,

we will get Fig. 2.4, where ROAD starts outperforming one-step adaptation.

Question 4: Effect of path resetting: We proposed two triggers for adaptation path resetting:

(1) When a cumulative measure of path reliability drops below a threshold, or (2) when the solutions

of two paths disagree. We conducted experiments to assess the benefit of resetting under each

strategy. Fig. 2.6(a) shows the error as a function of increased sparsity near the adaptation target,

with and without resetting at the decay threshold (experiments #5 and #6). Resetting results in

a substantial drop in error. Fig. 2.6(b) shows the error as a function of increased sparsity near

the adaptation target, with and without resetting for conflicts (experiments #13 and #14). Here

resetting benefits as well, but less uniformly.

Question 5: Combined effect: A final question is the combined effect when the individual

aspects of ROAD are combined. Figure 2.7 compares accuracy for basic adaptation—a single

adaptation path, at most one adaptation applied, no resetting—with ROAD using five paths, a

maximum of nine adaptation steps, and both resetting mechanisms. It compares these for two

types of adaptation rules generated from random case pairs, complete rules (rSpec=1 and rule-
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Figure 2.6: Error rate with increasing case base sparsity near target. Dashed red is without

resetting; solid blue is with resetting.

GenDist=1), in Figure 2.7(a), and partial rules (rSpec=0.5 and ruleGenDist=1) in Figure 2.7(b).

(These respectively compare the results of experiments #1 and #4, and #6 and #8; note differing

scales because rule characteristics heavily influence accuracy.) The experiments show substantial

benefits for the full ROAD configuration, especially with partial rules.

2.6 Conclusion

This chapter presented ROAD, a model of robust adaptation. ROAD uses heuristics to guide

generation of multi-step adaptation paths and reset the adaptation path to nearby stored cases

when path reliability decays or when multiple adaptation paths suggest conflicting results. The

resetting process is a novel way to help ground uncertain adaptation in the real experience of the

case base. Evaluations support the benefit of the approach, and especially the benefit of resetting.

The evaluation demonstrated, as expected, that the benefit of ROAD depended on case base sparsity

and adaptation rule quality: 1) If cases are available near a target, there is less need for extensive

adaptation; 2) If rules are unreliable, ROAD may compound errors (although resetting alleviates

this problem).
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Figure 2.7: Error rate with increasing case base sparsity near target. Dashed red is single case

retrieval with at most one adaptation; solid blue is ROAD with combined methods.
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Algorithm 1 ROAD Overall Procedure

Input:

CB: case base

target: the input query

settings parameters: from section 2.5.1

rules: adaptation rules

Output: a prediction for the solution of the target case

sourceCases← intialRetrieval(CB, target, k)

paths = new priorityQueue()

paths.addAll(createPathsFrom(sourceCases))

finishedPaths = []

while not paths.isEmpty() do

p← paths.pop()

resetIfDecay(resetByDecay, CB, p)

resetIfConflict(resetByConflict, CB, target, p, paths, finishedPaths)

step(path, rules)

if done(path,maxLen) then

finishedPaths.add(path)

else

paths.add(path)

solutions = []

for all path in finishedPaths do

solutions.add(path.head.solution)

prediction← average(solutions)

return prediction
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Chapter 3

The Implication of ROAD in Case Retrieval:

Using Adaptation Paths to Improve Similarity Measure

Although ROAD starts out as an improvement for the reuse stage of CBR, it also holds great promise

in other 3 ”RE” stages by introspective reasoning. In this chapter, we focus on the implication of

ROAD in the retrieval stage. More specifically, after adaptation paths are built after using ROAD,

we can potentially improve the similarity measure based upon the paths generated.

When a path is reset to a new source case, the path finding process continues from the new

source case, and the path built until this point is forgone. If the case retrieval mechanism is updated

so that the reset case is initially retrieved, then the system may circumvent the work in building

the path from the original source case until the reset case. In this chapter, we examine the effect

of updating a similarity metric based on the hindsight of resets in paths.

The efficiency of similarity-based search with resetting depends on the similarity measure being

a good proxy for adaptability. However, the correspondence between similarity and adaptability

is not guaranteed (Smyth and Keane, 1998). When similarity distances diverge from true adapta-

tion distances, a similarity-based adaptation path may proceed through ghost cases that are not

easily adaptable, resulting in longer paths. This chapter presents a maintenance method that use

information from the ROAD adaptation process to refine the system’s similarity measure, bringing

it closer to reflecting true adaptability. We call this Reset-induced Similarity Adjustment (RISA).

RISA uses knowledge of the final path to determine which prior cases should have been retrieved to

minimize adaptation cost, and adjusts similarity criteria accordingly to improve future retrievals.

This can be seen as ongoing CBR system maintenance (Wilson and Leake, 2001) of similarity cri-

teria, based on failures revealed by resetting. The RISA approach can be applied to any similarity

measure that supports adjusting distances between pairs of cases (e.g., based on a ranking loss
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function).

Experimental results in this study support that RISA, in conjunction with a local weighting

scheme, can improve the similarity measure to produce shorter adaptation paths requiring fewer

resets.

3.1 Reset-induced Similarity Adjustment

The quality of a CBR system’s retrieval plays a critical role in system performance. Retrieval is

generally based on similarity, which is used as a proxy for adaptability: the goal of retrieval is

to retrieve the most adaptable cases (Smyth and Keane, 1998). With a perfect similarity mea-

sure, ROAD would never need to reset a path. Consequently, when resets are needed, it reveals

deficiencies in the similarity measure. These are opportunities for similarity learning.

RISA uses generated adaptation paths to guide similarity learning. The goal of learning is to

adjust the similarity measure so that the case to which the path was reset will become the initial

retrieval in the future, enabling adaptation to be performed with fewer steps and decreasing the

processing cost of future adaptations. The example in Figure 3.1 illustrates the potential benefit

of ROAD for adaptation path length. In the figure, ROAD would generate the same solution

regardless of whether it retrieves C1 or C0 in its initial retrieval. However, if the system starts by

retrieving C1, it would avoid the effort of building the path from C0 to C1.

3.1.1 The Reset-induced Similarity Adjustment Algorithm

The RISA algorithm is shown in Algorithm 2. RISA takes as input (1) information recorded about

resets during adaptation, and (2) a procedure to adjust feature weightings for similarity based on

the stored information.

Information recorded about resets: To support RISA, the ROAD implementation was aug-

mented with instrumentation to record its reset behaviors. Each time the system resets a path,
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(a) Before RISA (b) After RISA

Figure 3.1: RISA modifies similarity measure to retrieve more adaptable cases. Dashed arc marks

a certain similarity distance from the target query.

it also stores a path segment record of the form (Cstart, Creset, T ) where Cstart is the case most

recently retrieved prior to the reset, Creset is the case retrieved by adapting and resetting from

Cstart, and T is the target case. For the first reset record for a path, Cstart is the case the CBR

system retrieved for the original problem. In each subsequent path segment record that is gener-

ated during resetting, Cstart is the case retrieved for the previous reset—from which the path is

continuing—and Creset is the case to which it is reset.

There are two situations in which a path segment record may not include a reset: When the

path from the initially retrieved case can be pursued to the target without resetting, and when

the path from a reset case can be pursued to the target without further resetting. In those cases

the record uses null for Creset. The presence of Creset indicates a potential defect in the similarity

measure. One strategy for addressing similarity defects, pursued in this chapter and elsewhere

(Bonzano et al., 1997), is to adjust feature weights. Other issues such as insufficient vocabulary

knowledge and noisy cases might also lead to resets, but are beyond the scope of this chapter.
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Adjusting feature weights: For a record (Cstart, Creset, T ) produced by a path reset, RISA

adjusts similarity criteria to increase the similarity of Creset and T (by pulling them closer), and to

decrease the similarity of Cstart and T (by pushing them away from each other). As a result, the

case retrieval process is more likely to retrieve Creset directly for future problems similar to T .

A potential issue is that this adjustment may have ramifications for other retrievals, possibly

affecting situations in which prior retrievals were correct. Consequently, for a (Cstart, null, T ) record

produced by a path not involving reset, RISA pulls Cstart and T closer, to help preserve the current

correct retrieval. The goal is to preserve the ability to generate high quality adaptation paths for

similar starting and ending points in the updated similarity measure.

In general, there are many ways in which the push/pull effect could be achieved. For example,

a feature weight updating policy can adjust the similarity distance between two cases. In our

testbed RISA system for evaluation, we follow the approach of ISAC (Bonzano et al., 1997). To

pull two cases closer, ISAC increases weightings of their matching features and decreases weightings

of differing features. Similarity scores between the two cases are thus increased. Similarly, to push

two cases away from each other, ISAC decreases weightings of matching features and increases

weightings of unmatching features. ISAC adjusts feature weightings using the update formula:

wi(t+ 1) = wi(t)± δ ∗
Fc

Kc
, (3.1)

where wi(t) is the i-th feature weighting at time step t. δ is a fixed value. Fc is the number of

times the case has been “falsely retrieved”—retrieved when another case would have been more

suitable—and Kc is the number of times the case has been successfully retrieved. In the follow-

ing evaluation, we apply this update procedure in ROAD, with failed retrievals corresponding to

retrievals prompting a reset, and successful retrievals those for which no reset was needed.
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Algorithm 2 Reset-induced Similarity Adjustment

Input:

Paths: records of paths (Cstart, Creset, T ). If the path is never reset Creset = null

SM: similarity measure

Pull(SM,A,B): Updating procedure for SM that pulls A and B closer

Push(SM,A,B): Updating procedure for SM that pushes A and B away

Output:

SM: the modified similarity measure

for all (Cstart, Creset, T ) in Paths do

if Creset = null then

Pull(SM,Cstart, T )

else

Push(SM,Cstart, T )

Pull(SM,Creset, T )

return SM

3.1.2 Evaluation of RISA

The evaluation of RISA tested the effect of its similarity adjustment on adaptation efficiency and

solution accuracy. Adaptation efficiency was measured by the ability to generate shorter adaptation

paths and to decrease the number of resets required during adaptation. Solution accuracy was

measured by relative error for a numerical prediction task.

The criteria for adaptation efficiency directly measure the ability of the system to retrieve

adaptable cases; we expected RISA to increase the system’s ability to do so. We did not expect

a strong effect on accuracy, but sought to observe whether the decreased path length brought

accuracy benefits. The experiments tested RISA for two alternative similarity schemes: Global

weighting and local weighting. Because RISA’s feature weight adjustments could have unexpected

side-effects on retrievals of distant cases when the adjusted weights are global, we expected better
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performance for local weightings.

Experimental Design

Task Domain: The evaluation task was automobile price prediction, using the Kaggle automobile

dataset (Kaggle, 2017). Because the need for adaptation paths and difficulty of adaptation are

affected by case-base sparsity, the experiments simulated varying levels of sparsity by removing the

closest N cases to the target case before each trial, for varying N . For additional discussion of the

data set and the case removing process, see Chapter 2.

Similarity measure: The similarity between two cases is a weighted sum of feature similarity,

with each feature weighted by either global or local weighting. Similarity of nominal features is 1 if

they are identical and 0 otherwise; similarity between numerical features is their absolute difference

normalized into [0, 1]. All feature weights were initialized to the same value.

Global vs. local similarity: We test the effect of RISA for two feature weighting methods:

(1) Global weighting relies on a single set of feature weights applied for all similarity comparisons;

(2) Instance-specific weighting allows each case to have its own set of feature weightings, used for

comparisons to that case (Aha and Goldstone, 1992; Bonzano et al., 1997; Friedman, 1994).

Adaptation Rules: Adaptation rules were generated automatically from the case base using the

case difference heuristic (CDH) approach (Hanney and Keane, 1996). This approach compares pairs

of cases and generates rules that apply when a retrieved case and target case have similar problem

differences, and adjusts the solution of the retrieved case according to the solution difference in the

case pair from which the rule was learned. The process used here follows the algorithm in Leake

and Schack (2018). The rule set generated depends on parameters described in Section 1.2.

300 rules are generated from pairs of random cases (ruleGenDist = 1.0), and half of the feature

differences between two cases are used (rspec = 0.5). These configuration parameters were chosen
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# Rule Specificity Rule Gen Dist Avg Path Len Avg Path Len after Last Reset

1 0.5 1.0 6.523 2.208

2 1.0 1.0 2.476 1.079

3 1.0 0.2 1.992 0.830

4 0.8 0.2 2.111 0.974

Table 3.1: Rule Set Configurations and Corresponding Path Lengths

based on a simple preliminary experiment to identify rule characteristics for which path lengths were

high and increased efficiency would be most useful. In every run of the preliminary experiments,

the closest 150 stored cases were removed around the query case to increase the need for longer

paths. The average length of full paths and the average length of the paths after their last resets are

recorded. The difference between the two measures shows the potential saving in efficiency: If the

last reset case were retrieved directly, the system would avoid building the path from the original

source case to the last reset case. The preliminary experiment used four rule sets of 300 rules. As

shown in Table 3.1, rule set #1 has the longest average length and the biggest proportional benefit,

so was chosen as the testbed rule set.

ROAD configuration for experiments: All experiments are based on adaptation path genera-

tion by the ROAD system, described in Chapter 2. The performance of ROAD depends on multiple

parameters. The test version of ROAD had the following configurations: (1) Multiple adaptation

paths are generated simultaneously (at most 5 paths); (2) Maximum path length is 10; (3) Paths

are reset when reliability decays below a threshold or when two paths disagree on the solutions.

Experimental Results

Effect of RISA with Global Weighting Using every case in the case base as a target, by

10-fold cross validation, Table 3.2 and Table 3.4 show that the effect of RISA with global weighting
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Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Path Length 6.975 6.687 6.204 6.101 6.064 5.431

Sd of Path Length 1.670 1.682 1.666 1.683 1.688 1.663

After RISA
Average Path Length 6.581 6.572 5.850 5.548 5.651 5.195

Sd of Path Length 1.671 1.687 1.620 1.643 1.648 1.666

P Value .021 .505 .035 .001 .015 .17

Table 3.2: Effect of RISA on Path Length under Global Weighting

Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Error 0.481 0.461 0.388 0.410 0.282 0.275

Sd of Error 0.816 0.814 0.724 0.890 0.544 0.527

After RISA
Average Error 0.465 0.452 0.406 0.419 0.319 0.345

Sd of Error 0.734 0.799 0.848 0.868 0.672 0.747

P Value .83 .92 .82 .92 .55 .29

Table 3.3: Effect of RISA on Error under Global Weighting

consistently decreases average path length and the number of resets. As shown, most differences

are significant (p < 0.05).

Table 3.3 shows the effect of RISA with global weights on the average relative error. After

RISA, the effect on error is mixed. The rates tend to become worse, but the differences are not

significant. We hypothesize that this is due to the coarse-grained nature of updating weights for

global weighting. Updating global weighting influences the similarities between all cases, which

can have adverse effects on similarities for cases other than those prompting the updates. Thus

with global weighting, RISA decreases path lengths as desired, but with possible degradation of

accuracy.
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Number of Cases Removed 150 125 100 75 50 25

Before RISA Total Number of Resets 221 261 224 225 248 160

After RISA Total Number of Resets 177 248 202 182 196 145

Table 3.4: Effect of RISA on Resets under Global Weighting

Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Error 0.438 0.381 0.430 0.410 0.340 0.293

Sd of Error 0.691 0.617 0.835 0.832 0.683 0.529

After RISA
Average Error 0.451 0.393 0.372 0.410 0.321 0.265

Sd of Error 0.709 0.631 0.673 0.828 0.700 0.501

P Value .85 .85 .45 .99 .78 .60

Table 3.5: Effect of RISA on the Error under Instance-Specific Weighting

Effect of RISA with Instance-specific Weighting To address the issue of side-effects for

adaptation, we tested RISA for local weighting. With local weighting, updating the feature weight-

ing for a case only influences the similarities between this case and other cases, but not the simi-

larities among other cases.

Table 3.6 and Table 3.7 show the effects of RISA on efficiency in the instance-specific weighting

configuration. In all runs, the number of resets and average path length consistently drop. Most

path length results are significant, while the change in error is statistically insignificant, as shown

in Table 3.5.

Number of Cases Removed 150 125 100 75 50 25

Before RISA Total Number of Resets 296 261 254 232 233 181

After RISA Total Number of Resets 261 238 237 201 219 160

Table 3.6: Effect of RISA on Resets under Instance-Specific Weighting
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Number of Cases Removed 150 125 100 75 50 25

Before RISA
Average Path Length 7.154 6.712 6.502 6.218 6.003 5.794

Sd of Path Length 1.706 1.649 1.654 1.698 1.689 1.718

After RISA
Average Path Length 6.652 6.278 6.205 5.737 5.672 5.494

Sd of Path Length 1.645 1.585 1.618 1.631 1.607 1.673

P Value .004 .009 .08 .005 .05 .08

Table 3.7: Effect of RISA on Path Length under Instance-Specific Weighting

3.2 Related Work in Learning to Refine Similarity Criteria

RISA is a learning method for refining similarity criteria. An extensive body of CBR research

has addressed similarity learning (see, for example, Wettschereck et al. (1997), and, for a recent

overview, Mathisen et al. (2019)). RISA differs in aiming to refine existing similarity criteria on

the fly, rather than generating a similarity measure from scratch. RISA’s failure-driven method for

learning to refine similarity criteria is most closely related to Bonzano et al. (1997), which adjusts

similarity weights in response to failed and successful retrievals, and whose updating strategy is

applied by RISA. This work is also in the spirit of work on building similarity measures by Xiong

and Funk (2006), which adjusts local similarity to reflect the utility of pairs of cases.

3.3 Conclusion

This chapter presents an initial investigation of applying information from adaptation paths to

improve efficiency of path-based adaptation by focusing on similarity measures. By learning from

path generation failures, as shown by path resets in ROAD, RISA helps align the similarity measure

with adaptability. Experimental results support its value for retrieving more adaptable cases.
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Chapter 4

The Implications of ROAD for Adaptation Rule Selection

In the introspective reasoning regarding the reuse stage of CBR, paths built by ROAD may be used

to assess the compatibility and reliability between rules. The interaction between rules may not be

uniform: Some rules cannot be combined, some rules can be combined but is unreliable, while some

rules can be combined and the adaptation is still faithful to the task domain. Given a case base

and an adaptation rule set, ROAD can simulate path building without resetting (because resetting

upholds the reliability of paths and therefore the final result does not reflect the net effect of the

rules used) and check the reliability of built path by comparing the final solution with the head’s

nearest neighbor.

Following RISA in Chapter 3, we provide a second maintenance method compacts the set of

adaptation rules. Especially with the use of large-scale automatic rule generation methods, large

sets of adaptation rules may be generated, making rule filtering potentially important to CBR

system performance (Jalali and Leake, 2014). Also, in path-based adaptation using heuristic search,

decreasing the number of rules to consider decreases the branching factor—and consequently, the

computational cost—of the search. To compact the adaptation rule set, we propose Compatibility-

based Adaptation Rule Selection (CARS), which prioritizes adaptation rules for retention based on

analysis of pairwise compatibility of adaptation rules in adaptation paths.

4.1 Compatibility-based Adaptation Rule Selection

Commonly, adaptation rules are assumed to be independent, and selected without regard for its

interactions with other rules. However, it is well known that rules may not capture all aspects

of a situation, resulting in uncertain outcomes, potentially resulting in degradation of adaptation

results (Leake and Whitehead, 2007). An adaptation path might further compound the cumulative
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error by applying multiple rules. In response, we propose a method for using information about

the interactions of adaptation rules to learn which adaptation rules to favor.

Given a case base and an adaptation rule set, it is possible to estimate reliability of adaptation

rules by building paths with resetting disabled, and then comparing the final solution from the path

with the actual solution of the nearest neighbor. The path’s error can then be used to represent

the reliability of the rules involved. This is the approach of CARS.

4.1.1 Compatibility-based Adaptation Rule Selection Algorithm

Algorithm 3 shows the process that CARS uses to assess rule compatibility. It computes a rule

compatibility matrix representing the compatibility between every pair of rules, calculated from a

set of adaptation paths of length 2, generated based on test adaptations of a selected set of cases.

This set of cases could be the entire case base or a subset (for efficiency).

Given rcount rules, the compatibility matrix has dimension rcount × rcount. The entry (i, j)

in the matrix records the compatibility between rulei and rulej if rulei and rulej can be applied in

sequence to a case. If adaptation rules are commutative (e.g., if each rule is multiplying a numerical

solution value by a feature difference in a single dimension), entry (i, j) is equal to entry (j, i) and

the matrix is symmetric. However, in many domains rules depend on each other and must be

applied in a particular order (e.g., recipe generation).

CARS estimates compatibility between two rules based on an estimated error value after the two

rules are successively applied to a case in a 2-step adaptation path. Error is estimated by retrieving

the stored case closest to the ghost case generated by the adaptation path, and comparing the

stored case and ghost case solutions. After computing the compatibility matrix, CARS uses the

average value of each row as a proxy for the overall reliability of the corresponding rule.

CARS compresses the adaptation rule set by retaining only the most reliable rules. To do so,

it sorts all rules based on reliability and trims the rule set by retaining only those falling above a
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selected percentile of the original rule set.

4.1.2 Evaluation of CARS

The evaluation of CARS addresses two questions:

• How does CARS rule deletion affect efficiency of adaptation path generation?

• How does CARS rule deletion affect solution accuracy?

Efficiency is measured in three ways: number of resets prompted by path reliability decay, number of

resets prompted by disagreement between alternative paths being explored, and average adaptation

path length. Tests assess the effect of CARS both on ROAD and on a baseline ablated version of

ROAD that performs single-rule adaptation instead of using adaptation paths.

Experimental Design

As in the previous experiment, tests used the Kaggle automobile data set (Kaggle, 2017). In all runs,

after building the compatibility matrix based on the entire case base, 75 cases around the target

query are removed to simulate situations where multiple adaptations are needed but the adaptation

paths have moderate average length. The experiment uses the rule set configuration (Rcount = 300,

RuleGenDist = 1.0, Rspec = 0.5) with 10-fold cross validation. In the experiments, CARS is

applied to assess compatibility and retain the top 80%, 60%, 40%, and 20% of rules; these conditions

are compared to a baseline of 100% retention. We note that because of the case removals to simulate

a sparse case base, as well as the rule retention and path building mechanisms in ROAD, the case

bases and rules used to solve the test problems are different from those used when building the rule

compatibility matrix.

Experimental Results

Table 4.1 shows the experimental results. We observe:
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• The number of resets consistently decreases when fewer rules are used. With fewer rules the

path searching algorithm explores fewer options, decreasing the number of prior cases near

the path. In addition, we hypothesize that because the retained rules are more reliable, paths

tend to agree with each other more often, decreasing resets due to path disagreement.

• The average path lengths become smaller as fewer rules are retained, because of fewer resets.

• The error improves markedly as the worst 20% of the rules are deleted (80% retention).

Observed error is better than the initial rule set for 60% and 40% retention, with the benefit

dropping compared to 80% retention, but the differences below 80% are not statistically

significant.

Thus the results support the efficiency benefits of rule set compression, as well as improved accuracy

at low compression rates. Effects for higher compression rates are an interesting question for future

study. We expect a tradeoff between higher average rule quality and lower coverage with the

compressed rule sets, resulting in decreasing accuracy when the rule set is too sparse. However,

refining the reliability estimate process might help to delay serious accuracy loss.

In summary, using CARS increases the efficiency of both the baseline and ROAD by reducing

the number of resets and reducing path lengths, with a stronger effect on ROAD. Also, deletion of

an initial set of the worst rules benefits accuracy for both. Beyond that deletion level there is weak

or no significant effect on the accuracy until accuracy falls for very high deletion levels.

4.2 Related Work

CARS is a method for prioritizing adaptation rules for retention.

Hanney et al. (1995)’s initial proposal for generating adaptation rules by the case difference

heuristic also proposed selective retention, based on the frequency with which particular rules were

generated from cases . Adaptation rule maintenance to remove duplicates and resolve conflicts was
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Percent of Rules Retained 100% 80% 60% 40% 20%

Using Single-Rule Reliability (baseline)

Resets due to Reliability Decay 227 152 99 37 14

Resets due to Path Disagreement 137 81 72 42 22

Average Error 0.372 0.268 0.323 0.324 0.427

SD of Error 0.407 0.229 0.321 0.281 0.365

P Value (Comparing to no Trimming) N/A .002 0.19 0.18 0.16

Average Path Length 6.126 4.689 3.841 2.662 1.932

SD of Path Length 3.011 2.575 2.366 1.630 1.200

P Value (Comparing to no Trimming) N/A <.001 <.001 <.001 <.001

Using Reliability from Compatibility Matrix (CARS)

Resets due to Reliability Decay 227 49 17 1 0

Resets due to Path Disagreement 137 83 41 10 1

Average Error 0.372 0.303 0.305 0.356 0.420

SD of Error 0.407 0.267 0.244 0.281 0.316

P Value (Comparing to no Trimming) N/A .049 .05 .65 .19

Average Path Length 6.126 3.322 2.346 1.548 1.231

SD of Path Length 3.011 2.053 1.366 0.719 0.468

P Value (Comparing to no Trimming) N/A <.001 <.001 <.001 <.001

Table 4.1: Performance by Rule Retention Level

proposed by Li et al. (2007). Additional work focuses on how to prioritize rule selection, without

deleting rules from the rule set (Leake and Dial, 2008), and on combining systematic accuracy

testing with retention of top-ranked rules (Jalali and Leake, 2014). The current work differs in

addressing adaptation paths, rather than only individual rules, and in focusing on minimizing

adaptation path length.
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4.3 Conclusion and Limitation

CARS apply information from adaptation paths to improving efficiency of path-based adaptation

by focusing on adaptation rules. By favoring pairs of rules that have participated in successful adap-

tation paths, CARS compresses the adaptation rule set while retaining useful rules. Experimental

results support its value for increasing adaptation efficiency and that deletion of least reliable rules

can improve accuracy, subject to an efficiency/coverage tradeoff.

In the current implementation of CARS, the concepts of reliability and compatibility are mixed.

It is possible to distinguish them and implement a more fine-grained version of CARS. For example,

the ROAD system in its building of adaptation paths may search only compatible rules and prioritize

reliable rules. This can be especially helpful in a domain where certain rule can be compatible with

few rules but highly reliable when used in a path. However our test data set and rule set do not

have such a characteristic for us to test this more fine-grained version of CARS.
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Algorithm 3 Assessing Rule Compatibility

Input:

CaseSet: Cases for testing

rules: List of adaptation rules

Output: Rule compatibility matrix

R = size(rules), N = size(CB)

Initialize matrix M of size R×R

for i← 1 to R do

for j ← 1 to R do

M [i][j] ← undefined

for i← 1 to R do

for j ← 1 to R do

totalError = 0

errorCount = 0

for all case in CaseSet do

if rule[i].isApplicableTo(case) then

ghost1 = rule[i].applies(case)

if rule[j].isApplicableTo(ghost1) then

ghost2 = rule[j].applies(ghost1)

target = CaseSet.nearest(ghost2)

totalError+ = errorInSolution(ghost2, target)

totalCount+ = 1

else

continue

else

continue

if totalError 6= 0.0 then

M [i][j] = totalError/totalCount

return M
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Chapter 5

Neural Network Based Cased Difference Heuristics: Supporting the Adaptation

Process with Neural Networks

5.1 Introduction

Chapter 2 through Chapter 4 discusses a method of applying multiple case adaptation rules. Rule-

based adaptation is an intuitive and straightforward adaptation method in CBR. However, obtain-

ing the adaptation knowledge needed to adapt prior solutions is a classic challenge. In response,

extensive research has explored the use of machine learning methods to acquire case adaptation

knowledge for both classification (D’Aquin et al., 2007; Jalali et al., 2017a) and regression (Fuchs

et al., 2014b; Jalali and Leake, 2015; Liao et al., 2018; Patterson et al., 2002; Policastro et al., 2006).

An interesting recent direction is the use of neural network methods for case difference heuristic

(CDH) learning of adaptations for case-based regression.

Neural network architectures for case adaptation have been the subject of considerable study

within the case-based reasoning community. However, gaps remain both in architectural capabilities

and in fundamental questions of system behavior. First, existing architectures focus on adaptation

of numeric attributes; adapting nominal attributes is an open challenge, made harder because of

the lack of standard methods for expressing such adaptations in network architectures. Second,

some proposed neural network adaptation architectures take as input a query and retrieved case

and generate a solution, which raises a question about whether they truly learn adaptation—–in

principle, they could learn simply to ignore the prior case and generate a solution from scratch.

Third, the performance benefit of using CBR systems with neural network components over other

models is unclear. This chapter presents research on these questions.

This chapter introduces a new method for expressing the difference between two one-hot encoded
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nominal values as a vector, and extends the NN-CDH adaptation approach (Leake et al., 2021b)

to predict a solution difference given a problem difference, where the problem/solution difference

can involve nominal attributes (features or labels). Unlike the earlier variation of NN-CDH for

classification, this new extension guarantees the model is learning adaptation knowledge. Extensive

experiments on multiple regression and classification data sets, and on controlled artificial data sets,

compare the extended NN-CDH with other models. Some trends of results paralleled those obtained

in previous tests (Leake et al., 2021a; Ye et al., 2021b), providing additional support for them as

general characteristics of neural network adaptation.

The experiments suggest that NN-CDH can be most useful when (1) the retrieval is relatively

good to provide a good initial start for adaptation and not out of synchronization with the adap-

tation and (2) when queries are relatively novel so adaptation is needed beyond retrieval and yet

not too novel, for adaptation needs to go beyond the learned adaptation knowledge.

The results reveal two important lessons: (1) Good case retrieval alone can surpass other ML

methods such as neural networks. The adaptation could worsen the retrieval result if the two

processes are not in synchronization. This issue is observed in this chapter but beyond the scope

of this chapter. More discussion on this issue can be found in Leake and Ye (2021a); (2) Directly

integrating neural networks into a CBR system may lead to comparable, but often not better results

than the counterpart neural network. To actually surpass statistical AI such as the neural network,

we believe symbolic knowledge will be necessary.

5.2 Background

5.2.1 Neural Network Adaptation Learning by the Case Difference Heuristic

CBR researchers have explored many machine learning techniques for acquiring case adaptation

knowledge. Because of the difficulty of codifying adaptation knowledge, especially in poorly un-

derstood domains, there has been particular interest in data-driven methods (Corchado and Lees,
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2001; Craw et al., 2006a; F. Zhang et al., 2004; Liao et al., 2018; Policastro et al., 2006). Hanney

and Keane’s case difference heuristic approach (Hanney and Keane, 1996) is a method for learning

adaptation knowledge from the case base, by comparing pairs of cases and attributing the solution

difference to the problem difference. Originally, the CDH approach was applied to learning adap-

tation rules, but other variants have been explored. Craw et al. (2006a) present a method that

stores case pairs and applies the most similar pair with the most similar problem difference when an

adaptation is needed. Liao, Liu, and Chao (Liao et al., 2018) train a neural network on case pairs

to predict solution difference based on problem difference. Leake, Ye, and Crandall (Leake et al.,

2021a) take a similar approach but train the neural network with adaptation context in addition

to problem/solution differences. This method is called the neural network-based case difference

heuristic (NN-CDH) method.

5.2.2 Case Adaptation Involving Nominal Attributes

The work mentioned in Section 5.2.1 all focus on case adaptation for regression tasks, based on

numeric attributes. The hesitation of the research community over case adaptation involving nom-

inal attributes is expected. Nominal attributes hide some information, so it is convenient when the

information is not relevant. For example, imagine three apartments with one bed, two beds, and

three beds, and of the price 700, 900 and 1200 respectively. We define two class labels as “cheap” for

prices under 1000 and “expensive” for prices over 1000. From the perspective of machine learning

in general, classification might be an easier problem than regression. In our example, it is easier

for a system to predict that the rent for a one-bed apartment and a two-bed apartment are both

“cheap” than to predict their price numbers.

As noted by Craw et al. (Craw et al., 2006a), adaptation involving nominal attributes is difficult

compared to numerical attributes because there is no natural calculation for symbolic similarity

(for retrieval) or dissimilarity (for adaptation). Some previous works have studied non-neural
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methods for learning case adaptation involving nominal attributes. For example, Jarmulak, Craw

and Rowe (Jarmulak et al., 2001) present a case-based method that learns adaptation cases for

both numeric and nominal features. Jalali, Leake, and Forouzandehmehr (Jalali et al., 2017b)

combine a statistical method with an ensemble approach. They use the ordered pair of two values

of a nominal feature x (e.g., (ti, tj)) as an adaptation rule that modifies the value from ti into tj .

As a precondition of applying a rule such as (ti, tj), the system must check that the source case’s

x feature is of value ti before modifying it into tj . Craw et al. (Craw et al., 2006a) propose two

methods to adapt nominal attributes: 1) a coarse method indicating whether a nominal attribute

should remain the same or change, 2) a multi-class adaptation which proposes the target solution

directly.

5.2.3 Initial Version of NN-CDH for Classification

The initial version of NN-CDH for classification followed the second route proposed by Craw et al.

(Craw et al., 2006a), Ye et al. (Ye et al., 2021b) modify NN-CDH into C-NN-CDH for classification

task domains. The C-NN-CDH approach predicts a target solution (class label) based on a source

case and a target problem. It was tested in comparison to other classification algorithms including

SVMs and neural networks. Those experiments supported that C-NN-CDH can achieve state-of-art

case adaptation and classification results.

However, C-NN-CDH operates differently from other CDH methods (including NN-CDH) that

work directly with problem/solution differences. C-NN-CDH takes a source case and a target

problem as inputs. It is not guaranteed to make use of the source case to truly perform adaptation;

in principle it could learn to find a target solution based on the target problem only. In response, this

chapter proposes a single adaptation model that learns from differences of nominal features/labels

and therefore guarantees the learning of adaptation knowledge.

NN-CDH can handle nominal feature differences but not nominal label differences. To address
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this, we use the following encoding scheme. If a nominal feature is one-hot encoded into a vector of

numbers (with a single “1” and multiple “0”s), it can be treated as multiple numerical features and

processed by the neural network. Two such vectors can be subtracted from one another to form a

nominal difference, which can be then passed to the input layer of NN-CDH. However, NN-CDH’s

last layer uses a single neuron with the linear activation function to predict a numerical output.

This numerical output is the solution difference in a regression task. This output neuron cannot

represent a nominal difference in the solution.

Both the studies on NN-CDH and C-NN-CDH methods (we will refer to both as NN-CDHs for

short) compared CBR systems using NN-CDHs with their counterparts, neural network systems

that predict target solution directly from target problem (Leake et al., 2021a; Ye et al., 2021b).

Ye et al. (Ye et al., 2021b) show that NN-CDH performs comparably to the counterpart neural

network system on certain data sets. Leake, Ye and Crandall (Leake et al., 2021a) hypothesize that

NN-CDHs can outperform end-to-end network methods, for example, when the query is novel in a

high dimensional space. However more evidence is needed to assess this hypothesis. This chapter

reports experiments to elucidate this behavior.

5.2.4 Siamese Networks for Similarity Assessment

Siamese networks (Bromley et al., 1993) are a neural network architecture that can predict the

distance between two input samples. A siamese network is composite of two identical feature

extraction networks and a subtraction layer. Given two input vectors (in our context, two feature

vectors, one describing a query and the other the problem addressed by a prior case), the feature

extraction networks extract their features and the subtraction layer compares their features and

outputs a value indicating the distance (often using a sigmoid function) between the two cases.

Siamese networks have been used as the similarity measure in case retrieval (Martin et al., 2017;

Mathisen et al., 2019), with good performance. This chapter refers to a KNN retrieval process that
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uses a siamese network as similarity measure as SN retrieval.

5.2.5 The Relationship Between Retrieval and Adaptation

Smyth and Keane observed that for efficient adaptation, CBR retrieval and adaptation knowledge

must be tightly connected (Smyth and Keane, 1998). Leake and Ye (Leake and Ye, 2021a) showed

that even when strong models are trained for both retrieval and adaptation, adapted solutions

might be less accurate than the retrieved solution if the retrieval and adaptation knowledge are

not in synchronization with each other—in other words, if the retrieved cases are close to the real

solution by the similarity metric but not easily adaptable, or if the adaptation model is not trained

to adapt such retrieval results. The experiments in this chapter tested a CBR system adapting

results from either 1-NN retrieval or SN retrieval. The experiments further support that when both

the retrieval model and the adaptation model are well trained individually but not in accordance

with each other, adaptation may worsen the result of retrieval (Leake and Ye, 2021a).

5.3 NN-CDH for both Classification and Regression

This chapter extends NN-CDH to perform adaptation for both regression and classification task

domains. If the domain is regression, the model works identically to the original NN-CDH (Leake

et al., 2021a). The following first explains the case adaptation process applicable to both classifi-

cation and regression domains, then introduces a network method for handling nominal difference,

and last discusses the neural network structure of NN-CDH and how it works with both numerical

and nominal differences.

5.3.1 The General Model of Case Adaptation

Given a query with a target problem description, the standard CBR adaptation process first re-

trieves a case whose problem is similar to the query. The retrieved case contains a retrieved problem

and a retrieved solution. The system calculates a problem difference and an adaptation context to
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adapt this retrieved case toward the query. The problem difference is the difference between the

retrieved problem and the query problem. Last, the retrieved solution is modified according to the

solution difference.

NN-CDH augments the difference information by using the retrieved problem as context for the

adaptation. It uses both the adaptation context and the problem difference to predict a solution

difference.

If the system task is a regression task, NN-CDH calculates the difference of two values over

a numerical attribute by subtracting the two values. However, in classification tasks, each case

contains a solution description that is a nominal label (Multi-class labeling is not discussed in this

chapter). The neural network of NN-CDH needs to work with outputs of differences of nominal

attributes, or nominal differences. It does this as described in the following section.

5.3.2 1-Hot/1-Cold Nominal Difference

Given a nominal-valued attribute n that can take any of a set d different possible values for that

attribute, one-hot encoding converts n into a group of d binary bits {n1, n2, ...nd}, where ni is ‘1’

and all others bits are ‘0’s. Given two nominal values n = {n1, n2, ...nd} and m = {m1,m2, ...md}

of the same attribute, their 1-hot/1-cold nominal difference (or “nominal difference” for short) is

defined as

n−m = {n1 −m1, n2 −m2, ...nd −md} (5.1)

Given two cases in a classification task, their problem difference is calculated as a vector of

individual feature differences concatenated, which may or may not involve nominal differences;

Their solution difference is the nominal difference of their class labels. If the two cases are of the

same class, then the solution difference is all ‘0’s, indicating no difference between their solutions;

Otherwise, the solution difference contains exactly one ‘1’ and one ‘-1’ (hence the name “1-hot/1-

cold”), indicating changing from one class into another. Nominal differences are vectors that can
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be either input or output of NN-CDH, allowing NN-CDH to learn the projection from problem

difference to solution difference in a classification task.

As a side benefit, the problem difference may contain both nominal and numerical differences,

allowing interaction between the two categories of feature differences. This benefit is similar to

that of a classification neural network which learns one-hot encoded nominal values and numerical

values together.

5.3.3 Neural Network Structure of NN-CDH

Given a neural network structure for a given domain and task, the network structure of the NN-

CDH for it is similar. The main difference is in its first and last layers. The first layer needs to

have more neurons to accommodate both adaptation context and problem difference. The last

layer needs to express predicted solution difference. The last layer is a dense layer using the tanh

activation function, as opposed to the linear activation function in the original NN-CDH.

For regression, the last layer is a single neuron, producing a solution difference between −1 and

1 to increase or decrease a retrieved solution. For classification, the last layer is a dense layer with

d neurons, where d is the dimension of a one-hot encoding of the classification label. Each neuron

can be a value between −1 (indicating “change into this class”) and 1 (indicating “change away

from this class”).

5.3.4 Training and Adaptation Procedure

The training and adaptation procedures follow from the original NN-CDH, but with some modifi-

cation. This is illustrated in Algorithm 4.

During training, pairs of training cases are assembled as training data for NN-CDH. For each

pair, their problem difference and solution difference are calculated. One problem description of the

two cases is used as the adaptation context. The problem difference and the adaptation context are

concatenated to form the input of the NN-CDH and the solution difference is the expected output
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of the NN-CDH. Lastly, the NN-CDH is trained using backpropagation and the mean squared error

as the loss function.

During adaptation, the NN-CDH predicts a solution difference based on a problem difference

and an adaptation context. Depending on the task domain, the retrieved solution is modified

according to the solution difference in one of two ways. If it is a regression task, the retrieved

solution subtracting the predicted solution difference forms the final solution (same as the original

NN-CDH). If it is a classification task, the retrieved solution is an one-hot encoding of the class

of the retrieved case. The retrieved solution subtracts the predicted solution difference element by

element. The maximum bit of the resulting vector is used to determine the final solution.

5.4 Evaluation

Our evaluation addresses the two main questions: Does NN-CDH consistently improve the result

of the CBR retrieval, and how does a CBR using NN-CDH perform when compared to a neural

network of equivalent computational power?

5.4.1 Systems Being Compared

This chapter tests six different methods and compares their performance in terms of prediction

accuracy. They are: 1) a baseline neural network, 2) k-nearest neighbor (k-NN), 3) a CBR system

whose retrieval is either 1-NN retrieval or SN retrieval and whose adaptation is either a rule-based

CDH or an NN-CDH. The rule-based CDH is a baseline adaptation method (referred as NNA in

the work of Craw et al. (Craw et al., 2006a)) where the case pairs are stored in an adaptation case

base. The rule-based CDH uses a non-optimised 1-NN retrieval to select the case pairs based on the

adaptation context and problem difference and applies the solution difference as the adaptation.

Because there are two variations of retrieval and two of adaptation, four variations of CBR systems

are tested. The six different methods are referred as “all models” in the following text.
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Algorithm 4 Pseudocode for the Training and Usage of NN-CDH

1: procedure Training(cases)

2: pairs← assembled pairs of cases

3: NN -CDH ← new neural network

4: CDH data ← {}

5: for each source and target in pairs do

6: CDH data.append(

7: [prob(source),prob(source)− prob(target):sol(source)− sol(target)])

8: NN -CDH.fit(CDH data)

9: return NN -CDH

10: procedure Adapt(query,retrieval)

11: retrieved← retrieval(CB, query)

12: sol diff ← NN -CDH.predict(prob(retrieved), prob(retrieved)− prob(query))

13: if Task is regression then

14: r ← sol(retrieved)− sol diff

15: else if Task is classification then

16: r ← sol(retrieved)− sol diff #element-wise subtraction

17: r ← argmax(r)

18: return r
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The neural networks may have more or fewer layers and neurons per layer to accommodate

the varying complexity of different data sets. In our implementation, the neural networks have

2-4 hidden layers, each of which has 8-128 neurons. For every task domain, the baseline neural

network is almost identical to the NN-CDH and they share the same number of layers, neurons

and activation functions, except for the first layer because NN-CDH takes in adaptation context

and problem difference. This is to ensure fair comparison of the two models because they share

similar complexity. The structure of the NN-CDH was already discussed in Section 5.3.3. The last

layer of the baseline neural network uses a sigmoid activation function for regression or softmax

activation function for classification. The baseline neural network model is trained with the loss

function of mean squared error in regression or with the loss function of categorical cross entropy

for classification. Such designs of neural networks for regression and classification are widely used.

Both k-NN and 1-NN are default implementations from the scikit-learn package (Pedregosa

et al., 2011). They use Euclidean distance over problem feature values to calculate distance between

cases. All cases are weighted equally. Our k-NN used k=3. When the CBR system uses a siamese

network over the Euclidean distance for similarity measure, a separate siamese network is trained

to predict the similarity of two given cases.

The siamese network for case retrieval measures the similarity between two cases. The feature

extraction network is composite of three dense layers (of dimension 32, 32 and 16) with dropout

layers (dropout rate = 0.1) in between. For harder problems, the number of neurons in each layer

is multiplied by 4. The two features extracted from two cases are then passed to the subtraction

layer which outputs the element-wise feature distance. Last, this is passed into a final dense layer

to output a single similarity score. The final layer uses the ReLU activation function for regression

or the sigmoid activation function for classification. The siamese network is trained with the mean

average error loss for regression or the contrastive loss for classification.
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5.4.2 Assembling Case Pairs for Training

While the baseline neural network and the k-NN are trained from cases directly, both the siamese

network and the NN-CDH need case pairs for training. Using all possible pairs is unrealistic as a

case base of n cases would have n2 pairs. Multiple strategies for case pair assembly exist (Jalali and

Leake, 2013). In all experiments of this chapter, we use n neighboring pairs (each case is paired

with its nearest neighbor) and 10n random pairs (each case is randomly paired with another case).

From these pairs, 90% are used for training and the rest for validation. We observed that this

design choice can heavily influence the models, for example, a model may not accommodate two

highly different input cases if the model is not trained with enough random pairs. However, this

design choice is not the focus of this chapter.

To train the siamese network, we assemble pairs of cases’ problem descriptions as input and

determine their distance as the expected output of the siamese network. For regression, the distance

is the absolute distance between the two cases’ solutions. For classification, the distance is 0 if the

two solutions are the same and 1 otherwise. To train the NN-CDH, we use problem differences and

solution differences of the case pairs.

5.4.3 Data Sets

This experiment involves 5 regression data sets (Airfoil, Car, Student Performance, Yacht, Energy

Efficiency) and 5 classification data sets (Credit, Balance, Car, Yeast, Seeds). As a step in data

preprocessing, all numeric attributes are scaled to the range of [0,1] and all nominal attributes are

one-hot encoded. This way the expected output values match the output range of the NN-CDH.

Each data set is tested with 10-fold cross validation, and on three different settings:

• The normal setting: The standard setting where 90% of the cases are used as the training set

(out of which 90% of the cases are used for training and the rest for validation) and 10% as

the test set. The case pairs are assembled from the training set. The models are first trained
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and then tested on the whole test set.

• The novel setting (X): Similar to the normal setting with the difference that: For every

test case, we remove its top R% neighbors (based on euclidean distance on their problem

descriptions) in the train set to form a trimmed train set. All models are trained on the

trimmed train set and then tested on that single test case. This is a direct reuse of a previous

novel setting experiment (Leake et al., 2021a).

• The novel setting (Y): Similar to the novel setting (X), we still remove top R% neighbors of

a test case but the Euclidean distance is based on the solution description rather than the

problem description. All models are trained on the trimmed train set and then tested on

that single test case. This is a modification of another previous novel setting experiment (Ye

et al., 2021c).

The novel setting (X) simulates when the models are not trained with cases whose problem

descriptions are similar to the query problem. The novel setting (Y) simulates when the models

are not trained with cases sharing similar solutions as the query solution. The novel setting (Y)

is arguably harder than the novel setting (X) because a CBR system in the later setting may still

retrieve a case with good enough solution. The results for 1-NN retrieval under the novel setting

(Y) are not reported because the trend is already clear in the novel setting (X). Moreover, the novel

setting (Y) does not apply to classification data sets because two cases can be very different but

still share the same class label. Removing cases based on class label does not necessarily make the

query novel.

The data sets and various settings have been used on previous studies (Leake et al., 2021a; Ye

et al., 2021b,c) while this chapter tests both classification and regression using the same models.

We chose R% as 40%. For the normal setting of simpler data sets, experiments run multiple times

and the average is taken. However, the novel settings have very high computational costs and even

one run on the whole test set is extremely expensive, because each test case requires a re-training
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of all the models. We resort to randomly choosing only 50 cases from a test set for testing.

Because of the nature of the novel settings, the performance of any model on test cases can

vary tremendously as the novelty and difficulty of the test cases vary. Therefore almost all the

differences in novel settings are not statistically significant.

Experimental Results on Real Data Sets

Setting Retrieval
Neural

Network
k-NN Retrieval Rule CDH NN-CDH

Normal 1-NN 7.42% 6.87% 6.94% 5.80% 5.71%

Normal Siamese 7.60% 6.97% 6.49% 17.06% 8.82%

Novel(X) 1-NN 9.34% 16.88% 17.99% 23.85% 12.02%

Novel(X) Siamese 9.51% 16.20% 8.45% 18.16% 13.84%

Airfoil

Novel(Y) Siamese 8.90% 16.49% 17.18% 22.29% 13.44%

Normal 1-NN 1.52% 1.95% 1.63% 1.81% 1.38%

Normal Siamese 1.47% 1.92% 2.19% 6.89% 1.72%

Novel(X) 1-NN 5.00% 7.42% 8.48% 8.87% 4.31%

Novel(X) Siamese 5.41% 7.36% 2.76% 8.45% 3.61%

Car

Novel(Y) Siamese 5.06% 7.05% 6.20% 9.32% 4.77%

Normal 1-NN 21.61% 25.47% 31.59% 31.03% 29.63%

Normal Siamese 21.38% 25.64% 26.39% 31.66% 30.62%

Novel(X) 1-NN 16.42% 18.73% 23.30% 27.00% 24.33%

Novel(X) Siamese 16.32% 19.30% 21.00% 21.90% 25.82%

Student

Performance

Novel(Y) Siamese 23.73% 26.17% 32.00% 28.70% 33.38%

Normal 1-NN 7.53% 13.77% 11.48% 6.85% 8.05%

Normal Siamese 5.94% 13.87% 2.18% 17.11% 7.71%

Novel(X) 1-NN 10.50% 13.15% 16.72% 26.96% 10.50%

Novel(X) Siamese 10.14% 12.96% 3.52% 24.25% 6.43%

Yacht

Novel(Y) Siamese 15.64% 19.56% 13.68% 19.77% 23.22%

Normal 1-NN 7.36% 7.53% 14.62% 15.06% 13.04%

Normal Siamese 7.20% 7.55% 2.17% 12.51% 4.89%

Novel(X) 1-NN 17.96% 23.46% 25.83% 22.29% 14.88%

Novel(X) Siamese 17.82% 23.44% 16.40% 22.41% 13.20%

Energy

Efficiency

Novel(Y) Siamese 17.07% 24.19% 23.72% 20.74% 12.95%

Table 5.1: Error Rates of Models on Regression Data Sets

We observed the error rate of models on regression in Table 5.1 (The lower the better) and

accuracy of models on classification in Table 5.2 (The higher the better). It is important to note

that the variance is very high (not shown in tables) in any experiment under novel settings. The
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Setting Retrieval
Neural

Network
k-NN Retrieval Rule CDH NN-CDH

Normal 1-NN 86.06% 85.34% 85.34% 80.37% 81.10%

Normal Siamese 85.91% 85.06% 80.78% 75.73% 76.34%

Novel(X) 1-NN 77.80% 58.60% 58.60% 58.80% 70.20%
Credit

Novel(X) Siamese 68.00% 48.00% 70.00% 52.00% 76.00%

Normal 1-NN 97.21% 79.00% 79.00% 72.21% 97.15%

Normal Siamese 97.12% 79.44% 98.40% 73.66% 97.28%

Novel(X) 1-NN 84.00% 46.00% 46.00% 56.00% 70.00%
Balance

Novel(X) Siamese 88.00% 46.00% 90.00% 42.00% 70.00%

Normal 1-NN 99.87% 86.36% 86.36% 79.21% 99.27%

Normal Siamese 99.71% 84.84% 97.63% 71.12% 97.05%

Novel(X) 1-NN 82.00% 52.00% 52.00% 52.00% 84.00%
Car

Novel(X) Siamese 78.00% 60.00% 82.00% 64.00% 62.00%

Normal 1-NN 58.83% 54.65% 54.65% 50.68% 52.90%

Normal Siamese 58.84% 54.42% 48.18% 45.19% 49.03%

Novel(X) 1-NN 42.00% 40.00% 40.00% 38.00% 34.00%
Yeast

Novel(X) Siamese 40.00% 26.00% 26.00% 26.00% 30.00%

Normal 1-NN 93.71% 92.67% 92.67% 89.33% 94.29%

Normal Siamese 94.76% 93.33% 94.29% 90.48% 95.71%

Novel(X) 1-NN 46.00% 26.00% 28.00% 28.00% 48.00%
Seeds

Novel(X) Siamese 42.00% 14.00% 44.00% 32.00% 40.00%

Table 5.2: Accuracy Rates of Models on Classification Data Sets

difference between the performances of models is not statistically significant under novel settings.

However, the general trend still reveals some interesting comparisons between the models.

1. SN retrieval is almost always better than 1-NN retrieval.

2. The relation between retrieval methods and NN-CDH is complicated:

(a) NN-CDH consistently improves the result of 1-NN retrieval in regression, but less so in

classification. We believe this is largely because (1) it is easier to retrieve a case with

the same label in classification than to retrieve a case with the exact same solution in

regression, and (2) nominal attributes hide subtle differences between cases (ex. a major

problem difference may lead to no class change or a minor problem difference may lead

to a class change) and therefore case pairs are harder for NN-CDH to learn.
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(b) NN-CDH often fails to improve the result of SN retrieval. When the retrieval process

is very good but not in synchronization with the adaptation, in this case NN-CDH, the

adaptation model does not necessarily improve the retrieval result. See discussion in

Section 5.2.5.

3. Neural network, SN retrieval and NN-CDH all may achieve best performance in various

settings of different data sets. It is unclear which model will be most suitable in a given

situation but some general trends are observed:

(a) Under normal settings, the neural network is often best performing. Under novel settings,

performance of all models degrades.

(b) Under the novel setting (X), 1-NN is much worse than in the normal setting, but siamese

retrieval performs relatively well and is often best.

(c) Under the novel setting (Y), the siamese retrieval also suffers. We observe that NN-CDH

may improve (but sometimes worsen) the retrieval results.

(d) The neural network and the NN-CDH have comparable performance. This is because

the two models share the same structure and computational power, although trained

with different data for different purposes. Often NN-CDH is slightly worse. This may

be because NN-CDH is working on the retrieval result. If the retrieval result is bad or

if the retrieval and the adaptation are not in synchronization, it is harder to adapt.

(e) As the neural network and the NN-CDH are similar in terms of problem solving power,

if the neural network is underperforming (for example, if it performs worse than the

retrieval method), then NN-CDH is likely underperforming as well and likely to worsen

the retrieval result.
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5.4.4 Artificial Data Sets

Considering the nature of different models, we hypothesize that the locality of the task domain

(whether local regions follows a specific pattern that is sufficiently different from the global land-

scape) is one factor causing disparity between the performances of models. Obviously, there are

many other factors of a data set that might influence a model’s performance, for example, the

sparsity of feature values, the dimension, and the time-spatial relationship between features.

To further study the trends and find scenarios where one model may outperform the others, we

created a way to generate artificial data sets with variable locality.

The artificial cases take the form of

{x1, x2, ...xk : y}, 0 ≤ xi ≤ 1

where {x1, x2, ...xk} is a problem description with k features and y is the solution. k weights

{w1, w2, ...wk} and k biases {b1, b2, ...bk} are randomly sampled from 0 to 1, each corresponding to

one feature. For each case, xi are randomly sampled from 0 to 1 and y is determined by two steps:

1) Find the first integer i such that x1 ≤ i/k; 2) Calculate the value of y as y = wi ∗ xi + bi.

This data set can be converted to include nominal features and even nominal solutions. For

example, the first feature x1 can be converted to an nominal feature of k possible values. If

converted this way, the data set shows a perfect example where the nominal and numerical features

are independent and yet interact, as the first feature (nominal) determines which numerical feature

to use in calculating the solution.

On a high level, the first feature x1 is globally used while the other features are only locally

used depending on the value of x1. Therefore this data set demonstrates a good example of task

domains involving both global and local landscapes. By tuning the number of features k, we can

modify the locality of the data set. When k = 1, the data set follows a single global rule; When k

is large, the data set follows many local rules.

We generate data sets of 1000 cases respectively using k = 3, 5, and 7. For each data set, we test
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it with all models and three settings: normal, novel (X), and novel (Y). For each novel setting, we

also vary R% to be 10%, 20%, and 30% in order to render gradual influences of the novel settings.

To ensure fair comparison between models, we use the same seed to generate random cases for each

choice of k and to select test queries.

Experimental Results on Artificial Data Sets

We observed the performance of models in Table 5.3 where the CBR system uses 1-NN retrieval and

in Table 5.4 where the CBR system uses SN retrieval. We recorded both the error rate and standard

deviation of each model. As a reminder, due to technical constraint, each model is tested with 50

samples under each novel setting. Additionally, the standard deviation of all models are extremely

high in novel settings. This renders all comparison in novel setting statistically insignificant, but

we still believe the average error rates show a trend for comparing the models.

Many of the observations mesh with those in Section 5.4.3. We also observed additional phe-

nomena in the experiments with the artificial data sets:

1. To our surprise, the baseline network performs relatively well (and sometimes best) in data

sets with high locality. This contradicts our hypothesis.

2. Rule-based CDH always downgrades the retrieval result. Rule-based CDH finds the best case

pairs to apply using the naive 1-NN, which works poorly in this special domain where only

two features matter.

3. All models perform better in low-dimension data sets than high-dimension ones. 1-NN per-

forms well in low-dimension spaces. The NN-CDH further improves the result of 1-NN re-

trieval, and often achieves the best performance. However, as the dimensionality increases,

only two features are relevant and 1-NN retrieves worse results, making adaptation harder

for NN-CDH. We observe when k = 7, the neural network outperforms 1-NN retrieval and
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Setting
Neural

Network
k-NN 1-NN Retrieval Rule CDH NN-CDH

3 features normal 17.47%(5.37) 9.677%(1.55) 9.818%(2.81) 12.31%(2.42) 9.906%(3.35)

novel 0.1 17.23%(16.4) 14.86%(15.3) 18.57%(19.6) 24.90%(27.3) 9.148%(12.0)

novel 0.2 19.90%(15.8) 19.09%(19.9) 23.94%(21.4) 27.62%(25.1) 11.41%(13.3)remove on X

novel 0.3 22.42%(16.0) 21.00%(17.5) 24.40%(22.3) 30.25%(26.3) 15.41%(15.7)

5 features normal 12.41%(1.66) 16.87%(2.13) 20.68%(1.98) 25.92%(2.12) 11.82%(2.82)

novel 0.1 11.39%(9.71) 17.76%(14.7) 19.28%(22.6) 26.61%(23.4) 9.961%(9.01)

novel 0.2 12.68%(11.6) 22.81%(15.7) 24.98%(23.7) 31.35%(23.9) 12.61%(11.8)remove on X

novel 0.3 13.08%(11.9) 21.13%(18.7) 24.36%(22.4) 35.70%(27.8) 12.89%(11.7)

7 features normal 24.42%(2.69) 25.70%(1.87) 32.08%(2.09) 39.37%(3.18) 25.49%(2.58)

novel 0.1 20.02%(13.6) 25.53%(15.8) 34.56%(22.7) 37.55%(29.3) 23.15%(14.5)

novel 0.2 21.38%(12.2) 25.70%(19.1) 33.92%(23.3) 40.67%(26.6) 23.84%(20.0)remove on X

novel 0.3 22.98%(12.2) 28.35%(16.1) 31.02%(20.7) 36.22%(22.6) 21.82%(15.4)

3 features normal 17.47%(5.37) 9.677%(1.55) 9.818%(2.81) 12.31%(2.42) 9.906%(3.35)

novel 0.1 15.59%(17.6) 13.77%(19.8) 15.27%(22.6) 14.24%(23.7) 10.63%(17.3)

novel 0.2 20.65%(18.0) 17.97%(22.5) 21.64%(23.8) 21.19%(25.4) 16.74%(21.8)remove on Y

novel 0.3 22.33%(19.2) 24.68%(21.8) 26.23%(23.2) 25.05%(24.9) 19.62%(22.0)

5 features normal 12.41%(1.66) 16.87%(2.13) 20.68%(1.98) 25.92%(2.12) 11.82%(2.82)

novel 0.1 12.11%(12.3) 16.81%(14.9) 18.15%(19.6) 21.64%(23.1) 11.83%(11.8)

novel 0.2 18.73%(17.3) 24.74%(18.0) 28.06%(21.5) 26.95%(20.2) 20.88%(18.5)remove on Y

novel 0.3 23.25%(20.7) 31.04%(19.4) 33.68%(19.6) 34.40%(19.2) 21.99%(19.2)

7 features normal 24.42%(2.69) 25.70%(1.87) 32.08%(2.09) 39.37%(3.18) 25.49%(2.58)

novel 0.1 29.76%(14.4) 29.85%(19.4) 33.85%(22.2) 37.84%(21.4) 31.37%(20.5)

novel 0.2 32.92%(17.9) 35.60%(19.3) 38.07%(20.4) 38.89%(22.9) 39.12%(20.7)remove on Y

novel 0.3 35.73%(15.9) 39.03%(17.8) 40.11%(18.6) 41.49%(21.0) 39.42%(19.8)

Table 5.3: Error rates (and standard deviation) of Models on the Artificial Regression Data Sets.

CBR uses 1-NN retrieval and adaptation is based on the retrieval result.

NN-CDH consistently. This trend is not as obvious when the retrieval is based on the siamese

network.

4. SN retrieval can consistently outperform other models, except under novel settings (Y). Under

a novel setting (Y), even the best possible neighbor’s solution will be different from the target

solution, as all cases with close solutions are removed. In such situations, we see the neural

network and NN-CDH can outperform SN retrieval.

5. The artificial data set can be perfectly solved if a symbolic system somehow learns the rule to
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Setting
Neural

Network
k-NN SN Retrieval Rule CDH NN-CDH

3 features normal 16.93%(4.94) 9.677%(1.55) 4.338%(1.09) 15.28%(4.23) 9.087%(3.05)

novel 0.1 16.83%(16.5) 14.86%(15.3) 8.870%(15.4) 21.35%(29.8) 8.562%(10.9)

novel 0.2 17.36%(14.3) 19.09%(19.9) 11.36%(15.8) 32.46%(27.5) 13.35%(12.3)remove on X

novel 0.3 22.95%(14.9) 21.00%(17.5) 16.28%(18.0) 36.49%(25.8) 19.17%(18.0)

5 features normal 13.01%(2.44) 16.87%(2.13) 7.322%(1.72) 25.59%(2.94) 12.51%(2.68)

novel 0.1 11.03%(10.6) 17.76%(14.7) 6.017%(10.1) 28.25%(22.7) 9.115%(8.58)

novel 0.2 11.38%(11.3) 22.81%(15.7) 6.954%(9.07) 25.10%(21.2) 12.42%(10.4)remove on X

novel 0.3 12.72%(10.9) 21.13%(18.7) 9.769%(13.1) 22.93%(21.4) 12.48%(11.0)

7 features normal 21.16%(2.38) 25.70%(1.87) 17.92%(4.98) 36.13%(3.47) 23.44%(2.90)

novel 0.1 21.60%(13.3) 25.53%(15.8) 19.76%(19.8) 32.57%(25.6) 24.73%(19.0)

novel 0.2 22.37%(13.0) 25.70%(19.1) 22.13%(20.3) 40.46%(33.8) 25.75%(17.9)remove on X

novel 0.3 25.39%(10.8) 28.35%(16.1) 23.00%(20.6) 38.59%(27.1) 27.47%(18.3)

3 features normal 16.93%(4.94) 9.677%(1.55) 4.338%(1.09) 15.28%(4.23) 9.087%(3.05)

novel 0.1 15.02%(18.3) 13.77%(19.8) 10.46%(13.9) 13.31%(16.6) 9.129%(11.6)

novel 0.2 22.83%(19.4) 17.97%(22.5) 18.77%(21.5) 25.64%(24.3) 16.33%(24.6)remove on Y

novel 0.3 21.29%(20.2) 24.68%(21.8) 22.06%(18.3) 28.12%(25.8) 21.04%(23.8)

5 features normal 13.01%(2.44) 16.87%(2.13) 7.322%(1.72) 25.59%(2.94) 12.51%(2.68)

novel 0.1 10.88%(10.4) 16.81%(14.9) 6.869%(8.68) 21.01%(20.2) 9.752%(9.32)

novel 0.2 19.78%(17.1) 24.74%(18.0) 17.66%(19.0) 33.89%(26.6) 20.01%(16.9)remove on Y

novel 0.3 22.53%(20.2) 31.04%(19.4) 23.35%(20.4) 34.45%(24.1) 24.40%(22.3)

7 features normal 21.16%(2.38) 25.70%(1.87) 17.92%(4.98) 36.13%(3.47) 23.44%(2.90)

novel 0.1 29.28%(15.8) 29.85%(19.4) 27.28%(22.3) 35.69%(22.4) 33.14%(21.8)

novel 0.2 34.26%(17.3) 35.60%(19.3) 36.82%(21.0) 46.45%(27.8) 40.74%(22.9)remove on Y

novel 0.3 36.16%(15.5) 39.03%(17.8) 40.23%(20.4) 41.37%(22.8) 41.06%(20.7)

Table 5.4: Error rates (and standard deviation) of Models on the Artificial Regression Data Sets.

CBR uses SN retrieval and adaptation is based on the retrieval result.

1) find the first integer i such that x1 ≤ i/k; and 2) Calculate the value of y as y = wi∗xi+bi.

If wi = 1 and bi = 0 for all is, the data set becomes straightforward for human intuition.

However, none of the systems tested achieve a similar level of proficiency in normal or novel

settings.

5.5 Conclusion

This chapter proposed a way to express the difference between nominal values in a vector, and

extended NN-CDH to carry out case adaptation for both classification and regression domains.
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Experiments with both real and artificial data sets align with results from previous studies of NN-

CDH. In general, NN-CDH achieves comparable performance to its counterpart, the traditional

neural network. Moreover, SN retrieval may outperform both neural network and NN-CDH, and

NN-CDH can worsen the result from SN retrieval. This illustrates the need to harmonize retrieval

and adaptation methods (Leake and Ye, 2021a).

In extensive experimental results, integrating neural network methods into CBR did not give

CBR power beyond the neural network, even on data designed to test a hypothesized advantage for

CBR. The artificial data set, which can be perfectly solved using simple rules, illustrates a situation

where neither the neural network or knowledge-light CBR learns the underlying abstraction well.

On the other hand, CBR generally achieves performance comparable to the network, making it a

competitive option, especially in tasks for which the intrinsic interpretability of CBR would make

it preferable to a network approach.

Symbolic CBR provides the opportunity to integrate knowledge and task-optimized represen-

tations. We envision that a balanced blend of domain knowledge, brought to bear by symbolic AI

methods, with network-learned methods, has the potential to achieve a performance edge. We con-

sider the study of such integration to be a key step in advancing the performance of case adaptation

(Leake and Crandall, 2020).
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Chapter 6

Post ML-driven CBR: Harmonizing Case Retrieval and Adaptation with Alternating

Optimization

In Chapter 3, RISA uses hindsight of adaptation results to improve the similarity assessment.

RISA aims to build a form of adaptation-guided retrieval (AGR), where the retrieval method

retrieves source cases adaptable toward the target query. The other side of the coin is retrieval-

guided adaptation, where the adaptation method can adapt retrievable cases. In fact, almost all

adaptation methods are by default retrieval-guided adaptations, because adaptation by definition

adapts retrieved cases. In Chapter 5, we explored the possibility of implementing both retrieval and

adaptation using ML techniques. This chapter takes a step further: it proposes a training scheme

that guides both the retrieval method with the system’s adaptation ability and the adaptation

method with the retrieved cases. The end goal is that both retrieval and adaptation are aware of

each other and work in harmony.

Case-based reasoning (CBR) research has developed numerous methods for learning to improve

case retrieval and adaptation knowledge. Learning for each type of knowledge is usually pur-

sued independently. However, it is well known that the knowledge containers of CBR are tightly

coupled, in that changes in one can affect requirements for another, which suggests potential ben-

efit for coupling learning across knowledge containers. This paper proposes applying alternative

optimization to learn retrieval and adaptation knowledge together, in order to harmonize their

behaviors. For a testbed system using neural network based similarity and adaptation, this study

compares alternative optimization, independent learning, and learning by prioritizing adaptation

for adaptation-guided retrieval. Results support that alternative optimization can help to balance

both components and achieve good performance.

CBR systems solve a new problem by retrieving a similar prior case and applying its solution
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to the new situation, potentially adapting the solution to address differences between the old and

new problem situations (e.g., López de Mántaras et al. (2005)). Much CBR research has focused on

learning to improve case retrieval, often through refinement of case indices and similarity criteria.

Another current of research has focused on learning to improve case adaptation. Recently, consid-

erable interest has emerged in the use of network models to learn case retrieval and adaptation.

It is natural to expect that strengthening any component of a CBR system will strengthen

the system as a whole. This assumption implicitly underlies research that focuses on learning

for a single knowledge container such as similarity knowledge or adaptation knowledge. However,

it is well known that similarity/retrieval and case adaptation knowledge containers are intimately

connected: Smyth and Keane (1998) showed that an adaptation-guided retrieval (AGR) approach to

case-based planning, which bases retrieval on adaptability, can increase efficiency of plan generation.

Richter (1998) observed that strengths in one form of knowledge can compensate for weaknesses

in another; a consequence is that it may be valuable to focus learning in one form of knowledge

to address gaps in another (e.g., responding to gaps in the case base by learning the adaptation

knowledge most useful to alleviate the gaps). Uncoordinated learning may even be harmful: Leake

et al. (1997) present a study in which uncoordinated case and adaptation learning degrades system

efficiency, but overall efficiency is improved when case and adaptation knowledge are coordinated

by learning adaptation-based similarity.

Even if equivalent efficiency or solution quality can be achieved by learning either retrieval

or adaptation knowledge, the type of knowledge learned can affect explainability. A system with

very strong adaptation might be capable of successfully adapting very distant cases. However, if

retrieved cases are to be used to explain system conclusions to a user (e.g., Nugent and Cunningham

(2005)), explanations based on the distant cases might be less compelling than those based on more

intuitively relevant cases. Therefore it may be preferable to learn to retrieve closer cases rather than

learning stronger adaptation, even if both provide equivalent solution quality. On the other hand,
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if the user’s conception of similarity is not important, it may be appropriate to retrieve the most

adaptable cases, no matter how dissimilar they appear to the user, to increase system efficiency. If

retrieval and adaptation are trained independently, or in a fixed sequence of one before the other,

the balance between the two cannot be optimized for such considerations.

As an alternative to learning retrieval and adaptation knowledge independently or successively

in a fixed sequence, this paper proposes applying alternating optimization (AO) (Bezdek and Hath-

away, 2002b). Use of AO coordinates learning of retrieval and adaptation knowledge to harmonize

their behaviors according to criteria for a desired balance. This method is applicable to any CBR

system in which gradient descent is used to train retrieval and adaptation, as for network-based

retrieval and adaptation approaches.

The paper presents an application of the AO approach to a regression task, using network-based

learning methods for both retrieval and adaptation. In the testbed system, retrieval is based on

a Siamese network for similarity measure and adaptation is based on a neural network based case

difference heuristic (NN-CDH) approach for adaptation learning (Leake et al., 2021b). Experiments

compare prediction error for three training schemes. The first is independent training of the two

stages. The second is training adaptation first and then training retrieval. As this training gives

precedence to adaptation, it provides fully adaptation-guided retrieval (AGR), and will be referred

to as AGR training. The third is alternating optimization. The schemes are tested for five data

sets. Experimental results show that under independent training, the two components may be

poorly balanced; for example, retrieval may be strong while adaptation may provide little benefit

or sometimes may even worsen the initial solution provided by retrieval. Results also show that

under AGR training, retrieval may learn to retrieve cases that are adaptable but that have distant

solutions, decreasing explainability. AO generally decreases the incidence of undesirable behaviors.

Because AO harmonizes the retrieval stage and adaptation stage, the CBR system retrieves cases

similar to queries and requiring limited adaptation, resulting in good accuracy.
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The paper first presents background on retrieval and adaptation learning and introduces alter-

nating optimization. It then presents loss functions for retrieval and adaptation and an algorithm

for training them together in the AO framework. It closes with an evaluation of a testbed system,

guidelines for application of AO for CBR components, and future directions.

6.1 Background

Learning for Retrieval and Adaptation: An extensive body of CBR research has studied

machine learning methods to improve retrieval and case adaptation. Retrieval learning is generally

focused on adjusting feature weights to improve similarity assessment (see Wettschereck et al.

(1997) for a survey). Many such methods can be seen as adjusting parameters to optimize accuracy.

Recently, there has been much interest in network-based similarity learning by optimizing a loss

function. For example, Martin et al. (2017) use a Siamese network to learn a similarity measure

for retrieval; Mathisen et al. (2019) propose using an extended Siamese network, which is the basis

of the retrieval method in the testbed system presented in this paper.

Likewise, substantial research has been done on learning to improve case adaptation (e.g.,

Craw et al. (2001); D’Aquin et al. (2007); Hanney and Keane (1996); Jalali and Leake (2016);

Leake et al. (1997); Leake and Ye (2019b); Leake et al. (2021b); McDonnell and Cunningham

(2006); Minor et al. (2014); Shiu et al. (2001)). Again, network methods have prompted strong

interest. Policastro et al. (2003) use an adaptive resonance theory neural network for retrieval and

multi-layer perceptron for adaptation. Leake et al. (2021b), Liao et al. (2018), and Policastro et al.

(2006) use neural networks to learn adaptation knowledge from pairs of cases, using methods based

on the case difference heuristic approach (Hanney and Keane, 1996).

In existing work learning of retrieval and/or adaptation knowledge is coordinated in either of

two ways. First, training of retrieval and adaptation may be independent, where one is trained

without using knowledge of the other (Policastro et al., 2003; Craw et al., 2006a). Second, they
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may be trained in-order, with one trained (or pre-defined) before the other and the latter trained

with the knowledge of the former (Petrovic et al., 2016).

Alternating Optimization: As defined by Bezdek and Hathaway (2002b), alternating op-

timization (AO) is an iterative procedure to minimize a scalar field f : Rs → R, under certain

assumptions, in the nonlinearly constrained optimization problem:

min
x∈Rs
{f(x)}, subject to constraint functions

ci(x) = 0, i = 1, ..., k; and

ci(x) ≥ 0, i = k + 1, ...,m.

AO partitions the parameters x = (x1, ..., xs) into t non-overlapping subsets (X1, ..., Xt), with

Xi ∈ Rpi for i = 1, ..., t and
∑t

i=1 pi = s. pi is an integer that controls the number of parameters in

subset Xi. AO minimizes f(x) iteratively. Each iteration includes t time steps. At each time step

i (i = 1, ..., t), instead of attempting to optimize all parameters x of a model, AO minimizes f by

optimizing Xi, while keeping all other subsets Xj(j 6= i) fixed. After one iteration, all subsets Xi for

i = 1, ..., t are optimized exactly once. AO can carry out multiple iterations, until x converges and

cannot be further optimized, or until a fixed limit of iterations is reached. Examples of alternating

optimization algorithms are k-means clustering and the expectation-maximization algorithm.

6.2 Alternating Optimization of Retrieval and Adaptation

Case-based reasoning has four processing stages: retrieval, reuse (adaptation), revision and re-

tention. If each stage is considered as operating based on a collection of parameters xi, then in

principle, all stages could be refined in an AO process over all parameters x = (x1, x2, x3, x4). This

paper focuses on optimizing the retrieval function R and adaptation function A. Let CB be the

case base, q be a query from a query set Q, xr be the parameters of the retrieval function R, xa

be the parameters for the adaptation function A, and f be a loss function for the CBR system as
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a whole (e.g., error of the system solution for q). The retrieval function R retrieves case(s) r from

the case base CB according to parameterization xr (for example, xr could determine a similarity

measure).

r = R(q, CB, xr), r ∈ CB

The adaptation function A produces a final solution a by adapting the solution of retrieved case r

to solve the query q according to xa (for example, for network-based adaptation, parameters could

determine adaptation network weights).

a = A(q, r, xa)

Then the problem of optimizing the CBR system is equivalent to finding xr and xa to minimize

the loss f over Q. This can be formulated as

arg min
xa,xr

∑
q∈Q
{f(A(q, r, xa), q)}, (6.1)

The proposed AO process trains the parameters for retrieval and adaptation in a back-and-forth

manner. A training iteration involves two steps, first seeking xr according to:

arg min
xr

∑
q∈Q
{f(A(q,R(q, CB, xr), xa), q)}, while xa is fixed, (6.2)

and then setting xa according to:

arg min
xa

∑
q∈Q
{f(A(q, r, xa), q)}, while xr is fixed. (6.3)

The optimization runs multiple iterations, alternating between steps applying (6.2) and (6.3),

until xr and xa both converge (e.g., there is no significant update within a preset number of

iterations) or an iteration limit is reached.

Goals for performance of CBR systems can be finer-grained than overall criteria such as system

accuracy. For example, a system designer could be concerned about the usefulness of cases pro-

vided by the retrieval function as explanations, about efficiency of retrieval, about the efficiency or
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explainability of adaptation given a retrieval, or about some combination. To reflect various goals,

we refine (6.2) for optimizing retrieval as:

arg min
xr

∑
q∈Q
{αg(r, q) + (1− α)f(A(q, r, xa), q)}, r = R(q, CB, xr) while xa is fixed, (6.4)

where f is the adaptation loss (e.g., measuring the adaptability of the retrieved case), while g is

the retrieval loss (e.g., reflecting whether the case is a convincing explanation). In our testbed

implementation, f calculates the error of the adapted solution for q, and g calculates the error of

the retrieved solution for q.

The metaparameter α controls the emphasis between the two losses during the training of R. If

α = 0, then formula (6.4) is reduced to formula (6.2), where the retrieval loss is ignored and retrieval

R is trained to retrieve the case that minimizes the adaptation loss. If α = 1, then adaptation loss

is ignored and retrieval R is trained to retrieve the case that minimizes the retrieval loss.

As shown in the evaluation, setting α = 0 or α = 1 may be problematic, leading to a form

of codependence of the two stages. If the retrieval step converges rapidly and can retrieve very

similar cases, little learning may be required from adaptation, potentially resulting in adaptation

that struggles to handle novel cases. If the adaptation step converges rapidly and can adapt a wide

range of differences, little learning may be required from retrieval, because even retrievals distant

from the query result in accurate solutions. In that case, the retrievals may be less compelling as

explanations (in the extreme, a system could retrieve the same case for all problems, for adaptation

to generate the solution from scratch). To mitigate the codependence effect, we choose an α value

so that formula (6.4) considers both retrieval loss and adaptation loss. Alternation between training

retrieval and training adaptation also helps mitigate codependence.
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6.3 Testbed System Design

To study the impact of alternating optimization on harmonizing retrieval and adaptation, we de-

signed a testbed system for case-based regression, with optimization based on solution accuracy.

We note that other loss functions would be possible. For example, previous research on adaptation-

guided retrieval focused on adaptation efficiency (Smyth and Keane, 1998).

6.3.1 Loss Function

As loss function f , we use squared error of the final solutions (post-adaptation) compared to the

actual solutions.

f(a, q) = (a− sol(q))2. (6.5)

Formula (6.3) becomes

arg min
xa

∑
q∈Q
{(A(q, r, xa)− sol(q))2}, while xr is fixed, (6.6)

As loss function g, we use squared error between the retrieved solutions and the actual solutions.

This could be considered as a proxy for suitability as an explanation: If the error is already small,

the retrieved case is a good candidate to explain the solution for the query. We note that in general

the suitability as an explanation also depends on the user’s criteria for problem similarity (which

may differ from that of the system).

Retrieved cases within a set error threshold E are considered correct, with loss set to zero.

g(r, q) = max(0, (sol(r)− sol(q))2 − E2)

Formula (6.4) is thus expanded into

arg min
xr

∑
q∈Q
{α ·max(0, (sol(r)− sol(q))2 − E2) + (1− α)(A(q, r, xa)− sol(q))2}. (6.7)
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Figure 6.1: Network Architecture of the Testbed System. Left: Base network used to extract

features. Middle: Extended Siamese network for similarity. Right: Extended Siamese network for

solution difference prediction

6.3.2 Testbed Retrieval and Adaptation

In the testbed system, the retrieval function R performs 1-nearest neighbor retrieval. The similarity

measure is learned using a Siamese network following the example of eSNN (Mathisen et al., 2019).

This network involves a base network (which extracts features from input cases) and an element-

wise distance layer (which subtracts the two features), followed by a fully connected layer for

final output. It is trained by backpropagation using formula (6.7) as the loss function, where the

parameter xr represents the weights and biases of the network.

The adaptation function A is an NN-CDH, as discussed in Section 6.1. It involves a Siamese

base network (not related to the Siamese network used in retrieval) and an adaptation network.

The Siamese base network is trained to extract feature vectors from the input query q and retrieved

case r, and the adaptation network takes as input both feature vectors and outputs a predicted

difference d of the solutions of the two cases. The predicted difference is added to the retrieved
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solution to produce the final solution. The NN-CDH adaptation network is trained through back

propagation using formula (6.6) as the loss function, where the parameter xa contains the weights

and biases of the NN-CDH. The networks used in retrieval and adaptation are illustrated in Figure

6.1.

The retrieval function and adaptation functions were chosen based on several factors: They can

be independent of or dependent on each other, allowing comparison between the paradigms; they

can be trained using formula (6.3) and formula (6.4); and they are both powerful enough to solve

majority of the queries in the experiment datasets.

6.3.3 Testbed Training and Testing Procedures

A general training process for retrieval and adaptation, applied in the testbed system, is described

in Algorithm 5. Given a query q, the retrieval stage collects a batch of case pairs by retrieving

neighboring cases from CB. Retrieval is based on the similarity measure determined by xr. The

batch is then used to train xa and xr. Afterwards, retrieval collects a new batch based on the

updated xr and the batch is used for the next iteration of training. This process repeats until

either a predefined iteration limit is reached or the parameters xa and xr converge. The steps to

update xa and xr, lines 17 and 18, are only described at a high level because these steps vary

across specific adaptation and retrieval components. In our testbed system this training is done

by backpropagation to minimize loss functions (6.6) and (6.7). The system alternates between

training retrieval and training adaptation across batches, with respective loss functions enabling

consideration beyond overall performance, for example, explainability or adaptation efficiency.

Parameters in the algorithm enable fine tuning. The parameter num neighbor controls the

number of neighboring cases to retrieve for a query. The retrieval and adaptation stages train from

pairs of a query and its neighbor(s). In principle, pairs of random cases can be used to provide

more comprehensive training samples (Jalali and Leake, 2016; Leake and Ye, 2019b), but this is
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not used here. Lines 17 and 18 could be exchanged depending on the choice of whether to train

retrieval or adaptation first.

AO training is a general version of the traditional training scheme used to learn retrieval or

adaptation in a CBR system. If batch size is set to the size of CB in line 6, then retrieval

and adaptation are only trained once. We tested two training schemes for comparison with AO:

First, when α = 1 and batch size = size(CB), the retrieval and adaptation stages are trained

independently of each other (independent training). Second, when α = 0 and batch size =

size(CB), adaptation is trained first and then the retrieval is trained solely based on adaptation

loss (adaptation-guided retrieval (AGR) training).

For independent training or AGR training, xr and xa are trained until convergence in lines 17

and 18. However, AO uses parameter R epochs and A epochs to respectively train xr and xa only

for a set number of epochs before alternating. Forcing more frequent alternation is intended to

prevent one parameter from converging too fast, reducing risk of a local minimum.

In this study, we do not explicitly implement a scheme for retrieval-guided adaptation (the

counterpart of AGR). In Algorithm 5, a query is paired with a neighboring case found through the

Retrieval procedure, and the case pair is in turn used for training both retrieval and adaptation.

However, this is not strictly retrieval-guided adaptation as pairs are retrieved before xr is trained,

so adaptation is trained with pairs assembled from an untrained retrieval.

Algorithm 6 illustrates the testing mode for the system, which applies trained retrieval followed

by trained adaptation.

6.4 Evaluation

This section evaluates the performance of AO in comparison to independent training and AGR

training in terms of quality of retrieved solution, quality of adapted solution, and incremental

benefit from adaptation.
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Algorithm 5 Training for Retrieval and Adaptation

1: procedure R(q, CB, num neighbor, xr)

2: r ← {}

3: sort CB by similarity to q, using similarity measure determined by xr

4: r.append(num neighbor top neighbors of q from CB)

5: return r

6: procedure AO Train(xr, xa, batch size, CB,R epochs,A epochs,R loss,A loss)

7: pairs← {}

8: batch counter ← 0

9: for each qi in CB do

10: remaining cases← CB not including qi

11: r ← R(qi, remaining cases, num neighbor, xr)

12: for each rj in r do

13: pairs.append(< qi, rj >)

14: batch counter ← batch counter + 1

15: if batch counter = batch size then

16: batch counter ← 0

17: Train xa with pairs using A loss for A epochs

18: Train xr with pairs using R loss for R epochs

Algorithm 6 Using the CBR System in Testing Mode

1: procedure Solve(q, CB, xr, xa)

2: r ← R(q, CB, 1, xr)

3: Return A(q, r, xa)
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6.4.1 Experimental Settings

This study carries out experiments on five regression data sets. Four of these data sets, Energy

Efficiency (EE), Yacht Hydrodynamics (YH), Student Performance in Math (SP), and Airfoil Self-

noise (AS) are from UCI machine learning repository (Dua and Graff, 2017). EE, YH, and AS

are datasets of physics phenomena, and SP is a dataset about predicting students’ math grades

with social and economical attributes. The fifth data set is an artificial data set (Ar). Ar has 4

attributes {x1, x2, x3, x4}, each in [0, 5], and a target value y set by:

y =

4∑
i=1

3− |xi − 3|

This is a simple data set for which neighboring cases have similar solutions and adaptation can be

done with two simple adaptation rules:

∆y =


∆xi if xi ≤ 3

−∆xi, otherwise

The testbed system is trained by Algorithm 5 and tested by Algorithm 6. For replicability, the

source code and parameter settings are available online.1

For experimental runs, each data set is split into a training set (90%) and a test set (10%).

The testbed system is trained under three different training schemes, and then tested on the test

set. Under independent and AGR training, 10% of the pairs collected are used for validation.

Under AO, the training happens per batch and 10% of the pairs in a batch is often too small for

validation. For this reason, under AO, 10% of the cases in the training set are separated and used

as validation cases. Each validation case val case forms a validation pair with the case base by

using the function Retrieve(val case, CB, 1). Note that with this experimental design, the three

schemes use same number of case pairs in training and in validation. They are also tested on the

same number of cases during testing.

1https://github.com/Heuzi/AOtrainingCBR
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In all experiments, we used num neighbor = 1 in all the retrievals. We train the test-bed system

using three training schemes: Independent training, AGR, and AO. Depending on the performance

of independent and AGR training, we fine tune E and α to balance the emphasis between retrieval

and adaptation in AO. These detailed parameter settings are omitted because they vary across the

data sets but can be found in the source code. Instead, Section 6.5 provides general guidelines on

how to set the parameters. We evaluate the testbed system performance by mean square prediction

error.

We note that the training procedures may not be optimal for each individual training scheme,

but this approach ensures fairness between training schemes, making it suitable for comparing their

effects.

6.4.2 Experimental Results

All experimental results are shown in Table 6.1. Each row represents the results over one data

set. The histograms provide comparative information about accuracy with retrieval alone, with

retrieval followed by trained adaptation, and the accuracy difference between the two, under the

three training schemes

The X axis of each histogram reflects a level of error. Between rows, different scales are used

for different data sets, and outliers are included as the left- and right-most buckets. In the first

two columns, bars in each histogram reflect the number of trials of a given method for which the

error was at a given level. Consequently, higher bars to the left of the histograms reflect better

performance. In the third column, bars represent the number of times the difference between error

after adaptation and error of the solution of the retrieved case was at a particular level, i.e., how

adaptation changes error. The bars for independent training are black, for AGR are light gray, and

for AO are dark gray.

Ideally, retrieval will retrieve a similar case and adaptation will improve the solution. This is
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Data Retrieval Only After Adaptation ∆ by Adaptation

EE

YH

SP

AS

Ar

Table 6.1: Black: Independent training; Light gray: AGR training; Dark gray: AO
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EE YH SP AS Ar

Independent 0.291 0.172 0.123 1.58 0.693

AGR 0.149 0.226 0.306 1.74 0.323

AO 0.106 0.164 0.158 1.61 0.209

Table 6.2: Average Error by Systems under Different Training Schemes

shown for all runs of AO for EE and AS, for the overwhelming majority of runs for YH, and for

the majority of runs for SP and Ar. However, independent training and AGR training show less

ideal effects as follows:

A Independent training scheme (black bars): Here adaptation does not necessarily im-

prove the results of retrieval. The retrieval stage may retrieve a case with a solution close to

the real solution that the adaptation stage changes for the worse. This can be observed for

the majority of runs with EE, YH, Ar, and SP.

B AGR training scheme (light gray bars): Here the retrieval stage generally provides poor

initial solutions while the adaptation stage makes substantial corrections (i.e., results in a

large negative change to the error). This can be observed for all data sets.

Even when adaptation can generate a successful solution, if moderate adaptation from the

retrieved solution is important for explanation, the large adaptations in this condition are

undesirable. There are also extreme scenarios in which retrieval is so poor that even a strong

adaptation stage generates bad solutions, as seen in experiments with YH, SP, AS, and Ar.

In comparison, under AO, the retrieval stage generally provides a good initial case, and adap-

tation further modifies the solution to be closer to the correct solution. In all experiments except

with SP, AO shows this reliable behavior while the other two training schemes suffer codependence

effects to some degree. As shown in Table 6.2, the average errors under AO are often better than

those of other schemes.
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AO decreases the codependence effects between retrieval and adaptation according to parameter

settings in Algorithm 5. To alleviate effect (A), training is done on batches of training samples,

instead of all the samples; Lines 17 and 18 train for a set number of epochs/steps instead of until

convergence, so that neither retrieval nor adaptation fully assumes the accuracy burden before

the other is trained. To alleviate effect (B), formula (6.2) is expanded into formula (6.7), and

fine-tuning α and E enables more control over how each stage is trained.

6.5 Guidelines for Applying AO to Train CBR Components

The experiments illustrate the benefit of AO in the testbed system. This section provides general

questions and guidelines for applying AO to other CBR systems.

• When can AO be applied?

AO is applicable if both retrieval and adaptation have training procedures which iteratively

minimize loss functions. If loss functions can be formulated for formula (6.3) and formula

(6.4), then AO can be used to harmonize training.

• When may AO be useful?

AO may be useful in circumstances such as (1) when the effective scope of adaptations is

limited, so that the effectiveness of adaptation depends strongly on the cases from which

adaptation starts (in contrast, if adaptation can succeed from a wide range of starting points,

AO would be expected to be less useful), (2) when successive training might lead to a local

minimum in overall loss (e.g., error or adaptation cost), but not a global minimum, (3) when

it is desirable to control the balance between contributions of retrieval and adaptation, e.g.,

to increase explainability by retrieving cases requiring only small adaptations.

• How can a CBR system be trained with AO?

Applying Algorithm 5 requires three steps:
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1. Design the loss functions f and g for formula (6.3) and formula (6.4). The adaptation

loss f reflects quality of the adapted solution and/or adaptation process (e.g., solution

error, adaptation cost, or a combination), and the retrieval loss g reflects quality of

the retrieved case (e.g., accuracy of the retrieved case solution without adaptation, or

explainability factors such as similarity between the problems of the query and retrieved

case and closeness of the retrieved solution to the system solution). The loss functions

should be compatible with training processes for the retrieval and adaptation stages,

such that gradient descent can guide training.

2. Choose α and E. This can be done by training retrieval and adaptation independently

and noting losses induced by g and f . The choice of α may emphasize training the

process with more room for improvement or be based on other criteria.

3. Determine batch size and the training steps (lines 17 and 18). These design choices

influence how fast xr and xa converge. For a goal of balanced training, these should be

tuned so that retrieval and adaptation converge at a similar rate.

• Does AO guarantee an optimal solution?

No. As detailed in Bezdek and Hathaway (2002a), the convergence of AO relies on the

assumption that each subproblem will converge. In our study, this means that AO will

converge if both training of retrieval and adaptation can converge. Additionally, AO may

converge to a local minimum or saddle points instead of a global minimum. However, these

issues are beyond the scope of this study.

6.6 Future Work

AO and Explainability: In this study we used the error of the retrieved solution as a proxy

for the explainability of the system solution. Other factors could affect explainability, such as

problem similarity according to user criteria (which might differ from system criteria) or the adap-
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tation distance. Such criteria and the benefit of AO for their optimization would be interesting to

investigate.

Alternative tasks and loss functions: It would be interesting to examine the comparative value

of AO for tasks beyond regression and for other loss functions (e.g., efficiency, solution execution

cost). A challenge for a broader class of tasks is the development of appropriate loss functions and

training procedures.

Extending AO to the Full CBR Cycle: The work in this paper explores AO for retrieval and

adaptation. However, whether to retain a new case in the case base depends strongly on, and also

influences, both retrieval and adaptation capabilities. Consequently, an interesting direction is an

extended version of AO to harmonize retention as well.

For example, retention training could optimize to retain cases for which changing adaptation

capabilities are most accurate (or most efficient), or could adjust indexing as the similarity criteria

for retrieval change. If a suitable loss function and training process could be defined, this could be

done within the AO framework; if not, adjustments of retention could still be interleaved with AO

for retrieval and adaptation. This raises questions of processing cost and how to determine when

the additional processing would be worthwhile.

6.7 Conclusion

Extensive research has examined learning methods for improving particular CBR knowledge con-

tainers such as retrieval and adaptation knowledge. However, it is well known that the knowledge

containers of CBR are closely connected and overlapping. More knowledge in one sometimes com-

pensates for less in another (Richter, 1998) and coordination between containers can improve overall

performance (Leake et al., 1997; Smyth and Keane, 1998). The interaction between retrieval and

adaptation has primarily been addressed by treating one component as fixed and adjusting the

other. In such scenarios, it is possible that the overall system will reach an undesirable balance
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between retrieval and adaptation, or will reach a local performance maximum instead of a global

one. By iteratively harmonizing both, alternating optimization can achieve a combination of good

retrieval and good adaptation. In our experiments, independent training and AGR training suffer

codependence effects in all five data sets while AO works well in four of the five. This work also

suggests the potential to explore using AO to harmonize other processes of CBR.
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Chapter 7

Using CBR Adaptation to Generate Creative Samples from Limited Data

7.1 Introduction

Methods in CBR have potential in applications beyond CBR. In Chapter 5, we explore CDH-

inspired adaptation method. As CBR assumes that similar problems share similar solutions, CDH

assumes that similar problem difference induces similar solution difference.

This assumption by CDH aligns with the class-to-class (C2C) methodology Ye (2018a) which

studies the pattern of change from one class to another. C2C’s assumption states that the similarity

and difference of features from one class to another is consistent.

In a classification task domain, a sample can be considered as a case, by considering its features

as a problem description and its class label as a solution description (The terms “sample” and “case”

are interchangeable in this chapter). Therefore the assumptions of CDH and C2C are equivalent in

this context. In this chapter, we demonstrate a sample generation method inspired by CDH-style

adaptation. This sample generation method can generate creative samples even if the model is

trained with limited data.

Generating novel items with desired characteristics requires creativity. One method to achieve

this is through creative transformations. Deep learning network methods provide an interesting

potential substrate for this task. this chapter presents a method for network-based generation

of novel images by applying variational autoencoders (VAEs) to learn features, which are then

perturbed based on a class-to-class (C2C) method for learning of inter-class similarity and difference

information, enabling generating creative samples. Our method learns the pattern between classes,

applies this pattern to samples of a source class, and generates new samples of a target class.

This study also proposes a general approach to evaluating the creativity of sample generators for
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classification domains, by evaluating the samples generated by the generator trained in a one-shot

setting. The evaluation approach requires only classification labels but not human assessments

of creativity. An experiment in two image domains supports that the samples generated by our

method satisfy two of Boden’s creativity criteria: being valuable (falling into desired categories)

and novel (samples show high variance), even in a one-shot setting where training samples of a

target class are limited. The evaluation illustrates a general approach to evaluating the creativity

of sample generators for classification domains in a one-shot setting.

Advances in machine learning have yielded many successful deep generative models (Pan et al.,

2019). Such models generate samples conforming to the distribution of the training data, leading

to samples that are “authentic” in the sense of substantially sharing the properties of real exam-

ples. A surge of research in computational creativity is applying generative deep learning methods

while inducing novelty—and even surprise—for the sake of creativity, as described in the surveys

of Franceschelli and Musolesi (2021) and Broad et al. (2021). For example, the creative adversar-

ial network proposed by Elgammal et al. (2017) is a generative adversarial network (GAN) that

generates artwork that is realistic but also deviates from style norms. Similar work has induced

creativity in GANs by introducing additional goals (loss functions) beyond the original adversarial

loss (e.g. StyleGAN (Karras et al., 2018)). Following StyleGan, Nobari et al. (2021) proposed

a systematical method to modify GANs to automatically generate novel designs without human

intervention. Generally, variational auto encoder (VAE) methods are less suited for creativity tasks

because their reconstruction loss aims to mimic the data distribution within a learned latent space

and it is difficult to reflect other goals in the corresponding loss function. However, these latent

spaces can be manipulated to induce creative results (e.g. MusicVAE (Roberts et al., 2018b) and

sketchRNN (Ha and Eck, 2017)).

Characterizing the creativity of AI systems requires criteria for assessing the creativity of a

process or of a system’s results within a task context. Developing such criteria is nontrivial and has
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received considerable attention (Wiggins, 2021). Boden (1991) provides three criteria for assesssing

the creativity of outputs of a process: value, novelty, and surprise. Many researchers have continued

this school of thought, refining and expanding on these criteria (Wiggins, 2006; Draper, 2010).

This chapter addresses creativity as it applies to generating new samples for a target class when

training samples are limited. We consider a sample (generated or not) to be valuable if it fits in the

target class, and novel if it is different from the observed samples of the target class. According

to Boden, surprise can happen when the sample is unexpected (which requires a prior expectation

entity). We do not consider surprise when evaluating our model.

This chapter makes two contributions. First, we present an algorithm for generating creative

samples in a classification domain. The algorithm uses a method we call a class-to-class variational

autoencoder (C2C-VAE), which learns a latent space of the difference patterns between samples

of all classes. The C2C-VAE then samples new differences from this latent space, and applies the

difference to existing samples in the original conceptual space to generate new samples. Second, we

address the general question of how to evaluate the creativity of sample generators for classification

in a one-shot setting. We propose an approach for evaluating creativity of sample generators, which

we call GOF/TOM — “Generated On Few, Tested On Many.” A generator is trained in a zero,

one, or few-shot setting where samples of a target class are trimmed from the training set. The

generator is then used to generate new samples of the target class. Meanwhile, an oracle is trained

on the untrimmed dataset to evaluate the generated samples. Because the generator has limited

examples of the target class, its ability to generate satisfactory unseen samples of the target class

can be used as measure for its creativity. This approach is used to evaluate the C2C-VAE.

We begin by discussing related techniques for generating and measuring computational creativ-

ity. We then present our C2C-VAE approach for generating creative samples, and introduce our

GOF/TOM approach for evaluating creativity. Finally, we evaluate C2C-VAE on two data sets,

MNIST (LeCun and Cortes, 2010) and Fashion-MNIST (Xiao et al., 2017), using the GOF/TOM
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approach. In the two data sets, C2C-VAE successfully generates samples that are valuable and

novel with respect to its training data, making a case for the potential of C2C-VAE as a creative

approach. We examine the limitations of C2C-VAE and propose methods for addressing them in

future work.

7.2 Background

7.2.1 Active Divergence with Generative Deep Learning

In her seminal work, Boden (1991) identifies three forms of creativity: combinatorial, exploratory

and transformational. Combinatorial creativity generates new ideas by combining old ones. Ex-

ploratory and transformational creativity both involve a conceptual space, where the former ex-

plores the conceptual space while the later alters it, potentially causing a paradigm shift (Wiggins,

2006; Franceschelli and Musolesi, 2021).

Franceschelli and Musolesi ((Franceschelli and Musolesi, 2021)) consider VAEs and GANs to

perform exploratory creativity, as they both sample from a conceptual space. GANs can be also

be transformational. As an example, in CANs (Creative Adversarial Networks), the discriminator

determines both whether a sample image is art or not and its artistic style, while the generator

tries to generate art and also generates deviations from original style norms. GANs can even be

combinatorial. For example, StyleGAN can achieve style mixing by combinig the latent codes of

two samples at multiple different levels of detail.

A CycleGAN is a image-to-image translation technique that can translate an image of one

class into an image of another, e.g. modifying the image of a horse h into that of a zebra z

using a translation function Z (or conversely from a zebra into a horse, using a function H). A

CycleGAN is trained with two loss functions: 1) An adversarial loss trains the generators Z and

H to generate quality images (so that a horse h can be translated into a realistic zebra Z(h)); 2)

A cycle-consistency loss ensures the transition can go back-and-forth (so that the horse-translated
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zerba Z(h) can be translated back to a horse H(Z(h)) similar to the original horse h). The artist

Helena Sarin uses CycleGAN to generate creativity-related artwork (NVIDIA, 2021).

Our proposed model is based on variational autoencoders (VAEs) (Kingma and Welling, 2013).

A VAE is comprised of an encoder and a decoder, both implemented as neural networks. The en-

coder takes samples as inputs and compresses them into a Gaussian distribution of lower-dimension

embedding vectors in a latent space. The decoder takes an embedding vector and recovers the orig-

inal input sample. Regularity—the property of similar samples having similar representations—is

encouraged in the latent space because a sample is encoded as a distribution of embeddings, instead

of a single embedding as in autoencoders (the forerunners of VAEs).

Features extracted by VAE can be manipulated by perturbation and even vector arithmetic

for creative results. For example, MusicVAE (Roberts et al., 2018b) has the ability to “adjust the

number of notes in a melody by adding/subtracting a note density vector to/from the latent code”

(Roberts et al., 2018a). Similarly, sketchRNN can “subtract the latent vector of an encoded pig

head from the latent vector of a full pig, to arrive at a vector that represents a body. Adding this

difference to the latent vector of a cat head results in a full cat (i.e. cat head + body = full cat)”

(Ha and Eck, 2017). The effects of such modification over VAE embeddings are not guaranteed

and only partially understood. As noted by Ha and Eck (2017), such analogy is only possible when

the embedding distribution is smooth and any interpolation between two embeddings is coherent.

This study attempts to model the differences between pairs of embeddings extracted by VAE.

In the taxonomy of active divergence by Broad et al. (2021), this study proposes a method

of chaining models. The method is a combination of a standard VAE with a secondary VAE

(C2C-VAE) that explores the learned representation of feature differences.
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7.2.2 Class-to-class Approach

Classification methods commonly consider the similarity of new instances to instances in a class.

The Class-to-class (C2C) approach considers both similarity and difference. It assumes that there

exist inter-class patterns between each pair of classes, and the samples from the two classes are

consistently similar in some features and different in some other features. For example, zebras and

horses have the similarity of both belonging to the Equidae family, and the difference that zebras

have stripes while horses do not. The inter-class patterns, once learned, can be used to classify a

query based on instances from another or multiple other classes (Ye, 2018a; Ye et al., 2020, 2021a).

We hypothesize that inter-class patterns can also be used in computational creativity. A system

that learns inter-class difference patterns can intentionally apply the patterns to modify a sample.

For example, knowing that zebras have stripes and horses do not, the system can modify a horse

image by replacing its texture with black-and-white stripes and thus create a new zebra image.

The C2C approach is highly related to GAN methods. For example, CycleGAN is trained

on unpaired image-to-image data from one class to another and can generate zebra images from

horse images (Zhu et al., 2017). GAN methods are mostly end-to-end. For example, CycleGAN

generates an output image from an input image, and the inter-class pattern is integrated into the

procedure of the model and is applied automatically in the forward pass of the neural network; C2C

methods work with the inter-class pattern directly. For example, the method to be presented in

this study uses the feature differences between two samples as both inputs and expected outputs of

an variational autoencoder. This difference provides more flexibility to introduce creativity. More

specifically, our approach can choose an inter-class pattern as the modification and also choose a

sample to apply this modification.

7.2.3 Measurement of Creativity

Franceschelli and Musolesi (2021) (2021) survey multiple creativity measures implemented via ma-
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chine learning algorithms. Our method, GOF/TOM (“generated on few, tested on many”), fits

within the formalization of the generate and test framework (Toivonen and Gross, 2015), in which

the system uses a generative function to generate samples and an evaluation function to evaluate

the samples. The authors describe three works (Varshney et al., 2013; Norton et al., 2010; Morris

et al., 2012) that fit in this framework.

Varshney et al. (2013) proposes a system that generates creative recipes. The novelty of a recipe

is evaluated based on Bayesian surprise, the difference between a prior probability distribution of

recipe and a posterior probability distribution after a new recipe is observed. The value of a recipe

is evaluated by a model predicting pleasantness of scent from its ingredients and flavor compounds

in those ingredients.

(Ritchie, 2007) describes that creativity can come from an inspiring set, which is a set of usually

highly valuable samples used to train or configure the generator. (Gervás, 2011) expands on this

by splitting an inspiring set into a learning set, which informs the construction of the generator,

and a reference set, which is used to evaluate the novelty of generated samples. Similarly, (Morris

et al., 2012) uses an inspiring set (crockpot recipes) to generate samples via a genetic algorithm

and to evaluate the quality of generated sample by training a multilayer perceptron to predict user

ratings from a sample.

7.2.4 Creativity Inspired Zero-Shot Learning

The goal of a zero-shot learning task for classification is to train on seen classes and then predict

the class label of a sample from an unseen class (or samples from seen and unseen classes in

generalized zero-shot learning). (Elhoseiny and Elfeki, 2019) implemented a creativity inspired

zero-shot learning algorithm. In that work, both visual and semantic information are available for

seen classes but only semantic descriptions are available for unseen classes. The authors introduce a

creativity inspired zero-shot learning method which trains a discriminator to differentiate between
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real and fake images and also classifies an image into seen classes. It also trains a generator to

generate realistic images based on texts describing seen classes and realistic yet hard-to-classify

(high entropy over seen classes) images from “hallucinated” texts. This training goal drives the

generator to explore the latent space of texts with two objectives: 1) Generate samples that are

realistic; 2) Generate samples from hallucinated texts. These properties enable the generator to

generate realistic images based on the descriptions of unseen classes.

encoder f

reconstruction loss +  
Regularizer (gaussian)

sample s1

encoder f
sample s2

decoder f'

f(s1)

f(s2)

encoder g

reconstruction loss +  
Regularizer (gaussian)

feature
difference fd

decoder g'difference encoding 
g(<fΔ, C1,C2>)

recovered difference 
g'(g(<fΔ, C1,C2>),<C1,C2>)

recovered
sample f'(f(s2))

Conditional Parameter 
C1 + C2

fΔ = f(s1) - f(s2)

VAE C2C-VAE

Figure 7.1: A VAE extracts (recovers) a feature from (to) a sample. A C2C-VAE extracts (recovers)

an embedding from (to) a feature difference. L1 entities are marked with rectangles, L2 and L2′

entities with circles, and L3 entities with diamonds.

7.3 Creative Sample Generation with a Class-to-class Variational Autoencoder

This chapter proposes a class-to-class variational autoencoder (C2C-VAE) approach to generating

creative samples in the context of classification—that is, generating creative samples falling within

desired categories (e.g., generating images for creative versions of a given letter of the alphabet).

For this task, the C2C-VAE approach learns the difference pattern between pairs of samples of two

different classes. Four spaces are involved in this task: the original sample space L1, the feature

space L2, the space of feature differences L2′, and the space of feature difference embeddings L3.

As a precondition, C2C-VAE relies on a means to transition between L1 and L2, more specifically,

to extract a feature f(s) from a sample s and also to recover a sample s from feature f(s).

For our testbed system (illustrated in Figure 7.1), we train a traditional VAE on the training
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data and use the encoder f to extract features and the decoder f ′ to recover samples. Given a

pair of samples from different classes, s1 ∈ C1 and s2 ∈ C2, a VAE can extract their features f(s1)

and f(s2) in the space L2. The feature difference f∆(s1, s2) in the space L2′ can be calculated as

f∆(s1, s2) = f(s1)−f(s2), an element-wise subtraction between two feature vectors. The space L2′

can be thought of as the complement of the space L2, whence the name L2′.

C2C-VAE is based on the class-to-class assumption that the feature differences (in space L2′)

from one class to another class follow a consistent pattern. This pattern can be represented as an

embedding vector (or a distribution of embeddings) in another latent space L3. The C2C-VAE is

itself another variational autoencoder with an encoder g that encodes a feature difference f∆ in L2′

to an embedding g(f∆) in L3 and a decoder g′ that decodes an embedding g(f∆) back to a feature

difference f∆. Note that both the VAE encoder f and the C2C-VAE encoder g are variational

encoders that encode an input to a distribution of embeddings. This is to ensure regularity in the

latent space L2 and L3. For simplicity, the encoder f (or g) can be thought of as extracting one

feature (or a feature difference embedding) from an input.

Because there exist multiple pairs of classes and each pair Ci − Cj has its own unique pattern,

a C2C-VAE either learns only one pattern, reflecting a specific pair of classes Ci − Cj , or learns

multiple patterns by conditioning its encoder and decoder with extra parameters indicating Ci and

Cj . In our tests, we take the later approach. Therefore, the C2C-VAE presented here is actually a

conditional variational autoencoder (Sohn et al., 2015).

7.3.1 Training a C2C-VAE

A C2C-VAE is trained using the following procedure:

• Train a traditional VAE with encoder f and decoder f ′.

• Assemble training pairs: Randomly collect 10000 pairs of samples during every training epoch.

For each sample pair si (of class Ci) and sj (of class Cj), extract their features f(si) and
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f(sj), calculate their feature difference f∆(si, sj) = f(si)− f(sj).

• Train C2C-VAE with the vector < f∆, Ci, Cj >: The encoder g (conditioned on the class

pairs) learns to encode the input to embedding g(< f∆, Ci, Cj >). The decoder g′ (also con-

ditioned on the class pairs) learns to decode the embedding back to f ′∆ = g′(g(< f∆, Ci, Cj >

), < Ci, Cj >). Both g and g′ are trained to minimize the reconstruction loss and the KL-

divergence between the prior distribution (in this case, a Gaussian distribution) and the

distribution of embeddings g(< f∆, Ci, Cj >). The loss function for C2C-VAE is:

loss =||g′(g(< f∆, Ci, Cj >), < Ci, Cj >)− f∆||2

+KL[g(< f∆, Ci, Cj >), N(0, 1)]

Just as a VAE can generate new samples of the original space L1. A C2C-VAE can generate

new feature differences in L2′, which in turn can be used to modify features in L2. The modified

features can then be recovered as new samples in L1. More specifically, A C2C-VAE can be used to

generate a new sample sj of a target class Cj by adapting an existing sample (called as the source

sample) using the following procedure:

• Choose a source sample si of class Ci in the space L1. Get its feature f(si) in the space L2.

• Sample an embedding g(< f∆, Ci, Cj >) from the Gaussian distribution N(0, 1) in space L3.

Decode this embedding to get a feature difference f ′∆ = g′(g(< f∆, Ci, Cj >), < Ci, Cj >) in

the space L2′.

• Apply the feature difference f ′∆ in L2′ to f(si) in L2, to get the target sample feature f(sj) =

f(si)− f ′∆ in L2.

• Decode the target sample feature f ′(f(sj)) to the sample space L1

In this procedure, the C2C-VAE touches each of Boden’s three proposed aspects of creativity. It

is exploring the space L3 of difference patterns, combining a feature difference with another feature

in L2, and transforming the sample in L1.
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In Boden’s original definition, the boundary between exploratory and transformational creativ-

ity is blurred. For this reason, Wiggins (2006) refines Boden’s original framework by identifying

two rule sets defining the conceptual space (in our previous terminology, this is L1, perhaps even

L2.): the rule set R that constrains the space and the rule set T that traverses the space. Trans-

formational creativity can emerge from either transforming R, leading to a new conceptual space,

or T , leading to new traversal in the same conceptual space. Under Wiggins’ definition, C2C-

VAE is applying T -transformation, where samples in the original conceptual space are modified

by difference patterns sampled by C2C-VAE.

From the perspective Boden’s three criteria of creativity, we hypothesize that C2C-VAE can

generate realistic feature differences leading to valuable (within-category) samples, thanks to the

regularity offered by both VAE and C2C-VAE. C2C-VAE provides three means for achieving nov-

elty: 1) sampling in the space L3, allowing variation in the feature difference; 2) diversifying the

source sample and adapting from different samples or classes; 3) sampling in the space L2, allowing

variation in the feature of the source sample. The current implementation focuses on the first

means for creativity.

7.4 Evaluating Creativity for One-Shot Classification Domains

We consider automated evaluation of creativity of generated samples in a classification domain in

which a generator can learn to generate samples from data and a classifier can learn to classify

samples. We propose a creativity evaluation approach named GOF/TOM (for “generate on few,

test on many”). The approach is applicable to multiple forms of generators (e.g. VAE, GAN).

Although we describe it in a classification task domain (as our focus is evaluation of C2C-VAE),

its approach could be applied to regression or other task domains as well.

Given a data set, a class is chosen as the target class. Data samples of that class are called target

samples. Some or all target samples are removed from the training set, creating a zero/one/few-shot
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setting (for simplicity, we will ignore the differences between the three settings and refer them as

the one-shot setting), where the target data is not available to the generator in its entirety. Then

the generator is trained on the trimmed training set. Meanwhile, a separate model (e.g. classifier)

is trained on the untrimmed data set. Because the model sees target samples unknown to the

generator, we call it the oracle. There can exist multiple oracles serving different purposes, as in

our experimental evaluation.

After training of both the generator and the oracle, the generator is used to generate new target

samples. The oracle can facilitate the evaluation of the generated sample on the three aspects of

creativity (Boden, 1991). We assume that the oracle is implemented using deep learning or other

techniques enabling extraction of features for the assessment of novelty and/or surprise.

Value

The oracle classifies the generated samples. We consider the generator able to generate valuable

samples if it can consistently generate samples of the target class. The accuracy of the generator

is the percentage of the generated samples falling into the intended class. High accuracy means

highly valuable generator.

Novelty

The oracle can extract features of the samples into a latent space. The latent space needs to be

smooth so that similar samples are close together and different samples are distant from each other.

The generated samples are novel if their extracted features show variety. For our experiment, we

use the activation of the embedding layer of an VAE as the feature values extracted for each sample.

The variance of the features is used as the measure of the variety of the samples generated.
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Surprise

A generator achieves surprising results if it can consistently generate samples of the target class

that are unexpected. This means that even though the oracle classifies a sample as the target

class, the sample is significantly different from existing samples (untrimmed data set). A distance

measure is needed to measure the distance from a generated sample to existing samples. Existing

measures of surprise are surveyed in Franceschelli and Musolesi (2021). Surprise is beyond the

scope of this chapter and the capability for C2C-VAE to generate surprising samples is left for

future research.

7.4.1 Uniqueness and Benefits

Our evaluation method differs from those mentioned earlier in a few ways: The untrimmed data set

is not the same as the inspiring set (Ritchie, 2007) because the data contained are not necessarily

creative; The generator learns from the trimmed data set and its knowledge of the target class

is deliberately limited. Even if the untrimmed data set is inspiring, its trimmed version may not

be; Instead of using a reference set as in Gervás (2011), the oracle classifier is used to evaluate

the samples; Different from methods (Gervás, 2011; Morris et al., 2012) that use some (portion

of) inspiring set for the evaluation of generated samples. Unlike the many evaluations such as in

Norton et al. (2010) and Morris et al. (2012), the oracle classifier does not require user rating data

or other human assessment of artistry or creativity. It requires only classification labels, which are

more widely available.

Methods (Gervás, 2011; Morris et al., 2012) that use some (portion of) inspiring set for the

evaluation integrate evaluation within the creative system. The creative system filters generated

samples by evaluation. However, GOF/TOM estimates is envisioned as a tool for after-the-fact

evaluation of the system’s performance.

As observed by (Franceschelli and Musolesi, 2021), there is an ongoing debate between human
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evaluation versus machine evaluation. GOF/TOM blurs the boundary between the two. It learns

about the task domain from the classification labels set by human (very often not for the purpose

of evaluating creativity) through an oracle and relays the evaluation to the machine.

7.4.2 Caveats

In GOF/TOM, the generator is trained in a one-shot setting and then its generated samples are

evaluated by an oracle trained using the untrimmed data set. There are three implications: 1) If the

task domain is truly one-shot, then the construction of the oracle is impossible, due to the lack of

additional data. 2) GOF/TOM may be less suitable for generators with weaker one-shot learning

capability. Therefore, GOF/TOM should be used for representing the creativity of a generator

capable of few-shot learning.

3) The method assesses value based on classifications by the oracle, and assesses novelty based

on features generated by the oracle; such features could potentially be used for assessing surprise

as well. Thus the usefulness all three measures is limited by how well the oracle has learned from

the training data.

A concern for any automated evaluation of creativity is whether it truly captures the important

characteristics. We believe that the use of accuracy as a proxy for value, and variance as a proxy

for novelty, is reasonable in the domains used for the evaluation. However, these measures may

miss important aspects of creativity for some domains. More work is needed on the measures to

apply.

7.5 Evaluation

We carried out experiments on two data sets, using the GOF/TOM approach to evaluate the

creativity of C2C-VAE. The first data set is the MNIST dataset of hand-written digits from 0 to 9.

The second is the fashion-MNIST dataset of 10 classes of clothing and accessories. Each of MNIST
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and fashion-MNIST is provided with predetermined splits for training (60,000 samples) and testing

(10,000 samples) data sets; these were used for training and validation. Each sample is a 28x28

grayscale image, associated with a label from 10 classes. The oracle classifier and the VAE are both

trained with the full data set. The two data sets are chosen because a traditional VAE can extract

features from them.

In all experiments, each class is successively chosen as the target class. For comparison with

C2C-VAE, we also trained a conditional VAE (CVAE). The CVAE is trained to generate a sample

conditioned on an additional parameter controlling the class of the sample generated. During

testing, both C2C-VAE and CVAE generate samples of the target class.

7.5.1 System Design

The oracle for value is a resnet18 (not pretrained) network, of which the first layer is replaced with

a convolutional layer with (in channels = 1, out channels = 64, kernel size = (7, 7), stride =

(2, 2), padding = (3, 3), bias = False), and the last layer is replaced with a linear layer with 10

outputs for classifications.

The VAE follows a standard design. The encoder of the VAE is composite of two consec-

utive convolutional layers (out channels = c, kernel size = 4, stride = 2, padding = 1) and

(out channels = c ∗ 2, kernel size = 4, stride = 2, padding = 1), where c = 64. A linear layer

for mean and another linear layer for log variance follow the convolutional layers and extract a

distribution of features from the output of the convolutional layers. A feature is a vector of dimen-

sion 32. The decoder of the VAE reverses the design of the encoder: It consists of a linear layer

and two consecutive convolutional layers. The input and output dimensions are the reverse of their

corresponding encoder layers, other parameters being equal. The VAE is trained with standard

reconstruction loss and KL-divergence loss: Lossvae = lossrecon +KL-divergence

The VAE’s encoder f serves as a feature extractor for the C2C-VAE and also as the oracle for
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novelty. The resnet18 classifier can also extract features but the feature space is not as smooth as

that of the VAE.

The C2C-VAE has its own encoder and decoder. Given a pair of samples, their features are

extracted by the VAE and their class labels are one-hot encoded. The encoder takes the feature

difference and the two class labels as input. The input is passed to a fully connected RELU

layer with (out features = 32). A linear layer for mean and another linear layer for log variance

follow and extract a distribution of embeddings, which are of 10 dimensions. The decoder takes an

embedding and the two class labels as input. The input is passed to two consecutive linear layers

to recover a feature difference similar to the original.

The CVAE has a very similar architecture to the VAE, except it is modified to be conditioned

on the class label. Specifically, the encoder and the decoder use the same convolutional layers, but

their linear layers that interact with features also take in the class labels as extra inputs.

The C2C-VAE can only generate a new sample by adapting a source sample. We choose an

average sample savg (see Figure 7.2) from each class C (other than the target class) as the source

sample by the following procedure:

• Select all n samples s1 - sn of the class C;

• Calculate the average of their features avg(Σf(si)) = (Σn
i=0f(si))/n;

• Use the decoder f ′ to recover the average sample f ′(avg(Σf(si))).

In addition to the reconstruction loss, both the C2C-VAE and the CVAE are learning to min-

imize a KL-divergence loss with a Gaussian distribution (µ = 0, σ = 1). This means that they

are both trained to project their corresponding input to the Gaussian distribution. Although their

inputs and embeddings carry different meanings (The CVAE takes input from L1 while the C2C-

VAE takes input from L2′), we note that their embedding distributions are intended to be the

same Gaussian. This also means that we could compare their performance with regard to the
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(a) MNIST (b) Fashion-MNIST

Figure 7.2: Average Samples Constructed by the VAE

standard deviation std of the Gaussian. The experimenter can make either model produce more or

less various samples by tuning std, controlling the distribution from which the model is sampling

from. The higher std is, the wider the distribution becomes, and the generated samples lose value

(accuracy) but gain variety. Note that the C2C-VAE can also introduce additional novelty by

altering the source sample, but this comes at a further cost of stability of the results (discussed in

the Discussion and Future Work section).

7.5.2 Comparison between the C2C-VAE and the CVAE

Under the Normal Setting

Before examining the models under the GOF/TOM setting, we present some results under the

normal setting to provide a backdrop for comparison. Under the normal setting, all models are

trained on the untrimmed data set. In all figures of generated samples, column j represents the

samples generated for class Cj . In all the figures of generated samples by the C2C-VAE, unless

otherwise specified, the (i, j), where i 6= j, sample is a sample generated by choosing the average

sample of class Ci, sampling a feature difference from class i to class j, and applying this feature

difference to the chosen sample; Additionally, the (i, i) sample (on the diagonal) is an average sample

of class Ci. In all the figures of samples by the CVAE, column j represents samples generated by

random sampling in class Cj .
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(a) C2C-VAE (b) CVAE

Figure 7.3: MNIST samples generated by the models trained under normal setting. std = 1. Both

models demonstrate valuable and various samples.

Figures 7.3 and 7.4 illustrate that both C2C-VAE and C-VAE produce both valuable and

varied samples. Because the models have seen various samples of the target class during training,

the variety here is not equivalent to novelty (but it will be in GOF/TOM evaluation).

Figure 7.5 illustrating the tradeoff between value (measured by the accuracy of samples gener-

ated judged by the oracle for value) and variety (measured by the variance of the features extracted

by the oracle for novelty). Under the normal setting, the two models share similar tradeoffs.

Under the GOF/TOM Setting

Our specific implementation of the GOF/TOM setting trims all samples of a target class except

one average sample. We choose the average sample to better represent target class. Both CVAE

and C2C-VAE are trained with the trimmed data set. During each training epoch, 10% of the

training batch is this one-shot sample while 90% is randomly chosen from other samples (CVAE
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(a) C2C-VAE (b) CVAE

Figure 7.4: Fashion-MNIST samples generated by the models trained under normal setting. std = 1.

Both models demonstrate valuable and various samples.

trains on the batch directly while C2C-VAE trains on pairs from the batch). This design counters

the imbalanced classes caused by trimming. Therefore the CVAE learns about the target class from

only the average sample, while the C2C-VAE learns from pairs of this sample and samples of other

classes.

In contrast to the figures of generated samples under the normal setting, the figures presented

in this section follow an additional rule: Column j is generated by models which are trained under

the one-shot setting, where all samples except the average sample of class j are removed during

training. Because the models have only seen a single sample of the target class during training,

any variety of generated samples of the target class is equivalent to novelty.

When std = 1, the C2C-VAE generates novel—thus creative—samples while the CVAE can

only generate similar samples, as shown in Figures 7.6 and 7.7.

Figures 7.8 and 7.9 illustrate the tradeoff between value (measured by the accuracy of samples
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(a) C2C-VAE (b) CVAE

Figure 7.5: Under the normal setting in MNIST, both C2C-VAE and VAE trade off accuracy and

variance as std is adjusted. Results are similar to those in the normal setting in fashion-MNIST

generated judged by the oracle for value) and novelty (measured by the variance of the features

extracted by the oracle for novelty). C2C-VAE exhibits an accuracy and variance tradeoff as std

is tuned. For a given level of variance, CVAE needs a bigger std change at a bigger cost of

accuracy than C2C-VAE. For example, CVAE needs std = 4 to gain the same variance as C2C-

VAE for std = 1 in MNIST, and std = 4.5 to gain the same variance as C2C-VAE (std = 1) in

fashion-MNIST. When std is so high, the quality of the images is very poor, as shown in Figure

7.10.

7.6 Discussion and Future Work

7.6.1 Conditions for Success of the C2C-VAE Method

The applicability of the C2C-VAE method depends on three conditions: (1) There exists a VAE

that can extract features of samples, (2) there exists a C2C-VAE that can extract embeddings

of feature differences of two classes, and (3) the generated feature differences can be applied to

a chosen sample. Condition (1) depends on properties of VAEs and is beyond the scope here.

However, a large body of work supports the existence of effective VAEs for many domains.
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(a) C2C-VAE (b) CVAE

Figure 7.6: MNIST samples generated by the models trained under one-shot setting. std = 1.

Intuitively, C2C-VAE generates more creative samples.

Condition (2) can fail if the feature differences between two classes do not conform to a single

pattern. When two classes each have wide distributions, the difference between the two distribu-

tion can have very high variation, decreasing effectiveness of the C2C approach (Ye, 2018b). For

example, drawings in the Quick, Draw! dataset vary considerably within classes. For example, a

cat or dog may be drawn with a head only, or with a body, or with limbs and a tail. The difference

between a cat without a body and a dog without a abody is not the same as the difference between

a cat with a body and a dog with body.

Even if condition (2) holds, C2C-VAE can be sensitive to the choice of source sample, causing

the failure of condition (3). C2C-VAE can generate creative samples by generating from different

source samples, while at the risk of generating bad samples (see Figure 7.11).

In the procedure for generating new samples using C2C-VAE, the choice of a source sample si

and the choice of a feature difference embedding and its subsequently induced feature difference
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(a) C2C-VAE (b) CVAE

Figure 7.7: Fashion-MNIST samples generated by the models trained under one-shot setting. std =

1. Intuitively, C2C-VAE generates more creative samples.

f ′∆ are currently two independent choices. There could (and perhaps even should) exist some

dependency between the two choices. As a future direction, both conditions (2) and (3) may be

resolved by conditioning the C2C-VAE on the source sample.

7.6.2 Relationship to CycleGAN

Although C2C-VAE and CycleGAN are completely different techniques, both share many founda-

tional assumptions. CycleGAN assumes there is a pattern between two classes and trains trans-

lation functions (generators) on all possible pairs between two classes to learn this pattern. The

reconstruction loss of C2C-VAE (that the feature difference can be recreated) corresponds to the

cycle-consistency loss of CycleGAN (that the sample can be recovered). The reconstruction loss

of the VAE which C2C-VAE depends upon for feature extraction (a realistic sample can be recon-

structed from a feature) corresponds to the adversarial loss of CycleGAN (the recovered sample is
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(a) C2C-VAE (b) CVAE

Figure 7.8: Under the one-shot setting in MNIST, C2C-VAE can trade off accuracy and variance

when std is tuned. For a given level of variance, CVAE needs a bigger std change at a bigger cost

of accuracy than C2C-VAE.

realistic). The two model are similar in their foundations, but C2C-VAE works with the space L2′

while CycleGAN works with the space L1 (and arguably L2).

GOF/TOM can benefit from GAN. In its current design, the oracle for value often classifies

a generated sample confidently with high activation score even if it is of poor quality by human

perception. As a future direction, the oracle might be integrated with a discriminator of GAN to

better distinguish poor samples.

7.6.3 Relationship with CDH-Style Adaptation

As discussed in the introduction, C2C-VAE is inspired by CDH-style adaptation. The difference

is that CBR adaptation in general is adapting a case’s problem description toward a target case’s

problem description while modifying its solution correspondingly. The source case and the target

problem is known before the adaptation, which seeks the target solution by adapting the source

case. CBR adaptation generates a new solution description. On the other hand, C2C-VAE does

not assume the existence of a target case or a target problem. Instead it is sampling an adaptation
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(a) C2C-VAE (b) CVAE

Figure 7.9: Under the one-shot setting in fashion-MNIST, C2C-VAE can trade off accuracy and

variance when std is tuned. For a given level of variance, CVAE needs a bigger std change at a

bigger cost of accuracy than C2C-VAE.

from one class label to another, or from one solution to another in CBR terminology. C2C-VAE

aims to generate a new sample (with its new problem and solution descriptions).

If C2C-VAE is improved to generate new sample while being conditioned on the input source

samples, as discussed in Section 7.6.1, then it can be potentially used as an adaptation method

to generate counterfactual/semi-factual samples by modifying samples toward a target class. By

controlling the extent of the adaptation, the generated sample may be near the boundary between

the source class and the target class. If the generated sample is still of the same class as the source

class, then it is a semi-factual sample; if it is of the target class, then it becomes a counterfactual

sample. This procedure is inspired by Keane and Smyth (2020).

7.7 Conclusion: Creativity from Inter-Class Patterns

Network-based models provide exciting mechanisms for modeling creativity in AI systems. Existing

work on generative methods for creativity can be seen as oriented primarily towards the conceptual

space of samples, while C2C-VAE exploits the relationship between samples. If existing approaches
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(a) MNIST (std = 4) (b) Fashion-MNIST (std = 4.5)

Figure 7.10: To gain variance, CVAE requires greatly increases std, sacrificing quality of generated

samples

look at the foreground of conceptual space L2, C2C-VAE looks at the background L2′, in order to

bring that background to bear as additional information to facilitate creative sample generation in

one-shot settings. The presented experiments support that for a creative image generation task,

C2C-VAE can achieve high novelty—variance in generated samples—while maintaining accuracy.
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(a) Generated by Modifying Average Samples (b) Generated by Modifying Random Samples

Figure 7.11: If the source samples are randomly selected, C2C-VAE might generate bad samples.

Here std = 0, so variance is solely due to the choice of source samples.
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Chapter 8

Conclusions and Future Directions

8.1 Summary of Results

This thesis proposes two major methods in strengthening the case adaptation process of CBR:

Robust adaptation and machine learning driven adaptation. It also examines the implications of

these adaptation methods in the bigger scope of CBR.

The first method, robust adaptation (ROAD), uses heuristics to guide generation of multi-step

adaptation paths in rule-based adaptation and reset the adaptation path when the path is deemed

unreliable. Evaluations support the benefit of the approach, and especially the benefit of resetting.

Introspection about the paths generated by robust adaptation can also lead to improvement in

case retrieval (RISA) and case adaptation (CARS). By learning from path generation failures, RISA

improves the similarity measure to better align it with adaptability. Experimental results support

its value for retrieving more adaptable cases. By favoring pairs of rules that have participated in

successful adaptation paths, CARS compresses the adaptation rule set while retaining useful rules.

Experimental results support its value for increasing adaptation efficiency and that deletion of least

reliable rules can improve accuracy, subject to an efficiency/coverage tradeoff.

The second method, machine learning driven adaptation, uses a neural network (NN-CDH) to

learn adaptation knowledge. The proposed method can learn to predict a solution difference based

on problem difference and adaptation context, for both regression and classification task domains.

Experiments with both real and artificial data sets show that NN-CDH achieves comparable perfor-

mance to its counterpart, the traditional neural network. Moreover, a well-trained retrieval process,

like SN retrieval, may outperform both neural network and NN-CDH, and NN-CDH can worsen

the retrieval result. This illustrates the need to harmonize retrieval and adaptation methods.
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Alternating optimization (AO) is used to address the synchronization issue between case re-

trieval and adaptation. Experiments show that with AO, the retrieval stage generally provides a

good initial case, and adaptation further modifies the solution to be closer to the correct solution.

A CBR system trained under the AO scheme shows reliable behavior while the same system trained

under a traditional independent training scheme or an adaptation-guided retrieval training scheme

suffers asynchronization or codependence effects.

As most of this thesis focuses on building adaptation algorithms to better solve a target query,

the last chapter takes a turn and proposes an creative sample generation method (C2C-VAE) in-

spired by case adaptation. It also introduces a general for evaluating creativity of sample generators

(GOF/TOM — “Generated On Few, Tested On Many.”) A generator is trained in a zero, one, or

few-shot setting where samples of a target class are trimmed from the training set. Meanwhile, an

oracle is trained on the untrimmed dataset to evaluate the generated samples. Because the genera-

tor has limited examples of the target class, its ability to generate satisfactory unseen samples of the

target class can be used as measure for its creativity. By learning and applying the difference pat-

terns between existing samples, C2C-VAE can adapt old samples into novel samples. Experiments

support that for a creative image generation task, C2C-VAE can achieve higher novelty—variance

in generated samples—while maintaining accuracy.

8.2 Future Directions

The chapters offer many future directions in their corresponding research projects. This section

recapitulates the most noteworthy ones.

8.2.1 Interaction between Adaptation Rules

In the current implementation of CARS, the concepts of reliability and compatibility are mixed.

A single score represents the compatibility of a rule with all other rules. It would be possible to
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distinguish reliability and compatibility and implement a more fine-grained version of CARS.

For example, a rule might be incompatible with a set of rules but perfectly compatible with

another set. A matrix can be built where every rule is represented by a row and a column and

an entry in the matrix represent the compatibility between the rule of its row and the rule of its

column. the ROAD system in its building of adaptation paths may search only compatible rules

and prioritize reliable rules. This can be especially helpful in a domain where certain rules can be

compatible with few rules but highly reliable when used in a path.

8.2.2 Extending AO to the Full CBR Cycle

Chapter 6 discusses the interaction between case retrieval and adaptation and uses AO to find a

balance between the two processes. This holistic view can be carried over to the full CBR cycle, or

all 4 ”REs”. For example, retrieval and reuse could optimize to provide a confidence score for the

proposed solution and alarm the revision process when probable; Revision training could optimize

to focus on exceptions that cannot be solved by adaptation; Retention training could optimize to

retain cases for which changing adaptation capabilities are most accurate (or most efficient), or

could adjust indexing as the similarity criteria for retrieval change.

8.2.3 Neural-Symbolic CBR

From rule-based adaptation (Chapters 2, 3, and 4) to machine learning driven adaptation (Chap-

ters 5 and 6), this thesis finds that although case adaptation integrating with machine learning

techniques gains the benefits of higher efficiency and accuracy, it also loses certain benefits from

the symbolic side. For example, the artificial data set in Chapter 5 can be solved by two simple

symbolic rules but is difficult for both the traditional neural network and machine learning driven

CBR.

As the recent rise of interest in neural symbolic research (such as IBM Neuro-Symbolic AI

Workshop 2022) and combining CBR with deep learning (such as the CBRDL 2021 workshop), we
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envision that a balanced blend of domain knowledge, brought to bear by symbolic AI methods,

with network-learned methods, has the potential to achieve a performance edge.

Moreover, as presented in Chapter 6, the different processes and knowledge containers of CBR

interact with each other and contribute to the CBR system in a holistic manner. It is promising,

although undoubtedly hard, to advance all aspects of CBR toward neuro-symbolic methods so that

they can interact over both symbolic knowledge and statistically driven generalizations.

8.2.4 Conditioning the Adaptation of C2C-VAE on the Source Sample

In the procedure for generating new samples using C2C-VAE, the choice of a source sample si and

the choice of a feature difference embedding and its subsequently induced feature difference f ′∆ are

currently two independent choices. If the later choice is conditioned on the former, then C2C-VAE

can potentially generate a most reasonable adaptation given a source sample and a target class.

C2C-VAE can then be used as an adaptation method to generate counterfactual/semi-factual

cases by modifying cases toward a target class. By controlling the extent of the adaptation, the

generated sample may be near the boundary between the source class and the target class. If the

generated sample is still of the same class as the source class, then it is a semi-factual sample; if it

is of the target class, then it becomes a counterfactual sample.
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Dı́az-Agudo, B., Gervás, P., and González-Cãlero, P. A. (2003). Adaptation guided retrieval based

on formal concept analysis. In Proceedings of the 5th international conference on case-based

reasoning: research and development, pages 131–145, Berlin. Springer.

Draper, S. (2010). Creativity. https://www.psy.gla.ac.uk/~steve/best/creative.html. Ac-

cessed: 2022-05-08.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

D’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., and Szathmary, L. (2007). Case base

mining for adaptation knowledge acquisition. In Proceedings of the Twentieth International Joint

Conference on Artificial Intelligence (IJCAI-07), pages 750–755, San Mateo. Morgan Kaufmann.

118



Elgammal, A. M., Liu, B., Elhoseiny, M., and Mazzone, M. (2017). CAN: creative adversarial

networks, generating ”art” by learning about styles and deviating from style norms. CoRR,

abs/1706.07068.

Elhoseiny, M. and Elfeki, M. (2019). Creativity inspired zero-shot learning. CoRR, abs/1904.01109.

F. Zhang, M. Ha, X. Wang, and X. Li (2004). Case adaptation using estimators of neural network.

In Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE

Cat. No.04EX826), volume 4, pages 2162–2166 vol.4.

Fox, S. and Leake, D. (2001). Introspective reasoning for index refinement in case-based reasoning.

The Journal of Experimental and Theoretical Artificial Intelligence, 13(1):63–88.

Franceschelli, G. and Musolesi, M. (2021). Creativity and machine learning: A survey. CoRR,

abs/2104.02726.

Friedman, J. H. (1994). Flexible metric nearest neighbor classification. Technical report, Stanford

University.

Fuchs, B., Lieber, J., Mille, A., and Napoli, A. (2014a). Differential adaptation: An operational

approach to adaptation for solving numerical problems with CBR. Knowledge-Based Systems,

68:103–114.

Fuchs, B., Lieber, J., Mille, A., and Napoli, A. (2014b). Differential adaptation: An operational

approach to adaptation for solving numerical problems with CBR. Knowledge-Based Systems.

Gervás, P. (2011). Dynamic inspiring sets for sustained novelty in poetry generation. In Ventura,

D., Gervás, P., Harrell, D. F., Maher, M. L., Pease, A., and Wiggins, G. A., editors, Proceedings

of the Second International Conference on Computational Creativity, ICCC 2011, Mexico City,

Mexico, April 27-29, 2011, pages 111–116. computationalcreativity.net.

Ha, D. and Eck, D. (2017). A neural representation of sketch drawings. CoRR, abs/1704.03477.

119



Hammond, K. (1989). Chef. In Riesbeck, C. and Schank, R., editors, Inside Case-Based Reasoning,

chapter 6, pages 165–212. Lawrence Erlbaum.

Hanney, K. and Keane, M. (1996). Learning adaptation rules from a case-base. In Proceedings of

the Third European Workshop on Case-Based Reasoning, pages 179–192, Berlin. Springer.

Hanney, K., Keane, M., Smyth, B., and Cunningham, P. (1995). What kind of adaptation do CBR

systems need? a review of current practice. In Proceedings of the Fall Symposium on Adaptation

of Knowledge for Reuse. AAAI.

Jalali, V. and Leake, D. (2013). Extending case adaptation with automatically-generated ensembles

of adaptation rules. In Case-Based Reasoning Research and Development, ICCBR 2013, pages

188–202, Berlin. Springer.

Jalali, V. and Leake, D. (2014). On retention of adaptation rules. In Case-Based Reasoning Research

and Development, ICCBR 2014, Berlin. Springer.

Jalali, V. and Leake, D. (2015). Enhancing case-based regression with automatically-generated

ensembles of adaptations. Journal of Intelligent Information Systems, pages 1–22.

Jalali, V. and Leake, D. (2016). Enhancing case-based regression with automatically-generated

ensembles of adaptations. Journal of Intelligent Information Systems, 46(2):237–258.

Jalali, V., Leake, D., and Forouzandehmehr, N. (2017a). Learning and applying case adaptation

rules for classification: An ensemble approach. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, pages 4874–4878. International Joint Conferences on

Artificial Intelligence.

Jalali, V., Leake, D., and Forouzandehmehr, N. (2017b). Learning and applying case adaptation

rules for classification: An ensemble approach. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, IJCAI-17, pages 4874–4878.

120



Jarmulak, J., Craw, S., and Rowe, R. (2001). Using case-base data to learn adaptation knowledge

for design. In Proceedings of the 17th international joint conference on Artificial intelligence -

Volume 2, IJCAI’01, pages 1011–1016, San Francisco. Morgan Kaufmann.

Kaggle (2017). Automobile dataset. data retrieved from Kaggle, https://www.kaggle.com/

toramky/automobile-dataset.

Karras, T., Laine, S., and Aila, T. (2018). A style-based generator architecture for generative

adversarial networks. CoRR, abs/1812.04948.

Keane, M. T. and Smyth, B. (2020). Good counterfactuals and where to find them: A case-

based technique for generating counterfactuals for explainable ai (xai). In Case-Based Reasoning

Research and Development: 28th International Conference, ICCBR 2020, Salamanca, Spain,

June 8–12, 2020, Proceedings, page 163–178, Berlin, Heidelberg. Springer-Verlag.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.

Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA.

Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence Review,

6(1):3–34.

Leake, D., editor (1996). Case-Based Reasoning: Experiences, Lessons, and Future Directions.

AAAI Press/MIT Press, Menlo Park, CA.

Leake, D. and Dial, S. (2008). Using case provenance to propagate feedback to cases and adapta-

tions. In Proceedings of the Ninth European Conference on Case-Based Reasoning, pages 255–268.

Springer.

Leake, D., Kinley, A., and Wilson, D. (1996). Linking adaptation and similarity learning. In

121



Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society, pages 591–

596, Mahwah, NJ. Lawrence Erlbaum.

Leake, D., Kinley, A., and Wilson, D. (1997). Learning to integrate multiple knowledge sources

for case-based reasoning. In Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence, pages 246–251. Morgan Kaufmann.

Leake, D., Kinley, A., and Wilson, D. (2011). Enhancing case adaptation with introspective rea-

soning. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intel-

ligence. Morgan Kaufmann.

Leake, D. and Schack, B. (2018). Exploration vs. exploitation in case-base maintenance: Leveraging

competence-based deletion with ghost cases. In Case-Based Reasoning Research and Develop-

ment, ICCBR 2018, pages 202–218, Berlin. Springer.

Leake, D., Smyth, B., Wilson, D., and Yang, Q., editors (2001). Maintaining Case-Based Reasoning

Systems. Blackwell. Special issue of Computational Intelligence, 17(2), 2001.

Leake, D. and Whitehead, M. (2007). Case provenance: The value of remembering case sources.

In Case-Based Reasoning Research and Development: Proceedings of the Seventh International

Conference on Case-Based Reasoning, ICCBR-07, pages 194–208, Berlin. Springer-Verlag.

Leake, D. and Wilson, D. (1998). Categorizing case-base maintenance: Dimensions and directions.

In Cunningham, P., Smyth, B., and Keane, M., editors, Proceedings of the Fourth European

Workshop on Case-Based Reasoning, pages 196–207, Berlin. Springer Verlag.

Leake, D. and Ye, X. (2019a). On combining case adaptation rules. In Bach, K. and Marling,

C., editors, Case-Based Reasoning Research and Development, pages 204–218, Cham. Springer

International Publishing.

122



Leake, D. and Ye, X. (2019b). On combining case adaptation rules. In Case-Based Reasoning

Research and Development, ICCBR 2019, pages 204–218. Springer.

Leake, D. and Ye, X. (2020). Learning to improve efficiency for adaptation paths. In Case-Based

Reasoning Research and Development: 28th International Conference, ICCBR 2020, Salamanca,

Spain, June 8–12, 2020, Proceedings, page 325–340, Berlin, Heidelberg. Springer-Verlag.

Leake, D. and Ye, X. (2021a). Harmonizing case retrieval and adaptation with alternating opti-

mization. In Case-Based Reasoning Research and Development, ICCBR 2019, pages 125–139.

Springer.

Leake, D. and Ye, X. (2021b). Harmonizing case retrieval and adaptation with alternating opti-

mization. In Sánchez-Ruiz, A. A. and Floyd, M. W., editors, Case-Based Reasoning Research

and Development, pages 125–139, Cham. Springer International Publishing.

Leake, D., Ye, X., and Crandall, D. (2021a). Supporting case-based reasoning with neural networks:

An illustration for case adaptation. In AAAI Spring Symposium on Combining Machine Learning

and Knowledge Engineering (AAAI-MAKE).

Leake, D., Ye, X., and Crandall, D. (2021b). Supporting case-based reasoning with neural net-

works: An illustration for case adaptation. In Proceedings of AAAI Spring Symposium AAAI-

MAKE 2021: Combining Machine Learning and Knowledge Engineering. https://www.aaai-

make.info/program.

Leake, D. B. and Crandall, D. J. (2020). On bringing case-based reasoning methodology to deep

learning. In ICCBR.

Leake, D. B., Kinley, A., and Wilson, D. (1995). Learning to improve case adaptation by introspec-

tive reasoning and cbr. In Veloso, M. and Aamodt, A., editors, Case-Based Reasoning Research

and Development, pages 229–240, Berlin, Heidelberg. Springer Berlin Heidelberg.

123



LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database. http://yann.lecun.com/

exdb/mnist/.

Li, H., Hu, D., Hao, T., Wenyin, L., and Chen, X. (2007). Adaptation rule learning for case-based

reasoning. In Semantics, Knowledge and Grid, Third International Conference on, pages 44–49.

Liao, C., Liu, A., and Chao, Y. (2018). A machine learning approach to case adaptation. In

2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering

(AIKE), pages 106–109.
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Research Interest
Case-based
Reasoning

Case Retrieval, Case Adaptation, Case Base Maintenance, Similarity Metric

Machine
Learning

Feature Weighting, Explainable AI, Difference Pattern

Cross-
discipline

Cognitive Science, Counseling Psychology

Education
2015–present PhD, Computer Science, Indiana University Bloomington, Indiana, USA.

Minor in Cognitive Science
2011–2014 B.A., Computer Science & Math, The College of Wooster, Ohio, USA.

Magna Cum Laude
2010–2011 Computer Science & German, Beloit College, Wisconsin, USA.

Publications
Journal Articles

2020 Nicholas A. Bowman, Nayoung Jang, D. Martin Kivlighan, Nancy Schneider, and Xiaomeng
Ye. The Impact of a Goal-Setting Intervention for Engineering Students on Academic
Probation. Research in Higher Education, volume 61, pages 142–166, February 2020.

2018 III D. Martin Kivlighan, Marie C. Adams, Kuo Deng, Xiaomeng Ye, and Elizabeth J.
Menninga. A social network analysis of international collaboration in counseling psychology.
The Counseling Psychologist, volume 46, pages 274–295, 2018.
Communicated Journal Article
In Conference Proceedings

2021 Xiaomeng Ye, Ziwei Zhao, David Leake, Xizi Wang, and David Crandall. Applying the case
difference heuristic to learn adaptations from deep network features. In IJCAI-21 Workshop
on Deep Learning, Case-Based Reasoning, and AutoML: Present and Future Synergies, 2021.
In press.

2021 Xiaomeng Ye, David Leake, Vahid Jalali, and David Crandall. Learning adaptations for
case-based classification: A neural network approach. In Case-Based Reasoning Research
and Development, ICCBR 2021. Springer, 2021. In press.

2021 David Leake, Xiaomeng Ye, and David Crandall. Supporting case-based reasoning with
neural networks: An illustration for case adaptation. In AAAI-MAKE 2021: Combining
Machine Learning and Knowledge Engineering, 2021.

2021 David Leake and Xiaomeng Ye. Harmonizing case retrieval and adaptation with alternating
optimization. In Case-Based Reasoning Research and Development, ICCBR 2021. Springer,
2021. Best paper award.

2020 Xiaomeng Ye, David Leake, William Huibregtse, and Mehmet Dalkilic. Applying class-to-
class siamese networks to explain classifications with supportive and contrastive cases. In
International Conference on Case-Based Reasoning, pages 245–260. Springer, 2020.



2020 David Leake and Xiaomeng Ye. Learning to improve efficiency for adaptation paths. In Ian
Watson and Rosina Weber, editors, Case-Based Reasoning Research and Development, pages
325–340, Cham, 2020. Springer International Publishing.

2019 Xiaomeng Ye. C2C trace retrieval: Fast classification using class-to-class weighting. In
Proceedings of the Thirty-Second International Florida Artificial Intelligence Research Society
Conference, FLAIRS 2019, pages 353–358, 2019.

2019 David Leake and Xiaomeng Ye. On combining case adaptation rules. In Kerstin Bach and
Cindy Marling, editors, Case-Based Reasoning Research and Development, pages 204–218,
Cham, 2019. Springer International Publishing.

2018 Xiaomeng Ye. The enemy of my enemy is my friend: Class-to-class weighting in k-nearest
neighbors algorithm. In Proceedings of the Thirty-First International Florida Artificial
Intelligence Research Society Conference, FLAIRS 2018, pages 389–394, 2018.

Research Experience
May, 2020 –

present
Research Assistant in DL-CBR Group, Indiana University Bloomington, IN.
Involved in multiple research projects: (1) Survey of combining DL and CBR; (2) Using neural
network to carry out case adaptation in regression and classification tasks.
Currently working on: (1) Using ML to predict and explain gentrification; (2) Learn difference pattern
in data using variational autoencoder; (3) Harmonizing all four stages of CBR using Alternating
Optimization.

Advisor : Dr. David Leake, Professor of Computer Science, The Luddy School of Informatics,
Computing, and Engineering, Indiana University
Dr. David Crandall, Professor of Computer Science, The Luddy School of Informatics,
Computing, and Engineering, Indiana University

2020 Gratitude Journal App.
Developed a mobile app for both android and iOS, for gratitude support group.
Collected user journals on a secured server.

Summer
2017

Research Intern, Knexus Research Corporation, National Harbor, MD.
Worked on an Information Extraction task using technology including Apache UIMA, link-grammar,
POS tagging, C45 decision tree.
Built a machine learning application, which learns from annotated training examples. Trained model
can extract information such as assignee, due date, action, start date from an unstructured text (eg.
Email).

2014 Undergraduate Thesis: Evolving Meaningful Lambda Calculus Functions using
Genetic Programming.
Applied genetic programming to evolve multiple mathematical operators for Church numerals.
Year-long independent study finished with a graduation thesis.
Best Poster in Math & Sciences in Independent Study Symposium Poster Contest

Teaching Experience
2017-2021 Research Mentor for Undergraduate Research Opportunities in Computing,

Indiana University Bloomington, Bloomington, IN.
Mentored six teams of 1-2 novice researchers in topics of their choice, including: instance-based
reasoning, siamese network, case-based reasoning, forgery detection, and features in ML.
Each mentorship is a semester-long project with weekly meeting, literature review, brainstorming,
coding review, and project presentation.



2015-2020 Associate Instructor , Indiana University Bloomington, Bloomington, IN.
Taught in classrooms of various sizes (< 50a or > 100A) and levels (undergraduateb or graduateB).
Designed course material and homework C . Hosted labs and office hours. Graded students’ projects
and homework. Attended regular meetings with professors and fellow instructors. Courses taught
include:

Discrete Structures for Computer Science Ab, Fall 2015-Fall 2016
Introduction to Algorithm Design and Analysis ab, Spring 2017
Applied Machine Learning AB , Fall 2017
Introduction to Data Analysis and Mining AB , Spring 2018
Elements of Artificial Intelligence AB , Fall 2018
Introduction to Computers and Programming AbC , Spring 2019-Fall 2019
Computer Vision AB , Spring 2020

Fall
2012-2014

Teaching Assistant for Computer Science Department, The College of Wooster,
Wooster, OH.
Facilitated the teaching of classes including Java, C++, Python, and Alice.
Attended labs and hosted office hours.
Graded students’ labs and projects. Analyzed and reported results to professors.

Spring
2012-2013

Grader for Mathematics Department, The College of Wooster, Wooster, OH.
Graded students’ homeworks. Analyzed and reported results to professors.

Industrial Experience
2014-2015 Software Engineer , Cureo, Wooster, OH.

Worked on a business-oriented network platform in a startup setting.
Spring 2014 Software Engineering Intern, Westfield Insurance, Westfield Center, OH.

Worked on the front-end of a testing software for QA usage.
Programmed with JSF framework, Javascript, SQL.

Summer
2013

Game Developer Intern, Dreamwork.cn, Chengdu, Sichuan, China.
Worked on an iOS massive multiplayer online role playing game.
Worked in cooperation with other programmers, artwork designers, and game designers.
Built game logic, interfaces, animations, mini-map, visual effects and gadgets.

Winter 2012 Software Engineering Intern, Cureo, Wooster, OH.
Rehired and continued my work during Summer 2012.

Summer
2012

Software Engineering Intern, Cureo, Wooster, OH.
Worked on a business-oriented network platform in a startup setting.
Learned and coded with Javascript, HTML, CSS, JQuery, ASP.NET, C#, SQL.
Built 600 unit tests, implemented both front-end webpages and back-end database in a MVC website
project

Fellowships & Awards
2021 Best Paper Award in 29th International Conference on Case-Based Reasoning

(ICCBR 2021), Salamanca, Spain.
2018 Video Competition in 26th International Conference on Case-Based Reasoning

(ICCBR 2018), Stockholm, Sweden.
2018 Student Travel Grant for 26th International Conference on Case-Based Reasoning

(ICCBR 2018), Stockholm, Sweden.
2014 Best Poster in Math & Sciences in Independent Study Symposium Poster Contest,

The College of Wooster, Wooster, OH

Computer skills
Programming

Languages
Python, PyTorch, keras, R, C, C++, JAVA



Web
Technologies

HTML 5, PHP, JSP, Javascript

Database SQL, MySQL, Apache, Neo4j

Services
Summer

2022
Reviewer, The Fifth International Conference on Intelligence Science (ICIS2022),
Xi’an, China.

Summer
2021

Organizer, IJCAI 2021 DeepCBR workshop.

2019 Volunteer, Middle-way House, Bloomington, IN.


