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Joseph Kendall-Morwick

Leveraging Structured Cases: Reasoning From Provenance Cases to Support

Authorship of Workflows

In many software domains, a user’s task is to edit and develop complex structured

data, such as workflows. Because complexity can make authorship difficult and error

prone, effort has been made towards developing artificial intelligence systems to as-

sist authoring. However, such systems often rely on hand-coded domain knowledge

requiring significant time and resources to develop, and generally either attempt to

independently solve the problem faced by the user, or retrieve similar structures for

re-purposing by the user. These approaches require very little or a great deal of

initiative, respectively, on the part of the user.

Case-Based Reasoning (CBR) offers an alternative between these extremes. This

dissertation argues that CBR can provide a natural, knowledge-light approach to user

assistance by leveraging past experience from prior works, eliminating the need for

comprehensive domain theories. When cases are mined rather than created by hand,

case-based reasoners rely on very little hand-coded domain knowledge to perform

their tasks. Additionally, a case-based reasoner can be combined with other methods

within a hybrid framework to provide superior assistance to the user by offering only

the most accurate, relevant, and helpful recommendations. CBR also affords a truly

mixed-initiative approach to providing assistance through recommendation.

Several key concerns exist in providing this case-based support, including ad-

dressing the complexity of performing similarity-based retrieval of structured cases,

v



finding adequate data sources for case mining, extracting recommendations from rel-

evant cases, combining recommendations from multiple sources, and evaluating the

effectiveness of such recommendations. These concerns are addressed through the

implementation of Phala: a system which mines provenance records to provide case-

based assistance through recommendations of edits issued to scientific workflow au-

thors. Phala is shown to offer valuable assistance to workflow authors and exemplifies

the utility of the novel application of recommendation-based, knowledge-light, mixed-

initiative assistance for such synthesis tasks.
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Chapter 1

Introduction

1.1 Introduction

In many software domains, a user’s task is to edit and develop complex structured

data. Such domains include workflows [125], plans [54], and concept-maps [19]. This

data can be complex, making authorship difficult and error prone. Some techniques

exist for assisting authors, but these are often brittle, relying on hand-coded domain

knowledge, the development of which requires significant time and resources. Some

tools use generative planning to write the work entirely [36], while others retrieve

similar works and present them to the user [56], leaving the user to extract the useful

portions. These methods allow users to specify high-level constraints on the desired

product but eliminate user discretion in the design process, or they may instead

have the completely opposite problem – burdening the user with de-coding relevant,

retrieved knowledge in order to apply it.

Case-based reasoning offers a natural, knowledge-light approach to user assistance
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by leveraging past experience from prior works, eliminating the need for comprehen-

sive domain theories [57]. Just as a struggling author may look to prior works for

inspiration, a case-based reasoning tool can provide recommendations towards com-

pleting a partially authored work by extracting recommendations from similar prior

works. When cases are mined rather than created by hand, case-based reasoners

rely on very little pre-coded domain knowledge to perform their tasks. Additionally,

a case-based reasoner can be combined with other methods (with potentially vary-

ing degrees of domain independence) within a hybrid framework to provide superior

assistance to the user by offering only the most accurate, relevant, and helpful rec-

ommendations. This dissertation will explore this process through a domain in which

significant demand exists for author assistance: development of scientific workflows.

Development of scientific workflows is an ideal domain for a case-based reasoning

application since there are currently many efforts in e-Science towards recording past

experiences in the form of provenance [100]. Provenance can be a useful knowledge

source for mining cases to be used for the purpose of assisting workflow authors. Phala

is a system utilizing such a technique, along with several others, to provide assistance

through a hybrid framework for selective combination of individual recommendations

for presentation to the user [60, 61]. Phala was developed to exemplify the techniques

presented in this dissertation as a solution for supporting authorship of structured

data and to provide an opportunity for analysis of these techniques.

Research performed through the development of the Phala recommender system

touches on a variety of topics, each of which is relevant to the proposed thesis. This

chapter will introduce each topic and illuminate its relationship with the proposed

dissertation work, closing with a presentation of the thesis to be explored.
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1.1.1 Case-Based Reasoning

Case-based reasoning is a technique involving recall of specific cases (experiences,

problem descriptions) in order to produce solutions to novel problems [58]. CBR

is an alternative to rule-based systems, which are burdened by the requirement of

a comprehensive domain knowledge. By relying on this pre-coded knowledge, rule-

based systems often fall prey to the gaps which invariably arise through the scope of

a designed domain theory intended to be comprehensive or fail to adapt to unique

problems, which could not have been predicted at the time the knowledge base was

created. Furthermore, domain knowledge is often difficult to capture, especially con-

sidering that experts possessing such knowledge may not may not be sufficiently adept

at relating their knowledge in a useful encoding.

Case-based reasoners combat this problem by relying principally on past expe-

riences, called cases, rather than solely on a domain theory. When a problem is

presented to a case-based reasoner, similar cases are retrieved and solutions from

these cases are adapted and applied to the current problem. After analyzing the re-

sult from applying the adapted solution, the current problem and solution are stored

in the case-base for re-use with future problems. This four-step process is illustrated

in Figure 1.1, which is derived from work developed by Aamodt and Plaza [1].

• Retrieve - Given a target problem, cases with similar problem descriptions or

solutions that may be useful are retrieved.

• Reuse - The solution from the retrieved case is adapted to the target problem.

• Revise - The adapted solution is applied to the target problem, and revisions
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Figure 1.1: The CBR cycle

are made if unforeseen problems arise.

• Retain - The new problem-solving episode is stored in the case-base for future

re-use with new problems.

Many case-based reasoners are considered knowledge-light because they do not

need to rely heavily on a domain theory and because cases are usually easier to ob-

tain and encode than are the rules of a rule-based system. Cases may be easier to
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create because, as opposed to the rules of a rule-based system, cases need not gen-

eralize. Furthermore, one may obtain cases for free by mining them from available

data sources, potentially eliminating the labor of case encoding entirely, thereby un-

burdening a knowledge engineer and increasing the flexibility of a system to quickly

adapt to new problems.

CBR was chosen for the current dissertation work because of this particular qual-

ity. Editor software often utilizes a knowledge base in order to check for errors, but

rarely can it make recommendations for additional content without a much more

substantial knowledge base. Phala utilizes its case-base, which contains records from

previous works, to provide such assistance.

Phala implements a novel extension of the CBR process by extracting solutions

from cases rather than retrieving stored solutions. Partially authored works are

mapped directly to cases and the differences between the two are analyzed to predict

both where extensions to the partially authored work should be applied and where

errors may exist. Revision is a cooperative effort between Phala and the user as

recommendations can be incorporated, altered, or ignored at the user’s discretion.

When users complete their task, their work can become part of a new case for future

re-use. This process is explained in more detail in later sections.

1.1.2 Recommender Systems

Recommender systems have gained popularity mostly through commercial product

and media recommendation [87] (for example, Amazon’s product recommendation

[64]). The majority of recommendations made by such systems are flat, atomic values,
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and the problems for which they are recommended are static and lack complexity,

such as “what camera should I buy” or “what song should I listen to next”?

Both the questions and their solutions become more complicated when assisting

authors of structured data. The most general question, ”What changes should be

made to this structure?”, can be very complicated in the realms of plan and workflow

authoring, where many types of alterations can be made involving various existing

portions of a partially completed structure. In fact, in many situations, no changes

should be made at all.

Researchers in e-Science have determined that support in the form of brief rec-

ommendations is desirable amongst many workflow authors [98]. To provide such

support to workflow authors, Phala must compensate for the complexity of the rec-

ommendation process in how recommendations are represented internally, presented

to the user, and evaluated in testing. To support this functionality, Phala relies on

the Hybrid Recommendation Framework (HRF) developed as part of this dissertation

work.

1.1.3 Ensemble Techniques for Machine Learning

Ensemble methods have proven useful to adapt recommendations produced through

a variety of machine learning methods with a redundant approach. They improve

performance of a machine learning technique by exploring, to some degree, the non-

deterministic aspects of that technique, avoiding some degree of random bias in the

technique’s output. If several instances of a machine learning technique differ because

of random choices made during training, then the hope is that, in a single episode of
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usage for the ensemble, any error from a single instance of the technique, resulting

from its particular choices made during training, will not be repeated throughout the

ensemble. Such ensembles use voting techniques to arbitrate between decisions from

multiple instances of a machine learning technique in order to provide a single answer.

These voting methods can be much more complicated than a simple plurality, often

utilizing continuously-valued confidence estimates, indicating the degree to which the

voter believes the solution is correct, and have received a great deal of attention over

the past decade [97].

Phala uses an ensemble framework for the purpose of creating a hybrid, a topic

that has received considerably less attention in the scope of ensemble techniques.

The extraction method developed for creating recommendations from prior works

(cases) is made part of an ensemble with what are called Highly Procedural Adap-

tation Rules (HPAR’s): light-weight standalone recommenders which specialize in

how they generate recommendations, correcting some of the error in the bias of the

extraction method and also providing recommendations in situations where the ex-

traction method may not. The HPAR’s for Phala have varying degrees of domain

independence and rely mostly on knowledge mined from the case-base – maintaining

Phala’s knowledge-light goal. These HPAR’s are grouped with the case-based extrac-

tion recommender through HRF, which provides a means of combining, selecting, and

presenting recommendations to the user.
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1.1.4 Scientific Workflows

Scientists engaging in experimentation involving massive datasets and complex com-

putations have sought the assistance of a new cyberinfastructure for performing their

experiments. Those responsible for such assisting technologies have dubbed it e-

Science [45]. Within e-Science, scientists perform virtual experiments on a highly

distributed grid network, processing immense amounts of information and sharing

results electronically with colleagues [7, 38]. Workflow technology has emerged as

a means of managing processes and dataflow within these experiments as well as a

formal means of representing experiments [24, 125].

Scientists responsible for creating these workflows are often faced with a unique

problem. The services, scripts, data warehouses, and other options from which au-

thors of scientific workflows must choose while authoring such workflows is growing

quickly, and scientists writing workflows may not be as familiar with the emerging

technology as those who are providing it.

To combat this problem, many have developed systems and products designed to

ease the task of authoring and enactment of scientific workflows including workflow

editors [99, 8, 5] and other tools [38, 26]. Phala joins this collection with a unique con-

tribution of both providing directed, small-step recommendations and also avoiding

the need for complex domain-specific knowledge bases. Phala is also flexible enough

to be included in a variety of workflow editors. A plugin for one such editor, Taverna

[83], has been developed and is pictured in Figure 1.2. Additionally, by avoiding

premptive planning for an entire experiment, Phala can assist real-time experimen-

tation, adapting to any contrary choice a scientist may make throughout the episode
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[20].

1.1.5 Provenanace

Provenance traditionally refers to the history of ownership of an antique or work of art.

In the information and computing world, however, the term refers to information that

describes the history and progression of a particular piece of data. If a data product

was produced through a complicated procedure, each step of that procedure and the

relevant details may be stored in a provenance record for that piece of data.

The concept of electronic provenance has sparked interest in many areas through-

out computer science. In collaborative web communities such as Wikipedia, prove-

nance is important for judging the potential quality of a document when many indi-

viduals are involved in the creation of a document or the completion of a task [65]. In

Artificial Intelligence, particularly case-based reasoning, provenance can be of value

when judging the usefulness of stored knowledge [62]. The study of provenance has

even drawn interest from security researchers interested in the verifiability of such

records [42].

In e-Science, the collection of provenance has been particularly compelling for

supporting the veracity of experimental results when subject to peer review. As

previously mentioned, these experiments may be complicated and involve massive

amounts of data. Therefore, in order to preserve trust in their results for years to

come, records of the process must be preserved so that, if necessary, the creation of

the data may be retraced or even reproduced.

Provenance does not contain the same information that workflows contain. There
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may be gaps in a provenance trace due to dropped messages or other errors in data

collection, making the trace incomplete. Also, provenance only records actual actions

taken during enactment of the workflow, excluding the control structure and other

potential actions which were not taken, both of which reside in the orginal workflow.

In this same sense, however, provenance also provides information which workflows do

not: actual run-time results from enacting the workflow. The information provenance

does provide can be useful in assisting human authors of workflows.

Phala mines provenance records for a trace of the dataflow between processors

for experiments. This is compared to the flow of data through a partially completed

experimental workflow in order to produce recommendations for further completion.

When a scientific workflow is later executed, the resulting provenance collected and

recorded can be later mined by Phala to capture the revised actions chosen by the

user after receiving Phala’s initial recommendations, completing the retention phase

of the CBR cycle.

1.1.6 Thesis Statement

The main thesis to be defended is as follows:

• Recommendation-based assistance for authors of structured data can leverage

case-based reasoning to greatly reduce knowledge acquisition, computational

resource, and maintenance requirements while maintaining effectiveness.

However, through implementation of such a case-based reasoning system, two

sub-theses have been developed, which will also be defended:
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• Ensemble frameworks can be extended to support knowledge-light adaptation

within a case-based reasoner.

• Provenance can be mined, without significant domain knowledge, to build a

case-base that can support authorship of scientific workflows.

Neither are intended to be recognized as requirements for a knowledge-light ap-

proach for assisting authors of structured data. However, these sub-theses support

the main thesis in providing that building a case-base and adapting solutions can also

be performed in a knowledge-light manner for this domain.

1.1.7 Research Questions

Given the positions taken, it will be important to answer the following questions to

provide a sufficient defence of these theses:

• Can case-based reasoning enable value-added assistance for authors of scientific

workflows with minimal reliance on hand-coded domain knowledge?

• Can provenance provide a substantial datasource for facilitating this process?

• Can retrieval and comparison of these cases be performed in a computationally

feasible manner when dealing with structured cases?

• How can edit recommendations for authors of structured data and, in particular,

workflow authors, be encoded and expressed in an abstract manner?

• When producing such recommendations through a case-based process, how can

adaptation be performed while continuing to minimize the knowledge overhead?
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• What is a meaningful way of evaluating a recommender system assisting with

a synthesis task?

• How effective is Phala in providing assistance to authors of scientific workflows?

1.2 Chapter Summary

The first chapter is this introduction, which provides background and identifies goals

for the dissertation.

The second chapter, “Intelligent Assistance for Synthesis Tasks”, conveys a broad

perspective on the challenges presented by synthesis tasks, focusing on development

of scientific workflows to support the perspective, which is presented with context

from an important emerging area of application. This chapter begins by introducing

recommendation and synthesis tasks and, in particular, their confluence. The chapter

next explores the application of these concepts to assisting authors of scientific work-

flows and contextualizes recommendation within existing methods for assisting in this

task. Following this, performance metrics for recommendations in synthesis tasks are

discussed. The chapter closes with an exploration of provenance as a datasource for

generating these recommendations.

The third chapter, “Case-Based Generation of Edit Recommendations”, addresses

CBR’s specific role within the recommendation task. The chapter begins by describing

CBR and how it can be applied to recommendation in synthesis tasks. Next, the

gestalt case concept is introduced, including information on how such cases are mined

from provenance, which is followed by a description of the recommendation task for

assisting authors of scientific workflows, including use cases and recommendation
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types. Next, the process of extracting these recommendations from gestalt cases built

from provenance traces is discussed as well as how new cases are recaptured. The

final three sections discuss adaptation in CBR and how to employ hybrid techniques

to adapt recommendations extracted from gestalt cases, including an introduction

to the Hybrid Recommendation Framework (HRF), a software framework developed

through this dissertation to address needs for such a hybrid adaptation approach.

The fourth chapter, “Comparison and Indexing of Structured Cases”, looks into

the knowledge representation, storage, and retrieval issues important to case-based

reasoners using structured cases. It begins with a discussion of desiderata of a system

addressing these issues. Following that is an overview of existing work with structured

data in reasoning systems and how these systems compare and/or map structures to

one another. The next two sections introduce the Structure Access Interface (SAI),

an abstract structure storage and retrieval library developed for use with Phala and

other CBR systems requiring structured cases. Particular attention is paid to the

sub-tasks identified through SAI in the retrieval process. SAI’s retrieval performance

is evaluated in the final section.

The fifth chapter, “Evaluation of the Phala Workflow Edit Recommender System”,

begins by discussing several metrics for evaluating the performance of Phala or a

similar system recommending in a synthesis task. Next, a series of tests designed to

measure Phala’s performance on each metric are explained. The next section explains

some of the implementation choices made within Phala, addressing the more abstract

issues presented in Chapter 3. Following this, results from performing these tests are

analyzed for recommendations generated through Phala’s extraction method as well

as those which additionally are processed by Phala’s hybrid adaptation phase.
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The final chapter, “Conclusions”, determines the findings of this dissertation work

as well as the many avenues this work opens for future related work, including work

in ensembles and hybrid systems, workflow authorship assistance, reasoning with

structured data, and comparison and indexing of structures.

1.3 Contributions from Published Papers

Portions of this thesis appear in works published by the author and other collabora-

tors: [60, 61, 50, 51, 53, 52]. Other published works contain material directly related

to material within this thesis: [21, 21, 62].
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Figure 1.2: The Phala Recommender Plugin for Taverna
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Chapter 2

Intelligent Assistance for Synthesis

Tasks

2.1 Introduction

Intelligent assistance for authors of scientific workflows is a relatively new area of

research developed in association with the recent excitement surrounding e-Science.

Workflows have had a longer tenure, mostly through use in business processes for

which a wider body of work in intelligent authorship assistance has been developed in

case-based reasoning and other sub-disciplines [94]. For instance, case-based reasoning

has only been applied to e-Science workflows since 2007 [121], whereas case-based

reasoning was applied to the business process domain several years earlier [118].

Much of this work accompanies older work on intelligent assistance of authorship

of other types of structures such as plans. Like workflows, plans can be represented

with a directed graph, where each node in the graph represents a sub-goal that may
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Figure 2.1: A Venn diagram displaying the overlap between relevant synthesis tasks.
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be a pre-condition required by other sub-goals. Such relationships are represented by

edges in the graph. Because there is a correspondence in the formal methods used in

both domains, there is also overlap in the benefits of studying any one domain. It is

the goal of the research performed for this dissertation to discover techniques that may

be applicable beyond the domain of e-Science and, in particular, may be applicable

to other synthesis tasks, such as plan authorship. Other domains that are more

related to the e-Science domains, such as business processes, which also use workflows,

will benefit even more from the research presented through this dissertation. See

Figure 2.1 for an illustration of the relationship between the domains discussed in

this introduction.

Synthesis tasks comprise the unifying category for all domains that are relevant

to this research. This is in contrast to assisting in analytical tasks, for which the

sought solutions are much less complex; they are frequently as simple as the title of

a movie or the name of a restaurant. The simplicity of these solutions allows the

problems themselves to be modeled as a classification or regression task. Such tasks

are particularly amenable to machine learning techniques.

Such machine-learning techniques are often employed by recommender systems

– systems that interact with the user through recommendations of actions for the

user to take. Assistants that adhere to this established mode of user interaction and

are applied to analytical tasks have been well received by users and developers alike.

Such a consensus has not been reached, however, on how to interact with users seeking

assistance in a synthesis task.

This chapter will explore the application of the recommendation-based mode of in-

telligent assistance to synthesis tasks through the lens of assisting authors of scientific
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workflows. Different perspectives on how to interact with users in scientific workflow

authorship, as well as related tasks, will be examined, including their implications for

reasoning techniques employed in the task. Additionally, the gap between existing

analytical recommender systems and the application of the recommender concept to

synthesis tasks will be bridged, including identification of new concerns in this ex-

panded task and important criteria for evaluating such systems. The work in this

chapter serves as the basis of the Phala system for assistance of authors of scientific

workflows, which is built upon two frameworks discussed in the next two chapters.

2.2 Recommenders as Assistants

Recommender systems are systems that provide recommendations to a user for a

particular choice in the face of a myriad number of alternatives. The topic of recom-

mender systems has recently gained much popularity. Workshops [104, 29, 9], many

special journal issues, and now an ACM conference series1 have all sprung up through

the last decade on the heels of financially successful applications of the concept by

companies such as Amazon [64]. These companies profile users of their software and

recommend items to the user, such as, in Amazon’s case, products a user may be

interested in purchasing. In other cases the items may be media, such as movie

recommendations made by Netflix [11]. Other times, the item is not intended for

purchase at all but instead improves a user’s experience with the software, such as

in the case of Last.fm in which songs recommended for the user are automatically

streamed through a personalized radio station.

1ACM Conference on Recommender Systems, 07 - current
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Collaborative Filtering is the main technique applied to recommendation and

most e-commerce recommenders employ a technique that was derived from tradi-

tional collaborative filtering, such as Amazon’s “item-to-item collaborative filtering”

[64]. Users are represented as a vector of preferences towards each of these items. A

similarity metric is used to determine similarity between users, and items are recom-

mended based on the frequency with which similar users have shown preference for

the items.

Each of the previously mentioned systems assists the user with a task, whether it is

shopping or selecting entertainment. The recommender systems provide assistance in

the form of a single step in a user’s task, acting as an assistant that provides advice in

a somewhat constrained manner. However, recommender systems can assist in more

complex tasks than those mentioned. One familiar scenario is word processing, where

recommendations can be made for spelling, word choice, and grammar. In another

scenario, the complexity of the task may warrant the use of a recommender, such

as in design with CAD software. For example, Autodesk Research has developed a

collaborative filtering technique to recommend commands a user may want to use,

easing the user’s burden of familiarizing themselves with the immense and consistently

growing command-set of AutoCAD [71].

2.3 Assisting In Synthesis Tasks

This dissertation focuses on what are called synthesis tasks. Most of what was

mentioned in the previous section is known as analytical tasks. In these cases,

recommendations serve as the solution to a known problem:
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• “What product should I buy?”

• “What command should I use?”

• “What song should I listen to?”

Many existing machine learning techniques can be easily applied to these problems,

such as those used in classification. These types of recommenders commonly use a

variant of collaborative filtering [39].

Synthesis tasks involve the design of complex structures, such as plans [54], state

machines [46], concept maps [19], process models [54], or workflows [61]. When

providing assistance for such tasks, there isn’t a similarly well-defined problem to

provide simple answers to. In fact, determining what the problem is embodies much

of the task for assistants within a synthesis task. For instance, each word in a text

document represents an opportunity to recommend a word-choice edit. It is up to the

assistant to determine which words represent a problem in the larger context of the

document. Since these tasks cannot simply be approached by seeking a classification

or some other single value for an input, it is not straightforward to apply techniques

aimed towards analytical tasks [3].

Throughout the rest of this section, reference will be made to two examples of

assisting in an analytical and a synthesis task. The analytical task will be shopping.

In this task, the user is seeking to purchase a product, and the recommender system

may be aware of the user’s likes, dislikes, shopping habits, social network, etc. The

goal of the recommender is to produce a product or list of products that the user

is most likely interested in purchasing. The synthesis task will be a sub-problem of

a word processing assistant’s task. In this task, the user will be writing an article
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and may wish for recommendations pertaining to word choice within the article.

These recommendations may include a suggestion for a more appropriate term or

one that avoids repetitive verbs. The recommender system will again be provided

with context and must supply the user with words in the user’s document that the

user would want to replace along with the words the user would want to replace

them with. Recommendations of this nature will further be referred to as synthesis

recommendations.

2.3.1 Iterative Recommending of Problems and Solutions

A synthesis recommendation has three components: a problem, a solution, and a

confidence value or multiple confidence values. The problem denotes the context in a

structure where a change is to be made, and the solution denotes the actual change.

Confidence values indicate the degree to which the system is confident that the rec-

ommendation represents a positive step in editing the structure. This confidence

may be split among the problem and solution components. The distinction between

these concepts is important not only for the purposes of user interaction but also in

evaluating the performance of the recommender system.

In the product recommendation task, the problem to be solved is known: “What

product would this customer most want to buy?” and the solution is simply a product

or product category. In contrast, word choice revisions would not take the form of a

simple classification, since such a solution lacks the context required to understand the

specifics of the problem to be solved. In the latter case, recommendations of revisions

must also provide some further specification of the problem itself, identifying the
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relevant context. That is, they must provide the location in the document of the word

to be replaced (the problem) along with the word to replace it with (the solution).

For example, a recommendation may be to replace the word “dog” with “mutt”.

Such a recommendation is more complex than a product recommendation, as it clearly

has two components. The component identifying the problem is that the word “dog”

must be replaced, and the proposed solution is to replace it with “mutt”. This can

be further complicated when considering that “dog” itself may not uniquely identify

the problem. It may be that each instance of “dog” should be replaced with “mutt”,

but depending on the context, a sentence such as “She picked up the dog from the

pound” may be preceded by a sentence such as “Men are such dogs!” In addition to

specifying the word to be replaced, the recommender must also identify whether it is

intended to be a global or local replacement, and if it is local, precisely which specific

word instance it applies to.

2.3.2 Unique Concerns

Beyond the issue of synthesis recommendations being composite, there are other

concerns that are unique to recommending in synthesis tasks, which are described in

the following sections.

2.3.2.1 Overlapping Problems

Consider a generalization of the word replacement task in which any arbitrary edit

to the text may be recommended. A problem can be as general as “revise the

introductory paragraph” or as specific as “replace the n-th word in the m-th paragraph

in this text”; in every case the problem consists of a task specification and some sub-
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sequence of words in the text, and some problems generalize over other sub-problems.

Recommended problems must be answerable in that they identify all of the context

necessary and only the context necessary for providing a solution, which, in the latter

problem example, would be the replacement word.

2.3.2.2 Withholding Recommendations

An additional consideration is whether any recommendation should be made or not.

In work on LookOut, a calendar assistant, Horvitz discusses the importance of judging

when and how an intelligent assistant should intervene and offer assistance to the

user since frequently offering assistance when none is needed may make the assistant

less valuable than not having an assistant at all [47]! This differs slightly from the

shopping scenario (product recommendation) in which it is known that the customer

is looking to buy something. Otherwise, browsing an e-commerce site would not be a

very productive use of his or her time. Therefore, a product recommender will make

a recommendation if it can, only withholding recommendations in the case that it has

insufficient confidence in any recommendation, not because it believes the customer

is not interested in making a purchase. However, in the word replacement task, every

word represents a potential problem, but it’s also possible that none of these are

actual, existing problems! Additionally one may seek assistance only to confirm a

belief that the text is in no need of further revision. Such is also the case in any other

incremental design task.

24



2.4 e-Science Workflow Authorship

2.4.0.3 Workflow Uses in e-Science

Information technology is playing an increasingly critical role in scientific experi-

mentation, particularly in e-Science. E-Science consists of in silico experimentation

(experiments that are run completely through execution of computer programs) as

well as computational processes intended for data analysis and knowledge discovery

[84].

Workflow technology is often employed in e-Science to manage these processes.

Workflows developed for these purposes are called Scientific Workflows. Scientific

workflows consist of references to services (remote web-services, scripts, and local

programs) and instructions for controlling the order of their execution and the flow

of data between them. These services enact simulations, analysis, or transformations

of data.

Figure 2.2 depicts a scientific workflow in the workflow editing environment XBaya

[99]. This example is a weather simulation experiment using the WRF forecasting

model performed in the LEAD project [28], a project for mesoscale meteorology

research and education. Input data is represented by the left-most node labeled

“Assimilated ADAS Data/Config.” Intermediate nodes represent web services that

process data from the preceding nodes, and the edges between them represent data

flowing from one service to another. Finally, the output of the workflow is represented

by the right-most node labeled “WRF Output Data/Config.”

The depicted workflow is small, but scientific workflows may contain one hundred

steps or more, making them challenging for humans to compose. Also, the number
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Figure 2.2: A Workflow in XBaya
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of workflows that a scientist runs may be large. For example, ensemble simulation

workflows run hundreds of highly similar workflows, differing slightly in structure

or in parameters, to perform a parameter sweep study. In addition, the amount of

data produced and consumed by services on the grid can be extremely large, and

processing times long, making it important to generate the right workflow on the first

attempt to avoid wasting computational resources.

In general, workflows can be represented by labeled directed multi-graphs in which

nodes represent services and edges can represent either control or dataflow between

these services as well as input and output from the workflow itself. Details of these

services are captured in labels affixed to nodes. Datatypes and input or output ports

(names associated with parameters or data products from a service) may be labels of

the edges between services. These labels may be associated with a domain ontology

to enable type-checking and composition assistance based on generative planning.

2.4.0.4 Differentiating e-Science Workflows from Business Processes

Workflows are not a new technology developed for e-Science. They have existed for

quite some time for use in business processes [94]. Existing workflow technologies such

as the BPEL language for modeling workflows have been used in scientific contexts,

but more and more, e-Science is moving toward development of new tools that more

closely fit the unique challenges presented to its researchers [129].

One important aspect to understanding how scientific workflows may differ from

others is their intended role. Scientific workflows are intended for application to novel

problems and to discover new knowledge [35]. This requires flexibility on the part

of the intelligent assistant. For example, developing workflows for business processes
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involve discovery of rote procedure within a business, for which workflow mining

techniques are often used [96]. Authors of scientific workflows are seeking to develop

novel processes, so the entire process cannot solely be mined from execution logs.

However, such records may serve to assist in the process when the workflow being

developed involves use of common sub-processes, as described in later sections.

Another important distinction is that, in e-Science, workflows are computational

[25]. In this sense, services represent defined and accessible computational processes,

and workflows manage control and data flow between these processes. Other work-

flows represent processes in a more abstract sense, including those performed by

human agents such as employees. An additional difference, and challenge, is that

scientific workflows deal with very large datasets and extremely expensive computa-

tions. Scientific workflows can run on supercomputing grid middleware on the order

of weeks before completion of execution. Scientific workflows are also often determin-

istic and fully automated. Non-determinism typically only comes into play for the

purpose of fault-tolerance, but it is much more common-place in business processes

where the goal is to react to a dynamic environment rather than test a hypothesis.

2.4.0.5 Foundational Assistance for Scientific Workflow Authors

e-Science researchers are answering the call for tools to meet the specific needs of

scientists using workflows and have produced a variety of tools for developing and

enacting workflows, sometimes called Workflow Management Systems. These tools

provide a foundational means of modeling experiments and executing workflows on

grid middleware. These tools are not intelligent assistants in the sense that they do

not play a part in the problem-solving aspect of developing a scientific workflow for
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an experiment. However, they do provide a rich graphical interface for manipulating

workflows and thus an ideal environment for incorporating an intelligent workflow

composition assistant.

Each of the following workflow systems provide a graphical user-interface for work-

flow authorship and execution. XBaya is a graphical workflow composer that works

with the BPEL language for modeling workflows [99]. Kepler, Taverna, and Trident

are open-source projects which, in addition to supporting workflow modeling, offer

services for enactment and management of scientific workflows [83, 5, 8].

2.5 Modes of User Interaction for Intelligent

Workflow Authorship Assistants

So far, systems that assist users with the mechanical construction of workflows have

been discussed, but these tools do not assist with the creative process. They do not

have a working knowledge base of the problem being solved by the workflow and can-

not assist with the user’s decisions in how to solve the problem for which the workflow

is being developed. This section will examine systems that extend foundational toolk-

its for developing workflows by offering direct, intelligent assistance in the authorship

process. In particular, motivation will be provided for using recommendation-based

assistance in the task of assisting authors of scientific workflows.
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2.5.1 Mixed-Initiative Interaction

In Artificial Intelligence literature, an important distinction is drawn between agents

that perform tasks autonomously and agents that interact with a human user to

collaboratively achieve a goal. The latter type of intelligent assistant is said to take

a mixed-initiative approach by sharing the initiative in the problem-solving process,

though the exact definition of what initiative means in this context is disputed [82].

To shed more light on the important aspects of mixed-initiative computing, Horvitz

mentions several principles for designing mixed-initiative intelligent assistants that

stress the importance of the following: [47]

• shared problem-solving effort between the user and the agent with deference to

the user

• dialog between the user and agent to resolve conflicts

• reasoning on the part of the agent over when and how to intervene, including

weighing competing costs and benefits when deciding when and how to interact

with the user to maintain a “value-added” presence

Myers et al. prescribe models of user-interaction based on the needs of the user. In

particular, they recommend that for tasks in which a user’s cognitive skills are needed,

it is best for an intelligent assistant to avoid “strategic decision making” and focus on

“routine tasks” that can be more easily automated, thus allowing users to focus their

energy on the contributions for which they are needed [80]. They also recommend

that the assistant should additionally share problem solving responsibilities with the

user in cases where both have significant ability to solve problems related to the task.
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Machine-Directed User-Directed Mixed-Initiative

Pegasus/Wings myExperiment Phala

GTrans DWMSS CAT

KANAL

Table 2.1: Modes of user interaction for various authorship assistants.

2.5.2 Further Delineating Modes of Interaction for Assis-

tance of Scientific Workflow Authors

Developing scientific workflows falls somewhere between these two modes of operation

recommended by Myers et al., given that the users are uniquely qualified in under-

standing the subject matter and the experiment goals, whereas the intelligent assis-

tant can uniquely contribute by searching large collections of services and workflows

for important ingredients to aid in the workflow design. Through this sub-section,

three distinct categories of user assistance, which follow from Myers et al’s model of

user-interaction, will be identified from related works, which are summarized in Table

2.1. Assistants for the e-Science domain are identified in boldface.

2.5.2.1 Machine-Directed Assistance

In this mode of user interaction, the user will specify the goals of the workflow to

be developed, and the intelligent assistant will take full initiative to develop the

workflow. The specification of the goals of the process is not a trivial task, however,

and may be an extensive process involving a conversation between the user and the

intelligent assistant to develop a goal specification, in which an automated planner
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may be invoked to test the soundness of the goal specification.

One example of a system utilizing this form of interaction lies outside the domain

of scientific workflows: GTrans [23]. This system works alongside the Prodigy auto-

mated planner, which develops plans for the user’s specified goals, allowing GTrans

to assist the user in modifying the goals until a satisfactory plan is developed by

Prodigy. A good example of a system within the workflow authorship domain is the

work by Ambite et al. [6], which uses the PowerLoom planning system to generate

scientific workflows.

Wings/Pegasus is a set of tools that also take the machine-directed assistance ap-

proach to assisting scientific workflow authors. Among others, Pegasus/Wings is used

by scientists at the Southern California Earthquake Center (SCEC) for experiments

such as simulating seismic activity. The workflows used in these simulations can be

very large (thousands of components) [36]. Such large workflows are particularly dif-

ficult to develop, making the automatic generation feature of Pegasus/Wings very

desirable for these users.

2.5.2.2 User-Directed Assistance

In a paper discussing lessons learned from developing e-Science collaboration tools

[98], Goble et al. note the disconnect between some knowledge-intensive generative-

planning tools and the users they are intended for:

...in Taverna we worked on fancy knowledge-based descriptive techniques

for services so that workflows would be composed automatically. It turned

out that this wasnt what the users wanted at all. They wanted quick ways
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of finding a relevant service and then they wanted help for them to build

workflows themselves.

It is important to note that many of Goble et al’s users are developing significantly

smaller workflows than those developed at SCEC, often on the order of tens of nodes

with a ceiling in the low hundreds. These workflows mostly consist of bioinformatics

experiments but also include topics as disparate as socio-informatics.

The principle that can be drawn from this perspective is that expert users often

wish to be primarily in control of the authorship process. Perini et al. echo a similar

perspective in their work developing a system that aids expert users in planning for

forest fire intervention [89]. This principle should be seen as a guiding factor rather

than a rule. It is tempered by the complexity of the design process, which in the

case of SCEC, was high enough to make a generative planning approach attractive

to expert users.

One means of keeping the user at the helm is to create an assistant that only

helps the user in the sub-task of searching for relevant past works, which can serve

as examples and sources of inspiration in their task. This type of assistance will be

referred to as User-Directed Assistance.

Assistance from case-based reasoning often falls into this category when the system

in question retrieves cases for the user to analyze and re-purpose. Kim et al. developed

a case-based tool for modeling non-e-Science workflows, DWMSS, which retrieves

workflows based on similarity to a negotiated input-model and allows the user to

either adopt the retrieved workflow or integrate it with the new input model and

store it for use in future assistance episodes [56].
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In the domain of scientific workflows, Goble et al. developed myExperiment as

a consequence of their observations noted above. Myexperiment is a website that

allows scientists to share information and provide feedback for each others’ exper-

iments. This is mainly intended to provide a means for discovering, re-purposing,

and re-using workflows from prior experiments to reduce the amount of time a scien-

tist spends composing workflows and to provide creative insight into which services

and techniques may be most useful for a particular task. One method used to orga-

nize these workflows is to allow semantic tagging. These tags identify what tasks a

workflow is relevant for and which significant techniques are used within the work-

flows. Workflows can also be discovered through browsing by author. MyExperiment

can also be classified as user-directed assistance, as its service for browsing scientific

workflows fits this mold.

2.5.2.3 Mixed-Initiative Assistance Through Recommendation

In user-directed assistance models, the user is given full authority over what knowl-

edge from prior cases is incorporated into their work, which was noted as an advantage

of the approach. The associated trade-off is that the user is responsible for extract-

ing relevant knowledge from the prior works and also for incorporating it into their

work, which machine-directed interaction did not require of the user. Neither the

user-directed or machine-directed approaches provide the ideal benefits of a mixed-

initiative system in that initiative during the authorship process rests solely on the

user in user-directed assistance and solely on the assistant in machine-directed assis-

tance. A more balanced approach would better bestow the benefits of mixed-initiative

interaction.
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An approach to user assistance that balances between user-directed and machine-

directed assistance is a recommender system, as discussed earlier in this chapter. A

recommender system carries benefits of both approaches: users are not burdened

with developing a formal specification of their problem, nor are they burdened with

extracting relevant knowledge from the prior works that are retrieved. The task of

authoring the workflow is still directed by the user, but the assistant can now play a

part in the creative process as well by making targeted recommendations for edits to

partially authored workflows.

A project that offers mixed-initiative assistance in the e-Science domain is the

Composition Analysis Tool (CAT) project, developed by Kim et al. [55]. This tool

validates workflows and provides an interface that recommends edits to correct er-

rors. A planning framework is used to generate recommendations for node additions

and replacements that move the workflow toward the goal of producing the desired

outputs, at times allowing for abstract nodes to act as place holders for concrete,

executable nodes.

Xiang et al. mention a recommendation-based usage scenario of their tool, which

informs users of services that can be added to a partially completed workflow based

on a service linkage graph developed by examining prior workflows [121]. KANAL is

another intelligent assistant that falls into this category [54]. KANAL offers “error-

correcting” recommendations to authors of process models, which are similar in con-

cept to workflows.

In a recommendation-based model of user interaction, the user remains in princi-

pal control of the authorship process. The recommender does not commandeer the

interface, yet it is able to take initiative in performing some of the more mechanical
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reasoning and decision-making tasks the user would otherwise be saddled with and it

leaves the remaining reasoning to the user by making recommendations. Recommen-

dations are a low-impact means of computer aided assistance that can be accepted or

rejected at the user’s discretion, and at a pace that is most comfortable to the user.

These aspects fall in line with most of the principles of mixed-initiative assistants

laid forth by Horvitz [47]. Recommenders capture the important wants and needs

addressed by Goble et al., while taking assistance a step further by cutting through

irrelevant details of prior works.

Recommendation in a synthesis task such as workflow authorship may take one

of two forms. In the first, the recommender system will recommend both potential

problems and their solutions. In the latter, the system will only recommend solutions,

and the user will identify a partial or full description of the problem they are encoun-

tering. In the latter case, this could be as simple as selecting a node in the workflow

representing the source of any recommendations they wish to see. Both modes of

operation can be supported by a single application, which endows the application

with more flexibility and the ability to adapt to a particular user’s preferred method

of interaction.

The Phala project was developed as a part of this dissertation work to assist au-

thors of scientific workflows. Phala recommends “next steps,” or extensions, from

a partially authored workflow to an incrementally more developed workflow. The

goal of providing these recommendations is twofold: first, to inform users about data

and services that they might not have considered when authoring a workflow (e.g.,

by making new recommendations based on the workflows of others), and second, to

make familiar components conveniently accessible for re-use (e.g., by making recom-
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mendations based on similarities to the user’s own prior workflows).

2.6 Performance Metrics for Individual Recommen-

dations

An important consideration for any user assistant is how to evaluate the quality of the

assistance offered. Evaluation of a recommender system endeavors to determine what

many call the “goodness” of a recommendation [73]. This term is intentionally vague,

as the quality of a recommendation contains many dimensions, several of which will

be explored in this section. These dimensions are often collapsed into a single rating

for the recommendation.

Goodness may also be referred to as confidence in the case where the system

is self-evaluating its own recommendations. In this case, the system is estimating

the goodness of its recommendations, whereas goodness is measured through real-

world application of the recommendation. Additionally, users can specify how they

perceive goodness by indicating which of the performance metrics they prefer, allowing

the system to specify confidence through a weighted average of several performance

measures and tailor it to a specific user’s definition of goodness.

Evaluation of the performance of a recommender, either externally through assess-

ment of goodness or internally through assessment of confidence, ultimately serves

three purposes:

• The first is the most obvious: to determine the efficacy of the system and

diagnose its faults. Such evaluations are necessary to scientific endeavors.
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• The second is less obvious and will be an important topic in this chapter: to

offer a degree of explanation for the recommendations made to the users of the

system. This is particularly important in a synthesis task in which the user may

be unsure of the wisdom of integrating a recommendation. Riely et al. note

that a modern recommender system must have a component that can “explain

or justify” its recommendations to its users [95].

• The third is to allow introspection within the system. Horvitz notes how confi-

dence estimates may result in different levels of intrusiveness of communication

by the intelligent assistant [47]. Riely et al. also note that a minimum con-

fidence threshold should determine whether a recommender should make any

recommendation at all, or simply report that it doesn’t know what to recom-

mend [95]. Chapter 5 will discuss in detail how confidence estimates can play

an important role in developing hybrid recommenders.

Recommendations in synthesis tasks bear another similarity to explanation, apart

from the role of confidence estimates. A recommendation, such as those generated by

Phala, attempts to point out to the user a gap in a design, a source of incompleteness

or incorrectness, and a repair. This is similar to the process of explaining an anomaly

to repair a gap in understanding, examined by Leake, who encouraged three crite-

ria for evaluating such an explanation: relevance, plausibility, and usefulness [59].

These three have been altered and incorporated with two additional metrics, which

are all described in the context of recommendation through the remainder of this

subsection. Of note, Tintarev also identifies a set of criteria for evaluating expla-

nations of recommendations that partially aligns with the criteria identified below
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[112]. However, Tintarev’s criteria focus more on a user’s perception and use of an

explanation, whereas the criteria below are more of an independent judgement of the

recommendation itself.

2.6.0.4 Relevance

Relevance addresses whether or not the recommender is generating a response that

has bearing on the problem of interest. It can be determined solely from the problem

component of the recommendation. For instance, if a recommendation were made

to add a new processor whose output was tied to an existing processor, but the

existing processor already had sufficient input to execute, the recommendation would

be deemed irrelevant since it attempted to correct a problem that didn’t exist.

2.6.0.5 Correctness

Correctness pertains to whether the solution component of a recommendation indeed

solves the problem the recommendation identifies, and it is most similar to plausibil-

ity within Leake’s framework for evaluating explanations. The recommendation need

not be relevant in order to be correct. For instance, in the prior example, if the recom-

mended service was indeed of importance to the execution of the existing processor,

regardless of whether that processor had sufficient input, it would be correct.

2.6.0.6 Usefulness

So far, we have mentioned criteria that could be judged independently of the user. The

user could deem a recommendation as irrelevant, and it could be possible that the user

was wrong in doing so. Usefulness is a quality that, on the other hand, can be solely

39



and subjectively judged by the users themselves. The usefulness of a recommendation

is the degree to which it helps the user solve the problem. For instance, recommending

a service the user frequently involves in their workflows may not be particularly useful,

since it only saves the user a minimal amount of work. However, recommending a

service the user may be unaware of could save them a great deal of research, and

would be more useful. This quality has also been described as novelty or serendipity

in recommender system literature [44]. However, recommending in synthesis tasks

broadens the meaning of usefulness beyond serendipity.

Usefulness could also be viewed in a less subjective way by examining the extent

of a recommendation. Perhaps a problem within a workflow is that there are two

processors that should be, in some way, linked. Processor A produces data that

processor B requires, but not in a format that processor A understands. Assume also

that there is no single shim service [6] that can translate the data directly, but a

sequence of two or three shim services can. A recommendation could be to add all of

these shim services in a sequence of processors between processor A and processor B.

This recommendation would be more helpful than simply recommending one of the

services, since that only partially solves the problem.

It’s important to note, in the latter (syntactic) sense of helpfulness, that there

is a conflict between helpfulness and correctness. As Leake points out in reference

to explanations, plausibility is tied to Occam’s razor. That is, the more complex

an explanation is, or in Phala’s case, a recommendation, the less likely it is to be

plausible, or in Phala’s case, correct. A user seeking recommendations that are more

helpful may need to sacrifice a degree of correctness in the recommendations they

receive.
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2.6.0.7 Diversity

If presenting multiple, mutually exclusive recommendations to a user, the collection

of recommendations should have some degree of diversity. For instance, if a system

recommended “Superman 1”, “Superman 2”, and “Superman 3” to a movie-goer

interested in a super hero movie, there isn’t much choice left for the user, who may

actually be more interested in a “Batman” movie, thus defeating the purpose of

providing multiple recommendations.

Diversity is a unique performance metric in that it is not actually a judgement

of a single recommendation, as each of the others were, rather it’s a judgement of

a collection of recommendations. The topic of judging lists of recommendations,

particularly in terms of diversity, is explored in detail by Ziegler et al. [130] and in

the context of case-based recommendation, by Smyth et al. [103]

2.6.0.8 Speed

A very natural performance metric for any computational task is speed. Recom-

mender systems are by nature interactive, so speed is a particularly important per-

formance metric. Speed differs from each of the other metrics in that it can be viewed

in a completely objective manner. It can be directly measured in units of time. How-

ever, it is perceived subjectively by the user. For instance, the user doesn’t need to

know how long it took to form a recommendation to know that it was too long. There

are very clear diminishing returns in regard to this metric, and the subjective percep-

tion of time by the user must be taken in to account. For instance, a recommender

that takes only 0.1 seconds to produce its recommendations may be twice as fast
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as a recommender that takes 0.2 seconds, but in most cases the user will not notice

a difference. It may be more advisable for the system to use this time to generate

better recommendations, depending on the user’s preference for speed. This reflects

the decisions made for SAI that allow for a degree of anytime processing for mapping

structures.

2.7 Knowledge Sources for Supporting the Assis-

tance Task

Supporting the assistance task, particularly in the case of recommendation, is often

made possible through mining knowledge used in generating recommendations. For

example, the collaborative filtering approach mentioned earlier in this chapter relies

on records of preferences of a large number of other uses to generate its recommen-

dations. This section will explore the use of an abundant source of useful data for

recommendation in the scientific workflow domain: provenance records.

2.7.1 Provenance from Scientific Workflow Execution

Provenance is meta-data recorded during execution of a collection of integrated pro-

cesses, which can be later used to re-trace the steps taken to derive a data product

[100]. In the e-Science context, provenance traces the derivation of experimental data

produced by workflows linking independent web services and other types of proces-

sors together [101]. Provenance is collected by provenance management systems,

such as Karma [102]. Karma collects provenance through software sensors embed-
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ded in the services being executed. These services are represented as processors in

workflows, operating independently of the workflow management system used. The

information collected can be mined to produce workflow execution traces that identify

producer/consumer relationships for data exchange by these services.

When speaking of provenance in a case-based reasoning context, which most of

the next chapter will entail, it is important to distinguish data provenance (also

called external provenance) from case provenance (also called internal provenance)

[62]. The latter refers to the derivation history of a case within a case base, tracking

its development through each iteration of the CBR cycle. A case may be derived in

this way through retrieval of a parent case, adaptation to solve a query problem, and

retention of the result as a new case into the case-base. This contrasts with data

provenance, which refers to any data artifact “in the wild” and is not constrained to

a case-base within a case-based reasoning system. From this point forward, the term

provenance should be taken to mean only data provenance and not case provenance.

Specifically, we will be speaking only of provenance in the e-Science context: that

which is collected from the execution of scientific workflows.

2.7.2 Differentiating Provenance from Workflows

Both provenance and workflows can be a source of knowledge about scientific pro-

cesses, but should not be confused with one another. A workflow is a plan for carrying

out a scientific experiment and developing data artifacts which comprise the results

of the experiment. Workflows can adapt to changing operation states by conditional

invocation of processors. Control structure within workflows can also include condi-

43



tional early termination of the workflow and loop constructs. Additionally, failures

and other such phenomena during the execution of a workflow may alter the expected

sequence of events or the expected final product. In short, the execution of a work-

flow is not static, nor even deterministic, and many parts of a workflow may never be

executed.

In contrast, provenance is a record of what occured during the execution of a

workflow [32]. A provenance record does not include any reference to the portions of

workflows which were not executed, and in fact doesn’t contain explicit records of the

control structure of the original workflow (though in many cases such control structure

can be inferred from examination of multiple executions of the same workflow [126]).

Provenance records also contain information which workflows do not. As mentioned,

the exact sequence of actions taken by a workflow may not always be predictable,

but a provenance record indicates exactly what did happen. The information in a

workflow is more of a hypothetical specification of what could happen. Additionally,

provenance records reference data artifacts produced throughout the execution of

the workflow, and additionally at its conclusion. Workflows may only reference data

existing before the execution of the workflow.

2.7.3 Representing Provenance with SAI

Phala consumes provenance in the Open Provenance Model (OPM) format. OPM

was developed to enable inter-operability between many systems which either record

or consume provenance. OPM was developed as a joint venture between many re-

searchers in the e-Science field through a series of “provenance challenge” workshops.
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The website for OPM, http://openprovenance.org/, links to the most recent specifi-

cation (1.1 as of this writing) as well as a number of applications that work with the

OPM standard.

OPM graphs store information about artifacts (data) and processors, among other

entities (such as users). Edges between these entities define relationships, such as a

processor producing an artifact. When mining OPM, Phala transforms these prove-

nance graphs into traces of data flow between services, replacing artifacts with edges

that directly connect processors.

2.7.4 Mining Provenance

Data flow between services within an instance of workflow execution can be derived

from provenance traces. At times, problems may arise in the recording of provenance

data, particularly in cases in which semi-structured workflows are employed, causing

gaps in the provenance record which reduce the amount of useful information that can

be extracted from the data flow record by a tool seeking to assist authors of scientific

workflows. Though incomplete records are still useful to a tool like Phala, research is

currently underway to develop automated systems capable of correcting incomplete

provenance traces [21].

Given this limitation, it may seem reasonable to instead mine workflows, as they

also model data flow between services and would be similarly useful as a source of

data for mining (in fact, a collection of workflows was mined to generate data for

the evaluation in Chapter 5); however, this dissertation focuses on the importance of

mining provenance because cyberinfrastructures using provenance management sys-
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tems will reliably have this data readily available, without direct user intervention

through a workflow publishing process. Workflows can vary greatly in specification

language used and support for various control and data flow patterns [113], but ex-

ecution traces mined from provenance afford a simplified view of the execution of a

workflow, while providing sufficient detail to support the task of assisting workflow

authors. Provenance can be communicated in a standard format for inter-operability

through OPM, a goal that workflow technologies are significantly less likely to reach,

given the many varied and incompatible formats available.
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Chapter 3

Case-Based Generation of Edit

Recommendations

3.1 Introduction

Chapter 2 explored the problem of recommending in a synthesis task by examining

the problem of assisting authors of scientific workflows. This chapter details a specific

solution to this problem, which meets the goal of providing knowledge-light assistance

to users through application of case-based reasoning.

Traditionally, the case-based reasoning cycle is broken into four steps: retrieval,

reuse, revision, and retention; however, this framework does more to identify problems

to be solved by the CBR application than it does to prescribe a general solution [1].

Each step in this cycle presents unique challenges to CBR researchers aiming to apply

CBR to the constraints of a specific problem domain, and user assistance in synthesis

tasks is no different. This chapter provides an interpretation of each of these subtasks
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(apart from retrieval, which is discussed in detail in chapter 4) that meets the needs of

assistance in synthesis tasks and is exemplified through the implementation of Phala

and its use in the scientific workflow domain.

Just as chapter 2 identified how the structured nature of problems in synthesis

tasks complicate the structure of solutions, this chapter will explore how representa-

tion of complete cases is additionally complicated in synthesis tasks. This chapter will

introduce a perspective on case representations, dubbed gestalt cases, in which there

is no clear delineation between typical case components, such as problems and solu-

tions. Rather, gestalt cases will represent not only a complete reasoning episode but

also the completion of the overall design process, embodying the many sub-problems

an intelligent assistant would be faced with throughout assisting with the design of

a structure. The appeal of such a case representation lies in the reduced size of the

case-base (an important consideration for retrieval of structured cases, as studied in

chapter 4) and also the ease in mining cases from existing databases of completed

designs. Mining gestalt cases comprises the implementation of the retention phase

of the CBR process for Phala, in that Phala’s cases are derived from records of the

execution of completed workflows, called provenance.

This chapter additionally delves into how a CBR system should approach reuse for

case-based recommendation in a synthesis task. In order to do so, a new concept will

be introduced: extraction. Since gestalt cases contain a multitude of potential prob-

lems and solutions, the CBR application must extract these features, select among

them, and adapt them for optimal effectiveness before presenting them to the user.

Phala’s mixed-initiative approach taken to assistance also indicates the user’s

role in the revision process. Phala offers assistance to its users (domain experts),
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allowing them to have the final say in how their workflows are developed. Thus,

the users themselves revise the recommendations presented by Phala by choosing

whether to incorporate them. Provenance recorded from the execution of these new

workflows then completes the cycle by allowing Phala to recapture and retain new

cases containing these revisions through the mining of provenance.

In total, these new concepts present a novel perspective of the CBR cycle, which

aligns with the requirements of recommending in a synthesis task explored in Chap-

ter 2. This chapter begins by introducing the implications for knowledge-light and

knowledge-heavy approaches to support. Next, gestalt cases are discussed in the

context of provenance from scientific workflow execution. The next section further

explores the scientific workflow domain by defining use-cases and recommendation

types for Phala, which is followed up by the next section that discusses how to ex-

tract such recommendations from gestalt cases. The remaining sections explore the

adaptation problem in CBR and how hybrid approaches can be effective in solving

this problem for the recommendation task. Finally, the Hybrid Recommendation

Framework (HRF) designed through this dissertation to address the needs of adap-

tation of recommendations for assisting in synthesis tasks is discussed through its

integration with Phala.
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3.2 Case-Based Reasoning and the Knowledge

Acquisition Bottleneck

This section will explore the role of general knowledge (including ontologies and other

manifestations of rules) for many of the reasoning systems discussed in section 2.5

and the relative advantages and constraints brought forth by varying degrees of re-

liance on such knowledge. The motivation for pursuing a knowledge-light (also called

knowledge-poor) model, one in which relatively little general knowledge is leveraged,

will be discussed as well as the relevance of this approach to the task of assisting

scientists in constructing workflows. In particular, motivation will be provided for

using a case-based approach, which replaces much of the requirements for general

knowledge with episodic knowledge, which can be developed more easily by mining

knowledge sources such as provenance records.

3.2.0.1 Knowledge-Intensive Intelligent Assistance

Ontologies and rule-based reasoning are leveraged by many intelligent assistants as a

means of injecting expertise on the part of the assistant. These rules and definitions

can be used by the assistant to validate choices made by the user and also to perform

the duties of the user (in terms of generating content).

In the e-Science domain, the CAT tool, mentioned in section 2.5.2.3, relies on

a sophisticated domain theory to perform its validation. Domain-specific ontologies

are leveraged by its planning framework to form recommendations to correct errors,

mistakes, and omissions. The Pegasus/Wings tools, mentioned in section 2.5.2.1,

leverage knowledge-intensive service annotations to support their planning approach
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to workflow generation. Each of these tools rely on domain ontologies being built

before the tools are applied to a new domain.

3.2.0.2 Knowledge-Light Assistance

In section 2.5.2.2, a perspective on the desires of scientists authoring workflows, which

identified a desire for expert users to retain initiative in the authorship process, was

shared by Goble et al. However, part of the problem identified in that quote was in

reference to “fancy knowledge-based descriptive techniques”. Frustration from this

frequently-used technique in intelligent assistance is often due to what is called the

knowledge acquisition bottleneck. Developing a sophisticated ontology of rules and

domain-specific knowledge is a task that is much more difficult than one may realize,

since problems often arise as the knowledge base is scaled-up to larger and more

substantial domains [63]. Xiang et al. note that small domains used for testing may

not illuminate the true difficulty in developing consistent ontologies on a larger scale

[121]. As the success of wings for SCEC scientists has demonstrated [36], knowledge-

rich service annotations can be very effective [72]. However, experts are required

to develop ontologies and annotate services for this process to work. Additionally,

agreement on an ontology is crucial for interoperability of a system. Special cases

become a scourge for ontology developers, and maintaining a knowledge base as new

services are developed, old services are changed or updated, or new domains are

sought may require more work than what is gained by using the developed ontology.

If assistance can be provided while side-stepping the knowledge acquisition process,

a great burden will be lifted from the experts seeking to use such a system.

Case-based reasoning can provide a means for significantly mitigating the knowl-
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edge acquisition bottleneck. Reasoning from cases is a natural approach to addressing

exceptional circumstances, unlike the brittle, inter-dependent constraints of a rule-

based system. As seen with the myExperiment usage scenario, workflow authors

often seek similar past works to re-purpose when designing a new workflow. From a

case-based perspective, prior designs can be seen as cases in a CBR cycle. Similar

cases are retrieved and adapted to solve problems with a partially-designed structure.

When the structure is complete, it can be added to the case-base for future use in

problem solving episodes.

While reliance on cases rather than general knowledge eases the burden of knowl-

edge acquisition, it does not entirely eliminate it. Developing cases themselves can be

difficult, though this process holds an advantage over development of general knowl-

edge in that cases can be developed independently, since the definition of one case

does not directly depend on that of any others. Additionally, case-mining can take the

place of case authorship, in which cases are automatically created from available data

sources. Cases are easier to automatically mine from data sources, since data being

mined are often already segmented along the lines of cases, whereas rules must be

inferred from generalizations of the data, requiring a more thorough analysis. Tech-

niques for case mining will be explored for scientific workflow authorship assistance

in Chapter 4.

Another constraint is that the adaptation phase in case-based reasoning often

relies on a significant general knowledge base, or a case-based reasoner may be a

component within a hybrid system that relies on a sophisticated ontology (such as

CBRFlow, described at the end of this section). However, efforts have been made

to mitigate the knowledge engineering burden in these stages as well. Adaptation
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Knowledge-light Knowledge-Heavy

myExperiment GTrans

Phala Wings

DWMSS CAT

CODAW KANAL

CBRFlow

Table 3.1: Knowledge-light and knowledge-heavy workflow assistants

knowledge can also be mined, in particular from the case-base, though other sources

may be used. This process will be discussed in section 3.6.

The Phala system was developed specifically to explore the extent of contribu-

tions a knowledge-light system can bring to authorship assistance, but is also capable

of being augmented to incorporate knowledge-heavy techniques. Phala realizes the

knowledge-light goal through its application of case-based reasoning. It does not rely

on domain theories, which must be constructed on a domain by domain basis. In-

stead, Phala relies on mining its knowledge from sources that are aggregated by users

without any need for direct intervention. This also furthers Goble et al’s ideals on

assisting scientific workflow authors.

Phala’s knowledge requirements are noted in Table 3.1 alongside those of other

systems discussed in this chapter. Bold-face projects rely moderately on both cat-

egories of knowledge, but fall mostly within their specified category. Phala is not

the only such system that is knowledge-light, nor is it the only e-Science system in

Figure 2.5 to use a recommendation-based approach, but to the best of the author’s

knowledge it is currently the only system of authorship assistance of any kind to have
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both of these qualities.

3.2.1 Other Relevant Work in Case-Based Workflow Assis-

tance

The goal of this dissertation is not only to explore a solution to the problem of as-

sisting authors of scientific workflows, but also to use this example to provide an

existential proof that case-based knowledge-light recommendation is a tenable solu-

tion for assistance for some synthesis tasks. Thus, related work approaching other

synthesis tasks will be evaluated alongside the previously mentioned e-Science work.

This sub-section will examine such projects.

The first is a mixed-initiative case-based planner called MI-CBP developed by

Veloso et al. This project was developed in response to perceived short-comings of a

user-driven planner for deployment of military troops called ForMAT. Veloso et al.

identified that novice users of ForMAT were not able to produce expert-quality plans

with the support of ForMAT alone. MI-CBP combines ForMAT with the Prodigy

planner in a mixed-initiative environment that keeps the user in the loop and in

control of adaptations made by Prodigy to plans retrieved by ForMAT.

Madhusudan and Zhao have investigated case-based support for workflow mod-

eling in the business process domain [66]. Their system, CODAW, utilizes workflow

templates of varying degrees of generality as well as concrete cases of previously de-

fined workflows. Their work includes various indexing techniques and graph-based

case retrieval. Their system also supports workflow composition through generative

planning.
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Beyond the domain of both e-Science and authorship assistance, Minor et al. have

developed a system for case-based agile workflow support in the business process do-

main [77, 76]. Rather than supporting authorship of new workflows, their system

supports updating workflows to work within anomalous or changing execution re-

quirements and circumstances. In their system, cases represent a workflow revision

as a pair of two workflows: one representing the workflow before the revision and

the other representing the revised workflow. Along with contextual information and

domain knowledge, these cases are retrieved in order to determine how a similar

workflow can be altered.

Predating Minor et al’s work is CBRFlow: a project developed by Weber et al.

that also supports modification of workflows (rather than authorship from scratch)

within the business process domain [118]. CBRFlow is a hybrid CBR system that

relies on rule-based modification of workflows to meet execution-time conditions and

exceptions and incorporates a case-based component used only when the rule-based

component fails. Cases are developed by users through annotation of modifications

made to workflows to adapt to anomalous and exceptional events during execution.

Another project, Ghostwriter, seeks to assist authors of product reviews by mak-

ing recommendations for their content [116]. Ghostwriter works with Gestalt cases,

in that the cases used are complete reviews. Features are manually extracted from

cases for Ghostwriter to use at the time they are incorporated with the case-base.

These features are global features representing content within the review and are used

to determine what additional content a partially completed feature may require. The

main differences between this process and Phala’s is that Ghostwriter’s recommen-

dations lack context and are only applicable for altering global features of the case,
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rather than the local features that Phala focuses on.

3.3 Gestalt Cases

Case-based reasoning systems are queried with a problem description in order to

generate a solution. Early CBR researchers identified three major components of

a case: a problem description, a solution, and an outcome [57]. A case’s problem

description is matched with that of the query in order to determine the relevance

of the case for problem solving. The outcome of the case can then be analyzed to

determine how to adapt the case’s solution to the query problem.

When seeking to assist a synthesis task, the lines delineating a problem descrip-

tion, a solution, and an outcome are not as well defined. For example, in the domain

of workflow development, the problem can be seen as a specification of the workflow

to be developed, and the solution would be the workflow itself. However, this rep-

resentation does not fit the requirements of the mixed-initiative model set forth for

author assistance in Chapter 2. Authors seeking support throughout the authorship

process are faced with many smaller-scale sub-problems. It is these smaller problems

that tools like Phala seek to provide assistance for, and thus the representation of a

case must shift to accommodate CBR processes that address these tasks.

Another relevant approach to representing cases for this task comes from Minor

et al’s work on agile workflows [77]. In this work, the problem description for a case

consisted of a complete workflow, and the solution was a modification to be made to

that workflow. These cases are retrieved for queries consisting of a similar workflow

and used to adapt the workflow to changing runtime circumstances. This approach
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can fit the composite case representation model of problem descriptions and solutions

by having partially completed workflows as problem descriptions and edit recommen-

dations as solutions. Such cases would represent the author’s perspective of one of the

many sub-problems s/he is faced with throughout the authorship process. However,

when the case modeling task is broadened beyond Minor et al.’s domain of completed

workflows to the domain of editing partially completed workflows, these cases may

become too specific to be useful. There are an exponential number of intermediate

states of an incomplete structure, relative to its size, and a case-base would have to be

substantial to provide cases that are similar enough to any such intermediate struc-

ture to provide an adaptable solution useful for problem solving. Alternatively, if a

smaller case-base is used with such a representation, a heavier burden will be placed

on adaptation, inhibiting the system’s effort to achieve knowledge-light assistance.

Authors of scientific workflows naturally seek prior works from which to gain

inspiration or to re-purpose, emulating a case-based process. The myExperiment

website was produced to enable such behavior [38]. In this sense, the prior works

are the cases. In fact, several case-based systems built for this and other domains

employ this strategy. One example is the ForMAT system in the military deployment

planning domain [79]. Additionally the growing research area of trace-based reasoning

involves the use of traces of user activity as a datasource for CBR or related processes.

Traces often form the basis for case-mining, just as provenance is used by Phala.

An important distinction of this perspective on case representation is that there is

no longer a clear separation of case components, nor do cases reflect a specific problem

description. Rather, as artifacts of a complete authorship episode, they represent the

problem descriptions, solutions, and outcomes of many of the smaller problems faced
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during the authorship process. Such cases will be refereed to as gestalt cases.

Since gestalt cases do not contain neatly delineated problem descriptions and

solutions, these must be extracted from the cases at the time the case is used. This

is similar to the process a workflow author goes through when scanning workflows on

myExperiment for portions to re-purpose. A case-based reasoner, such as Phala, can

complete this task automatically for the user.

A similar approach is that taken by the CELIA framework developed by Redmond

[92]. This framework assists in learning problem solving processes by predicting single

steps in the process. These steps are extracted from “case snippets”, which embody

a more precise problem-solving context than the overall case does, in effect making

these gestalt cases.

Assessing problems for recommendation within a query in a synthesis task mirrors

the task of locating solutions within a gestalt case. These subtasks can be performed

simultaneously once the query is mapped on to the case during recommendation

extraction. This relationship is illustrated in Figure 3.3. The extraction process aligns

complex queries with gestalt cases to identify potential problems and solutions. This

process is described in detail later in this chapter in section 3.5.

3.3.1 Mining Gestalt Cases from Provenance

Using gestalt cases carries another benefit: the relative ease in which they can be

mined. Gestalt cases are raw, unprocessed accounts of a cases that postpone solution

extraction to the reuse phase. In the scientific workflow domain, gestalt cases occur

naturally as provenance records, which record the derivation of data products gener-
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Figure 3.1: A comparison of similarity assessment with traditional and gestalt cases

ated from the execution of workflows and can be easily mined in a knowledge-poor

environment to form a versatile case-base for user assistance.

3.4 Recommendations for Workflow Edits

Recommendation in synthesis tasks has been discussed in an abstract sense in Chapter

2. In this section, practical aspects of recommendation will be thoroughly examined

in the context of assisting authors of scientific workflows. Since Phala only makes

recommendations that affect the production, consumption, and flow of data within a
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workflow, recommendations for adding control structures will not be discussed.

3.4.1 Use Cases

There may be many different reasons why an author may seek assistance when de-

veloping a structure. In this subsection, two main categories will be examined for

workflow authors using Phala.

3.4.1.1 Extension

Workflow authors seek assistance for quickly finding services for inclusion in partially

authored workflows. The author may have a service in mind and may simply be

looking for the name or a means of connecting the service, or the author may know

generally what type of service s/he is looking for but may wish to see options or

versions that have been used in similar situations. In these cases, Phala can offer

service addition recommendations that allow the user to confirm the proper selection

of the service they are looking for.

A similar scenario in which a user may seek a service addition recommendation is

when it is known that some conversion must take place between data output by one

service and consumed by another. In such situations, shim services are sought, which

convert between the expected data formats [6]. These services are frequently needed

by scientific workflow authors who may not know which service is necessary for the

process. Phala’s assistance can be particularly effective in serving these needs.
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3.4.1.2 Refinement

Many workflow assistants mentioned in Chapter 2 assist users by offering recom-

mendations for repairing what they see as errors within the workflow, particularly

incorrectly typed data consumed by a service. Phala can also intervene in a simi-

lar manner by issuing any of the recommendation types other than service addition

recommendations. Phala can also recommend service replacements in cases where

another service may be a better fit for the workflow than the service chosen by the

author.

3.4.2 Types of Recommendations

Phala offers several types of recommendations, each of which address unique cate-

gories of problems that arise throughout the processes of authoring a workflow. This

sub-section provides a precise definition of each of these recommendation categories.

3.4.2.1 Workflow Preliminaries

A workflow specifies the coordination of several sub-processes (called processors) that

work in concert to achieve an overall goal. In the e-Science context, workflows rep-

resent experiments, the processors of which consist of web services, local scripts, or

other computational resources that consume and produce data products. These data

products are traced through edges in the workflow, which denote the transfer of a

data-product from one processor to another. Workflows also denote constraints on the

order involved in invoking processors and additionally provide a means for higher-level

control, including conditional execution and looping.
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Figure 4.1 depicts a SAI representation of a workflow from the myExperiment

website [38]. This workflow is used to report gene alignment information, retrieved

from the Ensembl gene database, for three different species.1 Each of the pink rect-

angles in the workflow represent processors, and the yellow and black edges between

them represent the flow of data between the processors.

3.4.2.2 Service Addition Recommendations

This is a recommendation to add an additional processor to the workflow with a

specified service. The problem description portion of these recommendations consists

of a single existing processor within the query workflow with an optional output port

also specified. The solution component consists of the service for the new processor

and optionally an input port. The converse of such recommendations will also be

possible, where the problem description may include an input port and the solution

may include an output port.

3.4.2.3 Edge Addition Recommendations

These recommendations connect two existing processors within the query workflow.

Delineating the problem description within these recommendations is not straight-

forward. It could encompass both of the processors to be joined and potentially also

the associated input and output ports; however, this would leave nothing left for the

solution portion of the recommendation. It should not be unnatural or awkward to

consider a recommendation without a solution; indeed, some problems have only one

1This workflow can be viewed from the myExperiment website at the following URL:

http://www.myexperiment.org/workflows/158.html
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solution which can be directly inferred from the problem description. For example,

indicating to someone that their shoes are untied carries the direct implication that

they should tie them. However, it is important that the problem description for these

recommendations matches that of other recommendations that may be alternative

solutions to the same problem in the workflow. For instance, some workflows contain

multiple instances of a particular service. If a problem with the workflow is defined

such that there is an output of a processor (processor A) that should be consumed by

some other processor, and another processor (processor B), which consumes the type

of data processor A produces, already exists in the query workflow, it may not be

clear whether to recommend adding a new processor duplicating the service in pro-

cessor B or to simply recommend adding an edge between the two existing services.

For this reason, the problem description will consist of only one of the two processors

and an input or output port, while the solution will contain the other processor and

the opposite type of port to that of the problem description.

3.4.2.4 Service Deletion Recommendations

If the presence of a particular service represents an error, it may not be clear whether

it should be replaced or deleted. For reasons similar to those for edge addition rec-

ommendations, the problem description will be slightly more abstract. Problem de-

scriptions will consist of the processor within the query workflow to be deleted. A

solution, in this case, is simply the directive to delete the processor from the workflow;

that is, service deletion recommendations are a more concrete example of a complete

recommendation without a solution description.
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3.4.2.5 Edge Deletion Recommendations

Rather than deleting an entire processor, it may be that only a single edge represents

an error or another sort of problem within the workflow. In this scenario, an edge

deletion recommendation may be issued. Such recommendations will have similar

problem descriptions to the edge addition recommendation, but solutions may further

indicate which edge is to be deleted.

3.4.2.6 Service Replacement Recommendations

If a newer or better version of a service is available for a processor it may be prudent to

recommend replacing the service. However, the user may be confused when presented

with a service deletion recommendation, not realizing that the recommender will

eventually also recommend adding a new processor, along with several edges. In

order to better communicate the goals of the system, it would be better to issue

a single recommendation identifying that the only change to be made is switching

services within a processor. However, it is worth noting that some edges may become

invalidated after integration of such a recommendation if their ports no longer exist

with the new service.

3.5 Extracting Recommendations from Provenance

As mentioned earlier in the chapter, extraction is the process through which recom-

mendations are drawn out of a gestalt case. Given that gestalt cases have no discretely

segmented problem description, such a process is necessary for applying the case to

an author assistance scenario. This section explores the extraction process in detail.
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3.5.1 Mapping to Discover Differences

The process of extraction relies on mapping as many components of a query to a

retrieved case as possible in order to discover differences between the case and the

query. Once a mapping is developed, unmapped elements of the retrieved case that are

associated with mapped elements of the retrieved case are interpreted as differences

and can be presented as recommendations. For instance, if node B1 is linked to node

A1 in the case, and node A1 is mapped to node A2 in the query, a recommendation

to create a new node similar to B1 and link it to A2 may be made.

3.5.2 Query Formation

At any point during the construction of a workflow, the current state of the workflow

can be considered a query to the Phala plug-in. Phala will regularly search prior cases

for relevant information and, if successful, return a collection of recommendations for

changes. These queries are performed automatically every time the user makes a

change to the workflow. If results are found, they are displayed as soon as they

are received. No results are displayed if Phala determines that the quality of the

recommendations is too low (based on a confidence threshold). The SAI system

discussed in Chapter 3 assures that recommendations will be generated by Phala in a

reasonable time frame, while maximizing the quality of the recommendations within

the time available.
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Figure 3.2: Phala’s re-use cycle

3.5.3 Recapture

The final phase of a traditional case-based reasoning cycle is retention. The query

to the reasoner is committed to memory, as is the solution provided by the reasoner

and the outcome, which together form a complete case. After a reasoning episode

using extraction from a gestalt case, the current state of the structure developed by

the user may not yet be complete and thus not represent a complete case. Therefore,

rather than having retention be part of the reasoning cycle for a single reasoning

episode, retention must be deferred until the structure being developed by the user

is complete. Retention is approached less frequently under these circumstances than

other steps.

In the e-Science domain, Phala’s CBR process supports the development of a work-

flow by a human. However, the final result of executing the workflow is a provenance
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trace, which will be collected from the execution of the workflow. This provenance

presents another mining opportunity for developing new cases. Mining cases from

workflows authored with assistance by the case-based reasoner is called recapture,

and it replaces the retention phase in Phala’s reasoning cycle. This cycle is illus-

trated as follows:

• The user creates a new workflow, incorporating recommendations made by

Phala.

• The user executes the workflow, capturing provenance information within a

provenance database.

• Once the execution of the workflow is complete, the control decisions made

during the execution are reflected in the recorded provenance, resulting in a

more specific case on the execution path taken than that of the original workflow.

• A new case is then captured through provenance mining for future use in cre-

ating new workflows.

This process is further illustrated in Figure 3.2. Note that the orange lines trace

the steps in the recapture cycle, while the red lines outline a single reasoning episode.

3.6 The Role of Adaptation

Determining how to automate case adaptation is a classic problem for case-based

reasoning. Numerous adaptation methods have been developed, requiring varying

amounts of knowledge (see [67] for an overview). The use of knowledge light ap-

proaches (e.g., [120]) facilitates the development of adaptation systems but may not
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capture important aspects of the domain; knowledge-rich approaches are powerful,

but the needed knowledge may be expensive to encode and may have gaps if the

knowledge engineer fails to correctly anticipate future adaptation problems.

Hanney et al. classified many CBR systems by the type of adaptations performed,

including whether a system performed any adaptation at all [41]. They discovered

that adaptation was particularly important in CBR systems involved in a design

task. Indeed, adaptation is important in Phala’s case-based assistance framework,

since otherwise, Phala will slowly transform the query into the most similar case. If

this were desired, then Phala’s interactive recommendation-based assistance would be

unnecessary, and a simple similarity-based case retrieval would be sufficient to solve

the user’s problem. In fact, authors would be using Phala to create novel workflows,

which may incorporate some elements of Phala’s stored cases but would be better

served by a concerted effort to adapt recommendations extracted from similar cases

to the workflow being developed.

3.6.1 Adaptation in Inexact CBR

Recommendation systems issue recommendations instead of commands to the user

because the system is deferring to the user’s better judgement. Implicitly, the sys-

tem concedes the possibility that its recommendations may either be incorrect or not

what the user optimally preferred. Because of this, it is impossible for a case-based

recommender to guarantee that its adaptation procedure generates perfect recom-

mendations. In this case, adaptation takes on a slightly different role: improving

recommendations rather than perfecting them. However, adaptation is still very im-
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portant in inexact CBR for the same reasons it is important in exact CBR. In both

exact and inexact CBR, adaptation is required to modify semi-related solutions to

meet the specific requirements of the query problem, given that the query is not an

exact match with the problem description of the retrieved case.

3.6.2 Designing a Framework for Developing Hybrid Recom-

menders for Synthesis Tasks

When trying to solve a problem, it is a common practice to seek the advice of others

as to what decision to make next. One may seek advice from a single trusted col-

league, but commonly one seeks advice from multiple sources, weighing the advice

from each before making a decision [91]. This behavior is mimicked by ensemble and

hybrid methods for machine learning which combine outputs from multiple indepen-

dent components to arrive at conclusions that can be more accurate and reliable than

those attained from any one member of the ensemble. This section briefly introduces

the concepts behind hybrid and ensemble systems and explains how hybrids can be

used for adaptation purposes in synthesis tasks.

3.7 Ensemble Techniques for Recommender Sys-

tems

Ensemble methods work well with analytical recommendation, which can be viewed

as a classification task. Recommendations in an analytical task are flat values that are

easily compared and combined. Ensemble classifiers commonly employ voting meth-
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ods to negotiate a final classification from among those generated by each constituent

recommender [70, 27]. For instance, if two constituent recommenders recommend the

user purchase ”Moby Dick”, and a third recommends ”Gone with the Wind”, the en-

semble will recommend ”Moby Dick”. Depending on the voting methodology applied,

constituent recommenders may weight their votes using a confidence estimate.

Classification systems have been studied extensively through ensemble methods,

and though efforts have also been made to study clustering and regression ensembles,

some have suggested wider application of ensemble methods [97]. Combining recom-

mendations for synthesis tasks complicates the task of combining recommendations,

since doing so involves negotiating the two common recommendation components

simultaneously among constituent recommenders. Methods for performing such com-

binations weighted by confidence estimates are discussed later in this chapter.

3.7.1 Hybrids vs Ensembles

Most studies of ensemble methods have focused on varying the training set, feature set,

or random values, initializing a single inducer to produce a diverse set of classifiers.

An example would be to create a neural network ensemble by varying the initial

random weights before training. Even though there is no change in the inductive bias

for each component of the ensemble, ensemble methods can increase the accuracy or

diversify the possible decision boundaries learnable by a particular technique.

This section elaborates on a different sort of ensemble technique, what is some-

times called hybridization, in order to support synthesis tasks. The principle dif-

ference between a hybrid approach and an ensemble approach is that an ensemble
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is composed of several instances of the same technique, each of which vary only in

settings, training set used, or other parameters [97]. In contrast, hybrid systems may

employ vastly different reasoning techniques, such as case-based reasoning and neural

networks. Techniques used for ensembling are relevant for hybrid frameworks since

the task remains mostly the same: combine results from several constituents and

present them to the user.

Synthesis tasks are complex, often involving a disparate collection of goals and

potential problems. Such tasks may also involve several sources of knowledge, such

as user-generated content (tags, ratings, etc.), prior completed structures, prior inter-

action episodes, expert knowledge, etc. One could produce a complex system aimed

at encompassing strategies addressing every conceivable aspect of the task, but there

is value in involving multiple techniques, which may either specialize in incorporat-

ing knowledge, such as a case-based reasoner whose cases record episodic knowledge,

or specialize in addressing a particular domain-specific issue, such as a rule-based

reasoner. An ensemble framework simplifies the design of such a hybrid system and

allows for easy ablation studies and analyses of refinements to components. Addi-

tionally, ensemble systems can learn weights for individual components, normalizing

the support offered from potentially unrelated rules or techniques.

3.7.2 CBR Hybridization and Adaptation

Any CBR system using adaptation can be thought of as a hybrid system. Adaptation

is performed as an important component of the reuse process by adapting the solution

retrieved from the case-base to fit the specific problem constraints of the query. This
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process is carried out by an independent component of the system through various

means potentially involving application of engineered domain knowledge or mining

the case-base.

Given the potential trade-offs of different adaptation methods, an interesting al-

ternative to using a single adaptation method for a CBR system is to instead en-

dow the system with a range of methods—potentially including a standard mix of

knowledge-light methods with any available knowledge-rich methods—for the system

to automatically assess the set of recommendations and exploit whichever it expects

to be most useful, given the task context and the relationships between the current

recommendations. Not only is the CBR system hybridized by the inclusion of an

adaptation procedure, but through this perspective the adaptation procedure itself is

also a hybrid.

Combining multiple adaptation methods relates to previous work on learning mul-

tiple local adaptation methods [88], but the approach presented here contrasts by

considering multiple adaptation methods for use in each problem. The approach is

in the spirit of the ensemble techniques that have been applied to CBR (e.g., [90]),

but it emphasizes combining different types of methods that may not individually be

capable of generating solutions for the entire space. This enables the system’s starting

set of adaptation methods to be chosen not for their global characteristics, but for

the degree to which the methods complement each other and fill specific knowledge

gaps in the system.
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3.7.3 Highly Procedural Adaptation Rules

Adaptation often involves the application of rules that address procedural knowledge

about the task being performed, which is not captured in the cases themselves. Proce-

dural knowledge complements factual knowledge [14], the latter of which is provided

in Phala by gestalt cases. Procedural knowledge is an important part of interpreting

and reusing the knowledge stored in gestalt cases. For instance, in the workflow do-

main, the fact that an unused input port is more indicative of an error than an unused

output port for a processor is not apparent from the analysis of a single case. This

procedural knowledge must be encoded and included within the adaptation phase to

more properly judge how the recommendations extracted from the case should be

altered before being presented to the user.

In Phala, procedural knowledge is encoded in what are called Highly Procedural

Adaptation Rules (HPAR’s). These rules are actually programmatic components of

the hybrid adaptation framework for Phala. The advantage of using these components

within a hybrid framework, rather than hard-coding a means of applying these rules,

is three-fold. First, the body of research regarding hybridization can be leveraged

to ensure each HPAR is contributing optimally to the adaptation process. Second,

encapsulating each rule makes it easy to perform ablation studies to determine the

value (or lack thereof) of employing the rule in the system. Lastly, HPAR’s can be

written with varying degrees of domain-dependence. For instance, the rule regarding

workflow inputs that was mentioned earlier may apply equally to various workflow

domains and thus can be re-used by other systems employing the same framework.

The HPAR’s associated with Phala are explained in Chapter 5.
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HPAR’s are used within Phala to support the goal of achieving knowledge-light

adaptation. The rules used by Phala are relatively domain independent, and can

be applied to many workflow domains. However, the hybrid framework also affords

inclusion of knowledge-rich recommender components, which may complement the

strengths of the knowledge-light components by providing more support in situations

for which no relevant prior case exists, and increasing Phala’s performance within the

constraints of a more limited domain. In this sense, by using the hybrid framework,

Phala allows engineering and inclusion of ontological knowledge which can support,

rather than replace, its existing knowledge base to increase the value of the recom-

mendations it produces.

3.7.4 Framework Requirements

This subsection details requirements of a framework seeking to facilitate hybridiza-

tion. These requirements identify unique issues to this task that may not be present

in single-component systems or in ensemble systems. Each of these requirements are

additionally addressed in the following section describing the implementation of the

Hybrid Recommendation Framework.

3.7.4.1 Combining Recommendations

Recommendations that partially or fully overlap may be combined to produce con-

sistent and less confusing advice for the user. Likewise, if identical recommendations

are generated from multiple recommenders, the overall confidence that the system

has in those recommendations should reflect the individual confidence values, requir-

ing combination methods. The combination problem also presents requirements such
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as a method for dealing with the confidence of mutually exclusive recommendations

and how contra-recommendations (discussed later in this section) should be combined

with other recommendations.

3.7.4.2 Facilitation of Specialization

In Chapter 2 we identified two separate tasks for a recommender for a synthesis task

to address: recommending problems and solutions. Components of the framework

can specialize in one or the other. For instance, analyzing the frequency of re-used

words can identify some potential word-replacement problems, while a thesaurus can

identify potential word-replacement solutions. The framework must provide a clear

separation of these tasks and facilitate communication between such components.

If recommendations are to be combined, it is not necessary that every recommen-

dation be complete. Some recommendations with abstract problem definitions may

lend support to recommendations with answerable problems. These recommendations

are called problem recommendations and need not carry any solution at all. They

may not necessarily be applicable for the user, but they may help a hybrid system to

develop a more accurately ordered set of recommendations.

3.7.4.3 Confidence Estimates

Components tasked with identifying problems can err both in falsely identifying a non-

problem (false-positive), or by failing to identify an actual, existing problem (false-

negative). Adding additional components will reduce the number of false-negatives

(increase coverage) but will also increase the number of false-positives, potentially

at a greater rate. Adding components to the ensemble should improve performance
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rather than degrade it, therefore an additional requirement is considered: recommen-

dations must include a confidence estimate. By ranking recommendations according

to confidence estimate, the user can selectively view only the most viable problems

and avoid scanning through high numbers of false-positives. The framework is then

also responsible for regression over confidence estimates generated by each component

to insure comparability and proper weighting.

3.7.4.4 Normalization

There is no universal unit signifying degrees of confidence. Thus, confidence estimates

produced by independent components will not necessarily be aligned with one another.

This poses problems for combining recommendations since the combined confidence

may be skewed by the different interpretations of the values held by each component.

One effort to address this problem is to first ensure there is a maximum and min-

imum confidence estimate, which allows confidence values to be normalized to the [0,

1] interval. This is an important step to developing translatable confidence estimates

but does not yet account for the fact that interpretations of confidence may be non-

linear. Confidence estimates must be evaluated alongside the measurable results they

estimate, such as accuracy or relevance. Once a correlation can be created between

estimates and actual judgements, regression can be performed to produce a more

translatable confidence estimate useful for comparison during the recommendation

combination process.
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3.7.4.5 Contra-recommendation

Another requirement reducing false-positives is allowing components to recommend

against a problem or solution. Allowing contra-recommendation increases the range

of strategies that can be incorporated into an ensemble, provides for further decom-

position of complex strategies, and increases the benefit of confidence thresholding

by reducing the confidence in likely erroneous recommendations. One important con-

cern is the complication this adds to combining confidence estimates, though we have

begun to address this issue [61].

3.8 The Hybrid Recommendation Framework (HRF)

Components

The Hybrid Recommendation Framework was developed to address each of these

requirements in a domain-independent manner. HRF provides the necessary tools

for implementing a hybrid recommendation system and supports the complexity of

synthesis tasks by combining recommendations of both problems and solutions.

We note that a similar framework was proposed in the context of information

extraction by Frietag, who developed a scheme for combining multiple specialized

classifiers in the similarly complex task of text mining [31]. Frietag transforms con-

fidence values into correctness probabilities and uses these scores in one of three

combination schemes (two of which are the basis for schemes described later in this

section). However, in addition to bringing such an approach to the adaptation task

for CBR, HRF differs in that it focuses on the issue of recommendation overlap and
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how this should be handled by general combination methods, in particular, through

the new contributions of recommendation review prior to combination and the con-

sideration of contra-recommendations, as well as the two new combination strategies

described in the next section.

3.8.1 Recommendations

Recommendations in HRF are viewed as composite, consisting of recommendations

of a problem and a solution. Each of these components are addressed independently

but are grouped together in the code for HRF for organizational purposes, since the

user will require both simultaneously in order to act on a recommendation.

The development of an ensemble framework for this thesis work is motivated by

early work performed towards building an intelligent assistant for workflow author-

ship by combining four independent components [61]. Through this study, it was

discovered that the task of identifying and solving problems in a partially-completed

workflow can be somewhat cumbersome, and components could be further specialized

if this task were decomposed into two independent tasks: recommending problems and

solutions. This distinction was adopted for the HRF framework in order to address

the requirement for facilitation of specialization, identified in the previous section.

3.8.2 Recommenders

Within the framework, a recommender is a component that is capable of produc-

ing or critiquing recommendations. Critiques are performed by generating additional

recommendations, which either support a problem or solution by repeating it with a
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positive confidence or reject a problem or solution by repeating it with a negative con-

fidence value. Not every recommender is responsible for both of these tasks; some will

generate the initial recommendations considered by the system, and others will wait

until some recommendations have been generated to add critical recommendations to

the collection.

3.8.3 Combiners

Combiners are components that reduce redundancy in the recommendations pro-

duced by recommenders by combining confidence estimates and eliminating all but

one recommendation within a group of recommendations with identical problems

and solutions. Combiners in HRF implement a weighted voting scheme between the

constituent recommenders to produce a final set of recommendations, which can be

presented to the user in order of overall confidence.

If two independent recommenders generate the same recommendation and each

has high confidence in that recommendation, the system should consider those rec-

ommendations to be independent confirmations and increase their overall confidence.

However, if both recommenders base their recommendations on overlapping knowl-

edge, the effect of the repeated recommendations on confidence is not as clear. Fur-

thermore, two recommenders may identify the same problem but different solutions.

In such cases, the system should increase its confidence that the problem is relevant.

Next are a series of descriptions of combination strategies which address these issues,

including how to incorporate contra-recommendations.
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3.8.3.1 The MAXIMUM Combiner

The recommendation with the highest confidence value is chosen. If this is a contra-

recommendation, all recommendations with matching solutions are removed from the

set and the process is repeated. If no recommendations remain, none are returned.

This is based on the CMax method used by Freitag [31].

3.8.3.2 The AVERAGE Combiner

This method first partitions recommendations by shared solution. The confidence val-

ues for each of these partitions are averaged (confidence scores for contra-recommendations

are negative). If the average is negative, the recommendation is switched to a contra-

recommendation. The resulting recommendations are then passed through the Max-

imum combination method.

3.8.3.3 The INDEPENDENCE Combiner

This method also first partitions recommendations by shared solution. Under the as-

sumption that each confidence value is independent and estimates the probability of

that recommendation being correct, the overall confidence that the solution is correct

is determined by calculating the probability that all matching positive recommenda-

tions are not wrong and that all matching contra-recommendations are wrong. For

each partition, one solution is returned with this recalculated probability score. These

results are then passed through the Maximum combination method. This is derived

from the CProb method used by Freitag [31].

Note that a problem with the INDEPENDENCE combination method is that
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confidence values are not always independent. Although, ideally, recommenders will

complement each other, in practice, some knowledge maybe shared by the recom-

menders.

3.8.4 Recommendation Process

Many independent recommenders can be integrated with HRF. The recommendation

process begins when each recommender is issued the query. Recommenders may or

may not produce recommendations in response to the query. Once the first round

of recommendations is complete, the generated recommendations are re-presented

to each recommender, and any new recommendations are collected. This process is

repeated until a round in which no recommenders produce a recommendation. At that

point, the entire collection of recommendations is forwarded to the selected combiner,

which produces a set of recommendations that are delivered to the presenter of the

query.

Phala employs HRF to adapt and improve its recommendations through use of

multiple recommenders built to address specific gaps in Phala’s reasoning. An eval-

uation of the impact of HRF in Phala is presented at the end of Chapter 5.
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Chapter 4

Comparison and Indexing of

Structured Cases

4.1 Introduction

Developing a structure-aware reasoning system requires attention to a variety of cir-

cumstances that do not arise when dealing with flat, unstructured data. The previous

chapter identified how structured data complicates the recommendation task by re-

quiring richer recommendation representations. This chapter explores another angle:

how to represent, store, and retrieve structured cases.

Essential to retrieval of structures similar to a query structure is also the ability

to efficiently compare structures. This issue alone could be the topic of several dis-

sertations (and, in fact, is: e.g. [108], [16]) and is indeed a topic receiving a growing

amount of attention. As such, this chapter will not cover the topic exhaustively but

will focus on qualities of structured data important to case-based reasoning appli-
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cations. This implies a focus on design decisions within an approximate-matching

retrieval system, in contrast to more popular exact-match retrieval systems.

This chapter provides three main contributions. First, it will identify the role

of structured data in case-based reasoning by analyzing desiderata of a structured

case storage and retrieval system. Next, it will identify how existing work in graph

storage and retrieval relate to structure-aware CBR. This chapter will also introduce

The Structure Access Interface (SAI): a software tool for representing, storing, and

retrieving structured data.

4.2 Desiderata for Structured Data in Case-Based

Reasoning Systems

Structured cases are not a new phenomenon in case-based reasoning. Many CBR

projects have used structured case representations, some employing structure-aware

similarity assessment, others using the structural aspect solely to assist in problem

solving. Since one aim of this dissertation work is to produce a software tool that

can assist with representation, storage, and retrieval of structured cases in a variety

of domains, we must first examine what the desiderata for such a tool would be. This

section identifies these desiderata by examining CBR projects utilizing structured

cases and their representational needs. Throughout this section, the term global will

refer to properties that apply to a case as a whole, whereas local will refer to case

properties that are more limited in scope. For example, consider a graph representa-

tion of a molecular structure. The name of the molecule is a global feature, whereas
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the type of bond between two carbon atoms is a local feature.

4.2.1 Case Representation

Structured cases possess information that is not global in the scope of the case;

rather, it can be constrained to individual components of the case. Graphs are a

very common and powerful formalization frequently used to provide structure within

data, particularly labeled graphs, which combine both data and structure. In this

case, nodes are labeled with the information constrained to a particular component

(an object or a concept). This information may be more complex than a simple

classification. For example, ShapeCBR is a system that assists in the design of metal

castings [74]. It represents casting components as values of which there are eight

possible classifications. However, other details exist for individual instances of these

components, such as scale. Lately, the cooking domain has been popular with CBR

researchers, wherein recipes comprise cases [106]. In these cases, nodes may represent

cooking tasks such as baking, which may be further parameterized by details such as

temperature and duration.

Edges represent relationships between these entities. If only one type of relation-

ship is modeled, edge labels are not necessary. However, this is often not the case. For

instance, an unbounded number of relationship types must be modeled in the Concept

Map CBR domain [18]. ShapeCBR is another example. Edges in ShapeCBR repre-

sent physical linkage between casting components. These edges are not all equivalent;

many components do not have an axis of symmetry between each joining location.

Furthermore, different kinds of coupling objects are used to link larger components.
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This information must also be captured by the edge’s labels.

Structured cases also have global attributes, similar to traditional feature-vectors.

In this sense they are a generalization of feature-vectors, but more importantly, the

global attributes provide a means to store unstructured data. For instance, in work-

flow domains, a number of global features exist, including semantic tags, contextual

features such as author data, and data describing the structured components, such

as the workflow language used.

4.2.2 Similarity Assessment Desiderata

A key issue for retrieval and similarity assessment of structured data is that graph

processing algorithms can be computationally expensive (for instance, subgraph iso-

morphism is NP-Complete [22]). A general retrieval tool must address the inherent

complexity in these domains in order to handle similarity queries but it does not

impose any single algorithm for performing a task that involves a potential trade-off

between computational desiderata, expressiveness, and domain dependence. Numer-

ous methods have been developed to address these computational constraints, such as

greedy algorithms, anytime algorithms, and heuristic search. For instance, Bergmann

and Gil have adopted a knowledge intensive A* approach to mapping structured cases

to queries in a workflow processing domain [12]. Reichherzer and Leake have used

topological features of concept maps to weight the significance of local features [93].

Minor et al. have addressed the complexity in the workflow domain by convert-

ing graph structures to flat strings for comparison [75]. Additionally, Genter and

Forbus recognized the need for structural similarity retrieval systems to use a two-
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phase retrieval algorithm (what they call MAC/FAC, which stands for “Many are

called but few are chosen”), which first retrieves a large and imprecise collection of

structures through a computationally inexpensive analysis of their association with

relevant indices and then refines the collection using a more expensive but more ac-

curate structure-mapping approach [33]. This idea of retrieving structures in two

phases was adopted at an early stage by CBR researchers working with structured

data [81, 17].

4.2.3 Indexing and Retrieval Desiderata

Indexing is important for efficient retrieval in large case-bases. Indices can be used

to search for the most important and relevant cases without requiring a similarity

assessment for each case in the case-base, allowing for sub-linear retrieval complexity.

Indexing is related to similarity assessment in that index selection should yield cases

likely to be assessed as more similar. The representational power of a system’s indices

bears directly on how accurately index-based retrieval can estimate the outcome of

a full similarity assessment. This section takes a closer look at the desiderata of an

indexing representation by examining representations used in existing index-based

graph retrieval systems.

Indices should capture global case properties in order to allow for retrieval meth-

ods, such as conversational retrieval, retrieval by semantic tag, context-sensitive re-

trieval, and others. For example, Weber et al. retrieve related workflow instances

through an interactive dialogue with the user [117], answering questions associated

with cases in the case-base and retrieving cases related to the user’s responses (also
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known as conversational case-based reasoning [2]). Also, Allampalli-Nagaraj et al.

use semantic metadata tags to improve retrieval of medical imaging cases in their

CBR application [4].

Global case properties are also often referred to as surface features. This is in

contrast to deep features, which must be derived from the case data through poten-

tially computationally expensive means [81]. In order to index cases by deep features,

indices must be able to contain feature types and values that are not present in the

cases they index.

Structural features can be seen as surface features, since they are readily apparent

in the case data, but they are more aptly deep features, since they are chosen from

a very large feature-space. Since, as has been mentioned, similarity assessment often

relies on structural comparison, indices should also capture structural information.

In order to satisfy this constraint, Yan et al. identify that even simple path indices

(such as those used in the graphgrep project [37]) do not sufficiently represent the

structure of a graph and that indices must represent arbitrary substructures in order

to be most effective [123].

4.2.4 Summary of Desiderata

In summary, an ideal general retrieval tool must provide for a graph representation,

allowing annotation of nodes, edges, and graphs as a whole. Annotations must be

more rich than simple singular classifications, such as a set of key-value pairs. Also,

annotations must allow for multiple values for a given key.

Such a retrieval tool must also provide an abstract means of similarity assess-
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ment while maintaining the common goal of performing similarity assessment quickly

enough to support real-time user assistance scenarios. In order to maintain flexibility

and support multiple applications of the same case-base, the abstraction must allow

for selective consideration of individual structural features, allowing other features

to be ignored in select contexts. It should also be adaptable to many domains by

incorporating common abstract techniques, such as search.

The tool should allow for a multi-phase retrieval process utilizing case indexing.

Indices should be able to approximately represent the structural details that cases

hold. Indices should not be constrained to using the same data-types as used in the

indexed structures to allow for indexing of deep features. Indexing should be abstract

within the tool to allow for domain-specific implementations which balance the costs

of index selection and retrieval (during queries), generation and mining (during case

storage), maintenance (during system idle time), and the expected correspondence to

similarity assessment and distinguishing power (the degree to which they limit the

number of cases to be retrieved) of indices.

4.3 Existing Work in Graph Storage and Retrieval

The SAI framework was developed through this dissertation to meet the requirements

identified in the previous section. The development of SAI was initially motivated by

the structured retrieval needs of process-oriented case-based reasoning, but it belongs

to the broad area of graph database software. This section discusses its relationship

to such software, focusing especially on similarity-based retrieval, to delineate SAI’s

purpose and contributions with respect to such systems and to identify the extent to
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which existing work has met the requirements laid out in the previous section.

4.3.1 Graph Database Software and the NoSQL Movement

In recent years, relational databases have seen their dominance reduced in the arena

of structured storage. Some database efforts, referred to as NoSQL databases [107],

have rejected the relational model and offer storage access without an SQL interface.

By offering fast access to storage of structured data, SAI joins a subgroup of these

projects known as graph databases.

Graph databases have recently gained popularity primarily for working with emerg-

ing linked data sources, such as social networks, biological data, and the world-wide

web. These data sources involve very large graphs, spawning projects that focus on

retrieving one graph component at a time (typically a node and its incident edges) for

traversal algorithms (e.g., Infogrid [34], Neo4j, AllegroGraph, DEX [68], VertexDB,

HypergraphDB [48], and InfiniteGraph [114]).

These tools, while useful for many domains, are not ideal for case-based reasoning

systems since they lack structural indexing and thus cannot benefit from fast approx-

imate similarity queries. There are, however, some systems that have this capability,

which are reviewed in the next section.

4.3.2 Graph Indexing Systems

Several graph indexing systems that provide structural indexing for similarity queries

exist. These include graphgrep [37], grafil [123], PIS [124], and Tree+Delta [128].

While each of these projects is a powerful tool for storing and performing similarity
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queries within a case-base, each prescribes an algorithm that may not be optimal for

arbitrary domains. Graphgrep uses only path-based indices that are of limited utility

in domains such as chemical compounds in which paths are not highly distinguishing

but structures are (as noted by Yan et al. in [123]). Grafil and PIS do not allow

for multiple attribute types in graphs and mine frequently occurring structures from

the database which increases the time to introduce a new graph to the database

and requires a more complicated index retrieval procedure for arbitrary queries, both

of which can be avoided in domains where simple paths are sufficient for indexing

purposes. Tree+Delta has attributes of both approaches in that it indexes graphs by

mining frequently occurring trees as indices.

Each of the previously listed projects are fully implemented retrieval algorithms

with accompanying evaluations that identify situations in which the algorithm per-

forms favorably. The iGraph framework was developed to provide a common imple-

mentation in which many of these algorithms could be compared to one another in

a consistent manner [40]. The iGraph creators noted in their evaluations that there

is no single winner amongst the algorithms they tested, and in fact, most algorithms

they tested were dominant in at least one test scenario. This reinforces the funda-

mental requirement for a graph retrieval system identified in this chapter – that it is

able to support a variety of algorithmic approaches in order to best fit the data in

the target domain.
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4.3.3 Similarity-Based Retrieval in Graph Databases

All the systems mentioned until now perform a search for graphs in a database con-

taining the query graph as a subgraph. If a graph in the database doesn’t contain

the query graph, it is not returned in the search results, regardless of how close it

may come to containing the query graph. In case-based reasoning, we rely on the

case-base to provide solutions to problems that have not been considered a priori by

the reasoning system. In these cases, we require both the identification of approxi-

mate matches in the database as well as the ordering of results by their similarity to

the query (or by their utility in solving the problem). Exact-match graph retrieval

systems cannot assist in solving these problems.

Approximate supergraph retrieval is a different problem than exact supergraph

retrieval. The definition of correctness is more flexible, since it is no longer a binary

decision, allowing for increased benefit from approaches such as any-time algorithms

that provide a trade-off between computation time and accuracy of results.

Some existing work addresses approximate graph matching. For example, the

TALE [110] and SAPPER [127] systems provide approximate supergraph retrieval

within a database of very large graphs.

Of greater interest to CBR researchers is a tool that can retrieve graphs within a

very large database of small to medium sized graphs. There are also many projects

that fulfill this task. The SAGA algorithm incrementally extends an initial map-

ping of nodes to estimate the best possible mapping of a query onto a graph in the

database [109]. The C-Tree algorithm uses a novel hierarchical indexing strategy [43].

The Gstring algorithm uses domain-specific index templates to optimize its indexing
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strategy [49]. Another example is the G-Hash algorithm, which uses graph kernel

functions instead of substructure indices [115].

The goal of SAI differs from that of such projects in that SAI is not a retrieval

algorithm. Rather, it is an abstract framework for developing, comparing, and ap-

plying retrieval algorithms suitable for CBR tasks. In this sense it is more like the

iGraph architecture discussed in the previous section, except that it is engineered for

approximate supergraph retrieval rather than exact supergraph retrieval.

The SAGA algorithm has been packaged as part of a similarity-based retrieval

system called Periscope/GQ [111]. The purpose of Periscope/GQ, like that of SAI,

is to provide both a basic means for representing structured cases (in the form of at-

tributed multi-graphs) and an infrastructure for case indexing. However, SAI differs

in its focus on providing an extensible framework for the indexing and similarity as-

sessment tasks, whereas Periscope/GQ focuses on supporting a wider range of graph

sizes. Many algorithms for indexing and comparing graphs exist, and SAI is designed

to allow for adoption of varying techniques to best fit the problem domain. Fur-

thermore, by providing an abstract retrieval framework, SAI is intended for use in

analysis and refinement of indexing and comparison techniques.

In addition to supporting abstract indexing/retrieval tasks, SAI supports mainte-

nance tasks that can remove some of the computational burden of indexing from the

query-time task of memorizing new cases. Another unique feature of SAI is that it

allows any structure to index any case. The features present in indices do not also

need to be present in the cases they index. This enables auxiliary and retroactive

indexing abstractions, which may not have been considered at the time the case was

committed to the case-base.
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4.4 The Structure Access Interface (SAI)

SAI was developed as part of this dissertation in order to provide a graph database

that supports all of the desiderata in section 4.2 for case-based reasoning systems

relying on structured cases. SAI provides solutions for many common tasks for CBR

developers (e.g., representation, retrieval, storage, indexing, and similarity assess-

ment) but maintains flexibility through its customizability. SAI’s representation

makes it easily applicable to a variety of specialized structural domains, including

workflows, provenance, state machines, planning, concept maps, CAD models, and

scene graphs. SAI does not impose any one algorithm for handling retrieval in these

domains. Rather, SAI provides a framework for retrieval and index maintenance,

using code that may be applied as is or replaced with custom implementations. SAI

also does not impose syntactic rules or semantic constraints: SAI’s representation is

as general as a labeled, directed multi-graph. SAI can be used to store and perform

similarity-based retrieval with powerful graph-based knowledge representations such

as conceptual graphs [105], but SAI does not itself provide a means for inference or

error checking over these structures. SAI is intended to provide a basis for creating

graph-based knowledge representations and to solve storage and retrieval needs as a

component of a larger, encompassing reasoning system.

Throughout this section, examples will refer to Fig. 4.1, which depicts an SAI

representation of a workflow from the myExperiment website[38]. This workflow is

used to report gene alignment information retrieved from the Ensembl gene database

for three different species. 1

1This workflow can be viewed from the myExperiment website at the following URL:
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Figure 4.1: An example structure in SAI representing a bioinformatics workflow.

4.4.1 Graph Representation

SAI uses a directed, multi-attribute, multigraph representation. These terms are

defined as follows:

• Directed: Edges are represented by ordered pairs. This order, however, need

not be respected by comparison algorithms.

• Multi-attribute: Any graph entity (graphs, nodes, and edges) can be at-

http://www.myexperiment.org/workflows/158.html
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tributed with any number of features. A feature is an atomic value which is a

combination of a string value and a class name. Examples of features are shown

in Figure 4.1. In this example, the graph features of type tag are multi-valued.

• Multigraph: Multiple unique and non-unique edges can exist between the same

two nodes and be seen as distinct. That is, if an identical edge is recorded twice,

it will appear twice in the case representation. This accommodates information

such as multiple data links of the same type in a workflow or double bonds in

a molecular structure.

Note that using a multi-attribute graph does not increase the representational

power of SAI beyond using a basic labeled graph. In a basic labeled graph, the same

information captured by multi-attribute graphs could be captured by making labels

composite, or by adding nodes which together comprise a set of attributes. However, a

multi-attribute representation was chosen because it allows for more concise structures

and faster retrieval times, because simple string comparison can be used to match

features and fewer nodes must be matched when comparing graphs.

4.4.2 Background Tasks

SAI mitigates the inherent complexity in structured cases by removing as much com-

plexity from query-time tasks as possible and offloading processing to continuous

background tasks that do not impinge on query time. Developers may use this for

indexing newly stored graphs, a task that may require frequent-structure mining or,

at the very least, structural comparison to determine if a newly created index already

exists within the database. SAI provides two background tasks: one tests each index
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against each other index for compatibility, in order to build an indexing hierarchy to

support index retrieval. The second task, which relies on the first, judges whether

mutually compatible indices are equivalent and collapses them into a single index if

appropriate. This assists lazy indexing strategies that do not insure the uniqueness

of indices at the time a graph is indexed.

4.4.3 Storage

SAI’s back-end is mySQL. SAI uses a typical relational database graph representation

in which edges are rows in an edge table containing references to nodes, nodes are

rows in a node table containing references to graphs, and graphs are rows in a graph

table which indicates whether the graph is an index or not, and also contains a cache

of otherwise derivable information, such as the number of nodes in the graph. Feature

information, such as the class and value, are stored in another table. Features are

associated with graphs, edges, and nodes using three auxiliary tables. Each of these

tables (except for the feature information table) also contains a graph ID in each

row. Once a graph ID is known, its content can be retrieved from the database by

accessing rows in each of these tables associated with the graph ID.

To preserve the integrity of case content and ensure that the stored records asso-

ciated with any cases loaded in memory will remain unchanged within the database,

SAI does not allow updates to existing graphs. Instead, SAI performs updates by

re-storing graphs using a new identifier and deleting the original graph. This insures

integrity of the indices; an indexed case will always retain the content for which it was

indexed. In addition, it simplifies some maintenance tasks discussed in the following
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section.

SAI could use a key-value store, such as BerklyDB, as a back-end, as many graph

databases do (such as HyperGraphDB), but mySQL is used instead for three reasons:

• SAI provides an extensible schema that can be exploited by applications requir-

ing a more complex storage strategy.

• SAI takes advantage of a number of small joins to enhance retrieval for similarity

queries and index creation

• mySQL reduces the optimization requirements of SAI by providing features such

as caching.

SAI provides two representations of graphs to the client software: ID’s and full

graphs. The initial retrieval phase does not load structural details of graphs into

memory. Instead, they are referred to only by their ID. This avoids the need to

unnecessarily load into memory graphs which may ultimately prove unimportant.

Once a number of graphs have been eliminated from contention through preliminary

processing, remaining graphs are fully loaded into memory.

4.5 Retrieval Task Delineation in SAI

For attributed graphs, similarity is often computed in terms of how close one graph

is to being equal to or a subgraph of the other (often in terms of the number of

edits required to form this relationship [69]). This is also referred to as inexact graph

matching [10]. Note that inexact graph matching has also been used to describe

matches of labeled graphs in which the labels do not exactly match [85]. For the
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purposes of this paper, inexact matching will refer to the tolerance of incompleteness

in the match – not all edges and nodes between the two graphs must be matched, but

rather the number of matches is taken to indicate the degree of similarity between

the graphs.

Inexact matching of attributed graphs is additionally complicated by the con-

straints that attributes place on graph components. For instance, it is possible that a

node from the query has a particular attribute that cannot be matched with a node

in a retrieved case, due to a differing attribute value. To reflect the requirements

for different nodes to match, we introduce a new property, which we call compatibil-

ity. Compatibility checks will be applied to graphs and their components to reflect

whether they can be matched to form a partial subgraph isomorphism. For instance,

using the default procedures provided by SAI, attributes with the same class and

value are considered compatible. Depending on their needs, users of SAI may define

their own compatibility criteria to be applied by the system.

Because the CBR retrieval task is to retrieve similar cases, not to locate existing

identical cases, imperfect matches must be considered. Consequently, it is not possible

to definitively establish whether the most similar graph has been found, without

in some way considering all potentially related graphs. This issue is unique to the

problem of inexact retrieval, which has not received as much attention as the problem

of exact retrieval. This is further discussed in the related work section.

SAI was designed principally to deal with indexing and retrieval. However, for

large case-bases, in which retrieval efficiency is crucial, retrieval and similarity assess-

ment are inexorably intertwined: methods are required for indexing cases relative to

their expected similarity, using sub-structures or other related structures as indices.
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By identifying indices associated with a case, it is possible to compute a partial

structural similarity assessment with the index’s associated cases without performing

structure matching.

Phala’s structure retrieval is performed in two phases. The first is a coarse-grained

process to eliminate most potential cases by only considering cases indexed by relevant

features. Finer-grained comparisons are only performed for cases judged sufficiently

similar by index-based comparisons. Two-step retrieval processes are common solu-

tions to retrieval tasks wrought with complexity (e.g., for the structure matching of

MAC/FAC [33]). While the two steps may be intertwined, we have identified a num-

ber of subtasks that can be implemented and extended independently. The following

sections identify these tasks and provide detail.

4.5.1 Summary of Tasks in SAI

Figure 4.2 summarizes the tasks performed by SAI (termed final tasks) and those

which can be altered or individually selected by developers (termed abstract tasks).2

These tasks are not necessarily independent; many of them are either required by or

potentially used by other tasks in these lists. These tasks are referred to throughout

the next two subsections.

4.5.2 Structural Similarity Basics

Similarity assessment in SAI rests on a number of basic sub-tasks, described here:

2The terms final and abstract are borrowed from the Java programming language and are in-

tended, respectively, to refer to tasks with complete implementations that cannot be altered and

tasks whose implementations must be created or selected.
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Final Tasks Abstract Tasks

Node Compatibility Feature Compatibility

Edge Compatibility Feature-Set Compatibility

Index Compatibility Node Map Utility Assessment

Index Equivalence Node Map Generation

Full Graph Retrieval Graph Similarity

Graph Storage Graph Compatibility

Index Storage Graph ID Retrieval

Index Generation

Index Retrieval

Figure 4.2: Tasks in SAI

Feature Compatibility: To support a rich range of attributed-graph comparison

algorithms, SAI is designed to enable domain-specific similarity assessment methods

to be plugged into the framework. Feature classes—instances of which can be applied

to nodes, edges, or graphs—must be developed by those applying SAI. The feature

class definitions must include a definition of compatibility specific to the feature

class, to determine when two graph elements may be matched. By default, features

are compatible if and only if they have identical class and value. This default is

symmetric, but compatibility criteria are not required to be symmetric. Preserving

symmetry in compatibility, if desired, is left to the implementers as well, should they

choose to extend the default behavior.

Through this mechanism, a more knowledge-rich approach could be utilised within
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Figure 4.3: Two structures from the myExperiment dataset (structures 126 and 127)

in which the first is compatible with the latter.

SAI, rather than the syntactic comparison SAI uses by default to compare nodes.

Phala uses this result to compare service types between processor nodes, however,

a more knowledge-rich approach may improve the compatibility assessment by con-

sidering partial compatibility for two processors sharing a common abstract type or

role, such as varied XML processing utilities.

Feature-Set Compatibility: Because structural components in SAI are multi-

attributed, SAI requires a means of determining compatibility between sets of fea-

tures. A central question when comparing sets of features is whether one feature

can be matched with multiple features or not, and whether this distinction should be

symmetric or not. SAI supports the ability to define compatibility checks reflecting
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each of these types of relationships.

For example, if graphs represented floor plans (such as with the a.SCatch system

[119]), a feature may be a sink, indicating a sink is present in a room. When retrieving

similar floor plans, a set of two sink features may or may not be compatible with a

set only containing one sink feature, depending on the significance of the distinction

between having at least one sink or multiple sinks in a room for the similarity measure.

Additionally, implementors may desire that some feature types be ignored (directly

supported in SAI and discussed further in section 4.5.4), require context-sensitive

constraints, or asymmetric compatibility. For this reason, feature-set compatibility

can be selected amongst the listed defaults, or implemented to a custom specification.

Node Compatibility: SAI determines node compatibility by checking compat-

ibility of the feature sets of each node. Beyond providing custom implementations of

feature set compatibility, this process cannot be altered.

Edge Compatibility: SAI determines edge compatibility both by checking com-

patibility of the feature-sets of each edge and by checking the compatibility of the

pairs of source and target nodes for the edge.

Graph Compatibility: By default, two graphs are deemed compatible if each of

the components of the first graph can be matched with unique compatible components

of the second graph. Figure 4.3 depicts two structures within SAI for which the first

is compatible with the second. Note that this is analogous to subgraph isomorphism

and is not symmetric.

This task may be replaced by custom implementations for the purposes of domain-

specific algorithmic optimization. However, this is also an opportunity to expand the

compatibility assessment task to include knowledge-rich techniques which examine
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semantic properties of the SAI graphs, and weigh them with the structural compati-

bility (which Phala solely relies on). For example, myExperiment allows its users to

tag workflows. Comparison of these tags between graphs could potentially be used

to adjust the compatibility assessment determined from structural alignment.

4.5.3 Structural Indexing

SAI is designed to provide fast similarity-based retrieval for very large case-bases of

structured cases by enabling the use of indices more expressive than the atomic fea-

tures often used in CBR, and thus providing increased opportunity to combine struc-

tural matching with more efficient indexed retrieval. SAI accommodates a variety

of indexing styles by implementing indices themselves as graphs. This approach not

only accommodates indexing by frequently occurring substructures, but also alterna-

tive retrieval strategies for handling situations in which analogous or easily adaptable

cases may be desired over cases that are, symbolically, more similar (examples of this

are illustrated in section 4.5.4).

All graphs in SAI are first indexed by their atomic features. SAI additionally

indexes cases by other graphs that are not identified as cases. These structural indices,

which will be referred to simply as indices in the remaining discussion, are intended

to be small, making them easier to retrieve than full cases by system-specific index

similarity criteria. They are stored in the database in the same way other graphs

are. Each graph in the database has a flag indicating whether or not it is an index.

Following is a description of each of SAI’s indexing subtasks:

Index Compatibility: Compatibility between structural indices and other graphs
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is determined in the same way graph compatibility is. Compatibility is used to deter-

mine if an index should be associated with another graph for retrieval purposes. Such

relationships between existing indices and graphs are not guaranteed to be known by

SAI, however an optional maintenance task updates the list of associated indices for

graphs in the database when a compatible index is discovered. Since SAI does not

allow edits to existing graphs, SAI can guarantee that all indices associated with a

graph will forever be compatible with that graph.

Index Equivalence: SAI additionally does not ensure that indices are unique.

Two indices are determined to be equivalent if they are compatible in both directions.

Again, SAI provides an optional background task which tests each pair of indices to

determine equivalence, and deletes one of the pairs from the database, updating each

indexed structure’s list of indices to only include the index which was not deleted.

Index Retrieval: SAI allows for custom algorithms for index retrieval, in order

to allow a balance between computational efficiency, expressiveness of indices, and

completeness of retrieval. Index retrieval is the first step of a similarity query in

which indices compatible with the query are retrieved. As the structure of indices

becomes more complex, the process of retrieving indices for a query also becomes more

complex. For instance, in general, determining index compatibility is NP-Complete.

In addition to indexing graphs, indices can also index other indices, allowing for

hierarchical retrieval in situations for which larger indices become more difficult to

retrieve by atomic features.

Index Generation: At the time a case is committed to the case-base, SAI will

apply any available indexing algorithms to the newly stored case. These algorithms

may retrieve compatible indices (sidestepping the need for some of the listed main-
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Figure 4.4: A structural index used to form an analogy.

tenance tasks), generate new indices (improving response time), or some mixture of

both.

4.5.4 Multiple Views over Feature Sets for Typing

Each of the available similarity assessments can be restricted to consider only a subset

of available feature classes. Rather than typing nodes and edges, as similar systems

often do (e.g., [122]), SAI allows for variation in the type of features considered for

comparison, thus forming types which cater to the developer’s specific comparison

desiderata on the fly. SAI’s approach has several advantages:

• Comparison granularity can be increased or decreased. For example, in Fig.

4.1, if only “processor type” and “database” are considered, each of the top

three nodes becomes interchangeable with one another or with other Ensembl

sequences. Considering “dataset” features in addition to these provides tighter

constraints, requiring that the same species is indicated.

• Similarity can be judged relative to a particular context. For example, in Fig.

4.4, “processor type”, “url”, “class”, and “script” features could be used to
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compare workflows for similar processes, whereas “name” features could poten-

tially be used to find re-engineered versions of this workflow that use newer or

more appropriate services.

• Abstract views can aid in analogical processing. For example, the graph in Fig.

4.1 could be indexed by the graph shown in Fig. 4.4. This index uses features

that identify the roles of various processors in the original workflow and can

also index analogous workflows that may fit this role template.

4.5.5 Inexact Structural Similarity Assessment

Node Map Utility Assessment: As mentioned in section 4.5.2, determining graph

compatibility relies on a mapping between the nodes of two graphs. Determining

similarity for inexact compatibility likewise relies on this mapping. Algorithms for

this task must determine how closely a mapping approximates full compatibility.

This may be done in multiple ways, but by default, SAI simply counts the number of

matched compatible edges induced by a particular mapping to determine its utility.

Node Map Generation: This subtask generates the maps judged by the map

utility heuristic. Implementations of this task vary widely in related work. SAI

includes a greedy (quadratic time) and exhaustive (exponential time) map generator,

as well as a search framework for developing search-based generators, such as the A*

approach adopted by Bergmann and Gil [12].

Graph Similarity: Multiple maps may be generated by multiple algorithms to

determine similarity between two graphs. Similarity is determined from the map

produced with the greatest utility.
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4.5.6 Inexact Structural Similarity Based Retrieval

Index Retrieval: The first step in SAI’s retrieval process is to determine which

indices within the database are compatible with a structural query, and to load these

structures into memory. Components for this step are intended to be developed

alongside index generators.

Graph ID Retrieval: Indices identified by the index retriever are propagated

to the graph ID retriever which ranks graphs in the database according to their

association with the set of retrieved indices. SAI includes an implementation of this

step which simply orders cases by the number of indices they’re associated with,

though this can be replaced by a custom implementation. A pre-defined number of

ID’s of these cases (called Window 1) are then propagated to the full graph retrieval

step.

Full Graph Retrieval: In this task, structural details of the propagated case

ID’s are loaded for full structural comparison. Maps between the query and these

cases are generated and used to re-rank the cases. A predefined number of the highest

scoring cases and maps (called Window 2) is returned in response to the query.

4.6 Evaluation of SAI’s Retrieval in the e-Science

Domain

SAI currently doesn’t include an implementation of a highly sophisticated index-

ing algorithm such as those mentioned in section 4.3. However, it does include a

simple strategy that enumerates all paths of length 1 (a single edge), including se-
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lect attributes from the edge and connected nodes, similar to the approach used by

graphgrep. This indexing option was developed because the single-edge indices hold

the advantage of O(n) index generation while maintaining sufficient distinguishing

power within the e-Science workflow domain for cases. This section will demonstrate

that these short path indices are sufficient for the e-science domain but not for others,

giving evidence to the importance of SAI’s modular approach, and also that the result

from the iGraph experiment, which determined that no single algorithm is best for

every dataset, carries over into the realm of approximate supergraph retrieval.

4.6.1 Terminology

The following terminology is used through the remainder of this section:

• Phase 1 - an initial, index-based retrieval process

• Phase 2 - a fully structurally aware, fine-grained similarity assessment

• Phase 1 Window - the maximum number of cases Phase 1 provides to Phase 2

(shortened to Window 1)

• Phase 2 Window - the number of cases returned from the Phase 2 process for

further processing by the CBR system (shortened to Window 2).

• Path1 - the indexing strategy discussed in the previous paragraph

4.6.2 Experimental Datasets

Multiple sources of data were used to form datasets for the experiments in the re-

mainder of this section. Both of these datasets were mined from sources on the web.
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These include:

4.6.2.1 The myExperiment Dataset

To determine how effective SAI’s retrieval algorithm is for the e-Science domain, a col-

lection of cases was created by tracing the data-flow through 341 workflows gathered

from the myExperiment website 3. This database has the following characteristics:

• Size (cases): 341

• Average case size: 11.8 nodes

• Standard deviation of case size: 12.88

• Average pairwise similarity: 1.1

• Features: 3883

• Features per case: 11.3

• Indices: 1627

• Index-to-case ratio: 4.77

• Index-to-node ratio: 0.40

• Index-to-edge ratio: 0.41

Each case in the myExperiment dataset is very unique from each other. The

diversity in these cases forces a large number of unique indices, which would be much

larger if an indexing technique other than Path1 were chosen, considering Path1’s

3http://www.myexperiment.org
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very small index space. The large number of indices per case in this dataset makes

the indices more distinguishing; relatively few cases are associated with any one index.

The low pairwise similarity can also be noted in Figure 4.5, a heat map of the

similarity between pairs of cases from the myExperiment dataset. Note that there

are often clusters of similar cases along the diagonal. Since the times at which these

cases were created are somewhat similar (cases are ordered by the date they were

added to the myExperiment website), it’s likely that these small clusters represent

revisions of a workflow by the same author or team of authors.

Also, notice that many of the bright spots are reflected across the same diagonal

axis. This symmetry results from small clusters of cases having a symmetric similarity

relationship. Recall that this is not necessarily always the case when similarity is

assessed as distance to subgraph isomorphism, since subgraph isomorphism itself is

not symmetric. For example, a graph of 40 edges could be at most 50% similar to a

graph of 20 edges, and a graph of 20 edges could be 100% similar to a graph of 40

edges.

4.6.2.2 The PubChem Dataset

To explore the impact of properties of the dataset, a different data source was sought

with significantly different characteristics from the myExperiment dataset. The Pub-

Chem website 4 contains a large library of chemical structures. These structures have

been used to evaluate many of the graph databases mentioned in this chapter. The

first 100 molecular structures were downloaded from this website to form the dataset.

This dataset has the following characteristics:

4http://www.pubchem.org
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• Size (cases): 100

• Average case size: 17.8 nodes

• Standard deviation of case size: 14.58

• Average pairwise similarity: 29.30%

• Indices: 8

• Index-to-case ratio: 0.08

• Index-to-node ratio: 0.0045

• Index-to-edge ratio: 0.0040

The PubChem dataset exposes the limitations of the Path1 indexing strategy and

why more computationally expensive indexing strategies can be better choices in other

domains. Path1 generates very few indices in the PubChem dataset, and the index

ratios are much lower than they were for the myExperiment dataset. This indicates

that there is little variation in the labels, which is true. Most of the compounds in the

PubChem dataset are organic, meaning that the majority of bonds will be between

hydrogen, carbon, oxygen, and nitrogen atoms, though hydrogen atoms were left out

of the structures for simplicity. This leads to a total of only eight indices.

The lack of diversity also leads to much greater similarity between cases. While

most pairs of cases in the myExperiment dataset shared no similarity at all, most pairs

of cases in the PubChem dataset share some similarity, leading to a 37.3% average

similarity, more than 30 times that of the myExperiment dataset. This is also easily
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recognizable in the heat map in Figure 4.6, as there is very little pure black, indicating

most case pairs are related.

Another unique feature of the heat map is the vertical and horizontal bars, which

indicate there are some cases that are similar to most other cases or there are cases

to which most other cases are similar. Across the diagonal axis of symmetry, the

mirrored images of some of these lines are significantly brighter or darker than their

counterparts. This is due to the fact that small structures will have high similarity

to most larger structures, whereas most larger structures will have relatively low

similarity when compared to the smaller structures. For instance, the dark vertical

bars near the center of the diagram (structures 52 through 54) are also part of fairly

bright horizontal bars. Each of these structures contains more than 50 nodes, far

beyond the average for the database. This means that other structures are likely

to be mappable to these structures, creating the bright horizontal bars. Also, these

structures are unlikely to be completely mappable to other structures, though some

portion of these structures will likely be mapped. This forms the dark, but brighter

than black, vertical bars.

4.6.3 Experiment 1: Evaluating Each Phase of Two-Phase

Retrieval Algorithms

Evaluation of a retrieval algorithm implementation through SAI is not straightfor-

ward, due to the fact that it is composed of two independent retrieval phases. This

subsection explores the issue and provides justification for the choice of a computa-

tionally inexpensive yet functionally limited phase 1 strategy for use in the e-Science
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domain.

4.6.3.1 Comparing Phase 1 and Phase 2 Rankings

In two-phase retrieval, the first phase can be thought of as a filter. In a sense, the

order of the cases returned from the first phase is irrelevant, since they will be re-

ordered in phase 2. Since each case will be compared to the query in phase 2, there

is no benefit to having phase 1 results ordered similarly to the order phase 2 will

generate.

There is a benefit, however, in viewing phase 1 results as a ranking. Cases can

be ranked by phase 1 by considering progressively longer window 1 values, beginning

with a window 1 value of 1. In this case, the most similar case according to phase 1

will be returned. Increasing window 1 to the value 2 will retrieve the two most similar

cases, and by comparing this result to the previous result, the second most similar

case according to phase 1 can be determined. This process can be repeated to form

a ranking.

Even though ranking the results from phase 1 provides no benefit in the retrieval

process, it can be useful when analyzing the retrieval process to determine whether

phase 1 or phase 2 is most to blame for poor retrieval performance. This can be

determined by comparing the ranking produced by phase 1 to the ranking produced

by phase 2, in a manner similar to that used by Boegarts and Leake [15].

Within the evaluation in this chapter, the method for determining which cases

phase 1 will return is performed by counting the number of indices it shares with

the query. Since this is an integer, there are frequently ties between candidate cases:

more than one candidate case may share the same number of indices with the query.
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Boegarts and Leake discuss how to effectively compare rankings complicated by ties

as well as other issues related to the relative lengths of the rankings. A ranking based

on these principles was developed for comparing phase 1 and phase 2 rankings for

SAI.

4.6.3.2 Assuring the Soundness of Phase 2 Rankings

Judging the effectiveness of the phase 1 ranking relies on having an ideal ranking

to compare it to. The phase 2 ranking should offer such a standard, but greedy

algorithms aren’t always capable of producing an ideal ranking within a reasonable

amount of time for answering a query. The processing time for phase 2 ranking was

increased to 10 seconds per case to develop an ideal ranking. Each case was compared

to every other case. This process was then repeated, and in some instances, a larger

map was found between some pairs of cases, indicating a higher similarity. This is

owing to the fact that a greedy algorithm was used, which doesn’t guarantee that

a maximal mapping will be discovered. This process was repeated until no further

improvements on prior mappings were discovered.

To verify that this was a sufficient amount of time, each case was compared to

itself with the expectation that a 100% match would be derived. This result was

achieved after running three iterations the greedy algorithm. The results showed a

99.8% match for PubChem and 100% for myExperiment after the first iteration.

4.6.3.3 Experimental Setup

In order to determine the effectiveness of the Path1 indexing strategy, rankings from

both phases were compared after applying a variety of values for Window 1 and
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myExperiment

Window 1/2 1 2 3 5 10

5 99.70 96.29 93.61 90.74 N/A

8 99.71 98.04 96.68 95.34 N/A

10 99.71 98.44 97.52 96.41 95.91

15 99.71 99.12 98.78 98.31 98.04

20 99.71 99.41 99.24 98.94 98.72

25 99.71 99.41 99.24 99.04 98.88

30 99.71 99.61 99.54 99.31 99.17

Table 4.1: Average Rank Quality for the myExperiment dataset.

Window 2. Each case was compared to every other case for both the myExperiment

and PubChem datasets to form these rankings.

4.6.4 Results

Rank quality for the myExperiment dataset (Table 4.1 and Figure 4.7) and for the

PubChem dataset (Table 4.2 and Figure 4.8) were recorded to show how well Path1

produced an ideal ranking of the cases relevant to each query. Additionally, a modified

recall measure dubbed containment was recorded for the myExperiment (Table 4.3

and Figure 4.9) and PubChem (Table 4.4 and Figure 4.10) datasets. The difference

between this measure and recall is that not all relevant structures are given equal

weight. Each successive structure within an ideal ranking of the relevant structures

is given half the weight of the preceding structure.
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PubChem

Window 1/2 1 2 3 5 10

5 82.82 63.29 56.25 51.65 N/A

8 86.86 70.7 64.42 60.05 N/A

10 88.88 74.74 68.88 64.63 63.28

15 89.89 79.12 74.03 70.56 69.45

20 94.94 86.19 82.95 79.5 78.44

25 94.94 86.86 84.31 81.24 80.3

30 95.95 89.56 87.38 84.49 83.62

Table 4.2: Average Rank Quality for the PubChem dataset.

myExperiment

Window 1/2 1 2 3 5 10

5 100.0 96.58 93.93 91.13 N/A

8 100.0 98.34 96.98 95.70 N/A

10 100.0 98.73 97.82 96.73 96.25

15 100.0 99.41 99.08 98.62 98.35

20 100.0 99.71 99.54 99.24 99.02

25 100.0 99.71 99.54 99.34 99.19

30 100.0 99.90 99.83 99.60 99.46

Table 4.3: Average Containment for the myExperiment Dataset.
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PubChem

Window 1/2 1 2 3 5 10

5 84.84 64.98 58.29 53.86 N/A

8 87.87 71.38 65.36 61.15 N/A

10 89.89 75.42 69.84 65.81 64.64

15 89.89 79.12 74.17 70.93 69.98

20 94.94 86.19 83.11 79.83 78.86

25 94.94 86.86 84.41 81.45 80.59

30 95.95 89.56 87.44 84.62 83.81

Table 4.4: Average Containment for the PubChem dataset.

4.6.4.1 Analysis

The results show a stark difference between the performance of the Path1 indexing

strategy on each of the two datasets. This verifies the expected result from analyzing

the properties of each dataset. Path1 performs relatively poorly for small Window 1

values (at times only retrieving approximately half of the relevant structures), whereas

the performance of Path1 on the myExperiment dataset never dips below 90% for rank

quality or containment.

Path1 on myExperiment performs well with relatively small values for Window

1. When only retrieving the most relevant structure, only slight deviations are seen

from the ideal ranking (less than 1%) and containment is perfect (the most relevant

structure is always within the top five ranked structures according to Path1).

Given that Path1 performs below desired benchmarks for the PubChem dataset,
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it is not universally suitable as an indexing strategy. However, given also that Path1

is less computationally complex than most indexing strategies and that it works well

with the myExperiment dataset, it is not only sufficient for use in the e-Science

domain but also desirable. This justifies the creation of the SAI framework through

demonstration of its ability to facilitate development of two-phase retrieval algorithms

and analyze their performance and applicability to different domains.

4.6.5 Scalability of Two-Phase Retrieval

A central goal of SAI is to facilitate the retrieval of large datasets of structured

data. The two datasets used in previous sections (myExperiment and PubChem) use

a medium number of cases. This works well to examine issues related to similarity

assessment, but it doesn’t show how well SAI scales with large or very large databases.

Large case-bases are likely to occur when employing a case-mining technique, such as

that used by the Phala system, making it important to observe how well SAI scales up

to performing retrieval within large databases of graphs. This sub-section examines

these issues.

4.6.5.1 Experimental Setup

Tests were run by generating random graph databases with 2.5 and 10 unique feature

values per graph on a system using an AMD Phenom II X4 955 Processor with 2

Gigabytes of RAM and mySQL 5.5.13 and SAI running in a single process. Graphs

(trees) were randomly generated according to a normal distribution with an average

size of 14.2 nodes and a standard deviation of 16.9 nodes (no graphs with fewer than

2 nodes were generated).
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4.6.5.2 Results

Figure 4.11 shows index and case retrieval results for 100 random case retrievals.

Recorded times are for phase 1 tasks only. Index retrieval time refers to the amount

of time spent retrieving indices. Since phase 2 similarity assessment is not affected

by database size, it was not included in the experiment. Figure 4.12 illustrates the

sub-linear growth of retrieval time for the data generated with 0.5 features per case.

Blue lines connect data-points from Figure 4.11. Each of the red dotted lines indicate

the trajectory of a straight line through the preceding point. Note that, in each case,

the slope is much more severe for the linear model than the actual retrieval time.

Similar results can be generated for each of the other three feature to case ratios.

4.6.5.3 Analysis

This data shows that Path1 indexing is very effective for large datasets with properties

similar to the myExperiment domain. The small index space prevents the database

from growing quickly, which keeps index retrieval times sub-linear with respect to the

size of the case-base as the case-base grows to 100,000 cases. Retrieval times remain

in the order of a few seconds with databases as large as 100,000 cases.
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Figure 4.5: Distance to subgraph isomorphism for each pair of cases from the myEx-

periment Dataset.
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Figure 4.6: Distance to subgraph isomorphism for each pair of cases from the Pub-

Chem Dataset.
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Figure 4.7: Phase 1 Rank Quality with the myExperiment Dataset
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Figure 4.8: Phase 1 Rank Quality with the PubChem Dataset
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Figure 4.9: Phase 1 Containment with the myExperiment Dataset
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Figure 4.10: Phase 1 Containment with the PubChem Dataset
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Features/Graph Case-Base Size Index Retrieval Time

0.5 100 29 milliseconds

0.5 1000 97 milliseconds

0.5 10000 346 milliseconds

0.5 100000 2591 milliseconds

2.5 100 77 milliseconds

2.5 1000 155 milliseconds

2.5 10000 378 milliseconds

2.5 100000 2251 milliseconds

10 100 128 milliseconds

10 1000 203 milliseconds

10 10000 432 milliseconds

10 100000 2483 milliseconds

15 100 186 milliseconds

15 1000 256 milliseconds

15 10000 495 milliseconds

15 100000 2664 milliseconds

50 100 233 milliseconds

50 1000 323 milliseconds

50 10000 549 milliseconds

50 100000 2826 milliseconds

Figure 4.11: Performance of SAI on random graph retrievals.
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Figure 4.12: An exponential plot of retrieval times for 0.5 features per graph.
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Chapter 5

Evaluation of the Phala Workflow

Edit Recommender System

5.1 Introduction

Throughout this dissertation, Phala has exemplified the principles put forth and

served as a proof of concept that case-based reasoning can facilitate knowledge-light,

recommendation-based assistance for a synthesis task. This chapter provides a thor-

ough evaluation of Phala and shows that Phala provides recommendations that are

useful and save users time. This is done through an empirical, objective study of the

recommendations generated by Phala and their internal components performed by

forming tests with a collection of expected recommendations associated with them

and comparing the content of the recommendations produced by Phala to those ex-

pected recommendations. Beyond justifying the value of Phala, this chapter also

provides important lessons in evaluating intelligent assistants, including a novel met-
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ric that considers important aspects of the user’s experience and directly models the

value obtained through use of an intelligent assistant, as opposed to merely judging

the value of the content of the recommendations.

This chapter begins by presenting a series of performance metrics for a recommendation-

based assistant employing principles from the Hybrid Recommendation Framework.

Next, the formulation of tests for Phala is detailed. Following this, each of the com-

ponents of Phala’s hybrid architecture are discussed. The chapter concludes with a

report on the methodology and results of the tests of Phala.

5.2 Performance Metrics for the Recommendation

Task

Helpfulness and diversity are both important performance metrics, but presently are

difficult to use for evaluation of Phala. Helpfulness is a subjective measure, and while

Phala could do much to estimate helpfulness, the accuracy of these estimations can-

not be computationally measured in the same way others can be. The automated

evaluation methods presented in this chapter cannot be applied to measuring help-

fulness.

Diversity can be measured, but relates to sets of recommendations more than

to a single recommendation. Recommendations for workflow edits are complex, and

inundating the user with a number of recommendations would likely cause more

problems than it would solve. With this in mind, Phala was designed to present one

recommendation at a time, decreasing the importance of diversity.
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Instead, both correctness and relevance will be extensively studied. Recommenda-

tions will be deemed relevant if their problem components match an expected problem

within a test. If they do not, they will be deemed irrelevant. Relevant problems will

further be deemed accurate if their solutions match that of an expected solution.

Though the term accurate is used, it should be noted that the solution derived from

the original workflow may not be the only correct solution, in that alternatives may

exist. It is possible that Phala will produce a perfectly valid recommendation that

does not match the expected solution, which returns the workflow to its original state.

In these cases and those in which Phala recommends a solution that doesn’t match

the expected solution, recommendations will be deemed inaccurate, which can be read

as an upper bound on true incorrectness. The rate of accurate recommendations thus

serves as a lower bound on true correctness.

Figure 5.2 illustrates an example scenario for judging recommendations. In this

example, three service addition recommendations are made, each indicated by the

dotted lines protruding from the top two nodes. It is expected that a recommendation

will be made to add a service from the processor with service B to a new processor with

service C. Therefore, the recommendation matching this expected recommendation is

labelled relevant and accurate. The recommendation adding service D is not accurate

because D was not the expected service type; however, it is relevant since the problem

component matches. A third recommendation is to create a processor with the correct

service C, but this is judged as irrelevant since it is added off of the processor with

service A instead of the processor with service B.
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Figure 5.1: Example recommendations for Phala

5.2.1 Basic Metric Definitions

Each expected recommendation for a test will be referred to as an opportunity. There

may be multiple opportunities generated for each test. For example, a completion test

may involve two opportunities if the deleted processor had an input edge connected

to another processor and an output edge connected to a third processor. Each of

the following four metrics are plotted against a minimum confidence threshold where

only recommendations estimated to be above the indicated threshold are considered.
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5.2.1.1 Recommendation Rate

The recommendation rate is defined as being the proportion of opportunities for which

a relevant recommendation was produced. That is, two relevant recommendations

that match the same problem component of an expected recommendation are only

counted once.

5.2.1.2 Satisfaction Rate

The satisfaction rate is similar to the recommendation rate metric but applies only

to opportunities for which a relevant recommendation has been produced. Thus,

it is not dominated by the recommendation rate; rather, it measures how well the

system develops accurate solutions, independent of its ability to generate relevant

problems. The number of expected recommendations for which a recommendation

with a matching problem and solution has been generated is divided by the total

number of expected recommendations for which a relevant recommendation has been

generated.

5.2.1.3 Relevance Rate

The relevance rate is defined as being the proportion of relevant recommendations

generated compared to the total number of recommendations generated. Indepen-

dent of opportunities this metric provides a good measure of the average relevance

of each recommendation produced were the user to look through the entire set of

returned recommendations. The value of this metric is limited by the fact that the

user is unlikely to pore through a large number of recommendations, especially if they
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are ordered by confidence and few of the top recommendations are deemed useful.

This metric is plotted against a minimum relevance confidence threshold where only

recommendations estimated to be above the indicated threshold are considered.

5.2.1.4 Accuracy Rate

The accuracy rate is similar to the relevance rate, but as with the satisfaction rate,

only relevant recommendations are considered.

5.2.2 The Impact of User-Specified Preferences

An effective case-based reasoner must be more than a black-box. User interaction can

have a significant role in each stage of the CBR process. In Phala, the user affects

more than just the retrieval and retention of cases. Confidence values, derived from

estimates of performance metrics discussed in section 2.6, play a role in what the user

sees and does once recommendations are delivered.

In section 2.5.2.3, it was noted that if the user were aware of the problem within

the workflow, the recommender could simply recommend solutions for that prob-

lem, eliminating the need to first generate and consider problems within the query

structure. The user can specify what the problem component of the recommenda-

tions should be when the user is aware of what portions of the workflow s/he need

assistance with. In the case where the user is not immediately aware of this, knowl-

edge of the likelihood of a potential problem being relevant allows the recommender

system to choose whether or when to display a particular recommendation to the

user. A threshold could be set for estimated recommendation relevance, where only

recommendations likely to be relevant are presented to the user.

133



5.2.2.1 Satisfaction vs Recommendation Plot

As the minimum threshold for confidence increases, the number of matched problems

decreases, owing to the fact that the number of total recommendations is decreasing.

This shows that there is a range of possible recommendation rates for a system with

an upper and lower bound. Any of these recommendation rates can be achieved by

the system by adjusting the minimum confidence threshold appropriately. Given a

selection of a confidence threshold, there will also be a satisfaction rate associated

with that confidence threshold. Given this perspective, we could view satisfaction as

a function of the recommendation rate. A satisfaction vs recommendation plot graphs

this relationship.

Such plots are an important means of understanding the complexity of recom-

mendation within a synthesis task, and specifically the role of confidence estimates,

by illustrating the impact a minimum confidence threshold has in balancing between

the recommendation and satisfaction rates. Ultimately, the only importance of the

confidence threshold is in balancing these desired properties, so this chart lays bare

the range of values for these properties achievable by the system.

A similar plot was developed by Frietag in his work in text mining [31]. Text, such

as a product description, is mined for potential fields, such as price, and their accom-

panying values, such as $3.50. The former is analogous to the problem components

of Phala’s recommendations, and the latter is analogous to the solution component.
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5.2.3 Presenting One Recommendation at a Time

Users of product recommendation software are often presented with a collection of

recommendations, rather than single recommendations one at a time. This fits well

with the user’s role of browsing in a scenario such as shopping. However, in a syn-

thesis task, the user has a different role, and more directed recommendations may

be preferred. As mentioned, users are unlikely to pore through myriad irrelevant or

inaccurate recommendations.

To address this issue, Phala presents recommendations one at a time, ordered by

confidence. This provides a new perspective on analysis of the system, since only the

most highly ranked recommendations are consumed. Specifically, the only irrelevant

and incorrect recommendations that would be considered would be those with higher

confidence values than the first recommendations that satisfy the user’s needs. All

other recommendations would be unused, regardless of their relevance or correctness.

Two more metrics are presented to explore this aspect of Phala’s performance.

5.2.3.1 Initial Relevance Rate

The initial relevance rate is similar to the recommendation rate metric; however,

only the recommendation with maximum confidence is considered. Additionally, since

recommendations are issued by problem, not by opportunity, this metric will track the

proportion of tests for which the highest ranked recommendation was relevant. That

is, a recommender could receive a 100% score if the top rated recommendation for each

test matched at least one of the problem components of an expected recommendation.
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5.2.3.2 Initial Accuracy Rate

The initial accuracy rate is similar to the accuracy Rate metric but differs in the same

way that the initial relevance rate differs from the relevance rate.

5.2.4 Determining Optimal Preference

The previous two subsections outline how user preferences for a recommendation qual-

ity threshold and interaction through examining one recommendation at a time can

impact the value of the assistance offered by a system such as Phala. This preference

has been left to the user at this point since different users will have differing cost

functions for independently solving problems, solving problems with the assistance of

relevant and accurate recommendations, or recovering from inaccurate or irrelevant

recommendations. In fact, this is the reason helpfulness is difficult to measure, since

helpfulness itself could be derived from these unknown functions.

This section will consider that, though these functions can’t be known, and are

not even constant between users, they can be bounded and sampled. Were these costs

functions fixed, it would be possible to calculate the optimal quality threshold for the

minimum cost for assistance over a set of test data. Exploring the domain of these

cost functions for users then shows the true benefit of a system like Phala by laying

bare the conditions under which using Phala improves the user experience.

5.2.4.1 Ideal Performance Ratio

Considering the cost of independently solving a problem as i, the cost of solving a

problem with the aid of a recommendation as h, and the cost of recovering from an

136



Figure 5.2: Measurements used to determine ideal performance

inaccurate or irrelevant recommendation as e, we can calculate the relative benefit

of using Phala’s top-rated recommendation in terms of these variables. These three

values are diagrammed in figure 5.2.4.1. The value of h should be less than that of i,

otherwise there would not be a viable option for user assistance via recommendation.

Thus, the quantity i − h represents the amount of time saved when an accurate

recommendation is issued by the system (this will be referred to as ideal time saved).

If pg is the proportion of episodes in which the user was presented with an accurate

recommendation, pb is the proportion of episodes in which the user was presented with

an irrelevant or inaccurate recommendation, and p∅ is the proportion of episodes in

which the user was not presented with a recommendation, where pg + pb + p∅ = 1,

pg ≥ 0, pb ≥ 0, and p∅ ≥ 0, then pgh+pb(i+e)+p∅i would be the expected cost of using

the system, as opposed to the cost of working independently, which is i. If the cost
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of using the system is less than i, then the system is improving the user experience

by decreasing the time needed to complete the task. Thus, i − pgh − pb(i + e) − p∅i

is the expected time saved by using the system, which simplifies to pg(i− h)− pbe.

Rather than analysing this metric with three independent variables, these three

variables can be simplified to two quantities, one of which can be graphed as an

independent variable and the other of which is a scaling factor (i−h, ideal time saved).

All three of the original variables can be combined to form a new independent variable

in the following manner: Let f = e
i−h

. This will be called the error ratio which

represents the ratio of the time taken up by recovery from irrelevant or inaccurate

recommendations vs the time gained from accurate recommendations. Using f , the

expected time saved from using the system can be re-written as (pg − pbf)(i − h);

thus, it is written in terms of ideal time saved. The formula pg − pbf denotes what

will be referred to as the ideal performance ratio.

Now that the system can be measured in terms of its benefit to the user, if the

cost functions for a user are known, then the settings for the minimum confidence

threshold and relevance vs accuracy can be directly calculated. In this plot, they are

set in such a way that the benefit factor is maximized, thus representing the true

potential for user assistance.

The ideal performance ratio plot explores the error ratio as the independent vari-

able with the benefit factor as the plotted dependent variable. Positive values indicate

conditions under which the system provides benefit, whereas a value of zero indicates

areas in which the system does not help. Note that it is impossible to reach negative

values with the ideal performance ratio, owing to the fact that it is maximized in

terms of the selection of a minimum confidence threshold. This threshold could be
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set so high as to not allow a single recommendation, resulting in an ideal performance

ratio value of zero. Since zero is always a possible value, no value lower than zero will

ever be the maximum value of the ideal performance ratio.

The ideal performance ratio depends on the ideal time saved, but it identifies

the degree to which this ideal is reached in terms of a proportion of the ideal time

saved. Thus, positive values represent possible error ratios for which the system will

successfully aid the user in his or her task. The degree to which this is true cannot

be determined without knowing the cost functions identified, but the degree to which

an ideal benefit can be reached is recognized by values approaching 1 for the ideal

performance ratio.

5.3 Evaluating Recommendation Extraction

To assess Phala’s performance and the potential to exploit available provenance data

for case-based support, the evaluation should seek to answer three questions:

1. How often will Phala produce recommendations that aid the user?

2. How well can Phala cater its recommendations to user preferences?

3. How scalable are Phala’s methods?

As noted in the prior subsection, usefulness can take on several meanings. Beyond

meeting these performance metrics individually, it’s important that Phala also be

able to maximize those most important to the user. Scalability has been addressed

in Chapter 4, though the other criteria will be evaluated by the tests below.
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5.3.1 Forming a Test

Phala was tested using cross-validation. This involves reserving a portion of the cases

in Phala’s case-base to use for forming queries that Phala may employ the remainder

of its case-base to solve. Specifically, a variant called leave-one-out testing was used.

This is an iterative process in which each case in the case base is removed, one at a

time, in order to generate a set of tests that are performed in that case’s absence.

The total number of tests is then a factor of the size of the case-base.

The rest of this section will describe the different types of leave-one-out tests which

were produced. For each test description, the term test case will refer to the case

removed from the case-base for a round of leave-one-out testing.

5.3.1.1 Directed vs Undirected Tests

Directed tests are the most simple of the tests. In a directed recommendation test,

information about the location within a workflow of where the user would like to

see a recommendation is provided to the recommender. The only remaining job for

the recommender is then to determine what the proper remediation is. Undirected

tests differ in that no problem context is provided to the recommender, and it must

then determine where likely problems are within the query. These types of tests are

more difficult for the recommender owing to the added responsibilities and added

opportunity for incorrect recommendations, but they also provide greater assistance

to the user by alleviating additional burden. For these reasons, undirected tests are

the focus of the evaluation in this chapter.
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5.3.1.2 Generative Tests

In a generative recommendation test, the recommender is expected to recommend

adding a component to a partially completed workflow. This may consist of adding

a new processor or an edge between existing processors. Such tests are formed by

removing an edge or processor from the test case and presenting the resultant struc-

ture as a query. In the case of a directed test, the processors incident to the removed

component would also be identified to the recommender. Passing the test involves

recommending an edit to the query that returns it to the original state of the test

case. Recommendations must identify how to return the query to the original state

of the test case, including where in the structure the change needs to be made in the

case of an undirected test.

Another generative test that will be used is what is called a construction test. This

type of test is intended to model the process of authoring a workflow. All elements

of the test case are removed, leaving only the inputs and outputs of the workflow.

This is presented as a query, and recommendations that restore all of the processors

linked to these inputs and outputs are expected. Then another test is performed in

which processors previously linked to the newly added processors are expected. This

process continues until the query is restored to the original state of the test case. This

is the most difficult test for Phala’s extraction method of recommendation, since the

extraction method depends on sufficient detail in the query to find a strong match

within the case-base. Recommending earlier in the process is more difficult because

little of this information is available.
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5.3.1.3 Restraint Tests

Recommenders are designed to solve problems, but an issue often encountered is

that there isn’t always a problem to solve! In these cases, a well designed intelligent

assistant should identify that there isn’t need for a recommendation and withhold

any from the user. Since this is, in a sense, contrary to the goal of a recommender,

it can be a difficult problem to approach for an intelligent assistant. The restraint

test simply presents the test case, unaltered, as the query. Passing the test involves

restraining from making any edit recommendations.

5.3.1.4 Validation Test

An important use-case for a recommender to assist scientific workflow authors is

refinement and validation. This use-case has yet to be addressed by the prior tests

other than the restraint test which tests for the absence of corrective recommendations

as well as the absence of extension recommendations, thus confirming that a workflow

is valid. To address this use-case, error correction tests will be performed. To form

such a test, a random error is introduced to the workflow from the following list:

• The service for a processor is replaced with a random service.

• An extraneous edge is added to the workflow.

A correct response will include deletion or replacement recommendations for the

affected portions of the workflow.
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5.3.2 Provenance Data Sources

Data sources for mining provenance for users of Phala would come from a provenance

management system, such as karma, capable of exporting provenance records in the

OPM format. Cheah et al. have developed a large, 10 GB database of synthetic

provenance, derived from the synthetic simulation of six different workflows [21]. Such

a database can be important for evaluating systems ingesting provenance, particularly

when studying scale.

However, as a test data set for this dissertation, cases have been extracted from

a different source: workflows from the myExperiment website. As noted in section

2.7.2, workflows are not the same type of data as provenance, and there are important

differences to keep in mind. Specifically, provenance traces may contain unintended

gaps which wouldn’t otherwise exist in a published workflow. Additionally, workflows

may be run multiple times, and although each successive execution may legitimately

produce differing provenance traces, a case-base mined from provenance traces will

likely contain more repitition than a case-base mined from published worklfows. How-

ever, asside from these differences, the data flow traces mined from the Taverna-based

myExperiment workflows, specifically, are likely to be very similar to the data flow

traces mined from resulting provenance traces due to the tight coupling of provenance

and workflows in Taverna [78], and the fact that these workflows contain very little

control structure (see Section 2.4.0.4) which is entirely unused by Phala.

The myExperiment dataset includes over 2000 workflows – 349 of which, all

Taverna-based, were mined for use in evaluating Phala. This dataset was chosen

due to the fact that, as of this writing, and to the best of the author’s knowledge,
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the myExperiment collection is the largest and most diverse collection of scientific

workflows publicly available on the Internet.

5.4 Adapting Recommendations Formulated from

Extraction in Phala

This section will explore how the HRF framework can be applied to improve perfor-

mance in Phala and some of the design decisions inherent in its application.

5.4.1 The Phala Workflow Authorship Assistant Revisited

When a user builds a workflow, Phala uses the stored cases to incrementally recom-

mend additions to the workflow based on choices reflected in previous workflows. We

referred to this process in Chapter 3 as case-based recommendation extraction.

In addition to generating recommendations from past cases, early work on Phala

also generated recommendations based on a baseline recommender, Link Frequency,

introduced in section 5.4.2.1. These methods were combined into a hybrid method

that outperformed each method individually [60]. The success of this combination

method suggested investigating a more general combination approach, which led to

the research on hybridization presented in this chapter.

5.4.2 HPARs

The success of integrating the baseline led to examining other components that could

be added to the hybrid framework to further improve results. Each of these compo-
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nents comprises a somewhat complex rule, most of which are based on statistics that

must be mined from the case base. These rules are modelled by Java programs and

are encapsulated within the system as components referred to as Highly Procedural

Adaptation Rules (HPARs). These rules embody procedural knowledge augmented

onto the case-based reasoner of varying domain independence, but they do not em-

body specific and highly domain-dependent ontological knowledge. These HPARs

add a degree of domain sensitivity without the need for a hand-crafted ontology, in-

stead relying on case-mining to produce the requisite domain-dependent knowledge.

Each HPAR used in Phala is fairly general and could potentially be used in domains

other than scientific workflow authorship.

Phala employs four HPARs, described in the following subsections.

5.4.2.1 Link Frequency

The first HPAR will be called Link Frequency : a method of recommending the addi-

tion of new processors, which does not rely on the structure of individual cases. This

method will only make recommendations after examining the problem context of an

existing recommendation. Therefore, without other recommenders, such as extraction

from cases, this HPAR will not make recommendations.

For recommendation of new services, this method identifies the service to which

the given node’s service is most often linked and recommends the node to a new

processor instance of that service. In the case of ties, one of them is selected at

random. This method is similar to that proposed by Xiang et al. [121], which was

briefly discussed in Section 2.5.2.3.
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5.4.2.2 Input Port Usage

This HPAR makes recommendations by examining the expected input port utilization

of each processor by observing what named input ports were used for other processors

using the same service. The frequency with which each port is used is considered in

calculating the confidence for any recommendations generated.

If a port is frequently used in other processors with the same service, a problem

context recommendation will be generated recommending that a new processor or

edge be linked with the service using the specified input port. Output ports are not

examined by this HPAR since they are much less predictive of a potentially relevant

problem context.

5.4.2.3 Input Profile Matching

This HPAR is similar to Input Port Usage; however, instead of examining each input

port individually, this HPAR examines the collection of input ports used as a whole

(called the input profile) and compares it to input profiles of other processors with

the same service. If the currently examined processor’s input profile is a strict subset

of most other profiles, a problem context recommendation is produced recommending

that an additional service or edge be linked to this processor using the specified port.

Confidence is calculated by the proportion of input profiles the currently examined

processor’s input profile is a strict subset of.

Additionally, if the processor’s input profile doesn’t match any of those of other

instances of the processor, a problem context recommendation to replace the service

with a different service is produced.
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5.4.2.4 Flow Analysis

This HPAR helps detect errors in the edges connecting nodes by searching for unex-

pected loops in the data flow of the workflow. Recommendations for removing any

such edges are generated by this HPAR. This rule does not rely on the case-base at

all and was added to complement the extraction recommender by identifying some

basic errors that might be missed by the case-based method.

5.4.3 Confidence Regression

One solution to the problem of confidence comparability is to view confidence as a

probability estimate. Frietag adopts such a strategy aiming to estimate the probabil-

ity that a particular text fragment represents a field [31]. In order to produce these

estimated probabilities, Frietag produces transformations for the confidence values,

mapping them to probabilities by producing a regression model from a set of mapped

data points. Phala applies a similar approach, using an estimated probability that

a recommendation will be correct or the probability that a contra-recommendation

will be incorrect.

5.5 Evaluating Phala

5.5.1 Incorporating a Baseline

The goal of producing such a hybrid system was to improve the performance of Phala

through adaptation of the recommendations it generated through extraction, while

maintaining its knowledge-light properties. Thus, HPARs may make a good base-line
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Test Performance Metric Bound Type Bound

Service Addition Test Recommendation Rate Upper Bound 77.9

Service Addition Test Satisfaction Rate Upper Bound 81.2

Service Addition Test Satisfaction Rate Lower Bound 16.8

Edge Addition Test Recommendation Rate Upper Bound 61.12

Construction Test Recommendation Rate Upper Bound 69.89

Construction Test Satisfaction Rate Upper Bound 81.06

Construction Test Satisfaction Rate Lower Bound 0.06

Edge Removal Test Recommendation Rate Upper Bound 76.02

Table 5.1: Ideal limits of knowledge-light assistance in the myExperiment dataset.

for comparison, particularly the Link Frequency recommender, since it produces full

recommendations rather than simply problem context recommendations. However,

Link Frequency cannot recommend problems, so each of the other problem context

recommending HPARs was grouped with Link Frequency to produce the link fre-

quency baseline appearing in the evaluation results later in this section.

5.5.1.1 Limits of Knowledge in the Case-Base

While discussing potential baselines for evaluating a knowledge-light recommender,

it is important to know the limits within which any recommender can perform. It

is possible to provide an upper and lower bound on the possible performance of

a knowledge-light reasoner over a given dataset. For example, consider a service

recommendation test is presented to Phala, and service A within that test must

be linked to a new service B. An obvious limit on the maximum response rate is
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whether service A exists or not within the case base. Table 5.1 summarizes various

ideal limits of knowledge-light assistance for the myExperiment dataset. Limits on

satisfaction assume that the recommender has reached the maximum recommendation

rate. Limits not listed are either impossible to determine, given the nature of the test,

or are already 0% or 100% for lower and upper bounds, respectively.

5.5.2 Experimental Setup

The dataflow within 339 workflows from myExperiment was mined to form simulated

provenance traces to seed the case-base. Leave-one-out testing was then employed

with each of the tests described in section 5.3, generating each of the plots described

in section 5.2. In addition to cases available for retrieval, each of the case-base mining

methods in the HPARs as well as the regression method are restricted from using data

from the case selected as the test case in each test.

In the service addition and construction tests, the Link Frequency base-line was

incorporated but was not included with the other tests since Link Frequency only

produces service addition recommendations. In every test but the restraint test, ex-

traction and Phala as a whole are also both graphed. In the restraint test, the number

of recommendations produced by the entire Phala system was graphed according to

the minimum confidence threshold and compared to the number of recommendations

produced in the service addition test.

Each test examines a particular purpose for using Phala without mixing tasks.

This was intentional in the modelling of the tests owing to the fact that the degree to

which a user will encounter generative vs validation tasks will differ from user to user.
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Confidence values in Phala for error correcting recommendations (removing edges and

replacing services) tend to be lower than confidence values for construction (adding

services or edges), causing Phala to perform poorly on validation tests. In response,

Phala can be set to one of two modes: generation or validation. The user can request

that recommendations come from either mode. Service addition, edge addition, and

construction tests were performed in generation mode, and edge deletion and service

replacement tests were performed in validation mode. It is possible to further divide

modes for Phala and further increase performance, but this simple distinction was

chosen since it retains most of the benefit in the results and its specification would

not be as much of a burden on the user.

5.5.3 Results

The results of the service addition test are indicated in figures 5.3 through 5.11.

Figure 5.3 indicates what percentage of the problems were addressed with a relevant

recommendation. The recommendations from the extraction component are used

by both Phala (the combined recommendations from all sources) and link frequency

(combined problem context recommendations from all sources, but solutions only

come from the link frequency recommender). Extraction only produces one segment

of the recommendations considered by the combiner and by link frequency; there

are additional HPARs that produce other problem context recommendations, such

as input port usage and input profile matching. Though extraction, at best, only

matches just over 40% of the recommendations, along with HPARs, it contributes

to the success of Phala as a whole, which matches just under 45% of the problem
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Figure 5.3: A plot of the recommendation rate for the service addition test.

components of the expected recommendations.

Key Result: Phala covers the union of the expected recommendations

covered by its components, which results in a greater coverage than any

one of its components.

Figure 5.4 depicts the ratio of expected recommendations whose solution com-

ponents have been matched by a recommendation to the recommendation rate at

each minimum confidence threshold. For extraction, this begins just under 80% and

climbs as the similarity of the cases used increases to just over 95%. Link frequency
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Figure 5.4: A plot of the satisfaction rate for the service addition test.

performs significantly worse1, beginning just under 55% and reaching its ceiling under

85%. Phala’s satisfaction rate is significantly lower than extraction but significantly

higher than link frequency since its recommendation rate is much higher, largely be-

cause it incorporates recommendations from both of these sources. Figure 5.5 depicts

satisfaction reached when also reaching a particular recommendation value, integrat-

ing results from each of the previous two plots. In this case, Phala again appears

in-between the other two components. This doesn’t necessarily have to be the case,

1Each significance test used in this section is a Z test with p < 0.01.
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Figure 5.5: A plot of the satisfaction vs recommendation rates for the service addition

test.

however. Phala includes HPARs that degrade its performance overall but provide a

more important benefit identified later in this section.

Key Result: When considering all recommendations produced, the

case-based extraction component produces the best over-all recommenda-

tions.

The metrics mentioned thus far relate to the percentage of expected recommen-

dations that are matched in some way. Figures 5.6 and 5.7 depict the relevance and
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Figure 5.6: A plot of the relevance rate for the service addition test.

accuracy rates for the entire set of generated recommendations. Phala’s numbers are

fairly low for the relevance rate, compared to the others, for the same reason that

Phala’s recommendation rate was high: Phala includes all relevant as well as irrel-

evant recommendations from all methods, and the relevant recommendations Phala

includes overlap more so than the irrelevant recommendations. Irrelevant recommen-

dations were not considered in Figure 5.3.

Link frequency provides the best relevance since its recommendations are gener-

ated from problem context recommendations produced by HPARs designed to boost
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Figure 5.7: A plot of the accuracy rate for the service addition test.

the coverage of Phala. The two spikes in the relevance rate for link frequency coincide

with spikes in the input profile matching and input port usage HPARs, respectively.

These spikes can be seen to a lesser extent within the Phala plot as well, but the

combined approach utilized by Phala mostly flattens them out. Though Phala’s com-

bination procedure invites many irrelevant recommendations, it also removes many

inaccurate recommendations, resulting in Phala keeping a relatively high accuracy

rate, which is either dominant or dominated by extraction at different intervals in

figure 5.7. Of note, when using a minimum confidence threshold (thus considering
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all recommendations), Phala provides significantly more accurate recommendations

than either of the others.

Key Result: Overall, HPARs produce recommendations that are more

often relevant, while recommendations produced through extraction can

be the most accurate, and for other confidence thresholds, Phala produces

the most accurate recommendations.

Figure 5.8: A plot of the number of recommendations produced for service addition

and restraint tests.
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Figure 5.8 plots the number of recommendations produced by Phala during the

service addition test against the number of recommendations produced during a re-

straint test, in which a complete workflow is presented to Phala with no expected

recommendations. Phala produces less than half the number of recommendations

during the restraint test, showing that the components of Phala are significantly less

likely to make recommendations in the cases where all recommendations are irrel-

evant. Although Phala still produces a large number of recommendations in these

cases, the number of recommendations produced may be a basis for a confidence value

that indicates to the user the degree to which Phala believes the user’s workflow is

complete.

Key Result: Phala doesn’t stop producing recommendations when

none are expected, but the number of recommendations produced by

Phala is a good indicator of the likely completeness of the query workflow.

The metrics, to this point, examine the entire collection of recommendations,

though as noted in section 3, this is not an ideal means of evaluating an intelligent

assistant that ranks its recommendations by a confidence value. Figures 5.9 and 5.10

depict the relevance and accuracy of the top recommendation for each test for each

recommender. In both of these plots, the user preference for relevance vs accuracy

is set to 0.5, so that both are considered equally important. In figure 5.9, the value

of Phala’s combiner in filtering out the best recommendations is seen. There is no

significant difference between the relevance of the first recommendation produced by

Phala and the first produced by Phala’s HPARs, though both are significantly more

relevant than the first recommendation produced by extraction.
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Figure 5.9: A plot of the initial relevance rate for the service addition test.

In figure 5.10, the accuracy of Phala’s initial recommendations is shown to be lower

than that of extraction and above that of link frequency. The fact that extraction

provides accurate recommendations is the reason most of Phala’s HPARs focus on

boosting the relevance of Phala’s recommendations, as evidenced in these two figures.

Key Result: Top recommendations produced from extraction tend

to be more accurate, whereas top recommendations produced from the

HPARs tend to be more relevant. Phala is able to combine recommenda-

tions from each of these sources to provide a more balanced set of final
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Figure 5.10: A plot of the initial accuracy rate for the service addition test.

recommendations.

Though the utility of Phala may not be entirely clear from the previous two

graphs (Phala was out-performed by one of the base-lines in each of the graphs),

when considering the impact of these metrics on a user, and also considering the user’s

choice in optimal confidence thresholds and relevance vs accuracy trade-offs, Phala

is consistently able to save the user significantly more time. Figure 5.11 depicts the

percentage of the ideal time an intelligent assistant could save the user, in terms of the

error ratio (explained in Section 5.2.4). For each recommender’s plot, at each point
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Figure 5.11: A plot of the ideal performance ratio for the service addition test.

where a joint can be seen in this graph, the optimal settings for that recommender

changed. In order to provide a benefit under a wide space of user cost functions, one of

many different configurations for the recommenders must be used. Phala can provide

more than a third of the ideal benefit for a recommender system when the error ratio

approaches zero, and continues to provide a high level of benefit, several times that of

the base-lines at times, all the way beyond a reasonable value for the error ratio in a

system where users are in a position to benefit from recommendation-based assistance

(at error ratio 1.0, the time it takes to recover from a bad recommendation is equal
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to the maximum time saved by incorporating a good recommendation).

Key Result: In the test for adding new services to a mostly-complete

workflow, Phala provides significantly more benefit than the baselines and

provides benefits to the user under a wide set of circumstances.

Figure 5.12: A plot of the benefit factor for the edge addition test.

The ideal performance ratio plot is depicted for each of the other tests in Figures

5.12, 5.13, 5.14, and 5.15. Phala continues to provide a large advantage over baseline

methods in the edge addition test depicted in Figure 5.12, which would be expected
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Figure 5.13: A plot of the ideal perforamce ratio for the construction test.

from the similarity of this test to the service addition test. The construction test

depicted in Figure 5.13 is more difficult for a knowledge-light approach since there is

little context from which to retrieve a useful case early in constructing a workflow.

Phala is still dominant over the baseline methods in this test, but provides less benefit

over the HPAR’s than in previous tests since many of the HPARs provide recommen-

dations independently of the structure as a whole, unlike the case-based extraction

method, and are thus immune to the low amount of detail in many of the queries in

these tests.
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Figure 5.14: A plot of the ideal perforamce ratio for the edge removal test.

Phala provides a substantial benefit over its case-based component in the first

of the two validation tests, in which erroneous edges must be detected. Phala also

provides benefit in the second test, replacing erroneous services with correct ones, but

to a lesser extent.

Though Phala was shown to be somewhat less effective in validation tasks than

it was for generative tasks, the positive results are remarkable considering that the

work discussed in Chapter 3, which addresses validation, utilizes a knowledge-heavy

approach, whereas knowledge-light approaches and those in-between were typically
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Figure 5.15: A plot of the ideal perforamce ratio for the service replacement test.

used for generative tasks.

Key Result: Phala provides superior benefits in each of a variety of

tests, including both validation and generative tests.
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Chapter 6

Conclusions

6.1 Claims and Evidence

Work in this dissertation has uncovered and explored a number of key questions and

evidence, stemming both from the literature review and the empirical development

and evaluation of Phala. This section will summarize the key points argued in this

dissertation and review the evidence it brings forth.

6.1.1 Main Thesis

The primary thesis of this dissertation is:

• Recommendation-based assistance for authors of structured data can leverage

case-based reasoning to greatly reduce knowledge acquisition, computational

resource, and maintenance requirements while maintaining effectiveness.

Phala embodies knowledge-light principles throughout its design, from its knowledge-

light approach to mining cases from provenance, through its adaptation procedures
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that mine the case-base for requisite knowledge for improving solutions generated

from the case-based recommendation extraction process.

The case-based recommendation extraction process is shown to be a vital compo-

nent of the system, contributing largely to its success as it produces strong enough

results that allow it to stand alone as a viable source of assistance. Structured gestalt

cases mined from provenance provide a rich datasource for generating these recom-

mendations, and graph indexing techniques are able to adequately mitigate the com-

putational costs of using such complex case representations.

The recommendation-based assistance offered by Phala provides a middle-ground

between information retrieval systems that require the user to analyse and re-purpose

cases and knowledge intensive systems that reduce an expert user’s role in the au-

thorship process and additionally require significant initial and continuing investment

in knowledge engineering for the creation and maintenance of the systems. Recom-

mendations also make a thorough analysis of the components of a system like Phala

possible, further easing the burden of system designers seeking a versatile solution

within a rapidly developing domain, such as workflow authorship in e-Science.

6.1.2 Sub-theses

Two sub-theses were additionally specified, which are related to the main thesis. Each

of these are restated and justified below.

• Provenance can be mined, without significant domain knowledge, to build a

case-base that can support authorship of scientific workflows.
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Phala was designed with minimal knowledge of processor types within these prove-

nance traces and is mostly data-driven in its provenance mining process, meeting the

goal of utilizing provenance for knowledge-light assistance. The benefit of Phala out-

lined in Chapter 5 and the specific advantages identified in Section 2.7.4 (despite the

challenges also mentioned in this section) justify the value of this knowledge source.

• Ensemble frameworks can be extended to support knowledge-light adaptation

within a case-based reasoner.

Phala’s usage of HRF for adaptation exemplifies the effectiveness of such frame-

works in supporting knowledge-light adaptation. Each of the adaptation methods

used by phala are data-driven, much like Phala’s case-mining process, furthering the

knowledge-light goal. In Chapter 5, Phala is shown not only to provide effective as-

sistance but also to outperform each of its components, were the components to be

used to independently assist a user. This justifies the inclusion of the hybrid adapta-

tion scheme as a means of providing more effective assistance through a case-based

approach.

6.1.3 Summary of evidence

The first important point to consider about the thesis is its novelty. Chapter 2 surveys

existing systems that assist in synthesis tasks and identifies several that employ a case-

based approach, recommendation-based approach recommending specific content to

be added, or knowledge-light approach, and it contrasts the approach taken by Phala

with these systems.
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Next is the feasibility of the recommendation-based approach to assistance in

synthesis tasks. Chapter 2 begins to lay out how recommendation-based assistance

can be realized for synthesis tasks, outlining content requirements and evaluation

criteria. Chapter 3 outlines specific content for such recommendations in the synthesis

domain of assisting authors of scientific workflows.

Reducing knowledge acquisition requirements and maintaining this knowledge is

another key concern for this thesis. The issue of knowledge-light assistance is explored

in Chapter 3 and specifically outlined for Phala. Section 3.2 and those following it

specifically address case-based reasoning’s role in reducing the knowledge acquisition

burden. Provenance is identified as a source for automatically mining cases in section

3.3.1, which avoids the need for hand-coding most domain knowledge used by the

system. Section 3.5.3 identifies how provenance also affords a means of maintaining

knowledge within the case-base by recapturing users’ choices about the design of

new workflows incorporating Phala’s feedback. Additionally, section 3.7.2 explains

how adaptation knowledge requirements can also be reduced by employing a hybrid

approach to adaptation, thus addressing each of the knowledge acquisition concerns

for a system such as Phala.

Chapter 4 covers Phala’s approach to managing computational resources through

SAI: its domain-independent graph database. This chapter explains how two-phase

retrieval can be used by Phala to speed up retrieval of stored cases and how Phala’s

use of this technique compares with other uses of two-phase retrieval. Experiments

with another graph-based dataset and the dataset used by SAI, detailed in section

4.6.3, justify the importance of choosing an indexing strategy that fits the dataset and

specifically the decisions made in Phala for the indexing phase of the retrieval strategy
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by comparing the quality of rankings produced by Phala’s indexing strategy between

both datasets. Experiments in section 4.6.5 show that Phala’s approach scales well

to significantly larger databases, beyond those cases mined from the myExperiment

dataset.

Chapter 5 completes the specification of Phala’s approach and identifies unique

and important criteria for evaluating the claim that Phala is an effective system.

Phala is tested in several ways mirroring its expected usage, which involves the cre-

ation of new elements of a workflow and the validation of existing elements within

the workflow to determine whether or not they are error free. Experiments show that

in each of these tests, Phala provides valuable assistance to the user through a wide

range of potential circumstances.

6.2 Important Lessons

Beyond the theses, several other important lessons emerging from this dissertation

work have been identified. They are explained in the following sub-sections.

6.2.1 Two-Phase Retrieval

One of the more important lessons from the work presented in this dissertation is the

general importance of two-phase retrieval algorithms in process-oriented case-based

reasoning. This subject has garnered the most published and currently submitted

work from this dissertation [60, 51, 53] and also the most impact on the field, as

others are integrating two-phased retrieval into their work [13].
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6.2.2 Dataset Diversity

Phala’s extraction technique relies on the existence of stored cases which are similar

to the query. This may lead one to suspect that Phala would perform better when

using a case-base lacking diversity in a leave-one-out test. However, in Chapter 4,

particularly Figure 4.5, it was shown that the cases used with Phala’s evaluation are

actually quite diverse, yet have local similarity within clusters of similar cases. It is

this local similarity which turns out to be more important to Phala’s production of

useful recommendations, particularly in light of another result from Chapter 4, that

a high degree of global similarity between cases actually complicates the retrieval

process.

6.2.3 Hybrid Systems

Another lesson is the existence of untapped potential in hybrid systems. As noted

in Chapter 3, there has been a lot of attention paid to ensemble systems but not as

much to hybrid systems such as Phala, in which components of the hybrid bear little

similarity to each other in terms of procedure. Phala’s improvement over its com-

ponent methods identifies the utility of hybrid approaches to multi-faceted problems

such as those existing in intelligent assistance tasks.

6.2.4 Evaluating Intelligent Assistants

Lastly, there have been several important lessons in proper evaluation of intelligent

assistants in the absence of a direct user study. Evaluation work in this dissertation

began with Freitag’s work involving plots relating what is referred to in this dis-
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sertation as relevance and accuracy. However, Chapter 5 shows that, for intelligent

assistants, a proper evaluation involves much more than judgements on individual

recommendations, since such judgements do not take into account the fact that few

will actually be processed or acted upon by the user. Initial recommendation plots

identify how judgements can shift when only the top recommendation is considered,

how several user-specified settings have bearing, and how different kinds of recom-

mendations, such as problem context recommendations, can also make an impact.

The ideal performance ratio metric additionally shows how these user-specified set-

tings can be dealt with, again without a user study, by reformulating the problem in

terms of actual costs and benefits to the user, and maintaining a single independent

variable in the process.

6.3 Future Work

6.3.1 New Research Avenues for the Structure Access Inter-

face

Given SAI’s ability to support many different case representations and graph index-

ing and comparison algorithms, SAI can be exploited to develop a comparison of

various existing algorithms over various synthetic and real-world datasets to aid in

the selection of indexing/comparison strategies. Work is currently under way to ex-

pand the statistics SAI tracks about the graphs it stores under the hypothesis that

some of these statistics on graph structure may be predictive of which indexing and

comparison algorithms are most appropriate for a particular domain.
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Work is also currently under way to expand the algorithmic offerings of SAI. A

graphgrep-like indexing strategy is currently in development, and a frequent struc-

ture mining approach is planned. Beyond indexing algorithms, additional map-

ping/aliment algorithms can also be explored within the framework.

Work is also planned towards developing representations for new domains of struc-

tured data. Supporting the popular AIDS database used by many graph database

systems for evaluation is crucial to position SAI as a test-bed for modern graph index-

ing and retrieval algorithms [123]. Additionally, knowledge structures and ontologies

are important domains to examine to further entrench SAI as an important tool in

Case-Based Reasoning and other areas of Artificial Intelligence.

6.3.2 New Research Avenues for the Hybrid Recommenda-

tion Framework

As mentioned in the lessons section, hybrids such as Phala may have a larger role to

play in applied machine learning, particularly in domains for which ensemble tech-

niques have been successful. HRF could be further explored as an option for adap-

tation for case-based reasoners in domains other than that of Phala. Additionally,

HRF could be applied to recommender systems that are not case-based and used to

improve the results of an existing system by incorporating it in as a component within

a new hybrid system, similar to the design of Phala.
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6.3.3 New Research Avenues for Phala

Helpfulness has been mentioned as a particularly difficult quality of recommendations

to explore, however Phala may be able to approach this issue. A recommendation’s

helpfulness could be judged by how much content it is recommending, and there are

several opportunities for Phala to make recommendations as an aggregate of several

recommendations in Phala’s current format. In order to find plausible recommenda-

tions of a larger subsequence of processors, SAI could be used to implement common

subgraph mining within the provenance database. SAI could also be extended to

support multiple views of provenance traces, supported within the OPM framework,

which could be used to facilitate these recommendations as well.

To further the research on CBR for e-Science provenance, the next application

of Phala will be to explore the problem of repairing incomplete provenance traces

within a 10 gigabyte database of provenance traces [21]. This is an important step in

insuring the maximum benefit from re-using provenance traces for assisting workflow

authors (see Section 2.7.4).

To apply Phala to this task, Phala’s recommendation system must be altered

to generalize more, as these collections of data will be more redundant than the

datasets Phala has been tested with through this dissertation work. SAI will again

be used to provide the framework for this system and to aid in the development of its

core indexing and similarity assessment algorithms. HRF may be applicable to the

problem as well as a means of joining together several independent solutions to again

provide a superior approach through combination strategies.
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6.3.4 Other Research Avenues

The ideal performance ratio metric provides a useful means of connecting automated

evaluations of recommendations to the expected outcome for users of the system in

a measurable way, but it is not tied specifically to the unique qualities of Phala as a

recommender. Thus, this metric may be useful in evaluating other recommendation

systems as well. An important avenue of new research will be to identify existing

projects that may benefit from an evaluation using this metric and also to seek op-

portunities to tie this metric directly to a user study to observe the feasibility of

measuring the three cost functions associated with users that this metric relies on.

As discussed in Chapter 2, a great deal of existing work similar to Phala is dedi-

cated to the planning domain. Techniques used in Phala may be more widely appli-

cable to these types of domains and can be particularly useful in the growing sub-field

of game AI. In addition to developing plans for game-playing [86], Phala and its com-

ponents could be applied to developing state machines for specifying the behavior of

such game-playing agents and also non-playable characters (NPC’s) [30].

174



Bibliography

[1] A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, method-

ological variations, and system approaches. AI Communications, 7(1):39–59,

Mar. 1994.

[2] D. Aha, L. Breslow, and H. Munoz-Avila. Conversational case-based reasoning.

Applied Intelligence, 14:9–32, 2001.

[3] D. W. Aha and D. Wettschereck. Case-based learning: Beyond classification of

feature vectors. In ECML ’97: Proceedings of the 9th European Conference on

Machine Learning, pages 329–336, 1997.

[4] G. Allampalli-Nagaraj and I. Bichindaritz. Automatic semantic indexing of

medical images using a web ontology language for case-based image retrieval.

Engineering Applications of Artificial Intelligence, 22(1):18 – 25, 2009.

[5] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Ke-

pler: An extensible system for design and execution of scientific workflows. In

Proceedings of the 16th International Conference on Scientific and Statistical

Database Management, Washington, DC, USA, 2004. IEEE Computer Society.

175



[6] J. L. Ambite and D. Kapoor. Automatically composing data workflows

with relational descriptions and shim services. In Proceedings of the 6th in-

ternational The semantic web and the 2nd Asian semantic web conference,

ISWC’07/ASWC’07, pages 15–29, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] P. Andrews, M. Margo, A. Chourasia, and J. Towns. Enabling HPC e-science via

integrated grid infrastructure. In Proceedings of the Second IEEE International

Conference on e-Science and Grid Computing, E-SCIENCE ’06, pages 156–,

Washington, DC, USA, 2006. IEEE Computer Society.

[8] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and Y. Simmhan. The

trident scientific workflow workbench. In Proceedings of the 2008 Fourth IEEE

International Conference on eScience, pages 317–318, Washington, DC, USA,

2008. IEEE Computer Society.

[9] P. Baudisch. Proceedings of the CHI 1999 workshop: Interacting with recom-

mender systems, 1999.

[10] E. Bengoetxea. Inexact Graph Matching Using Estimation of Distribution Algo-

rithms. PhD thesis, Ecole Nationale Supérieure des Télécommunications, Paris
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[86] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram. Case-based planning and exe-

cution for real-time strategy games. In Proceedings of the 7th international con-

187



ference on Case-Based Reasoning: Case-Based Reasoning Research and Devel-

opment, ICCBR ’07, pages 164–178, Berlin, Heidelberg, 2007. Springer-Verlag.

[87] D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim. A literature review and clas-

sification of recommender systems research. Expert Systems with Applications,

39(11):10059–10072, Sept. 2012.

[88] D. Patterson, N. Rooney, and M. Galushka. A regression based adaptation

strategy for case-based reasoning. In Proceedings of the Eighteenth Annual

National Conference on Artificial Intelligence, pages 87–92. AAAI Press, 2002.

[89] A. Perini and F. Ricci. An interactive planning architecture: the forest fire

fighting case. In M. Ghallab and A. Milani, editors, New directions in AI

planning, pages 273–283. IOS Press, Amsterdam, The Netherlands, 1996.
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Appendix A

Guide to the Phala Workflow

Assistant

A.1 Architecture of Phala

Figure A.1: A UML diagram of Phala’s implementation of HRF classes
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A.1.1 Recommendation Components

A.1.1.1 WFProblem

Problem contexts for Phala identify a set of processors and, optionally, a recom-

mendation type for which a solution must be found. WFProblems are considered

answerable only if they include the expected recommendation type and identify only

a single processor. WFProblems may also optionally specify the port on the service

to which the solution should be applied, where applicable.

A.1.1.2 WFSolution

Solutions identify the remaining information necessary to solve a problem posted by

a WFProblem object. These requirements vary depending on the recommendation

type, and are summarized below:

• ADD INPUT SERVICE - The service type of the processor to be added,

and, optionally, the port.

• ADD OUTPUT SERVICE - The service type of the processor to be added,

and, optionally, the port.

• ADD INPUT EDGE - The processor to be linked, and, optionally, the port.

• ADD OUTPUT EDGE - The processor to be linked, and, optionally, the

port.

• DELETE INPUT EDGE - The processor to be unlinked, and, optionally,

the port.
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• DELETE OUTPUT EDGE - The processor to be unlinked, and, optionally,

the port.

• REPLACE SERVICE - The new service type to be used.

A.1.1.3 WFProblemContext

A recommendation that includes only a WFProblem and not a WFSolution. These

recommendations serve as a vote to support other recommendations with a matching

WFProblem.

A.1.1.4 WFChange

A recommendation to update a workflow in some way, which includes both a WF-

Problem and a WFSolution.

A.1.1.5 WFQuery

A WFQuery represents a query to the Phala system. It includes an optional set

of WFProblemContext recommendations, which indicate the context in which the

user would like to receive a recommendation. Phala will raise its confidence in the

relevance of any recommendation that matches the user-specified context to 100%.

A.1.1.6 PhalaRecommendationSystem

This class combines each of the other components, including a Combiner and a SAI

database, and allows the user to issue queries and receive response recommendations.
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A.1.2 Recommenders

Implementations of the extraction recommender and each of the HPAR’s are included

within Phala. These recommenders are described in sections 3.5 and 5.4.2, respec-

tively.

A.2 Downloading and Using Phala

Currently, the most up-to-date version of Phala can be found at http://www.cs.indiana.edu/ jmor-

wick/Phala. This URL may or may not be the permanent location for Phala updates.

A.2.1 Service Types and Case Mining

The OPMUtil class contains a static method (ingest OPM) that converts the standard

Open Provenance Model Java representation of a provenance trace to an SAI graph

representation and stores it within the SAI database. This utility implements Phala’s

recapture phase and can be used to enact it within a Phala installation.

The code used for mining myExperiment cases can be made available upon request.

A.2.1.1 myExperiment Service Types

A library of processor types has been developed for workflows stored on myExperi-

ment. This collection includes classes for representing the following processor types:

• Biomart

• Biomoby

• constant data
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• Java Beanshell scripts

• Java arbitrary class

• KnowARC

• Soaplab

• WSDL

A hash of all properties is taken to identify service types that are not included in

the list above, though Phala can easily be extended to include additional types.

A.2.2 Phala Plugins

Both Phala plug-ins that have been developed are intended as a minimal interface for

using and testing Phala. Each plug-in allows the user to set the minimum confidence

threshold for displaying recommendations and also allows the user to explicitly query

the Phala system for a recommendation, which it then displays.

A.2.2.1 XBaya

A modified version of XBaya workflow editor that includes hooks for Phala has been

developed. The source code can be made available upon request.

A.2.2.2 Taverna

A plug-in has been developed for the Taverna workflow editor working within its

integrated plug-in API. This plugin is pictured in Figure 1.2. The source code can be

made available upon request.
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Appendix B

Guide to the Hybrid

Recommendation Framework

B.1 Architecture of HRF

Figure B.1: A UML diagram of HRF’s main classes
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B.1.1 Coordinating Classes

Figure B.1 outlines the basic class structure of HRF. Each class in the diagram is

intended to be extended and tailored to a particular task. Recommendation, Problem,

and Solution subclasses are intended to be tailored to the specific domains to which

HRF is being applied. This can also be true of the Recommender and Combiner

subclasses, but frequently such implementations can be applied to a wider set of

domains, such as those included with HRF and described in section B.1.7.1.

B.1.2 Recommendation

Each Recommendation instance identifies two recommendations: the context within

which a recommendation to correct or add content could be made and the accom-

panying recommendation to correct or add content. Each of these components is

described in detail below. Additionally, some Recommendations may have only a

Problem component.

Recommendation instances will also track the confidence associated with each of

their components, and also whether or not the recommendation is a contra-recommendation.

B.1.2.1 Problem

A Problem subclass will provide necessary details to identify where, and for what

purpose, a recommendation should be made to correct a problem or add new content.

Problem instances can be answerable or not answerable. An answerable problem

is one that fully specifies a problem for which a Solution recommendation can be

made. An unanswerable problem is one that is too abstract to be answerable and is
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missing some information required to determine whether or not a Solution is relevant.

Unanswerable Problem recommendations can be used to provide support for other,

answerable Problem recommendations when combined by a Combiner.

Subclasses of Problem must be able to determine whether a Problem recommen-

dation is answerable and to what degree one Problem recommendation matches an-

other. The latter function need not be symmetric. For instance, a very general and

unanswerable Problem recommendation may match a more specific and answerable

recommendation that contains information not included in the first recommendation.

However, when reversed, the more specific recommendation may not match the gen-

eral one, since the general recommendation is missing some of the information that

the more specific recommendation contains.

B.1.2.2 Solution

A Solution recommendation contains all necessary information to take action to cor-

rect or address a Problem. Solution subclasses, like Problem subclasses, also must be

able to determine the degree to which another Solution recommendation matches.

B.1.3 Query

A Query subclass models all user-provided information the system needs to generate

recommendations. A Query may optionally include a set of problem recommenda-

tions, specified in some way by the user, to take initiative in identifying relevant

problems for recommendation.
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B.1.4 Recommender

Recommender instances are responsible for generating Recommendation instances

throughout the recommendation process. Recommenders may generate initial rec-

ommendations when presented with a Query instance. Each Recommender will be

given opportunities to examine the pool of existing Recommendations and to make

additional Recommendations

B.1.5 Combiner

The Combiner role is to refine a set of recommendations. Combiners act to transform

and filter Recommendation instances made by all of the Recommenders before they

are issued to the user. Combiners may produce new recommendations that combine

components of the recommendations they consume, or they may simply alter the

confidence values of recommendations.

B.1.6 Normalizer

Normalizer subclasses are Combiners that implement regression algorithms for trans-

forming confidence values of recommendations to better match the likelihood that

the recommendation will be relevant or accurate. Normalizers work with a Perfor-

manceRecord (described in section B.2) to estimate the probability of a problem

recommendation’s relevance or a solution recommendation’s accuracy based on mea-

surements of the metrics associated with confidence values available in the Perfor-

manceRecord.
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B.1.7 RecommendationSystem

RecommendationSystem is extended to work with specific Recommendation types.

RecommendationSystems house both Recommenders and a Combiner. A Recom-

menderSystems ingests Query instances, produces Recommendation instances from

its Recommenders, and then refines them with its Combiner before issuing them to

the user.

B.1.7.1 Algorithm Options Shipping with HRF

Below is a list of implementations of combiners that ship with HRF for the abstract

tasks identified in the previous section.

• Combiner:

– GeneralCombiner - Implements each of the combining algorithms dis-

cussed in section 3.8.3.

– UnionCombiner - Combines the results from two or more other Combiner

instances, and returns them as a single set.

– CompositionCombiner - Filters the results from one Combiner through

a second Combiner and returns the results from the second Combiner.

• Normalizer:

– Binning - A regression algorithm that forms a series of confidence intervals

which are then associated with a new confidence estimate computed from

the average relevance or accuracy of recommendations previously made by

a recommender.
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– WeightedAverage - A regression algorithm that computes a new confi-

dence value based on the average relevance or accuracy of recommenda-

tions within a PerformanceRecord, weighted by their inverse difference in

confidence.

B.2 Evaluation Framework for HRF

Figure B.2: A UML diagram of the Evaluation Framework for HRF

B.2.1 Coordinating Classes

Figure B.1 outlines the evaluation class structure of HRF. These classes are used

to write programs that test an HRF system by producing a series of Test instances
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that can be used with a RecommendationSystem to produce a PerformanceRecord

instance.

B.2.2 Test

Each test consists of a Query and a set of expected Recommendations. During a test,

the Query is presented to the RecommendationSystem and the resulting Recommen-

dations are compared with the expected set contained by the Test instance.

B.2.3 ProblemRecord

During any test, there may be several problems, each identified by the expected rec-

ommendations. One of these recommendations is held by a ProblemRecord instance

to model a single problem within a test.

B.2.4 RecommendationRecord

During a test, the RecommendationSystem may produce many Recommendations,

each of which is tracked by a RecommendationRecord instance. These instances may

be associated with multiple ProblemRecord instances, but can be associated with

only a single Test instance.

B.2.5 PerformanceRecord

A PerformanceRecord records an aggregate of the records for a complete set of tests.

PerformanceRecord instances can be used to generate plots or to perform regression

transformations on new recommendations.
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B.2.6 Plotter

Each Plotter subclass is responsible for generating a dataset for a metric (including

those discussed in section 5.2). Typically, Plotters will be subclasses of the Plotter2D

and Plotter3D classes, which provide structure for developing 2D and 3D plots, re-

spectively, and are themselves subclasses of the Plotter class.

B.3 Downloading and Using HRF

Currently, the most up-to-date version of HRF can be found at http://www.cs.indiana.edu/ jmor-

wick/HRF. This URL may or may not be the permanent location for HRF updates.
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Guide to the Structure Access

Interface
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Figure C.1: A UML diagram of SAI’s main classes

C.1 Architecture of SAI

C.1.0.1 Coordinating Classes

Figure C.1 outlines the basic class structure of SAI. Two classes serve to coordinate

SAI’s functionality: DBInterface and RetrievalInterface. The classes in bold-face

in the following paragraphs are abstract classes that perform a task, the implemen-

tation of which is intended to be customizable for usage in specific domains.
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C.1.0.2 DBInterface

DBInterface handles the low-level loading and saving of structures and indices, in-

cluding methods for caching and direct database access. DBInterface also contains

a FeatureSetComparator, which is used to check compatibility between feature

sets. This is stored in DBInterface to allow for DBInterface to perform compatibility

checks between graphs and indices stored in the database, without any dependence

on retrieval related classes.

DBInterface contains Indexer instances, which are used to index newly saved

structures. DBInterface also houses various DatabaseMaintainer instances, which

embody background tasks that lazily keep the databases indexing consistent and

efficient.

C.1.0.3 RetrievalInterface

RetrievalInterface contains objects that handle each step of a similarity query. An

IndexRetriever first retrieves a set of indices from the database that are compatible

with a query structure.

Next, a GraphRetriever ranks the candidate cases in the database that are com-

patible with any of the same indices as the query. A GraphRetriever implements

the details of how to determine which candidate is more likely to be desired in the

retrieval according to how well it covers the indices; structural details of candidate

cases are not yet loaded.

Once an ordered list of candidate cases is retrieved, the RetrievalInterface uses a

MapGenerator to create a mapping between the query and each of the top N can-
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didate cases. Then the cases are re-ordered according to the value a MapHeuristic

applies to the mapping generated by the MapGenerator. The top K of these cases

are then returned by the RetrievalInterface.

C.1.0.4 Algorithm Options Shipping with SAI

Below is a list of implementations that ship with SAI for the abstract tasks identified

in the previous section. These algorithms were developed either for their simplicity,

or for their relatedness to the problem of using provenance traces to assist workflow

authors.

• Indexer:

– Path1 - Creates an index consisting of two nodes and a single edge, re-

taining features from specified feature classes.

– Path1Lookup Creates the same indices as Path1 but attempts to find

matching indices in the database rather than creating repeated instances.

This is advantageous because it both eliminates the need for combining

indices during system idle time and also insures that there are no repeated

indices in the database at any time. The disadvantage, however minor, is

that the check for existing indices increases index generation time.

• IndexRetriever:

– Path1Retriever Retrieves indices created by the Path1 indexers in one

step with a single SQL query.

• GraphRetriever:
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– SimpleCountRetriever Retrieves IDs of all graphs indexed by the spec-

ified indices. Graphs are ordered by the number of specified indices asso-

ciated with them.

• MapGenerator:

– SearchMapGenerator This is an abstract generator that is completed

by including a SearchQueue implementation. SearchQueue implementa-

tions are a queue of node mappings and dictate how the mappings are

ordered and extended in the search process. HeuristicPriorityQueue is an

implementation that orders maps according to a provided MapHeuristic

and expands maps by creating all maps extended by one additional node

mapping.

• MapHeuristic:

– BasicEdgeCounter: Counts the number of edges that are compatible

according to the map.

– WeightedSum: Counts edges as BasicEdgeCounter does, but assigns

them a specified score. Additionally, compatible node and edge features

are scored according to a score assigned to each Feature class and are added

to the total score for a map.

• FeatureSetComparator: FeatureSetComparator implementations are used

to judge whether or not one set of features is compatible with another set of

features. In the following descriptions, consider that the comparator is deciding

whether feature set A is compatible with feature set B.
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– ManyTo1: Indicates compatibility if, for each feature x in set A, there is

a feature in set B that is compatible with x.

– Complete1To1: Similar to ManyTo1, but doesn’t allow for a single fea-

ture in set B to be compatible with more than one feature in set A. If such

a compatibility relationship exists between the features of set A and the

features of set B, this comparator will return true; otherwise it will return

false.

• DatabaseMaintainer: These are the available idle-time tasks that can be run

continuously to maintain SAI databases.

– IndexCompatibilityChecker: Checks each index in the database against

each other index and records which indices are compatible with which other

indices. This facilitates hierarchical index retrieval and also assists in the

next maintenance task.

– IndexConsolidator: Checks each index against each other index to see

if they are equivalent by checking compatibility relationships recorded by

IndexCompatibilityChecker or another source. If they are, one index is

deleted and the other gains the associations of the deleted index.

C.1.1 Database Structure

SAI is built on top of the mySQL database server. This subsection describes the

various tables used within an SAI database in mySQL:

• graph instances Entries in this table provide basic information for each in-
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stance of a graph in a SAI database. Thus far, these entries contain only an ID

number for the graph and an indication of whether or not it is intended to be

used as an index.

• node instances Entries in this table provide information for each node instance

within a graph in SAI. Node instances have IDs that are only unique within the

context of a graph.

• edge instances Entries in this table provide information for each edge instance

within a graph in SAI. IDs are again only locally unique. These entries reference,

in order, the nodes they connect and the parent graph containing the nodes.

• feature instances Entries in this table describe instances of features within

SAI. This includes the full name of the Java class that these features instanti-

ate. Feature instances are always unique. There is no distinction between two

different features that contain the same data and instantiate the same class.

They are both treated as the same instance within the SAI database.

• graph features Entries in this table relate feature instances to graphs within

the database.

• node features Entries in this table relate feature instances to single nodes

within graphs within the database.

• edge features Entries in this table relate feature instances to single edges

within graphs within the database.

• graph indices Entries in this table determine which indices (graphs) are asso-
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Figure C.2: A Screenshot of the SAIMyadmin Web Application

ciated with other graphs (which may or may not also be indices). Each entry

denotes one such relationship between an index and a graph.

C.2 Viewing and Managing SAI Databases

C.2.1 SAIMyAdmin

SAIMyAdmin is a web application developed through this dissertation to afford easy

viewing of structures and database statistics for a SAI database. This application

was written using JSPs (Java Server Pages) and must be run on a Servlet Container

such as Apache Tomcat1. Logging in to view an SAI database requires the mySQL

1Available at http://tomcat.apache.org/
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database credentials used by SAI to access the database. At that point, the user can

view database statistics or browse structures in the database. Detailed information

about each structure can be viewed, including which structures index a structure. A

screenshot of this application appears in Figure C.2.

In addition to viewing structure details, SAIMyAdmin allows for basic manage-

ment through deletion of structures and breaking and forming index relationships.

Currently, there is no functionality for performing queries or creating and modifying

structures2. Future versions are also planned to facilitate management of background

processes.

Additionally, SAIMyAdmin is intended to be a launching point for experiments

involving the SAI database. Future versions are planned to allow execution and

monitoring of scripts that perform some of the experiments used in this dissertation,

and to allow for inclusion of new experiments designed by third parties, much in the

same way that SAI already allows for third parties to develop new retrieval algorithms.

C.3 Running SAI Experiments

Until SAIMyAdmin has the experimental feature added to it, experiments must be

run manually. Experiments in Chapter 3 used a logging tool to generate linked HTML

reports that organize results by structure and, further, by each structure compared to

that structure. Graphical representations of maps, such as that shown in Figure 4.3,

are drawn for each map developed between a pair of cases. These reports are useful

2Although modifying structures is not allowed in SAI, a copy-on-write feature is planned to allow

modifications through a modify/copy/delete process.
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for browsing for examples (such as those used in this dissertation), finding unique

outliers, and debugging. This report-generating tool is part of the HRF framework.

C.3.1 Obtaining SAI and Experimental Code

Currently, the most up-to-date version of SAI and SAIMyAdmin can be found at

http://www.cs.indiana.edu/˜jmorwick/SAI. This URL may or may not be the per-

manent location for SAI updates. Code for running the experiments can be made

available upon request. The code on the SAI page may not continue to be compat-

ible with the experimental code, but a snapshot of SAI at the time it was used for

this dissertation will also be made available. Additionally, snapshots of the mySQL

databases used for the experiments can also be available, though these databases can

be reformed from the code, as well (described in the next section).

C.3.2 Running the SAI Experiments

If you wish to re-run some of the experiments from this dissertation, you must follow

these steps:

C.3.2.1 Obtain the Code

Follow the instructions provided in the previous subsection.

C.3.2.2 Prepare the Database

Download and install the latest version of the mySQL database. Next, you may

load a snapshot of the databases provided or re-form the databases from scratch.
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Database images are stored in SQL files, which can be loaded through most mySQL

management clients.

It is recommended that you use the stored database images for experiments rather

than re-forming the database from scratch. This is due to the fact that re-forming

the database puts a significant strain on the webservers hosting the data and also

takes a significant amount of time. Furthermore, there is no guarantee that the

code used for re-forming the databases will continue to work, as the myExperiment

and pubchem websites may alter their interfaces in the future, breaking this code.

However, if you wish to reform the database, you may run the main method of

the MyExperimentUtil class to create the myExperiment database, or run the main

method of the PubChemUtil class to create the PubChem database.

Database settings can be changed by altering the constants in the PubChemU-

til class or, for myExperiment, the Constants class. DO NOT MODIFY THE

CODE THAT FORCES THE LOADER TO WAIT BETWEEN CASES!

It is important for a web-mining application to behave properly, and in order to do

so, it must not inundate a server with requests. The database re-forming software

was programmed to wait 10 seconds between queries to prevent disruption of service

for the host website, but also to prevent the user of this software from being banned

from accessing the website!

C.3.2.3 Running the Experiments

To run the tests for insuring the integrity of the retrieval process and for finding

the average similarity of cases in the case base and developing the heat maps in

experiment 1, run the main method of the class FullComparison. Constants at the
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top of this class can be changed to compare cases only to themselves or to choose

the retrieval interface. The retrieval interface (PHALA or PUBCHEM) can also be

chosen by providing either of these as a command-line argument. A detailed HTML

report will be written to the directory specified by the OUTPUT DIRECTORY

field in the DetailedTestLog class, including the heat map.

To run the tests for comparing phase 1 to phase 2 in experiment 1, run the main

method in the WKSimilarityTest. The same rules about constants and command-line

arguments apply to this class as well. However, in this case, report details will be

printed to standard output.

To run the test for scalability in experiment 2, execute the SimpleGenerator class’s

main method. If you wish to alter the parameters of this test, you must modify the

code at the beginning of this class’s main method. Test results will be printed to

standard output.
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and Search Institute Seminar Series, Indiana University, Oct. 22, 2008. Bloomington, IN

• Towards Case-Based Support for e-Science Workflow Generation by Mining Provenance The 9th
European Conference on Advances in Case-Based Reasoning, Sep. 1 - Sep. 4, 2008. Trier, Germany

• DJMIRI: a Dynamic Java-based Music Information Retrieval Interface. Invited Guest Lecture in
the course Organization of and Searching in Musical Information at Indiana Universty, Apr. 24,
2006. Bloomington, IN

• Internet Trolls as a Consequence of a ’Broken’ Communication Medium. Time / Passages: A
National Interdisciplinary Graduate Student Conference, Mar. 22 - Mar. 24, 2007. Bloomington, IN

Professional Activites

•

Twenty-Sixth International FLAIRS Conference St. Pete Beach, FL
Program Committee Member 2013

•

TRUE: Traces for Reusing Users’ Experience Workshop at ICCBR 2012 Lyon, France
Workshop Program Committee Member 2012

•

ACM-ICPC East Central North America Regional Programming ContestCincinnati, OH
Coach for the DePauw University programming teams 2011

•

Consortium for Computing Sciences in Colleges : Midwest Huntingon, IN
Coach for the DePauw University programming teams 2011

•

Twenty-Fifth International FLAIRS Conference Marco Island, FL
Program Committee Member 2012

•

Indiana University Undergraduate Research Competition Bloomington, IN
Mentor 2011

•

Twenty-Fourth International FLAIRS Conference Palm Beach, FL
Program Committee Member 2011

•

Provenance-Aware Case-Based Reasoning at ICCBR 2010 Alessandria, Italy
Workshop Organizing Committee Member 2010

•

Consortium for Computing Sciences in Colleges : Midwest Chicago, IL
Coach for the Indiana University programming teams 2009

•

Just Be Bloomington, IN
Presenter Aug. 2008 - Dec. 2008

•

Bring IT On! Reunion Workshop Indianapolis, IN
Assistant Organizer 2008

•

Bring IT On! Workshop Bloomington, IN
Assistant Organizer 2007



Service

•

IEEE 4th International Conference on eScience Indianapolis, IN
Conference Volunteer 2008
Just Be is an outreach program which introduces K-12 students to Computer Science

•

IU Computer Science and Informatics Graduate Research SymposiumBloomington, IN
Co-Coordinator 2008

•

Computer Science Graduate Student Association Indiana University - Bloomington, IN
President May. 2007 - May. 2008

Research Experience

•

Indiana University Boomington, IN
Research Assistant Jun. 2006 - Aug. 2006; Jan. 2008 - Present

– Created a case-based reasoning system for intelligent assistance of scientific workflow
composition

– Used the SAL model checker to prove timing properties of clock protocols for serial
communication

– Developed software to determine the usefulness of a trusted platform module in securing
bluetooth services

•

Indiana University Boomington, IN
Mentor for Undergraduate Research Jun. 2006 - Aug. 2006; Jan. 2008 - Present

– Mentored 3 undergraduates in a semester-long research project to develop a game system for
teaching CS2

– My students won first prize in the poster competition at the end of the semester

Work Experience

•

Scalable Network Technologies Los Angeles, CA
Programmer / Analyst May. 2009 - Aug. 2009

– Developed code for statistics tracking and other purposes for the ”Communications Effects
Server”, a large-scale C++ networking simulator.

– Worked closely with a team of developers to engineer evaluative simulation scenarios for
emerging tactical military radio technologies.

– Analyzed results from test scenarios and produced reports and presentations for clients.

•

Moodle Google Summer of Code
Developer Jun. 2008 - Aug. 2008

– Worked remotely with an international team of open-source developers on the Moodle learning
management system (LMS) through a Google sponsored program.



– Designed and integrated a system for organizing blog posts among the particular classes,
groups, or projects a student is involved in, among other improvements to the blog system.

•

eSchool Consultants Reynoldsburg, OH
Programmer / Analyst Jul. 2004 - Jul. 2005

– Developed web applications with PHP to maintain a mySQL database of student records and
provide instructors with intuitive interfaces to access data and reports.

– Transferred the schools 3rd party LMS (Learn.com) to an in-house open-source LMS
(Moodle), and integrated this system into the schools existing management software.

– Integrated the use of barcode scanners for the purpose of equipment tracking.

Awards, Grants & Honors

Travel Grant - Career Mentoring Workshop at SIGCSE 2012 . . . . . . . . . . . . . . . . . . 2012
Faculty Development Grant - DePauw University 2012 . . . . . . . . . . . . . . . . . . . . . . 2012
Student Travel Grant - The 9th European Conference on Advances in Case-Based Reasoning 2008
Trustees Scholarship - Ohio State University . . . . . . . . . . . . . . . . . . . . . . . . 1999-2002
Faculty Award - Indiana University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1998

Affiliations

• Association for the Advancement of Artificial Intelligence

• Association for Computing Machinery


