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Abstract

Case-based reasoning (CBR) is an artificial intelligence methodology that uses
specific encapsulated prior experiences as a basis for reasoning about similar new
situations. CBR systems rely on various “knowledge containers,” such as the case-
base of prior experiences and similarity criteria for comparing situations and retrieving
the most relevant cases. Explicit or implicit changes in the reasoning environment,
task focus, and user base may influence the fit of the current knowledge state to the
task context, which can affect the quality and efficiency of reasoning results. Over
time, the knowledge containers may need to be updated in order to maintain or
improve performance in response to changes in task or environment. In particular,
maintaining the case-base—the traditional mainstay of knowledge underlying CBR
systems—is essential for preserving and expanding the capability of a CBR system
throughout its life-cycle.

This dissertation provides a first coherent picture of the overall case-base main-
tenance problem in CBR and develops new case-base maintenance techniques within
that paradigm. The thesis presents a theoretical framework for describing case-base
maintenance techniques according to the types of maintenance policies implemented
by a given system. The framework serves to unify current maintenance practice, to
point out areas for new fundamental research, and as a step toward recommending
the best maintenance practices for varying system performance goals. In that con-
text, the thesis goes on to make an examination and account of underlying regularity
assumptions in the CBR process that directly affect maintenance activity.

The theoretical picture of case-base maintenance is then complemented with a
presentation of new methods and experiments in applied case-base maintenance. The
thesis first presents DRAMA, a case-based tool developed for aerospace design sup-
port at NASA, Ames, which provides facilities for initial case capture and subsequent
refinement that directly exploit user knowledge. By monitoring users as they go about
normal high-level design tasks, DRAMA automatically captures user design choices
and rationale that can be used to provide proactive recommendations at both the
design and design component levels. This helps to maintain the case-base through
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continuous support for case-authoring and design consistency, while significantly ame-
liorating the knowledge-engineering burden on system users.

Next, the thesis presents a practical model for transforming case-base implemen-
tations in the Metamorphoses project for representational maintenance. The thesis
goes on to examine new methods for automatically maintaining case-bases by in-
corporating explicit performance concerns into measures of case-base competence in
order to optimize case-base composition.

Finally, the thesis describes how the work developed for case-base maintenance
can generalize across knowledge containers. The framework for case-base maintenance
is extended and applied in the general knowledge container context for case-based
reasoner maintenance. The thesis describes applied maintenance beyond the case
base, and it presents an application of similarity maintenance in the context of the
CBMatrix case-based recommender system for problem-solving support in Scientific
Computing.

The whole provides a unifying framework and algorithms for constructing and
maintaining CBR, systems that may be used over extended periods of time and in
changing environments—a valuable resource for implementers, maintainers, and users
of CBR systems.
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Introduction

People often solve problems based on specific earlier experiences. This can be seen
in tasks ranging from cooking a favorite Szechuan stir-fry, to selecting appropriate
evening-wear knowing what has previously gone over well, to carefully working out
this year’s income taxes following last year’s favorable results. Sometimes, however,
experiences that have worked well under similar circumstances in the past become
less suited for current use. When cooking for housemates, a beloved spicy dish of
one’s own may not be palatable or possible for everyone (consider the very sad case
indeed, of hot-pepper allergies). An explicit change in the regular consumers of a
meal may necessitate a change in the usual recipe. A wardrobe that has grown fairly
large may offer too many choices for an evening’s attire, in extreme, delaying the wine
and appetizers. Having many options may seem well and good, but the utility of such
an abundance can be reduced when the focus is on quick and timely selection. An
unnoticed change in the tax code could cause serious dismay at audit time. Implicit
variance in the environment, with respect to the person in question, can trigger a
serious re-thinking of appropriate tax-deductions. Thus, there comes a time to select
a new cookbook, to give away a few outfits, and to adjust tax return expectations.
That is, there comes a time to update our experiences and how we employ them in
order to maintain their usefulness.

Similar problems of maintaining the usefulness of prior experiences are faced in
artificial intelligence systems. Fxplicit or implicit changes in the users, task focus,
or environment of a reasoning system may require an update in the way the system
employs its knowledge. Ideally, the system itself should be able to detect or anticipate
when such changes are necessary and be able to make the appropriate adjustments.
Likewise, intelligent interactive systems should be able to interactively and proac-
tively support their human system maintainers. This dissertation investigates issues
in how artificial intelligence systems, in particular case-based reasoning (CBR) sys-
tems, maintain the underlying knowledge upon which the systems rely. In case-based
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reasoning, the traditional mainstay of reasoning knowledge rests in the case-base, the
library of encapsulated specific prior experiences, or cases, that are used in similar
current, situations as a basis for reasoning. This dissertation focuses on the theory
and practice of maintaining such experiential case knowledge for case-based reasoning
systems; in other words, the husbandry of experience.

Maintaining the underlying case knowledge in case-based reasoning systems is
essential for systems to preserve and improve reasoning quality, efficiency, and use-
fulness. This dissertation addresses the maintenance problem in CBR by:

e defining case-base maintenance and establishing a theoretical framework for
maintenance systems,

e developing and analyzing new case-base maintenance techniques, and

e showing that the theory and practice developed for case-base maintenance can
be generally applied to other reasoning knowledge containers.

This chapter introduces case-based reasoning and case-base maintenance, gives an
overview of the theoretical maintenance issues and practical maintenance work ad-
dressed, and outlines the remainder of the dissertation.

1.1 Case-Based Reasoning

Case-based reasoning (CBR) is an artificial intelligence methodology that uses spe-
cific encapsulated prior experiences or cases as a basis for reasoning about similar new
situations. CBR has its roots in the observation that people often reason by recalling
similar past experiences to address current problems [Schank 1982], and a number of
studies support CBR as a cognitive model (e.g., [Ross 1984; Pirolli and Anderson 1985;
Ross 1989; Schmidt et al. 1990; Faries and Schlossberg 1994]). Consider, for example,
writing a new computer program to extract and analyze information from a customer
database. The programmer will often, either directly or by consultation, base the
new program on code that they (or, perhaps, a colleague) previously put together for
a similar analysis. If the fundamentals of access and interface remain the same, only
very specific parts pertaining to the requisite data analysis may need to be adapted.

In this dissertation, we are interested in the application of case-based reasoning
techniques to various kinds of problem solving. More specifically, we are interested
in how to effectively maintain and support the case-based reasoning process itself—a
process that, in turn, supports problem solving. There are many different ways of
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Situation
Description

Retrieval
Retrieved
Case
Similarity
Knowledge

Case
Knowledge

Adaptation
Knowledge

Vocabulary Insufficient
. Knowledge _-* Solution

Proposed

Working
Solution

Solution

Evaluation

Figure 1.1: Standard case-based reasoning cycle.

describing the case-based reasoning process (e.g., [Kolodner 1993; Aamodt and Plaza
1994; Kolodner and Leake 1996]), but case-based reasoning systems typically embody
three important aspects: committing cases to memory, remembering relevant cases,
and applying remembered cases. Figure 1.1 shows a representation of the case-based
reasoning cycle.

Committing Cases to Memory

Cases are usually thought of as using a vocabulary of attributes, predicates, etc.
to represent their encapsulated experiences. In committing experiences to memory, a
CBR system identifies the salient features or aspects that best characterize a situation
in terms of the vocabulary. Often this set of features, or indexing vocabulary, is fixed
for a given system. For example, a simple real-estate property characterization might
consist of: number of bedrooms, number of bathrooms, area, and price. Case indices
are then used in conjunction with a persistent storage mechanism for retaining the
experiences in memory. Appropriate case indexing is a major research area in case-
based reasoning (e.g., [Fox 1995]).
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Remembering Relevant Cases

In remembering relevant cases, the salient features of the current situation must
be identified, for comparison to the indices of cases in memory. The CBR system
then retrieves the most similar case or set of cases in memory, based on a measure of
similarity between the current situation and the stored cases. The process is referred
to as retrieval and relies heavily upon the similarity metric used. Typical similarity
metrics include k-nearest neighbor and discrimination nets. Efficient and accurate
methods for retrieval and similarity are another major research focus in case-based
reasoning.

Applying Remembered Cases

In applying remembered experiences, the most similar case or cases retrieved by
the CBR system are checked for consistency with the current situation. It may be
that the retrieved case needs some modification in order to be applied in the current
context. For example, in the CHEF system for recipe planning [Hammond 1986], if
the current situation calls for duck in place of the meat in an otherwise applicable
retrieved recipe, an additional step is required to remove fat from the duck before
cooking. This general process is referred to as adaptation. If there are portions of the
retrieved case that need to be altered, the case is adapted to fit the current situation.
The proposed solution can then be evaluated either by directly applying the proposed
solution or by some form of model-based or manual critique. Adaptation is one of
the most difficult problems being addressed in CBR research.

The CBR Cycle

Given the results of evaluation, the CBR system may: (1) perform further adap-
tation and additional evaluation, if the proposed solution both needs to and can be
refined; (2) store the results of reasoning as a new case. Case storage represents
an incremental learning process, sometimes called lazy learning, that completes the
case-based reasoning cycle by committing the new case to memory.

CBR Knowledge Containers

It is often useful to view a case-based reasoning system in terms of the types
of knowledge it employs in reasoning. Richter identified four primary “knowledge
containers” that are used in typical CBR systems [Richter 1998]. The vocabulary is
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used to describe the domain; the case-base contains the set of domain experiences; the
similarity measure is used to retrieve relevant cases; and the solution transformation
is used in adapting retrieved cases to tailor them for the current situation. These are
also represented in Figure 1.1. The knowledge containers are strongly related, and,
in principle, the knowledge required to solve a given problem may reside as easily
in one as another. A system with complete and fine-grained case knowledge may
require very little in the way of adaptation, while a system with powerful adaptation
metrics may need very few cases as starting points. [t may be appropriate to talk
about other knowledge containers as well, for example maintenance knowledge, and
the relationships between different knowledge containers are discussed in more detail
in chapter 7.

CBR in Practice

CBR techniques have proven useful in implementing intelligent software compo-
nents, and CBR systems have been deployed successfully for many types of tasks: for
electronic commerce (e.g., [Watson 1997; Stolpmann and Wess 1998; Vollrath et al.
1998]); for decision support applications, such as help desks (e.g., [Goker and Roth-
Berghofer 1999; Lenz et al. 1999)); for planning tasks, such as design and configura-
tion (e.g., [Navinchandra 1988; Sycara and Navinchandra 1989; Stroulia et al. 1992;
Hennessy and Hinkle 1992; Domeshek et al. 1994b]); and for classification tasks, such
as diagnosis, prediction, and assessment ([Koton 1989; Bareiss 1989]).

1.2 Case-Base Maintenance

CBR systems rely on various knowledge containers, such as the case-base of prior
experiences and similarity criteria for comparing situations and retrieving the most
relevant cases. Explicit or implicit changes in the reasoning environment, task focus,
and user base may influence the fit of the current knowledge state to the task con-
text, which can affect the quality and efficiency of reasoning results. Over time, the
knowledge containers may need to be updated in order to maintain or improve per-
formance in response to changes in task or environment. In particular, maintaining
the case-base—the traditional mainstay of knowledge underlying CBR systems—is
essential for preserving and expanding the capability of a CBR system throughout its
life-cycle.

Thus it is important to understand both the essential concepts of maintenance
itself, as well as how maintenance practice fits into the design and use of case-based
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systems that address task goals. The following sections outline the theoretical issues
and practical work in case-base maintenance and beyond that are addressed in this
dissertation:

e Case-Base Maintenance Theory

— Developing a framework for understanding case-base maintenance

— Investigating regularity assumptions and their relation to maintenance
e Case-Base Maintenance Practice

— Describing interactive case-base maintenance support in DRAMA, a CBR
system to support conceptual aerospace design

— Describing transformations to support representational maintenance for
CBR system construction, the Metamorphoses project

— Investigating the relationship of performance and competence concerns in
guiding maintenance

e Generalizing Case-Base Maintenance

— Extending case-base maintenance research beyond the case-base

— Describing similarity maintenance in CBMatrix, a CBR recommender sys-
tem to support problem-solving in scientific computing

1.3 A Framework for Case-Base Maintenance

Experience with the growing number of large-scale and long-term CBR systems
has led to increasing recognition of the importance of case-base maintenance in re-
search and practice. Multiple researchers have addressed pieces of the case-base main-
tenance problem, considering such issues as maintaining consistency (e.g., [Racine and
Yang 1997]), preserving competence (e.g., [Smyth and McKenna 1998]), and control-
ling case-base growth (e.g., [Smyth and Keane 1995]). However, despite the existence
of these cases of CBM, there has been little theoretical development of case-base
maintenance as a standard aspect of the CBR process. This research defines a gen-
eral framework of dimensions for characterizing case-base maintenance systems and
demonstrates its usefulness in understanding the state of the art in CBM, in unifying
current practice, and in suggesting new avenues of exploration by identifying points
along the dimensions that have not yet been studied. It helps to solidify the emerging
notion in the field of case-base maintenance as a standard aspect of CBR systems, and
the framework provides a setting and guide in our development of CBM techniques.
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1.4 Regularity Assumptions in CBR

Maintenance issues are closely related to fundamental assumptions in CBR. Case-
based problem-solving systems reason and learn from experiences, building up case
libraries of problems and solutions to guide future reasoning. The expected bene-
fits of this learning process depend on two types of regularity [Leake and Wilson
1999b]: (1) problem-solution regularity, the relationship between problem-to-problem
and solution-to-solution similarity measures that assures that solutions to similar
prior problems are a useful starting point for solving similar current problems, and
(2) problem-distribution regularity, the relationship between old and new problems
that assures that the case library will contain cases similar to the new problems it en-
counters. Unfortunately, these types of regularity are not assured, and there has been
very little prior work toward formalizing these fundamental notions. Even in contexts
for which initial regularity is sufficient, problems may arise if a system’s users, tasks,
or external environment change over time. This research defines criteria for assessing
the two types of regularity, discusses how the definitions may be used to assess the
need for case-base maintenance, and suggests maintenance approaches for responding
to those needs. In particular, it discusses the role of analysis of performance over
time in responding to environmental changes.

1.5 Interactive Maintenance Support

Over the course of the maintenance work, a number of task-based CBR systems
have been developed that address maintenance concerns in service of their task-based
reasoning goals. Thus the research makes contributions to the field both in the
development of maintenance practice, as well as in developing effective task-based
CBR recommendation and support systems. Therefore the maintenance contributions
are presented within the overall context of the systems themselves. The first of these
is DRAMA, an interactive case-based recommender system, developed to support
aerospace design.

Aerospace design is a complex task requiring access to large amounts of special-
ized information. Consequently, intelligent systems that support and amplify the
abilities of human designers by capturing and presenting relevant information can
profoundly affect the speed and reliability of design generation. The dissertation
describes research on supporting aerospace design in the DRAMA system, which in-
tegrates a case-based design support framework with interactive tools for capturing
expert design knowledge through “concept mapping” [Novak and Gowin 1984].
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By monitoring users as they go about normal high-level design tasks, DRAMA
automatically captures user design choices and rationale that can be used to provide
proactive recommendations at both the design and design component levels. This
helps to maintain the case-base through continuous support for case-authoring and
design consistency while significantly ameliorating the knowledge-engineering burden
on system users.

In the integrated system, interactive concept mapping tools provide crucial func-
tions for generating and examining design cases and navigating their hierarchical
structure, while CBR techniques facilitate retrieval and aid interactive adaptation of
designs. The goal of the system is both to provide a useful design aid and to develop
general interactive techniques to facilitate case acquisition, adaptation, and main-
tenance. Experiments illuminate the performance of the system’s context-sensitive
retrieval during interactive case adaptation and the conditions under which it provides
the most benefit.

1.6 Representational Maintenance

In building CBR systems for knowledge management and to support corporate
memories, it is increasingly important to be flexible in the representation of expe-
rience. Achieving widespread case-based reasoning support for corporate memories
requires the flexibility to integrate implementations with existing organizational re-
sources and infrastructure. Effective techniques for maintaining case-representations
can be extremely useful in deploying case-based systems in many aspects of corporate
experience sharing.

Case-based reasoning implementations as currently constructed tend to fall into
three broad categories, characterized by implementation constraints: task-based (task
constraints alone), enterprise (integrating databases), and web-based (integrating web
representations). These implementation types represent the possible targets in con-
structing corporate memory systems, and it is important to understand the strengths
of each, how they are built, and how one may be constructed by transforming an-
other. The Metamorphoses project relates the three types of CBR implementation,
discusses their typical strengths and weaknesses, and describes practical strategies
for building corporate CBR memories to meet new requirements by transforming
and synthesizing existing resources, that is, by appropriate maintenance of the case
knowledge representation.
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1.7 Performance & Competence Relations

An important focus of recent CBR research is on how to develop strategies for
achieving compact, competent case-bases, as a way to improve the performance of
CBR systems. However, compactness and competence are not always good predic-
tors of performance, especially when problem distributions are non-uniform. Conse-
quently, this dissertation argues for developing methods that tie case-base mainte-
nance more directly to performance concerns. This part of the dissertation begins
by examining the relationship between competence and performance, discussing the
goals and constraints that should guide addition and deletion of cases. It next il-
lustrates the importance of augmenting competence-based criteria with quantitative
performance-based considerations, and proposes a strategy for closely reflecting adap-
tation performance effects when compressing a case-base. It then presents empirical
studies examining the performance tradeoffs of current methods and the benefits of
applying fine-grained performance-based criteria to case-base compression, showing
that performance-based methods may be especially important for task domains with
non-uniform problem distributions.

1.8 Beyond the Case Base

It is important to note that the lessons learned from research in case-base main-
tenance are general, and it is important to take these lessons beyond the case-base.
It has been recognized that knowledge containers other than the case-base can be
equally important targets for maintenance. Multiple researchers have addressed pieces
of this more general maintenance problem as well, considering such issues as how to
refine similarity criteria and adaptation knowledge. As with case-base maintenance, a
framework of dimensions for characterizing more general maintenance activity, within
and across knowledge containers, is desirable to unify and understand the state of the
art, as well as to suggest new avenues of exploration by identifying points along the
dimensions that have not yet been studied. Here we generalize our theoretical work
on case-base maintenance by extending the CBM framework of dimensions to the en-
tire range of CBR knowledge containers. Moreover, we extend the theory to include
coordinated, cross-container maintenance. The result is a framework for understand-
ing the general maintenance problem addressed by case-based reasoner maintenance
(CBRM). Taking the new framework as a starting point, we explore key issues for
future CBRM research.
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1.9 Similarity Maintenance

An important part of case-based reasoner maintenance is to monitor the effec-
tiveness of the similarity measure. In this dissertation, we present an example of
similarity maintenance in the context of CBMatrix, a case-based recommender com-
ponent developed to support problem-solving in Scientific Computing.

Component-based problem-solving environments (PSEs) provide scientists and en-
gineers with a framework of integrated problem-solving tools and resources that they
can easily compose and apply in their particular task domains. Developing effective
solution strategies within these environments depends on making good choices about
the selection, parameterization, and organization of component tools and resources.
Because making good choices may require considerable effort and expertise, design-
ing intelligent components that can make informed recommendations about solution
development will play a valuable role in realizing the full potential of PSEs. As part
of an overall effort in software component systems and PSEs for scientific computing
at Indiana University, the CBMatrix project is developing “intelligent recommender
components” that use case-based reasoning methods to assist in selection, organiza-
tion, and application of scientific PSE tools and resources. The dissertation gives an
an overview of the CBMatrix project, the issues involved, and describes the results of
experiments in task-based recommendation. In the context of the recommender sys-
tem, the dissertation describes the similarity maintenance aspect of CBMatrix, which
employs genetic algorithms to maintain the similarity knowledge in the case-based
recommender component.

1.10 Dissertation Overview

This dissertation develops a theoretical foundation for case-base maintenance, uses
the theory to help develop practical case-base maintenance techniques and applica-
tions, and shows how the case-base maintenance work can be applied more generally
to maintaining other knowledge containers. In chapter 2, we present a theoretical
framework for describing case-base maintenance techniques according to the types of
maintenance policies implemented by a given CBR system. Chapter 3 discusses the
regularity assumptions that underly the CBR process, and how variations in these
regularities relate to maintenance activity. In chapter 4, we describe the DRAMA
tool for aerospace design support, which provides facilities for initial case capture
and subsequent refinement that directly exploit user knowledge. Chapter 5 presents
a practical model for transforming case-base implementations in the Metamorphoses
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project for representational maintenance. Chapter 6 describes new methods for au-
tomatically maintaining case-bases by incorporating explicit performance concerns
into measures of case-base competence in order to optimize case-base composition.
Chapters 7 and 8 illustrate how the work developed for case-base maintenance can
generalize across knowledge containers. Chapter 7 extends the case-base mainte-
nance framework to general knowledge container contexts, and Chapter 8 presents
an application of similarity maintenance in the context of the CBMatrix case-based
recommender system for problem-solving support in Scientific Computing. We con-
clude in chapter 9 with a discussion of lessons learned, ongoing research, and future
directions.



2

Case-Base Maintenance Framework

The growing use of large-scale and long-term case-based reasoning applications
has brought with it increased awareness of the importance of maintaining CBR
systems. Large-scale CBR systems have become more prevalent, with case library
sizes ranging from thousands (e.g., [Cheetham and Graf 1997; Kitano and Shimazu
1996]) to millions of cases [Deangdej et al. 1996]. The use of large case-bases
raises concerns about the utility problem for case retrieval [Francis and Ram 1993;
Smyth and Cunningham 1996], in which the growing cost of case retrieval outweighs
the efficiency benefits from additional cases, and has prompted research on controlling
case-base growth through compaction policies [Smyth and Keane 1995; Smyth and
McKenna 1999a; Zhu and Yang 1999]. Even for smaller case-bases, the difficulties of
distributed case collection [Borron et al. 1996] and use [Doyle and Cunningham 1999;
Watson and Gardingen 1999], as well as the vagaries of real-world data raise concerns
about the consistency and accuracy of case knowledge, thus motivating efforts to
maintain the case-base to improve its quality [Racine and Yang 1997]. These con-
cerns have led to active research in the area of case-base maintenance (CBM).

Despite a number of projects illuminating these issues for particular CBM systems
and tasks, there has been no common framework to guide a more general study of
case-base maintenance. Such a framework would be useful for understanding the state
of the art in case-base maintenance, illuminating current practice and facilitating the
comparison of particular approaches, as has already proven useful for studying case
adaptation [Hanney et al. 1995; Vof§ 1996]. A set of dimensions for categorizing
case-base maintenance methods can also help to identify problems and opportunities
for study, suggesting points of exploration in the space of possible CBM systems.
Moreover, a categorization scheme for maintenance approaches is an important step
towards cataloging the approaches best suited for particular performance goals.

12
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This chapter presents a framework for describing case-base maintenance. The di-
mensions developed are used to to characterize CBM policies from CBM systems in
the literature. It goes on to discusses the relationship of CBM to the revision of other
CBR knowledge containers [Richter 1998], and to highlight points for investigation
suggested by the framework. It makes no claim of providing a final taxonomy or a
complete summary. Nevertheless, the dimensions provide a useful way to describe
central aspects of current practice in CBM, and they have led us to identify opportu-
nities for new case-based maintenance approaches. After describing the framework,
it sketches how one of these opportunities is explored in CBMatrix, a case-based “in-
telligent component” [Riesbeck 1996] to assist in using problem-solving environments
for Scientific Computing.

2.1 Defining Case-Base Maintenance

We define case-base maintenance as the process of refining a CBR system’s case-
base to improve the system’s performance:

Case-base maintenance implements policies for revising the organization
or contents (representation, domain content, accounting information, or
implementation) of the case-base in order to facilitate future reasoning for
a particular set of performance objectives. [Leake and Wilson 1998]

Note that this definition considers the information defining an indexing scheme to be
an intrinsic organizational component of the case-base itself. Thus case-base mainte-
nance may involve revising indexing information, links between cases, or other orga-
nizational structures and their implementations.

Maintaining case-base contents may affect a single case or multiple cases. It may
revise the case representations used (e.g., changing the predicates used to describe do-
main features); may revise either domain information in the case-base (e.g., correcting
an erroneous feature in a case or adding or deleting an entire case) or “accounting” in-
formation (e.g., changing information about how frequently a case has been accessed);
or may revise how case representations are implemented (e.g., changing from lists to
feature-vectors). Thus maintenance of case-base contents may revise the case-base at

the implementation level, representation level, or the knowledge level (cf. [Dietterich
1986]).

This definition of maintenance implicitly includes policies for performing CBM
indirectly, by revising the maintenance policies themselves. Section 2.4, gives a brief
description of one approach to such “meta-maintenance.”
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2.2 CBM Performance Objectives and Constraints

The performance objectives for a CBR system provide criteria for evaluating the
internal behavior and task performance of a particular system for a given initial case-
base and sequence of problems solved. The choice of case-base maintenance strategies
is driven by the maintainer’s performance goals for the system and by constraints on
the system’s design and the task environment. In general, there will be multiple
performance measures for a CBR system, and there is no guarantee that all of them
can be maximized simultaneously. Smyth and McKenna [1999b] define three types of
top-level goals for CBR systems:

1. Problem-solving efficiency goals (e.g., average problem-solving time)
2. Competence goals (the range of target problems solved)

3. Solution quality goals (e.g., the error level in solutions)

These goals may give rise to quantitative maintenance goals (e.g., achieving par-
ticular problem-solving time or limits on case-base size), or qualitative ones (e.g., to
extend system competence). Smyth [1998] provides compelling arguments for the im-
portance of shaping maintenance policies according to a complete set of performance
objectives. Of course, performance objectives may change over time to reflect varying
external circumstances, which may necessitate changing (maintaining) maintenance
policies as well.

The application of maintenance policies to achieve these goals is also shaped by
constraints from the external environment [Leake and Wilson 2000b]:

1. Case-base size limits (if any)
2. Acceptable long-term /short-term performance tradeoffs
3. The expected distribution of future problems

4. The availability of secondary sources of cases

For example, Smyth and Keane’s [1995] competence-preserving deletion strategies
reflect all of these constraints. Their deletion process keeps the case-base within
acceptable size limits (constraint 1); their competence-guided choices are intended to
minimize the loss of future coverage (constraint 2); their methods’ deletion choices
assume a uniform distribution of problems (constraint 3); and no other sources of cases
are available for recovering deleted information (constraint 4), making preservation
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of competence a key concern. Other instantiations of these constraints would give
rise to different strategies. For example, if short-term performance is crucial and
long-term is less important, and current problems are concentrated in a small part
of the case-base, it may be acceptable to sacrifice current competence and build it
back through future learning. Thus a case-based reasoner needs policies for achieving
its maintenance goals in light of its constraints. The following section develops a
characterization of the properties of case-base maintenance policies.

2.3 A Framework for Describing CBM Policies

The goal of a categorization scheme for case-base maintenance is threefold. First,
by identifying classes of similar maintenance approaches, such a categorization scheme
can shed light on the state of current practice in the field, increasing understanding
of current CBM approaches. Second, mapping out the space of candidate approaches
helps identify parts of the space that have not been addressed in previous work;
these gaps in turn suggest research opportunities. Third, a categorization scheme
for maintenance approaches is a first step towards cataloging the most appropriate
approaches for particular performance goals.

The framework categorizes case-base maintenance approaches in terms of case-base
maintenance policies that determine whether, when, and how a CBR system performs
case-base maintenance. Maintenance policies are described in terms of how they
gather data relevant to maintenance, how they decide when to trigger maintenance,
whether they react to problems or proactively forestall them, the types of maintenance
operations available, and how selected maintenance operations are executed.

In the framework, Data collection gathers, synthesizes, and distills the data about
the case base and about system processing; this is the information that will be used
to determine whether maintenance operations should be performed. Triggering takes
this information as input, makes the decision whether maintenance is needed, and
selects maintenance actions from a range of possible Operation types. Fxecution de-
scribes when and how the selected revisions are actually applied to the case-base.

Descriptions generated using the framework characterize basic combinations of
policy attributes. A single CBR system may include multiple maintenance policies,
each one implementing a different part of the system’s overall maintenance agenda
(e.g., [Minor and Hanft 2000]). The following dimensions would be used to describe
each policy separately. Coordination of maintenance policies is described later in
section 7.2.
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Data collection

Data collection gathers information about individual cases, about the case base in
part or as a whole, and/or about the overall processing behavior of the CBR system.
Data collection about individual cases might record the number of times a case has
been successfully used or the number of times it has failed. Data collection about the
case base as a whole could involve, for example, monitoring the size of the case base.
Data collection about processing might involve noting clusters in input problems,
input problems that the system is unable to solve successfully, or input problems for
which processing costs are too high.

Type of data: None, Synchronic, or Diachronic. There are three approaches
to collecting and analyzing data to decide when case base maintenance is needed.
The simplest is to do no collection at all. A policy with no data collection makes
maintenance decisions independently of the present or past state of the case base.
As such, this type of policy is referred to as non-introspective. For example, a CBR
system that updates its case-base by unconditionally adding a case each time it adapts
a prior case would need no data collection. This is the approach of most CBR systems.
Similarly, a system may drive maintenance according to external information sources.
This is valuable for proactive maintenance, for example, to add cases to a help desk
case-base in anticipation of future queries.

More sophisticated reasoning is enabled by considering a snapshot of the current
case-base in part or as a whole. Examination of this information can determine, for
example, whether a case is worth adding to a case-base because it increases the com-
petence of the CBR system, or whether a solution can be discarded without affecting
competence [Smyth and Keane 1995]. As another example, Reinartz et al. [2000]
propose a set of measures that can be computed to assess the overall quality of a
case-base in order to trigger maintenance. Policies that consider snapshot informa-
tion are called synchronic.

The most informative approach is to collect data over time, over a sequence of
snapshots, in order to identify trends in how case-base contents and usage are chang-
ing. Policies that consider changes in the case-base over time are called diachronic.
For example, a policy that gathered information about trends in retrieval times, to
identify the onset of utility problems, would be diachronic. Note that even though
information may be accumulated over time (e.g., the number of times a case is used
successfully), the element of time must be an intrinsic part of the picture in order to
constitute a diachronic policy (e.g., frequency of a case’s usage, increasing or decreas-
ing). Because synchronic and diachronic collection examine the internal state of the
case-base, both are referred to as introspective.
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Timing: Periodic, Conditional, or Ad Hoc. A maintenance policy must specify
when data collection is performed. In our framework, there are three possibilities.
Periodic timing happens at a set frequency with respect to the CBR cycle. For ex-
ample, data collection might be performed after each problem-solving cycle. Periodic
timing that happens every cycle is termed continuous. Conditional data collection
is performed in response to a well-defined but non-periodic condition. For example,
analysis might be triggered whenever the number of cases in the case library reaches
a particular threshold [Smyth and Keane 1995]. Ad hoc timing happens under ill-
defined conditions determined externally to the CBR system!. Examples of ad hoc
timing are user-initiated tests on the case base to determine whether maintenance is
needed or a domain expert’s decision to add new cases regardless of the case base
contents.

Integration: On-line or Off-line. Data collection may operate on-line, during the
course of an active reasoning episode, or off-line, during a pause in reasoning, such as
waiting for user input or when idle between reasoning episodes. The choice between
on-line and off-line processing may affect the resources that can be devoted to the
analysis process, making it important for determining whether a policy is appropriate
for time-constrained processing.

Triggering

The results of data analysis serve as input for determining whether case-base main-
tenance is necessary. Both the timing and integration dimensions discussed previously
apply to this step as well. Maintenance triggering evaluates whether to perform main-
tenance, selects maintenance actions to use, and may set parameters to guide their
future execution (e.g., determining when they will be performed). Triggering can be
done periodically, conditionally, or on an ad hoc basis, and on-line or off-line.

Conditional triggering can be subdivided into three classes depending on the con-
ditions that determine whether maintenance is triggered: space-based (e.g., filling a
limited amount of case storage), time-based (e.g., retrieval time exceeding a thresh-
old), or result-based (e.g., the system failing to solve a given problem or the wrong
case being retrieved).

!This category name in no way implies that the choice is ill-considered; simply that it is not
under control of the policy.
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Proactive vs. Reactive Maintenance

Case-base maintenance is often seen as a process of detecting problems and re-
sponding to repair them (e.g., for case inconsistencies or exceeding case-base size
limits). In that case, maintenance is triggered by conditions typically indicative of
system failures. However, maintenance may also be proactive, taking steps despite
successful performance, to avoid predicted future problems or improving future per-
formance. For example, a software company with a case-based help desk system might
perform maintenance in advance of the launch of a new product, in order to seed the
case-base with cases expected to be useful after the product has been released.

Operation types

Different maintenance policies revise different types of information (the target
type) at different levels (the revision level).

Target type. For case-base maintenance, revision operations can focus on three
types of targets: Indexing structures, domain contents, and accounting information.
As will be described in section 2.4, maintenance policies themselves can also be targets

for CBM.

Reuvision level. Revision operations can make revisions with ramifications at three
levels: Affecting only the implementation level (e.g., changing an indexing structure
from a list to a D-tree when the case-base exceeds a certain size or changing case rep-
resentations from lists to vectors), affecting the representation level (e.g., reconciling
inconsistent feature names or case formats in cases that come from different sources),
or affecting the knowledge level as well (e.g., correcting an erroneous feature value,
generalizing case values, or adding or deleting cases).

Finer-grained characterizations of operator types are of course possible (e.g., Heis-
ter and Wilke [1998] and Reinartz et al. [2000] describe sets of atomic maintenance
operations). However, as with the rest of the categorization scheme, we have used
higher-level categories to facilitate cross-system comparisons of major characteristics.

Scope of Maintenance: Broad or Narrow. A given operation may be applied
locally, to few items in the case base, or more globally. Operations that affect a single
case or a small subset of the case-base have narrow scope, and operations that affect
a large subset or the entirety of the case base have broad scope. This dimension is
especially useful when characterizing resource-bounded processing.
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Execution

Execution is characterized by the timing of maintenance operations and their inte-
gration with other system processing. Execution timing is described using the timing
dimension previously described for data collection (periodic, conditional, or ad hoc);
timing may also be “none” for systems with no execution. For example, a mainte-
nance policy may simply inform a maintainer that maintenance is needed without
making changes (none); changes may be made on a regular basis (periodic); changes
may be held for batch updating when enough cases are accumulated (conditional);
or changes may be held for when an expert is available (ad hoc). Likewise, execu-
tion integration is described as on-line or off-line depending on whether maintenance
operations are performed during or between reasoning episodes.

Categorizing Policies for Case-Base Maintenance

To illustrate the use of the framework and to understand the range of CBM
methods, the framework is applied to a sampling of CBM approaches, beginning with
a few simple examples. In describing particular maintenance policies, two parts of
the CBM framework that are particularly useful for describing current CBM systems
should be emphasized: the type of data collected and how maintenance policies are
executed. Table 2.1 summarizes the described approaches along these dimensions.

Policies targeting domain content

Policies targeting domain content may be divided into policies aimed at adding and
deleting cases, and policies aimed at revising internal case content. We first consider
addition and deletion policies, and then policies to refine the cases themselves.

Standard case learning and manual maintenance:. The standard learning of CBR,
problem-solving systems (always adding each new case to the case base) is designated
in the table as CBR;. No data analysis is performed—the new case is recorded without
considering the existing contents of the case base—so it is non-introspective. Because
learning happens during each reasoning cycle, this policy is continuous (periodic) and
on-line. Because only a single case is added, the scope of change is narrow.

Another common CBR method (CBR;) involves a non-learning system maintained
by a domain expert who sometimes adds a variable number of new cases. For this
method, we presume no system analysis of the existing case-base, so the maintenance
policy is non-introspective. Because the timing of the updates depends on the expert’s
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Data Collection

Type of Data
ACt.Z vqtzon Integration Scope of None Synchronic Diachronic
Timing Type Changes
Periodic On-line Broad
Narrow CBR4 Munoz-Avila
Off-line Broad
Narrow
Conditional On-line Broad Fox & Leake
Narrow Leake & | Smyth & Keanes; Surma Leake &
Wilson, & Tyburcy; Hammond; Wilson,
Thrig & Kambhampati
E Off-line Broad Smyth & Keane;
)é Portinale et al.
c Narrow
ltl Ad hoc On-line Broad
i Narrow Minor&Haft;
g Off-line Broad CBRo» Aha & Breslow; IBL,,;
Watson; Racine &
Yang; » 3; Netten;
Smyth & McKennay »;
Zhu & Yang;
Goker&Roth-Berghofer;
Yang & Wu
Narrow CBR» ‘Watson
No Execution Shimazu & Takishima
Non- Introspective
Intro-
spective

Table 2.1: Sample CBM approaches placed along major dimensions

external decision, the timing is ad hoc. Because the cases are added manually outside
of normal processing, the integration is off-line. Because the number of cases can be
small or large, the scope varies from narrow to broad.

Additional policies aimed at case retention:. Smyth and Keane [1995] describe a
competence-preserving approach to case deletion, which specifies a case utility hierar-
chy in terms of coverage and reachability. When the number of cases in the case-base
exceeds the “swamping limit,” their “footprint-utility deletion” strategy selects can-
didates for deletion based on the utility hierarchy. Because the hierarchy is defined
with respect to the current state of the case-base, the policy is synchronic. Because
maintenance is triggered in response to the current size of the case-base, timing is
conditional. Smyth and Keane describe this mechanism as being applied either to
small numbers of cases during processing, using a heuristic method of utility evalu-
ation (Smyth & Keane,, on-line and narrow) or to large numbers of cases with full
analysis outside of the reasoning cycle (Smyth & Keane;, off-line and broad).

Surma and Tyburcy [1998] describe policies for replacing older cases as new cases
are learned, in order to bound case-base size to maintain bounded retrieval time.
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The policies act on the current state of the case-base (synchronic) during the storage
phase (on-line) when the size limit is reached (conditional) to make a narrow change.

Smyth and McKenna [1999a] present a policy for case-base editing/compaction
(Smyth & McKenna;) that uses an explicit case competence model based on notions
of coverage and reachability. Their “relative coverage” metric provides a precise
measure of competence contributions for individual cases. This allows the case set
to be ordered by likely competence contribution. To build the case base, the ordered
set is presented to a condensed nearest-neighbor algorithm that successively retains
only those cases that are not solved by a case that has already been retained. This
method examines the current state of the case-base (synchronic). It is presented as a
way to edit the entire case-base during construction (ad hoc, off-line, broad), though
they have also developed efficient methods for keeping the reachability and coverage
measures current as the system is used [Smyth and McKenna 2000].

Munoz-Avila [1999] presents a case retention policy based on retrieval benefits to
case-based planning. After a problem-solving episode, adaptation effort is analyzed to
determine whether the guidance of retrieved cases was “beneficial” (the new case need
not be stored) or “detrimental” (the new case is added). This policy is synchronic,
periodic, on-line (pre-storage), and narrow.

Portinale, Torasso, and Tavano [1999] present a strategy for managing case mem-
ory by removing “useless” cases (that have not been retrieved before an expiration
limit) and “false positive” cases (that have been retrieved and have had more adap-
tation failures than successes). Memory management is conditionally triggered after
a variable length time window that is tailored to the growth of case memory and
reasoning failure rate. This policy uses synchronic information, conditional timing,
and off-line integration to make broad changes.

Zhu and Yang [1999] describe a case-addition algorithm for case-base compaction
that uses a problem-neighborhood model of case coverage. Cases are successively
added based on added benefit /usefulness to the neighborhood of the case-set retained
so far. The analysis is synchronic, with ad hoc timing, off-line integration, and broad
scope.

Policies atmed at internal case content:. A number of proposed CBM policies
are aimed at internal case content. Shimazu and Takashima describe a version of the
CARET system that identifies discontinuities in a case-base [Shimazu and Takashima
1996]. That system uses synchronic data collection; it retrieves a set of “Maybe
Similar Cases” (MSCs), chooses a single best “Base Case” (BC), and classifies as
“discontinuous” any remaining MSCs whose suggestions differ from the BC by more
than a given threshold, identifying them as potential candidates for maintenance.
However, the system does not execute revisions, so the policy has no execution.
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Racine and Yang [1997] describe policies for identifying redundant cases (Racine
& Yang;) and inconsistent cases (Racine & Yangs). Both policies rely on an analysis
of the current state of the case-base, so they are synchronic. Both are applied to the
case-base as a whole when desired by a case-base maintainer, so they are broad, ad
hoc and off-line.

Minor and Hanft [2000] describe a framework to support interactive revision of
case content over case “life-cycles” (Minor & Hanft;). Support for revising case-
content is based on the current state of the case-base and is interactive (ad hoc and
on-line), with narrow changes being made to individual cases.

Leake and Wilson [1998] describe a maintenance policy that updates case con-
tents with a revision policy installed in response to trends in performance anomalies
(Leake & Wilsony), enabling a lazy update of the case-base. The installed policy
always checks (no analysis) whether a retrieved case (on-line between retrieval and
application) has been updated to reflect a previously detected trend (conditional tim-
ing), and updates just that case (narrow scope) in situ before passing it on for further
reasoning.

Additional approaches address both the presence of cases in the case base and
their internal content. Watson [1997] presents a set of guidelines for human case-base
maintainers that involve performing periodic tests on the entire case-base. This policy
can be described as having synchronic analysis, ad-hoc timing, off-line execution, and
narrow or broad scope.

Netten [1999] presents a framework for verification of case-base integrity in case-
based diagnosis systems. This includes checks for redundancy, inconsistency, and
incompleteness in case definitions, as well as verification of coverage, reachability,
and accuracy. The framework is presented as a means to validate a diagnosis case-
base before being applied in critical environments. It makes use of the current state
of the case-base, is ad hoc, off-line, and broad in scope.

Goker and Roth-Berghofer [1999] describe the “Maintenance Cycle” of the HOMER
case-based help-desk support system, which includes a policy for verifying whether
new cases entered by help-desk operators should be added to the central case reposi-
tory. Redundancy and inconsistency are checked by a case-base administrator. Poten-
tial cases are checked against the current case-base (synchronic), at a time determined
by the maintainer (ad hoc), separate from ongoing processing (off-line), and only for
cases under consideration (narrow).
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Policies targeting indices

A number of classification systems using Instance-Based Learning (IBL) and re-
lated techniques (IBL,,) include policies for eliminating noisy and redundant instances
from a set of training examples (cases). These systems generalize a case-base either
explicitly, by merging cases with similar coverage (e.g., [Domingos 1995]) or implicitly,
by choosing a smaller, representative subset of cases (e.g., [Aha et al. 1991]). Such
policies typically consider a static set of cases (synchronic), are user-initiated (ad
hoc), perform execution off-line, and are applied to the entire training set (broad).
Because case features (other than the category) are only used as indices, we view
their generalizations as revising indexing information. When IBL systems remove
noisy instances or remove a class entirely, their target is domain content.

Many methods have been proposed for selecting case indices. Some are included in
the standard case addition process (CBR;), as in the model-based approach of Bhatta
and Goel [1995]. Others, however, adjust current indices in response to performance
deficiencies. Hammond [1989] describes a failure-driven method for explanation-based
selection of new indexing features. Likewise, Ihrig and Kambhampati [1997] describe
a policy that explains plan replay failures in order to add features to check during
future retrievals. These policies are conditional, on-line, and make narrow changes.

Fox and Leake [1995a] describe a policy that triggers index revision for plan cases
in response to plan failures. This policy considers snapshot information about execu-
tion (synchronic), is executed conditionally, is performed on-line, and revises indices
in the entire case-base (broad scope).

Aha and Breslow [1997] describe an index revision method for conversational CBR
that considers an entire case-base to optimize interactive question paths in response
to an external request. This policy has synchronic data collection, ad hoc activation
timing, off-line integration, and broad scope.

Racine and Yang [1997] describe a policy for deriving and updating indices of
unstructured cases (Racine & Yangs), using methods derived from information re-
trieval. Like their other policies, this policy is synchronic, broad, off-line, and has
ad-hoc execution.

Smyth and McKenna [1999b] present a method for index refinement (Smyth &
McKennay) based on competence groups defined with reference to measures of cover-
age and reachability. From each competence group, a set of footprint cases that cover
the remainder of the group are used to focus retrievals. The indexing organization
uses synchronic information, ad-hoc and off-line, to make broad changes.

Yang and Wu [2000] describe a method in which a large original case base is
partitioned into a distributed set of case-base clusters using density-based clustering
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methods. Retrievals are made from the distributed case organization by finding the
best case cluster, then the best case within that cluster. The clustering method uses
a broad snapshot of the original case-base, and the smaller case-bases are described
as being built by an expert based on the clustering result, ad hoc and off-line.

Policies targeting maintenance policies

Leake and Wilson [1998] describe a diachronic maintenance policy (Leake &
Wilson; ) that detects potentially important trends in performance anomalies on-line,
based on the conditional strength of the trend, and responds by installing a new
maintenance policy tailored in response to the trend detected. It performs a narrow
change—adding a new maintenance policy. This type of policy is described in more
detail in Section 2.4.

2.4 Meta-Maintenance by Lazy CBM

When a CBR system retrieves a case and adapts it to fit a new situation, CBM
normally stores the result of adaptation as a new case and leaves the original case
unchanged. However, if there are defects in the old case, case-base maintenance
can simultaneously revise the old case and re-store it in its updated form. This
approach updates old cases in a “lazy” manner as they are applied to new situations.
It is driven by a process similar to case adaptation, but whose aim is to repair a
problem in an old case rather than to fit that case to a specific new situation. This
allows expensive updates to be performed only on the portion of the case base that
is actually being used, decreasing update effort while still allowing future processing
of frequently-used cases to start from the updated versions. Thus when a change
must be applied throughout the case-base, a CBM system can either (1) make that
change to all old cases simultaneously, when it next performs overall maintenance,
or (2) generate a maintenance rule to update each case that is retrieved, when it is
retrieved (and before it is applied to the new situation). Installation or revision of
these maintenance rules can be viewed as a form of “meta-maintenance,” maintaining
the system’s maintenance knowledge. Note that both approaches achieve a broad
change, but that the second does so by implementing two policies with narrow scope,
making it preferable in time constrained circumstances.

With a lazy updating scheme, cases that are obsolete must be distinguished from
cases that have been updated. When a sufficiently large proportion of the retrieved
cases have already been modified by a maintenance rule, it may be possible to abandon
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the rule—the case base may have been sufficiently modified for the problems the
system tends to encounter.

In rapidly-changing domains, especially if application of maintenance rules is in-
expensive, it may be preferable never to update the stored cases, instead composing
old maintenance rules into new ones to obtain the desired net changes (e.g., to take
compound inflation into account). Such a method also facilitates retraction of invalid
updates: flawed maintenance rules can be retracted without making any changes to
existing cases.

2.5 Trends and Lazy Maintenance

To illustrate how systems can respond to detected trends, an example is drawn
from our work in CBR for Scientific Computing. In scientific computing, problem solv-
ing environments (PSEs) provide scientists with a framework of integrated problem-
solving tools that they can easily configure and apply to problems that arise in their
particular task domains. Because effective solution strategies depend on making good
choices about the organization and configuration of these tools, considerable expertise
may be needed to achieve full benefit from the tools provided by a PSE. However, it
is often difficult to capture principles guiding tool and parameter selection. Conse-
quently, CBR methods to guide tool selection, organization, and application have the
potential to play a valuable role in PSEs. The CBMatrix project investigates CBR
and CBM issues arising in the context of CBR components within a scientific PSE,
the Linear System Analyzer (LSA) [Gannon et al. 1998], which is aimed at aiding
the solution of sparse linear systems. Given a scientific computing problem to solve
within the LSA, CBMatrix retrieves prior cases that suggest computational methods
and parameters for solving the problem efficiently (e.g., the data structures to use to
achieve the highest megaflop performance rating). We discuss the CBMatrix project
in more detail in chapter 8.

The PSE advisory task requires the management of substantial case libraries in
the face of unreliable information, limited feedback, limited storage, and changing
external circumstances. A particularly acute issue concerns how to revise the case-
base to improve performance when classes of problems change (e.g., when a scientist
begins to apply the scientific computing system to a series of problems with different
characteristics from those for which the case base was built) or when changes in the
external environment affect the quality of the advice offered by a pre-existing case-
base (e.g., if the scientist runs CBMatrix on one set of problems, on one computer, to
build a library of advice on methods for solving those problems, and then buys a new
computer with hardware that renders some of the prior advice obsolete). Thus this
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domain requires addressing not only the maintenance issues involved in dealing with
potentially noisy and unreliable data (e.g., because results depend on the external
load on the machine), but also on addressing questions about how to maintain a
case-base when new hardware requires systematic changes in the recommendations
the CBR system provides.

The CBMatrix system implements two maintenance policies that together result in
a lazy update of the case-base by a “pre-adaptation” revision of retrieved cases. The
first policy installs a new maintenance rule when needed, as described in the previous
section. This policy is triggered by diachronic analysis of successive snapshots of the
case-base as new situations are processed, in order to recognize changes in machine
characteristics. The data collection process for this policy monitors the predictions
made by retrieved cases about the expected performance of the most appropriate data
structure for solving a given system. If the processing results in performance that
is either significantly worse (unexpected failure) or significantly better (unexpected
success), the result is added to a data set that is analyzed for trends in performance.
Individual fluctuations might be due to processing loads, etc., while consistent trends
suggest a more durable change.

The number and magnitude of the unexpected successes or failures with respect
to time (measured in numbers of reasoning episodes/cycles) define a trend in perfor-
mance anomalies that can indicate a changing trend in the linear system processing
results (e.g., because the computer being used to solve the problems has been up-
graded). Once a trend has achieved a certain level of activation, this maintenance
policy installs the second maintenance policy, a new maintenance rule to adjust subse-
quent predictions (e.g., if there were a trend for predictions to be 20% pessimistic, the
rule would adjust predictions upwards on each retrieved case that had not yet been
adjusted). This is a simple approach to a problem that is in general very complex,
but it appears practical for this type of change and shows the benefit of considering
diachronic information when triggering maintenance.

2.6 Maintenance and Overlapping Knowledge Con-
tainers

The multiple knowledge containers of CBR overlap; knowledge available in one can
replace missing knowledge in another [Richter 1998]. Likewise, the effects of main-
tenance to one knowledge source may be equivalent to maintenance on another. For
example, the same overall effects on system accuracy might be achieved by case-base
reorganization—which we consider part of case-base maintenance—or by adjustment
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of the similarity measure—which we consider external to CBM. Although this frame-
work focuses only on case-base maintenance, in general CBM can be viewed as part
of the larger task of CBR system maintenance (e.g., [Heister and Wilke 1998]), and
we discuss issues of maintenance in the large in chapter 7.

Given the context of the framework for describing maintenance policies, the next
chapter describes how fundamental regularity assumptions in case-based reasoning
can affect the implementation of case-base maintenance strategies.



3

Regularity

Case-based reasoning solves new problems by retrieving stored cases encapsulating
records of similar problems, and adapting their lessons to fit the new circumstances.
Case-based problem-solving is based on two central premises about the regularity of
the problem-solver’s world [Leake and Wilson 1999b; Kolodner 1993|. The first, which
we will call problem-solution regularity, describes the relationship between problem
descriptions and solutions that assures that similar problems have similar solutions.
This regularity is needed to guarantee that cases for similar prior problems are likely to
be useful starting points for new reasoning. The second, which we will call problem-
distribution reqularity, describes the relationship between new problems and those
previously encountered. This regularity is needed to assure that the system will have
the cases it needs for the problems it is called upon to solve. The relative strength
of these assumptions as embodied in particular CBR systems over time can provide
a strong indication of the need to maintain the case-base.

The successes of numerous CBR systems bear out that for many tasks and do-
mains, appropriate similarity metrics can be devised to provide sufficient problem-
solution regularity, and that problem-distribution regularity is often sufficient to en-
able effective CBR.. Unfortunately, no matter how good initial similarity metrics might
be for a given task and domain, and no matter how complete a case library a sys-
tem may build up, changes in task and domain characteristics may render obsolete
prior similarity criteria or cases. Developers have cited the problem of dealing with
changing task characteristics as the reason for rejecting CBR for some tasks [Tale-
bzadeh et al. 1995], and the long-term use of CBR systems makes such changes
increasingly likely during a system’s lifetime. In order to perform as well as possible
despite changing circumstances, a CBR system must be able to evaluate how well the
regularity assumptions apply and to signal the need for maintenance or to invoke its
own maintenance strategies as needed.

28
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This chapter presents steps towards understanding and responding to deviations
from desired regularities as part of maintenance. First, it defines measures that can be
used to calculate the amount of problem-solution regularity and problem-distribution
regularity that exist for the problem sequences that a system encounters. Second, it
discusses methods that may be used to respond to, and (ideally) to exploit changing
characteristics of the problems the CBR system solves and of the environment in
which its solutions must be applied.

In particular, it describes opportunities for maintenance strategies that perform
their changes based on analysis of problem-solving and case-base characteristics over
time—diachronic case-base maintenance strategies as described in [Leake and Wilson
1998]. In general, determining the right response to shifting context requires knowl-
edge that is unlikely to be available from a single snapshot of the CBR system’s state.
However, by examining trends in retrieval performance, system errors, and presented
problems, the system may be able to respond more effectively.

3.1 Defining Regularities for CBR

It is well-known in the CBR community that case-based reasoning depends on
two relationships: the relationship between similarity of problems and similarity of
solutions, and the relationship between prior problems (solved by the system or pro-
vided as seed cases) and new problems. However, to our knowledge, there were not
yet precise definitions of what these relationships mean, prior to the introduction of
this work in [Leake and Wilson 1999b]. Such definitions are useful to quantify and
compare the relationships in order to understand the effects of different similarity met-
rics, case bases, and problem sequences on the performance of different CBR systems.
Equally important, such definitions give criteria for monitoring the appropriateness
of a system’s similarity criteria and case library for dealing with current problems,
in order to identify the need for system maintenance. This section proposes working
definitions as a basis for discussion and study.

Basic Assumptions and Definitions

The regularity definitions make some standard assumptions throughout. First, it
is assumed that there is a fixed CBR system that processes problems in a problem
space P and that the solutions for these problems are elements of a solution space S.
Cases are pairs (p,s) € C = P x S, the set of all possible cases. The system begins
with a finite “seed” case base B; C C. As the system is used, it processes a sequence
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of problems Q = pi, pit1, ... , pj, where each p, € P for k = i,...,j. The sequence
is defined to start with an arbitrary index because, as discussed in section 3.7, it
is sometimes useful to consider the subsequence that starts after some initial set of
problems has been processed.

Adding to the case base: We assume that after each problem is processed and
the resulting solution has been evaluated, a new case with the problem and its correct
solution are added to the case base. This means that each problem p; is processed
using an updated case base By that includes the results of previous processing. Note
that this does not imply that the system can solve all problems presented to it: The
correct stored solution may be based on external feedback if the system generates an
incorrect solution or fails to generate a solution.

How problem distance guides retrieval: The CBR system uses a “problem
distance” function PDist : P x C' — [0, 00) to measure the distance between a new
problem and the problem description of a stored case. PDist(p,c) is zero if p is the
same problem solved by c¢. Given a new problem, the CBR system retrieves the case
closest to that problem according to PDist. However, there is no guarantee that the
case considered closest by this function will actually be “close” to the problem in any
useful way. This function simply reflects the similarity metric built into the system,
whether or not it is useful.

How usefulness of retrievals is judged: The evaluator of the system uses a “real
distance” function RDist : P x C' — [0, 00) to measure how far the solution in a case
is from the solution for a given problem. This function measures the usefulness of
retrieved solutions according to the evaluator’s goals for the retrieval process, which
may not be classic “similarity.” For example, if the evaluator’s primary goal is to
minimize the adaptation time required to generate a new solution, “real distance”
could be measured in adaptation time: RDist(p,c) could be the time to adapt the
solution from case ¢ to solve problem p, with some upper limit on the amount of time
allowed. RDist could also be defined to reflect other retrieval goals. For example, if
reliability of adaptation is an issue, it could consider cases “closer” to a problem if
they can be adapted to solve the problem using more reliable adaptations (regardless
of adaptation time). Likewise, for case-based planning, if execution cost is an issue
RD1st could consider cases closer if they yield solutions that can be executed at lower
cost.

It should be emphasized that RDist does not necessarily correspond to any func-
tion within the CBR system; it is an external criterion. For example, RDist might
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be calculated off-line to determine the retrievals the CBR system should have made.
Thus efficiency of calculating the RDist function is comparatively unimportant. It
might be possible, for example, to calculate RDist for adaptability by simply adapting
all stored cases to the new problem and seeing which adaptation was fastest.

In an ideal CBR system, the cases with the closest problems (according to P Dist)
would also have the closest solutions (according to RDist). In practice, of course,
the actual similarity metric is likely to differ from the ideal (see [Smyth and Keane
1996], for an empirical demonstration). In some situations the deviations may be
substantial enough to impair system performance.

Defining Problem-Solution Regularity

The goal of this definition of problem-solution regularity is to capture how well
PDist approximates RDist in practice. Because this depends on the specific context
in which the CBR system is solving problems, this definition explicitly depends on:

e the goals for retrieval (as captured by RDist),
e the set of seed cases available to the system, and

e the problem sequence that the system is called upon to solve.

As background for the definition, for any input problem, we can calculate two sets
of cases according to the formulas below. The first set of cases, designated by CCP
for Closest Cases to Problem, contains all the cases within a case base B whose prob-
lem descriptions are closest to the input problem. The second, designated by RCC
for Real Closest Cases, contains the cases whose solutions are within a user-specified
neighborhood of the optimal solution. The size of the neighborhood is determined by
a user-specified non-negative parameter e.

CCP(PDist,p, B) = {c € B|PDist(p,c) = minscpPDist(p,)} (3.1)
RCC(RD:ist,p, B,e) = {c € B|RDist(p,c) < minuepRDist(p,c) + €} (3.2)

If ¢ = 0, RCC returns the optimal cases for solving the problem according to the
“real” distance metric.

We let By, designate the case library used when processing problem p;. This case
library contains the initial seed cases and all the new cases added to the case base
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processing problems before p,. Following the notion of precision in information re-
trieval, we then define:

SimPrecision(PDist, RDist, pg, By, €) = (3.3)
COP(PDZSt, Pk, Bk) N RCO(RDZSt, Pk, Bk, 6)
COP(PDZSt,pk, Bk)

This function measures the probability that a case returned as optimal by the simi-
larity function will actually be within € of an optimal case.

Given these definitions, problem-solution regularity is defined as the average value
of SimPrecision over the problem sequence @), starting with case base B;, as follows:

ProbSolnReg(PDist, RDist,Q, B;, €) = (3.4)
Yk—i,...;SimPrecision(PDist, RDist, py, By, €)
it 1

When € is set to 0, this function calculates the average probability that a case for a
maximally-similar problem will actually be optimal. With non-zero values for ¢, this
function provides information about the average probability that a maximally-similar
problem (according to the system’s similarity metric) will be acceptably close to a
maximally useful case, which determines the quality of the similarity metric.

Note that when ProbSolnReg is used to compare the problem-solution regularity
of different systems, RDist must be same for both systems. If different systems
have different “real” costs (e.g., because of differences in adaptation capabilities),
differences in the values of ProbSolnReg for the two systems may not predict their
relative performances.

Defining Problem-Distribution Regularity

The second regularity assumption of CBR is that new problems will tend to re-
semble the problems addressed in previous cases (either in the seed case base, or
in cases learned during prior processing). This is referred to as problem-distribution
regularity. 1t determines the likelihood that, as new problems are processed (and new
cases with their solutions are added to the seed case base), the case base will contain

! Because we assume that the system will reason from a single most similar case, the IR notion of
recall is not relevant here. It would be relevant if, e.g., the system attempted to increase reliability
by generating and comparing solutions starting from multiple cases.
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cases for similar problems. When the case base does contain similar problems, and
when (in addition) there is sufficient problem-solution regularity, this will result in
retrieval of cases whose solutions are close to the actual solutions according to RDist.

ProbDistReg calculates the percentage of cases in a problem sequence Q =
PDi, --., pj for which there are sufficiently close cases in the current case bases By, built
up from the seed case base B;, according to a user-specified distance limit € > 0.

ProbDistReg(Q, B;, €) = (3.5)
1 oY, 1, If mineep, PDist(pg,c) <€
j—i+1 F=i3 )0, Otherwise

Together, ProbSolnReg and ProbDistReg provide measures that describe the
performance of a CBR system. Individually, each one identifies problems that can be
addressed by either refining the similarity metric or the solutions stored in cases (for
ProbSolnReg) or by adding to the case library (for ProbDistReg).

3.2 Perspective on Regularity-Related Research

This section considers the importance of the regularities and compares the perspec-
tive here to related research; the following sections examine its practical application.

Work on Problem-Solution Regularity:. The importance of problem-solution reg-
ularity underlies the considerable attention to similarity criteria in CBR research.
Faltings [1997] uses probability theory to prove that for prediction tasks, the assump-
tion that a problem with similar features to an earlier one is likely to have a similar
solution is guaranteed to be true on average. The issue of how to define practical
similarity metrics for particular tasks remains a central research focus of the field,
making it useful to have criteria for comparing different similarity metrics.

Recent CBR work has developed methods for making retrieval criteria explicitly
reflect the underlying “true” retrieval criterion that has been called RDist. A primary
example is adaptation-guided retrieval [Smyth and Keane 1996], which replaces the
traditional similarity criterion with estimated cost of adaptation, in order to retrieve
cases that satisfy the goal of easy adaptation.

Work on Problem-Distribution Regularity:. The key question of problem- distri-
bution regularity is whether the case library will contain the cases a system needs to
solve the problems it encounters. The importance of problem-distribution regularity



3. Regularity 34

is recognized by developers of CBR applications, who attempt to gather representa-
tive and well-distributed sets of cases for their systems (e.g., [Kriegsman and Barletta
1993; Watson 1997]).

Recent work on case-base competence [Smyth and McKenna 1998; Zhu and Yang
1999] has developed methods for estimating the range of problems that can be solved
by a system with a given case-base. The purpose of this work is to assure that
problem-solution regularity is sufficient, to give an indication of the likely system
success rate, and to help identify regions of the case base in which additional cases
may be needed.

Problem-distribution regularity is closely related to case-base competence, but this
work differs in two ways. The first difference concerns the role of problem distribution.
Analysis of case-base competence assumes a uniform distribution of problems in order
to make analysis more tractable. Likewise, it is customary for empirical evaluations
of CBR systems to use a randomly-generated set of problems uniformly distributed
in the problem space (e.g., [Veloso 1994]). However, our definition explicitly refer-
ences the particular problem sequence on which the behavior is measured. While
we agree with Smyth and McKenna [1998] that assuming a uniform distribution can
provide a very useful overall view, considering specific details of problem presentation
order and distribution can be useful as well. For example, the quality of a CBR sys-
tem’s performance can depend strongly on the order of case presentation [Fox 1995;
Redmond 1992], making it desirable for the formulas to be usable for exploring the
effects of different orderings. Likewise, as discussed later, if the system can iden-
tify “hot spots” in case-base accesses, examining problem distribution regularity may
make it possible to reorganize the case base to speed likely retrievals, or to delete (or
deactivate, e.g., by placing in secondary storage) cases that are not being used.

Second, the definition of problem-distribution regularity depends on a user-defined
threshold for what constitute sufficiently similar stored cases, rather than considering
only whether the problem can or cannot be solved. Using a user-defined criterion for
whether a stored case is “close enough,” rather than simply whether some solution
can be generated, is important when the quality of solutions depends on the amount
of adaptation performed, or when there are changeable limits on the amount of effort
that can be expended on adaptations. For example, in some domains, available do-
main theories are strong enough for local adaptations but are not sufficiently reliable
for more substantial changes (e.g., [Cheetham and Graf 1997]).

Work on Case-Base Maintenance:. Case-base maintenance research addresses
issues such as assuring that the cases in the case base cover the space of possible
problems [Smyth and McKenna 1998; Zhu and Yang 1999] and deleting superflu-
ous cases to improve space efficiency or utility of retrieval [Smyth and Keane 1995].
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These do not address, however, how to maintain the case-base in response to spe-
cific task needs—for example, to build coverage in precisely those areas that tend to
arise in current problems—or how to predict the need for future maintenance from
current problems, in order to proactively revise the case-base before problems oc-
cur. Salganicoff [1997] has studied the problem of learning time-varying functions in
instance-based learning, and proposes a method based on de-activating old instances
when similar new ones are available, and selectively re-activating those that are con-
sistent with new data. Ideally, augmenting CBR systems with the ability to detect
regularity problems and respond to problem trends will improve their ability to avoid
future failures and organize their case bases for efficient access.

3.3 Calculating the Regularity Values

In order to apply the formulas to trigger maintenance, practical means are needed
to calculate their values. Because ProbDistReg depends only on the levels of sim-
ilarity between new problems and the cases retrieved to deal with them (which are
available as a byproduct of normal processing), ProbDistReg can be calculated easily.

On the other hand, calculating ProbSolnReg is problematic, because calculating
RD:ust requires complete information about the “right” retrievals. If this information
could be calculated inexpensively at retrieval time, the system could always make per-
fect retrievals. Nevertheless, it is sometimes possible to take advantage of information
available after a problem is solved to estimate whether the right case was retrieved.
The ROBBIE system [Fox and Leake 1995b], for example, detects problems in its
similarity criteria by first solving the current problem, and then using the solution
as the index for another retrieval, to determine if the solution from another case is
more similar to the final result. If so, perfect similarity criteria would have favored
that case, so the failure to retrieve it shows a flaw in problem-solution regularity.?

Alternatively, ProbSolnReg calculations could be done off-line at times when high
processing cost is acceptable, to trigger off-line maintenance to improve future on-line
performance.

2This approach does not apply to all domains, however. For example, if solutions are a single
numeric value, the fact that a case in memory happens to have the correct value may be coincidental.
If a CBR system estimates the price of a bunch of carrots based on the price of a bunch bought the
week before, even if its estimate is wrong it is probably not appropriate to adjust its similarity to
consider the carrots more similar to a light bulb that happens to cost precisely the correct amount.
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3.4 Using the Formulas as Maintenance Triggers

The previous definitions provide a basis for judging the levels of regularity for
particular systems, case bases, and problem sequences. By monitoring the levels of
regularity and their changes, it is possible to identify needs for maintenance. For
example,

e When problem-solution similarity falls below acceptable levels, it may signal:

— Failure of the similarity metric to capture features that have become im-
portant in predicting RDist for current problems (e.g, if a route planner
does not consider the direction of old paths when doing retrieval, and is
called upon to plan paths in a new area with many one-way streets).

— Changes in the problem-solving environment that require adjusting the
solutions that would have applied to the same problems in the past, so
that RDist itself has changed and P Dist must be adjusted to be consistent
(e.g, if roads have been closed, blocking paths that would previously have
been successful).

e When problem-distribution regularity falls below acceptable levels, it may sig-
nal:

— Insufficient case coverage of the current problems (additional cases would
increase the chance of having one available within the acceptable neigh-
borhood).

— Flawed or insufficient adaptation knowledge (improving adaptation knowl-
edge would increase the size of the neighborhood of cases that is usable).

e When problem-distribution regularity is high for a subset of the case base, it
may signal:

— A “hot spot” in the case base (which enables reorganizing the case base to
facilitate access to active regions, or deactivating cases from less frequently
used regions.)

3.5 Determining How to Respond: The Role of
Diachronic Analysis

Once a regularity problem has been found, it is necessary to select strategies for
responding. Normally, CBR systems consider only the current problem and state of
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the case base when responding to processing failures (e.g., by revising the indices for
a case or storing a new case with the correct solution). However, considering trends in
problems may enable better response strategies. For example, knowing that problem-
solution regularity has dropped from acceptable levels to a current unacceptable level
is more informative than simply knowing that the level is unacceptable, because a
change in performance must be caused by changes in either the problem distribution or
the environment. For example, if a system for estimating building costs consistently
generates estimates that are too low, that trend suggests that a general change is
needed to prevent that class of failures in the future.

One response strategy is to simply update the cases in the case base (e.g., in-
creasing the recorded prices), but this may lose useful historical information. It may
also require monitoring the update history and ages of cases, in order to make sure
that all cases are updated properly. Another alternative is to keep the values of cases
unchanged, but to add a “lazy” maintenance rule to adjust case solutions after they
have been retrieved [Leake and Wilson 1998].

Leake and Wilson [1998] describe a class of maintenance strategies that collect
data over time, over a sequence of snapshots of system processing, in order to identify
trends in how case-base contents and usage are changing. They call policies based
on analyzing the performance of the case-base over time diachronic maintenance
policies. Diachronic analysis is useful, for example, for determining whether coverage
problems—shown by low problem-distribution regularity—should prompt the search
for additional cases. If problem-distribution regularity shows an increasing trend,
showing that the cases being processed are filling the important regions of the case
base, it may suffice to simply let the normal case learning process fill the case base.
However, if the level of problem-distribution regularity is low and stable, or even
decreasing, steps must be taken to increase the coverage of the case library.

Diachronic analysis is also useful to find and exploit trends in problems presented
to the case base. If the problems that the system must solve consistently fall within a
small neighborhood, it may suggest that the system should exploit the locality of the
“hot spot” by reorganizing the case base to make cases in that region easier to access.
In a distributed case base, cases in the hot spot are candidates for pre-fetching. If
space limitations require that some cases be deleted, for efficiency reasons the system
should also focus competence-preserving deletion [Smyth and Keane 1995] on regions
other than the hot spot, in order to minimize adaptation cost on likely problems by
keeping the active regions more densely populated with nearby cases.

Finally, diachronic analysis is useful for monitoring and guiding the maintenance
process itself: The history of maintenance operations applied will affect choices of
which operations should be applied. For example, if maintenance has just added a
large set of cases to the case base to improve problem-distribution regularity, the
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choice of whether to search for still more cases should be determined by observing
the effects of the new cases over some period of time, rather than simply based on
the value of ProbDistReg as soon as the next input problem is processed.

3.6 Tools for Trend Detection

Performing diachronic maintenance requires methods for detecting underlying
trends in sequences of values over time. Trend detection for numeric values can
be done by a number of statistical techniques. These include simple methods such as
linear regression models that attempt to find the equation of the line that best fits
the data as well as time series analysis techniques such as autoregressive (integrated)
moving averages (ARMA/ARIMA). Research in machine learning has studied “con-
cept drift,” in which hidden changes in context over time cause learned experiences
to become inaccurate (e.g., [Salganicoff 1997]). A number of techniques have been
applied to concept drift problems in time ordered domains for learning hidden context
[Harries et al. 1998; Lane and Brodley 1998], and could be applied to adjusting sim-
ilarity criteria when problem-solution regularity becomes insufficient due to concept
drift.

3.7 Two Examples: Error Trends and Hot Spots

This section illustrates the usefulness of trend-based reasoning for responding to
drops in problem-solution regularity and to patterns in problem distribution.

Addressing Solution Error Trends:

As a simple example of the use of trend detection, we show how regression tech-
niques can augment a case-based price estimating system, in order to make its predic-
tions more robust despite inflation. Trend-based corrections are triggered by drops
in problem-solution regularity: When the solutions predicted based on similar prior
problems are no longer close to the real solutions determined by feedback to the
program, maintenance is performed. The method we describe is still primarily case-
based, rather than regression-based: Detected trends influence case adaptation, but
the primary information source is still cases.

As our case data changing over time, we selected a college summary from the
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magazine U.S. News and World Report> The data included information on 1302
colleges, with 28 features for each one (e.g., enrollment, student test scores, etc.).
The task was to predict tuition costs. Because multi-year data was not available,
the increase was simulated as a normal distribution of increases around an annual
inflation rate.

The following simple strategy was used for detecting and responding to error
trends. The system records and monitors the percent errors between retrieved cases
and evaluations. A cumulative error level is maintained by summing successive error
percentages, with the expectation that accumulated percent errors due to random
fluctuations (both positive and negative) will remain below a reasonable threshold
magnitude. If the activation level persists above the threshold value for a specified
amount of time, the system triggers a statistical analysis for possible underlying
error trends. In the current system, the percentage error trend is approximated
by performing a simple linear regression analysis on the sequence of error data. A
maintenance rule is then installed that uses the computed regression line to forecast
the percentage error for the current year and modifies cases according to the predicted
error value as they are retrieved.

Experiments used query samples of 5 to 20 probes from the case set for each
year over a 10 to 20 year span, selecting queries by two methods. The first method
constructed a random problem distribution by selecting query cases at random. The
second method constructed a highly regular problem distribution by restricting the
query population to a set of similar instances, according to the system’s similarity
metric. The samples were used as probes in their respective years, over the varying
year spans. The underlying annual inflation rate was varied in separate experiments
between 2 and 5 percent for each year, which fluctuated according to a random normal
distribution to represent yearly variations. Average error rates were measured for the
baseline (no learning), case learning alone, maintenance alone, and combined case
learning/maintenance. Each experiment was repeated 10 times, each time re-selecting
the query sample, to obtain results on average.

While the results did not give a precise picture of how adjustments in individ-
ual parameters affected the outcomes, a general picture did emerge. With a random
problem distribution, case learning performed better than the baseline, trend-based
maintenance performed better than case learning, and the combination gave equiv-
alent or better results. With the regularized problem distribution, the combination
performed best, followed by case learning, then maintenance, and finally the baseline.
A representative trial with an inflation rate of 2 percent over 15 years and sample
size of 5 queries/year gave the following results. The randomized distribution showed

3 Available from http://lib.stat.cmu.edu/datasets/.
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average errors of 18 percent in the baseline, 17 percent in case learning, and 14 per-
cent in both maintenance and combined trials. The regularized distribution showed
average errors of 18 percent in the baseline, 14 percent with maintenance, 13 percent
with case learning, and 12 percent in the combined trials.

The experiments point to some interesting observations. First, they suggest that
maintaining existing cases can be as effective as learning new cases, and that aug-
menting case learning with diachronic maintenance can be beneficial. Second, it is
worth noting that the individual trials of maintenance alone produced highly con-
sistent results, while the individual trials involving case learning fluctuated a great
deal in producing the average. This may indicate that detecting general trends is a
more stable method of dealing with change over time than case learning. Third, typ-
ical problem distributions will likely fall somewhere between the extremes of uniform
sampling (where maintenance strategies alone were better than case learning) and
highly focused sampling (where case learning worked better).

Addressing Hot Spots

A second potential use of trend detection is to respond to “hot spots” in the
case base. In practice, case accesses are often non-uniform. For example, a primary
motivation for the development of the GizmoTapper CBR support system for Broder-
bund computer games was to aid the Broderbund help desk in handling the increased
queries it received soon after Christmas [Watson 1997]. The problem patterns for any
domain are likely to be strongly domain-specific, but if those patterns can be detected
automatically the system may be able to optimize access to information that is likely
to be in demand.

To observe query distribution patterns in a real-world information source, data was
gathered on accesses to Indiana University web pages for various on-line information
repositories. These pages provide academic information (e.g., requirements for the
BA degree) as well as homework assignments, etc. A sampling of access results for a
year of logs are shown in Figure 3.1, with each band reflecting the total accesses to
files within the directory. (Numbers of accesses are normalized to show the percent
of maximum accesses per month from January 1998 to February, 1999. Patterns that
might not have been expected (but that are easily explainable) emerge. For example,
department academics pages are heavily accessed in the Fall (presumably by new
students), but less frequently accessed in the Spring, as students become familiar
with policies, and seldom in the summer. Pages for classes offered in Spring and Fall
reflect that in their accesses. Temporal patterns are not always present—no pattern is
apparent in the “Types Forum” accesses at the front of the graph—but there appears
to be considerable regularity.
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Figure 3.1: Web page accesses by month.

Various methods could be used to detect or predict hot spots, such as clustering
on the problems processed, predicting problem distributions from a model of the
task the CBR system serves (if available), or collecting user profiles that associate
users with particular access patterns. Once a hot spot has been hypothesized, the
problem-distribution regularity formula can be applied to measure the adequacy of
its coverage. Insufficient coverage is a sign to examine the current problem sequence
for new hot spots.

3.8 Considerations for Costs and Benefits

The processes described here depend on processing steps that increase the over-
head of the CBR system, such as processes for trend detection and for reorganizing
the case base in response to hot spots. In the long-term, more study must be done
on the costs involved, but there may be important mitigating factors. First, trend
analysis can be done off-line, when the system is otherwise idle. Second, in interactive
CBR systems, cost and benefit analysis must weigh not only the costs incurred by the
system, but also those avoided by the user. If trend analysis can, for example, warn
the user of environmental changes that render prior cases obsolete, the real-world
benefits may be substantial (e.g., for a realtor setting the price of a house). This may
counterbalance increased computation costs.
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In developing case-base maintenance strategies, it is important to have a good
understanding of the maintenance problem, as well as the opportunities afforded by
measures of regularity inherent in the domain and usage of a system. From the theo-
retical development in the last two chapters, we now move on to practical applications
of maintenance techniques.



4

DRAMA: Interactive Maintenance
Support

Case-based reasoning is increasingly being employed in systems that incorporate
significant user-interaction during problem solving (see [Aha and Mufioz-Avila 2001]).
In the context of these types of systems, there are significant opportunities to develop
interactive approaches to case-base maintenance.

There are many circumstances that recommend an interactive approach to case-
base maintenance. For a given system, it may be that it is advantageous to incorporate
explicit user interaction in the maintenance process. For example, a system that can
detect a need for maintenance, but does not have the requisite domain knowledge
to act upon the need, may be designed for interactive notification and support of
human system maintainers. In this case, the system provides for data collection and
triggering, but relies on interactive execution. Even if the system does have the ability
to act upon maintenance needs, corporate strategies for knowledge management may
require human management of updates to the corporate knowledge base.

When a support system is embedded in an interactive task environment, there are
opportunities to learn new cases directly from users as they go about problem-solving
tasks. By providing proactive support for task-oriented goals, it may be possible to
help the user to construct better cases. The user views the support as helpful from a
task-based perspective, and the tasks can be guided in a manner that supports good
case-base maintenance practices. Thus, an important focus for case-base maintenance
research is on the development of tools and methods to support human users and
case-base maintainers in service of overall system goals for maintenance.

This chapter describes the DRAMA system, a case-based tool developed for
aerospace design support [Leake and Wilson 2000a; 1999al. By monitoring users
as they go about normal high-level design tasks, DRAMA automatically captures

43
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user design choices and rationale that can be used to provide proactive recommen-
dations at both the design and design component levels. This helps to maintain the
case-base through continuous support for case-authoring and design consistency while
significantly ameliorating the knowledge-engineering burden on system users.

4.1 DRAMA Overview

Aerospace design is a complex process that requires designers to address compli-
cated issues involving numerous specialized areas of expertise. No single designer can
be an expert in every relevant area, and becoming proficient may require years of
experience. Consequently, intelligent systems to support and amplify the abilities of
human designers have the potential to profoundly affect the speed and reliability of
design generation. An appealing approach is to augment the designers’ own design
experiences with relevant information from prior designs: to provide support with
case-based reasoning (CBR) [Aamodt and Plaza 1994; Kolodner 1993; Leake 1996a;
Riesbeck and Schank 1989; Watson 1997].

Ideally, case-based design support tools will include three related capabilities to
aid reuse of designs: capture of and access to specific design experiences to enable
“experience sharing” [Kitano and Shimazu 1996]; support for new designers as they
try to understand the lessons of those prior experiences; and support for adapting
prior designs to fit new design goals. To be practical to develop, the tools must not
require the encoding of extensive domain knowledge. For designer acceptance, they
must leave the designer in control. This chapter describes principles to address these
goals and techniques for their application in the interactive design support framework
DRAMA (Design Retrieval and Adaptation Mechanisms for Aerospace).

The DRAMA project integrates case-based reasoning with interactive tools for
capturing expert design knowledge through “concept mapping” [Novak and Gowin
1984], with the goal of leveraging off the strengths of both approaches. The project
uses interactive concept mapping tools, developed by the Concept Mapping group at
the University of West Florida, led by Dr. Alberto Canas, to provide an interactive
interface and crucial functions for generating and examining design cases, as well as
for navigating their hierarchical structure [Canas et al. 1999]. Using concept maps
as a case representation, as well as using the concept mapping tools to manipulate
them, provide the novel capability for users themselves to develop and revise case
representations. This raises interesting research questions about reconciling the con-
flicting goals of flexibility, customization, and case standardization as the case library
grows and is maintained over time.
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The implemented DRAMA system supports browsing of prior design knowledge
and provides designers with concrete examples of designs and design adaptations
from similar prior problems. At the same time, the DRAMA interface unobtrusively
acquires new examples by monitoring the user’s interactive design process. This
monitoring is also used to dynamically adjust the relevance criteria for retrieving prior
experiences, exploiting task-based information without requiring the user to provide it
explicitly. We present experiments examining this behavior in detail, demonstrating
how the benefits of this automatic retrieval approach vary under conditions modeling
different levels of design novelty, different stages in the design process, and different
levels of user expertise.

This chapter first presents some basic tenets that motivate the design of DRAMA’s
interactive framework. It then briefly summarizes case-based design and concept
mapping. It goes on to describe the system itself and experimental results, followed
by perspective relating its approach to other work in case-based reasoning, design,
and maintenance.

4.2 The Task Domain

A significant concern at NASA is “knowledge loss:” that critical design expertise
for their programs is the domain of a few experts and will be lost when they retire or
leave the organization. This has given rise to knowledge preservation efforts, some of
which have employed CBR. For example, the RECALL tool at the NASA Goddard
Space Flight Center was developed to store and access textual reports of important
lessons [Bagg 1997]. However, even when records have been captured they may be
hard to understand and reuse. Different experts may conceptualize designs very
differently, making it hard to interpret their notes of prior designs.

To make records more comprehensible, projects have investigated the use of con-
cept mapping [Novak and Gowin 1984|. The goal of concept mapping for design is
to capture not only important features of the designs themselves, but also designers’
conceptualizations of those designs—the relationships and rationale for their compo-
nents. This raises the question of how to organize and access the knowledge that
concept maps capture, and how to facilitate its reuse.

This framework uses interactive CBR techniques to support retrieval and reuse of
designs represented as concept maps. The processes will be illustrated with simple
examples concerning high-level configuration of airliners (e.g., to select appropriate
engines); a long-term goal of this work is to work with domain experts on developing
richer concept maps to explore the framework as applied to design initiatives for
reusable spacecraft.
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4.3 'Tenets of the Approach

The goals of the DRAMA project are twofold: First, to develop useful tools for
aerospace design, and, second, to establish a general “knowledge-light” [Wilke et
al. 1997] framework for interactive case-based design support systems. The tenets
shaping this general framework are:

o The systems developed should leverage a designer’s knowledge, rather than at-
tempting to replace it.

This motivates the focus on interactivity and design support rather than au-
tonomous design. All parts of the process accept user control and interactive
problem-solving.

e Designs take many forms.

The system must be able to support multiple (potentially idiosyncratic) design
representations, but should also encourage and support standardization when
that does not impose a burden.

e Support information should automatically be focused on the current task.

This requires that the system monitor the task context in order to anticipate
information needs and to determine how to fulfill them.

e Learning must play a central role, both at the design level and at the level of
design manipulation.

This requires the capability to capture and reuse multiple types of cases.

4.4 Background

Case-Based Design Support

CBR systems learn and reason by capturing and reusing lessons from analogous
prior experiences. The lessons may include a wide range of information such as useful
solution strategies to follow, mistaken strategies to avoid, or likely outcomes if a given
strategy is followed. The fundamental process of CBR—retrieving relevant cases and
using them as a guideline for new reasoning—naturally lends itself to “retrieve and
propose” systems that support human reasoners by presenting the guidance of relevant
prior cases [Kolodner 1991]. Many such systems have been developed and a growing
number fielded [Lenz et al. 1998; Watson 1997].
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Case-based design has been a particularly active CBR research area. It has been
investigated for tasks including designing aircraft subsystems [Domeshek et al. 1994a],
architectural design [Gebhardt et al. 1997; Goel et al. 1991; Hua and Faltings 1993;
de Silva Garza and Maher 1996; Smith et al. 1995], circuit design [Vollrath 1998],
and mechanical design [Sycara et al. 1991]. Design cases may record information
such as the designs themselves, traces of design successes and failures, the designer’s
design actions, and the corresponding rationale. The case library serves as a memory
of suggestions and warnings to augment the current designer’s expertise. Because
each suggestion is directly grounded in the experience of a prior episode, it can be
explained to the current designer in terms of the results in that prior situation, and
the designer can evaluate the advice by considering the relevance of the prior case to
the new situation.

Many existing case-based design systems display impressive capabilities, but at the
expense of considerable development effort to tailor them to domain-specific needs.
The aim of DRAMA is instead to unobtrusively build up case knowledge from inter-
actions with users as they generate designs, and to use its monitoring of the design
process to extract contextual information that can be used to proactively focus re-
trieval on useful information as the user adapts prior cases to fit new situations. The
goal is not to provide autonomous design generation or adaptation capabilities, but
instead to provide useful capabilities that can be realized with limited knowledge
acquisition effort.

Concept Mapping

Concept mapping is a process designed to reveal internal cognitive structures by
externalizing them in terms of networks of concepts and propositions. A concept
map (CMap) is a two-dimensional representation of a set of concepts and their rela-
tionships. Individual concepts are linked to related concepts through one or two-way
links, each link associated with a label/proposition describing the relationship. The
vertical axis generally expresses a hierarchical framework for the concepts; for exam-
ple, a concept map of design problems might represent a hierarchy of abstract and
more specific problems. However, we stress that there is no requirement that they
represent particular relationships; they are compatible with any structured represen-
tation. Semantic networks are a form of concept map, but concept maps are a more
general notion: concept maps are not constrained by syntactic rules and have no
associated semantics; they are normally seen as a medium for informally “sketching
out” conceptual structures.

Different reasoners are likely to conceptualize a space differently, with important
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variations reflected in the differences in the maps they generate. For example, a de-
signer specializing in airflow might include features such as wing or surface shapes
and operational constraints that require them (e.g., the need for short-field landings),
while an avionics designer would focus on very different features. The concept map-
ping process is intended to help individuals to clarify their own conceptualizations
and to capture them in a form that is accessible for examination by others (e.g.,
members of a design team seeking to understand the expert’s design to evaluate or
modify it, or novices seeking to increase their own understanding). One recent effort
integrated concept mapping into a set of knowledge construction and sharing tools
used to link over a thousand schools in Latin America [Canas et al. 1995].

The visual presentation of information in concept maps provides a natural starting
point for organizing and accessing information. For example, Figure 4.1 shows a
sample CMap describing the basic structure of the Boeing 777 aircraft. Three nodes
of this CMap are associated with images: An exterior view is accessible from the
top-level node, an engine picture is associated with the engine node, and a schematic
diagram of the seating layout is accessible from the nodes for any of the seating classes.
The CMap is displayed by the CMap software tools to be described in the following
section. Note that the maps shown in our example CMaps are high-level maps to
demonstrate system capabilities; more specific maps used by expert designers would
include more abstruse features or finer-grained technical details.

Building Concept Maps

Procedures to aid the initial generation of CMaps have been described in a number
of sources, primarily for use in instructional contexts to illuminate the structure of
domains of study, further the synthesis of useful ideas, and encourage their analysis
(e.g., [Jonassen et al. 1993, pp. 138-139], [Novak and Gowin 1984, pp. 24-36]). Com-
puterized tools have also been developed to interactively support the concept mapping
process. The DRAMA project uses a set of Java-based tools developed at the Institute
for Human and Machine Cognition of the University of West Florida. These tools sup-
port the interactive definition and arrangement of initial maps (including multimedia
components), the hierarchical examination of those maps, and transparent sharing
and navigation of maps on remote servers anywhere on the Internet. The CMap tools
are publicly available on the world-wide web at http://cmap.coginst.uwf.edu/.
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Figure 4.1: Sample screen images produced by the CMap tools.
4.5 Benefits of Integrating CMaps and CBR

The integration of CBR with interactive CMap tools provides leverage for both
the CBR and CMap systems. Existing CMap tools provide an interactive medium for
representing and browsing designs, but their framework does not provide facilities for
automated searching for relevant stored CMaps. Likewise, although the tools provide
capabilities for interactively defining new CMaps and manipulating their structure
by adding, deleting, or substituting components, the tools provide no support for
decision-making required by that adaptation process. Consequently, their usefulness
can be extended by the addition of automatic facilities for retrieving relevant CMaps,
automated aids to navigating CMaps and finding relevant information, and by aids
to the reuse of prior CMaps.

Conversely, case-based reasoning can leverage off the interactive case definition
and revision capabilities of the CMap tools. The CMap tools provide a convenient
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method for entering case information in an intermediate form between textual de-
scriptions (which are easy to input but hard to reason about) and rich structured
representations (which are hard to input but support complex reasoning). In our do-
main, the push to use concept mapping to understand the design process is expected
to make such cases available at low cost as “seed cases” for the CBR system. In
addition, the tools already provide crucial functions for interactively generating and
examining these cases and navigating their hierarchical structure.

4.6 The DRAMA System

The DRAMA system uses concept mapping tools as a method for initial capture,
manual browsing, and manual modification of design cases represented as concept
maps. It uses interactive CBR techniques to retrieve relevant prior cases and to
retrieve alternatives to support adaptation. In addition, it uses CBR to manage
and present cases recording the rationale for particular decisions and cases suggesting
adaptations of designs. The following sections discuss the main features of the system.

Using CMaps to Organize and Represent Design Information

In DRAMA, CMaps are used to represent two types of information. First, they
represent hierarchies of aircraft and part types. This information is used to organize
specific design cases and to guide similarity assessment during case retrieval, providing
the designer with browsable hierarchies of aircraft (e.g., commercial aircraft), aircraft
components (e.g., specific wings, engines, fuel tanks), and component configurations
(e.g., fuel tanks inside or outside the aircraft) for reference during the design process.
Our work makes no commitment to a particular set of taxonomies for a given domain.
Instead it provides the tools to help particular design groups to interactively generate
and refine their own sets.

Second, CMaps represent specific information about particular designs such as
their components and component relationships. Each component may be represented
as another CMap, enabling viewing and treating hierarchical designs at different levels
of granularity through an interactive navigation process.

How the System Supports Design

To illustrate the design process, the following sections present a simple example
involving the coarse-grained configuration of an airliner after an initial set of “seed
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case” designs has been provided to the system, along with hierarchies of aircraft
types organizing those designs. The steps described include retrieval of a similar
prior design as a starting point, retrieval support for adaptation and refinement of
system suggestions, and the capture of a new adaptation for future use. Figure 4.2
summarizes these steps.

Retrieving a relevant prior design. The design process begins by selecting a sim-
ilar example as a starting point. The user may choose either of two interfaces for the
initial search process, one non-interactive and the other interactive. The first (non-
interactive) option, the “Design Finder,” is a simple and traditional CBR retrieval
interface. The interface presents menus for selecting the desired features of a design
from a pre-defined set of standard attribute types (e.g., aircraft type, manufacturer,
model number). Currently the system uses a standard pre-defined feature set, but
features could also be derived automatically from the set of designs.

Given the list of features, the designer selects any features of interest and the sys-
tem performs nearest-neighbor retrieval, according to a predefined feature weighting
scheme, to retrieve references to potentially-relevant CMaps. These are presented
to the designer with a match score; the designer can browse and select from the
alternatives.

The second interface allows the designer to interactively navigate the set of con-
cept maps providing alternative “views” of aircraft and aircraft component types.
This is an interactive process. As the designer proceeds through these hierarchical
maps, being presented with increasingly-specific alternatives, the designer interac-
tively determines how to proceed at each level.

In our sample scenario, the designer is considering alternatives for developing a
highly fuel efficient airliner. The first step is to establish a context for the design by
locating the CMap for an aircraft similar to the one envisioned. The designer then
selects the engine on the CMap as the part to adapt. If no CMap is already present
for the component in the starting design (e.g., the designer wishes to fill in a sketchy
design by specifying its engine), the designer can use the interactive CMap tools to
create a new CMap from scratch, or can browse the CMaps for designs, import a
design, and then adapt as desired.

When the previous case has been retrieved, the designer has four choices, as
shown in Figure 4.3: to adapt it (changing the representation in memory, e.g., when
continuing work on a design begun in a previous session); to derive a new design, by
having the system make a copy to adapt; to ask the system to use its hierarchy of
aircraft parts to form an abstraction of the current design’s structure as a template
to fill in; or to ignore the design and begin a new design from scratch.
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1. Retrieve prior design

e CMap browsing

e Manual feature-based case retrieval

2. Select working design to adapt

Null design (design from scratch)
e The prior design
e A copy of the prior design

e A schema abstracted from the prior design
3. While working design # target,

(a) Select design component to adapt
(b) Adapt component

e Edit working component manually
e Substitute prior component and adapt
i. Retrieve substitute component
e CMap browsing
e Automatic context-based retrieval

il. Revise sub-parts of retrieved component recursively, starting at step 3b
with the substitute component.

Figure 4.2: Steps in DRAMA’s case-based design generation. Enumerated points are
sequential; bullets are mutually exclusive choices within steps.
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Figure 4.3: Beginning derivation of a new design from a prior case.

Adapting designs. The design process continues with the designer updating the
current working design.

Retrieving designs to understand or suggest new components: Once the
designer has navigated, for example, to the engine of a particular aircraft, the system
supports three ways of examining why the engine was used and the alternatives that
may exist. First, the designer may simply interactively browse stored information,
following links in the CMap to examine associated information such as finer-grained
concept maps, video clips of explanations from previous designers, or photographs or
specifications of the engine.

Second, the designer may request information about similar designs. The designer

may request to have this retrieval targeted to either:

e Focus on designs with components similar to the one that is currently of interest
(e.g., CMaps that show aircraft using similar engines)

e Focus on designs that provide similar contexts for the current type of component
(e.g., CMaps that show the engines of similar aircraft)

The algorithms underlying this retrieval are described in Section 4.7. The interface
for presenting this information is shown in Figure 4.4.

Retrieved alternatives are listed in order of goodness of match according to the
chosen focus. The designer may also enter additional criteria to be matched against
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Figure 4.4: Interface for presenting engine suggestions and entering additional con-
straints to refine ordering by matching against textual rationale information.

any textual annotations of rationale recorded by previous designers. For example, the
designer may request that fuel-efficient engines be weighted more heavily, as shown in
the bottom portion of Figure 4.4. This revision uses simple text matching techniques
from information retrieval (e.g., [Salton and Buckley 1988]) to decide which prior
rationale to consider most relevant.

Suggesting prior adaptations: When the designer selects a component of an
aircraft to adapt, the system has access to three pieces of information: the component
affected, any designer input of additional retrieval criteria, and the design itself. This
information is used to index into stored records of prior adaptations, in order to
suggest proven adaptations. If adaptations have been previously performed in similar
contexts to address similar issues, those adaptations are highlighted in the list of
alternatives. Note that this adaptation process does not assume knowledge of complex
constraints. DRAMA’s method reduces the amount of knowledge needed, but at the
cost of requiring the designer to evaluate the possibilities suggested (cf [Smith et al.
1995]).

Performing adaptations: When replacing an engine, the designer may select any
of the suggested engines to browse further, or to substitute for the engine in the design.
The designer may also simply delete or add a component to the representation using
the CMap tools.
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Adaptations of concept maps can be thought of as falling into three general cate-
gories corresponding to the support that they require: additions, deletions, and sub-
stitutions. Our framework supports the designer’s performance of these operations
as follows:

e Additions: The designer may use the plain-text retrieval capability to retrieve
potentially-relevant components to be linked into the design.

e Deletions: The system can warn of potential deletion issues by proactively
retrieving similar deletions, checking them for problems, and presenting those
problems to the designer.

e Substitutions: The system can support substitution by retrieving and suggest-
ing candidate substitutions, using both the explicitly-stated criteria and con-
textual information from the current map to guide the retrieval. It retrieves
these from two sources: from stored adaptation cases encapsulating prior sub-
stitutions, and from analogous nodes in similar designs. Section 4.8 discusses
experiments examining this support process.

When the designer states a goal and finds a suitable substitution, the system learns
“adaptation cases” packaging the query, information about the CMap that was used
as context for the search, and the selected result, following research on case-based
adaptation learning [Leake et al. 1997b; Sycara 1987].

Storing rationale. After the designer performs a substitution, the designer is
prompted to enter an optional textual annotation of why the new alternative is
preferable to the old (e.g., an engine might have been replaced to increase fuel effi-
ciency). Asking the designer to address this question focuses rationale capture: The
designer does not record a rationale for the component as a whole (which could in-
volve countless factors), but simply for why it is better than another component in
the current context. Focusing the explanation process in this way is related to the
common CBR idea of generating expectations for behavior and explaining only devi-
ations from those expectations (e.g., [Hammond 1989; Thrig and Kambhampati 1997;
Schank 1982]). During future adaptations, this rationale will be provided with other
information about the component, and will be used as an additional index when
retrieving possible substitutions.

Storing generated cases. Adapted cases are placed into the system’s hierarchies
of cases at the point where the designer found the most similar previous case.
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4.7 DRAMA’s Method for Retrievals to Support
Adaptations

Suggesting new components during adaptation requires comparing the current
concept map to those in memory. Given a user-selected component (e.g., a particular
engine) to be adapted, and given the goal of finding other engines from similar designs,
DRAMA first retrieves a set of similar designs. The similarity assessment process
begins by establishing correspondences between nodes in the old and new designs
by matching their node labels. This process is equivalent to finding a matching
between roles in role-filler representations. When the role appears in both old and
new designs (e.g., both have a feature labeled “engine”), it is trivial to establish this
correspondence. However, because concept maps are not standardized, there is no
guarantee that equivalent roles will have identical labels. After pairing all the nodes
which have identical labels, the matcher pairs the remaining nodes (roles) of the new
design with the remaining nodes of the old design, trying to pair the roles whose
fillers are most similar. For example, the “engine” role of one map might be paired
with the “propulsion” role of another, because both roles are filled with engines. The
matcher uses a greedy algorithm to establish this pairing while (ideally) minimizing
the sum of the distances between each pair of corresponding role-fillers. In the current
implementation, left-over features are ignored. Although matching cost is a potential
issue, it has not proven a problem in current tests, and we have not attempted to
optimize this process.

After the roles of the old and new CMaps are matched, the distance between
the two CMaps is calculated by a weighted nearest-neighbor algorithm applied to the
pairs of role-fillers. The distance between each pair of role-fillers is the number of links
that must be traversed from one to the other in the design component abstraction
hierarchy, normalized by the maximum possible distance in the hierarchy.

After retrieving concept maps for similar designs, DRAMA collects potential sub-
stitute components from each of the similar designs. The results are ranked by the
inverse of each design map’s distance from the current context. This gives an indica-
tion of the relative goodness of each suggestion within the overall pool of suggestions.

Once candidate concepts have been retrieved and displayed, the user can adjust
the relative ranking by entering textual descriptions of desired properties— “focus
features”—to compare with the properties annotating the component. The entered
text is matched against any textual annotations of a suggested component; the degree
of match is calculated by counting term matches in the text and normalizing this sum
by the frequencies with which the term is used in all annotations. The resulting value
is taken as an additional feature added into the weighted sum for design distance.
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The significance of the approach: Ideally, case retrieval should reflect both
high-level goals and concrete design features. Applied CBR systems tend to rely
on the user to explicitly provide this information (whether all at once or incremen-
tally). One method for guiding the process is to prompt the user for information,
using strategically organized questions in order to minimize the number of questions
that must be asked to reach a solution. This is one of the principles of success-
ful conversational case-based reasoning, and automated methods are now proposed
to improve question organization [Aha and Breslow 1997]. In some applications
contexts, however, it may be quite difficult to craft these questions. Another ap-
proach to improving retrievals is for the system to learn about the importance of
particular types of features to guide its future retrievals (e.g., [Fox and Leake 1995a;
Zhang and Yang 1998]).

The research focus of DRAMA’s retrieval is on how to automatically generate
feature values from the task context. Its aim is to integrate the CBR process tightly
enough into the user’s task process to infer a substantial part of the needed contextual
features directly from monitoring the user’s task, saving the user the effort of query
formulation. This approach is closely related to research on proactive case retrieval
[Leake et al. 1999], and we believe it will become increasingly important in fielded
CBR systems.

Moreover, by monitoring users as they go about normal high-level design tasks,
DRAMA automatically captures user design choices and rationale that can be used to
provide proactive recommendations at both the design and design component levels.
This helps to maintain the case-base through continuous support for case-authoring
and design consistency while significantly ameliorating the knowledge-engineering
burden on system users. In section 4.9 we discuss how DRAMA supports users in
maintaining vocabulary.

Because of the close coupling between the CBR system and the user’s task in-
terface, the system has access not only to the user’s retrieval request (e.g., to find
a substitute engine), but also to a significant part of the context surrounding the
request that will determine the relevance of the retrieval (e.g., the aircraft for which
the engine is needed). The designer may augment this context with information that
is not available from the current step in the design process (e.g., that the goal is to
find a more fuel-efficient engine that could substitute), but is not required to do so.
This approach raises a number of questions about efficiency and performance, such as
what levels of performance can be achieved early in the adaptation process, when the
available context may differ significantly from the final design for which a component
is needed. We examine such questions in the following section.
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4.8 Testing DRAMA’s Context-Based Retrieval

Experiments were performed comparing DRAMA’s context-based retrieval to two
baseline manual retrieval methods, for the task of finding replacement aircraft engines.
This tests the benefits of DRAMA’s method for performing automatic context-based
retrieval (step 3(b)ii of Figure 4.2).

A set of test retrieval problems and a set of retrieval targets were generated, as
described in section 4.8. The experiments compared DRAMA’s retrieval to the two
baseline methods according to two criteria. The first was retrieval quality, measured
by the distance of the actual retrieval from a target case to retrieve, according to a
nearest-neighbor distance metric (e.g., [Watson 1997]). The second was the amount
of user effort they required, measured by the number of design questions (features)
that the user needed to answer (specify) in order to retrieve the target.

In the first baseline method, manual engine-based retrieval, an engine is retrieved
by directly specifying a set of engine features. A user interactively specifies desired
engine features, with the best-matching engine returned for each new feature set (ties
are broken arbitrarily), until a target engine (the engine in the case library that
best matches the engine in the target design) is retrieved or until all feature values
are specified (see Figure 4.5). In the second baseline method, manual aircraft-based
retrieval, a user interactively specifies desired aircraft features to retrieve an aircraft
similar to the target design, and the result is the engine of the retrieved aircraft.

Our experiments examine how the dependent variables of quality and efficiency
are affected by four independent variables: retrieval method (manual engine-based,
manual aircraft-based, or DRAMA’s method), user ezpertise (for manual methods,
this determines the user’s ability to select accurate and discriminating features and
appropriate values to match the target design), point in design process (for DRAMA’s
method, this determines how well the available design context approximates the target
design), and the magnitude of changes required to transform the starting point into
the new design.

Generating Problems and Retrieval Targets

Test problems were generated by a problem generator that randomly selects a set
of aircraft design cases from the case library as starting points, each to be adapted
into a new design. A target aircraft design is generated by applying hand-coded
perturbation rules to the features of the selected initial design. These rules (1) adjust
randomly-selected features of the aircraft design, and (2) adjust related aircraft and
engine features to assure consistency of the overall design. For example, a change to
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an aircraft that increases passenger capacity should increase aircraft weight as well,
and an increase in aircraft weight may require increasing the thrust of the engine.
The rules propagate effects of design changes to produce a consistent target design.
The number of independent feature changes and the magnitude of the changes are
parameters of the problem generator.

The design generation process results in a new aircraft design as a whole, including
desired features for the engine. In our experiments, these engine features are taken
as the ideal features that the simulated designer is attempting to approximate by
retrieving the closest available engine. Consequently, to select the target engine that
will be used as the standard for judging retrieval quality, the problem generator uses
the list of desired features to select the closest actual engine from DRAMA’s case
library of known engines.

Simulating the Manual Retrieval Processes

In many interactive CBR systems, the user interacts with the case retrieval process
by repeatedly selecting and answering questions from a list of candidates. These
questions determine the feature values of the problem being described, which in turn
are the basis for retrievals. Each time a question is answered, the system retrieves and
presents the cases that best match the current case description (e.g., [Aha and Breslow
1997]). In our experiments, this interactive retrieval process is simulated by a program
that plays the role of the user, repeatedly selecting questions (unspecified features
whose values need to be filled in), selecting feature values to answer them, and using
the feature values in a nearest-neighbor retrieval process to retrieve a candidate design
from the case library. This process is summarized in Figure 4.5. In the simulated
user, answers are selected based on the features of the target aircraft, because the
target aircraft corresponds to the conception of the design that the simulated designer
is attempting to achieve. As each question is answered, the manual retrieval method
returns the closest case in memory according to a nearest-neighbor retrieval algorithm.
Because we assume that the user can identify whether the retrieved engine has the
desired properties, the simulated user answers additional questions until either the
target engine is selected (a user success) or until values are specified for all features,
in which case the last candidate case is returned as the result.

Question selection is based on a simple model of how expertise levels affect ques-
tion choices and the order in which the user chooses to answer different questions.
Based on a parameter for expertise level, the simulator adjusts the probability that the
next question answered by the simulated user will be the maximally-discriminating
unanswered question, according to a manual ordering of the expected discriminating
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Initialize Q&A list
Repeat
Select unanswered question
Select answer based on target
Update Q&A list
Candidate-design =
Retrieve-NN(Q&A list, case-base)
Until  {(Candidate-design == target) or
(no unanswered questions)}
Return candidate-design

Figure 4.5: Steps in the manual retrieval process.

power for the available features. Specific questions are selected by sequentially pass-
ing over the list of unanswered questions about a particular aircraft or engine, ordered
by expected discrimination power. The probability of choosing the next question in
the list is given by the user’s expertise level, and candidate questions are visited in
order until one is chosen or the list is exhausted. If no question is chosen, an unan-
swered question is selected at random. Once the question is chosen, the probability
that the user’s answer to the question matches the target is again determined by the
expertise level of the user. If the simulated user does not answer the question exactly,
the answer is chosen from a distribution about the target value, based on the user’s
expertise level. Thus as expertise increases the possible choice distribution converges
towards the target value.

Modeling the effects of changing retrieval context: The experiments simulate
retrievals during an ongoing design process. During this process, an initial design is
being adapted into a design that approximates the target. We assume that the simu-
lated designer may adapt components of the initial design in any order; in particular,
the designer may choose to adapt the initial engine—and, consequently, to retrieve
the new substitute engine—at any point in the design process. This affects the qual-
ity of context that the current design provides to DRAMA’s retrieval method. If the
replacement engine is retrieved early, the current design will be close to the initial
design, which may be quite different from the target design. On the other hand,
if the replacement engine is retrieved late in the design process, the current design
providing context for DRAMA’s retrieval will be very close to the target design.

To test how the quality of DRAMA'’s retrieval depends on when retrieval occurs,
our experiments generate a sequence of design steps starting with the initial design
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Figure 4.6: Retrieval quality for 3 sets of perturbations of random magnitudes.

and ending with the target, reflecting the context available at each point when an
engine may be retrieved. Retrievals are performed at different points in this sequence.
When each retrieval is performed, the simulated user randomly selects one of the
target engine’s features (e.g., high fuel efficiency) as a “focus feature” to be added to
DRAMA’s automatically generated retrieval features. This is the only feature that
the user must specify during DRAMA’s retrieval, so user effort is constant.

Experimental Setup

Tests were performed using an aircraft case library consisting of 62 cases. Fach
aircraft had 20 features and each engine had 12 features. Twelve of the cases were
manually-entered designs representing different types of real jet aircraft (six passenger
airliners ranging from small commuters to jumbo jets, two military heavy cargo planes,
two military reconnaissance planes, and two military fighters) and their engines. Fifty
additional designs were derived from the original twelve using the perturbation rules
from the problem generator. Experiments were repeated for varying perturbation
levels (numbers of changed features) and perturbation degrees (magnitude of feature-
value changes). The test set consisted of 10 randomly-selected initial designs and
derived targets. For each test problem, retrieval method, and level of expertise, the
retrieval process was performed 10 times. Results were averaged over these 10 trials,
and then averaged over the set of problems, to obtain the final reported result in each
condition. Nearest-neighbor distances were normalized to values between 0 and 1.

Experimental Results

Retrieval quality: Predictions for comparative performance were based on ex-
pectations about the quality and types of information available to each method to
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guide its retrievals. It was predicted that the retrieval quality achieved by expert
users with manual engine-based retrieval methods would surpass DRAMA’s method,
because expert users should be able to choose a focused and accurate engine-feature
context directly related to the engine type. The expectation was that DRAMA would
achieve similar or somewhat better quality than expert users with aircraft-based man-
ual methods. Experts might make better initial choices for questions to answer to
retrieve relevant aircraft, but DRAMA’s method has access to an additional “fo-
cus feature” to provide additional guidance about an important engine feature, and
this information is not considered in aircraft-based retrieval. We also expected that
DRAMA would provide better solutions than novice users: DRAMA uses all of the
present available design context, which should provide a reasonably good starting
point for retrieval, whereas novice users may choose features and values that com-
prise an inaccurate retrieval context for the desired target. Because the quality of
context available to DRAMA increases as the design approaches completion, we also
expected that DRAMA’s retrieval quality would depend on the point in the design
process at which retrievals were performed, being lowest early in the design process
and increasing as the design process progressed.

Figure 4.6 shows representative results for 3 different points in the design process
for changes of random magnitude. As expected, there are crossover points determined
by expertise, below which DRAMA’s retrieval outperforms manual engine-based re-
trieval, and above which it performs worse. DRAMA’s retrieval also matches or out-
performs aircraft-based retrieval methods except for very low-magnitude changes in
the designs. This matches expectations for most changes, for which information about
the focus feature may help DRAMA discriminate between similar aircraft to select
an appropriate engine. At very low-magnitude changes, the new design is sufficiently
similar to the old design that we expect the marginal benefit of the extra information
available to DRAMA’s method—the focus feature—to be small or nonexistent. In
addition, because DRAMA’s retrievals are based on the current state of the design,
which differs from the anticipated final design (which determines the expert’s choice
of features), the DRAMA method will be expected to show some limited error based
on that difference, in all conditions. DRAMA’s retrieval quality may be impaired
by using the current design state to define retrieval features, rather than having the
expert’s knowledge of the target design to choose the right features to specify.

Efficiency: The experiments also provide information on the expected efficiency
of manual retrievals for this task (measured in terms of number of questions that
have to be answered to retrieve the target engine), and hence on the comparative
benefits of DRAMA’s method, which requires the user to specify only one focus
feature. Figure 4.7 shows representative efficiency results for three perturbation levels
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Figure 4.7: Efficiency for 3 sets of perturbations of random magnitudes.
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Figure 4.8: Retrieval quality at successive steps in the design process for 3 sets of
perturbations.

of random degree. Recall that in these tests, it is assumed that the designer can
recognize the target engine as the best solution, and will continue specifying retrieval
features until either that engine is selected or all features have been specified.

The relative difference between the number of questions that must be answered for
aircraft- and engine- based retrieval is due to the different total numbers of aircraft and
engine features (20 vs. 12). Based on our results, even experts are expected to specify
a substantial number of features, although they achieve high quality retrievals with
those choices. Novice users must specify many features and still achieve relatively low-
quality retrievals. Because DRAMA requires only the specification of a single focus
feature, DRAMA’s method provides a significant reduction in the effort required to
build a retrieval context while retaining reasonable quality.

It was expected that increased expertise would decrease the number of features
required for the manual methods, as can be seen in Figure 4.7, graphs (a) and ().
In some tests, however, expertise had little effect on reducing the number of features
required.
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Point in the design process: It was predicted that the greatest benefits from
DRAMA'’s retrieval method would come from designs that were closest to completion,
and that importance of closeness to completion would increase with the magnitude
of the perturbations performed to generate the target design. Figure 4.8 shows the
average distances of DRAMA'’s retrievals from the targets at design stages for min-
imal, random, and maximal perturbation magnitudes for three representative total
numbers of perturbations. The retrieval benefits from closeness to completion are ap-
parent in two ways. First, distances of retrievals from the target increase for targets
generated using more perturbations, because the starting point of the design context
is further away from the target. Second, once the context has been narrowed enough
by the design approaching completion, a marked decrease in distance can be seen.

At low perturbation magnitudes, there is enough context that even moderate
numbers of perturbations in generating the target do not significantly affect retrieval,
so distance from the target is consistent. With higher perturbation magnitudes, after
most of the perturbations in a design have been performed, the design context is
sufficient for general guidance, with reasonable distances from the target, but is not
specific enough to make fine distinctions. When a critical context level is achieved
(here when the designs are approximately half completed), finer distinctions are made
with each added piece of context, and marked improvements are seen in retrieval
distance. Figure 4.8 shows that the magnitude of changes affects the importance
of distance in that minimal magnitude perturbations provide a constant set of low
values, while random and maximum show the reduction effect.

The three sets of experiments suggest that DRAMA’s context-based retrieval can
provide good suggestions with considerable savings in effort and with quality advan-
tages over manual methods, depending on the quality of context available and on the
designer’s expertise in manually selecting retrieval features.

4.9 Perspective on Issues and Methods

The key point of the previous section is DRAMA’s capability to use the context
of a current design to make useful suggestions about replacement components during
the design process. DRAMA’s approach is also relevant to a number of fundamental
issues for developing practical case-based applications. This section summarizes how
the project relates to other research in those areas.



4. DRAMA: Interactive Maintenance Support 65

Case Authoring

The problem of supporting case-base maintenance in the form of case author-
ing is receiving increasing attention from the CBR community as a whole. Ferrario
and Smyth [2001] describe an approach which allows the case authoring task to be
distributed across a variety of authors, and which provides support mechanisms to
manage and review author submissions. It also provides a method for managing the
ongoing maintenance of case-bases in dynamic domains where traditional human-
based or automatic maintenance strategies prove too costly or interactive. McSherry
[2001] also focuses on the case acquisition task, and presents a system that performs
background reasoning on behalf of the case author while new cases are being added,
in order to help the user determine the best cases to add in light of their compe-
tence contributions. The system uses its evaluations of the contributions of potential
cases to suggest cases to add to the case library. DRAMA’s method provides for case
acquisition without requiring explicit maintenance support from the user, as such.
By supporting the user in their task-oriented goals, DRAMA automatically acquires
cases that are relevant to current task concerns.

Interactive Case Acquisition

CBR is often seen as a means for overcoming the classic knowledge engineering
problems associated with rule-based systems. However, successfully deploying CBR
may require significant “case engineering” [Aha and Breslow 1997; Kitano and Shi-
mazu 1996; Mark et al. 1996; Simoudis et al. 1992; Vol 1994]. Traditional structured
case representations enable powerful processing at the cost of considerable case gener-
ation effort; research in textual CBR attempts to alleviate this problem by capturing
information in textual form [Lenz and Ashley 1998], but must overcome problems
in processing unstructured case information. Concept map representations are at a
middle level between these two approaches. They include structural information, but
do not enforce a standard syntax or standard set of attributes. This makes them more
difficult for a CBR system to manipulate autonomously than conventional cases, but
also more manageable than pure textual information. In addition, we expect this
representation to facilitate non-experts in Al encoding their knowledge and to enable
users to devise their own representations as needed. We have just begun to study
the tradeoffs involved in this level of representation and how to address the potential
problems.

For example, when cases are represented in a non-uniform way it may be difficult
to identify relevant cases to retrieve. DRAMA uses two methods to help standardize
CMap representations without sacrificing flexibility for the designer. First, when a
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user generates a CMap and is about to fill in a new link or node, the system presents
the user with a menu of alternatives from previous maps. If one of these is suitable,
the user selects it. This builds up a set of standard types over time. Second, the
baseline process for generating new design CMaps is modification of previous designs.
The system is intended to begin with a set of CMaps that reflect the conceptual-
izations of a particular expert designer, reflecting that designer’s coherent view of
the factors important in a design. When new designs are generated by adaptation,
significant portions of old representations are brought to new tasks, encouraging—
but not requiring—the use of representations with similar structure. In this way, the
case library and case representations are built in parallel. Practical use will give an
indication of the adequacy of these methods and the overall quality of retrievals. By
changing representations, in addition to maintaining the knowledge contained in the
case library, this approach begins to address issues in maintaining knowledge contain-
ers other than the case-base. We discuss issues in general maintenance of knowledge
containers in chapter 7.

Guiding Design Rationale Capture

Rationale capture has long been an important topic in Al for design. A number of
projects have applied rule-based or model-based approaches to the problem of design
rationale capture. However, explicitly encoding all the factors relevant to a design
can be prohibitively expensive, as can maintaining the required knowledge as design
problems change. Consequently, it is appealing to use machine learning techniques
to build up and refine design rationale knowledge incrementally.

Because CMap design cases already capture an entire design situation as context,
we believe that useful rationale capture can be achieved with fairly limited additional
information: an annotation about why the designer chose a particular component,
given the implicit context of the previous components chosen. Although to our knowl-
edge, this specific approach to capturing design rationale is novel, the information it
captures corresponds to the “weak explanations” advocated by Gruber and Russell
[Gruber and Russell 1992] in providing just enough information to guide a designer’s
own reasoning process. DRAMA stores this information in an unanalyzed textual
form to be compared by textual matching.

Automatic capture of detailed reasoning traces has been studied in CBR research
on derivational analogy, which captures and replays traces of the decision-making
process of another knowledge-based system [Bergmann et al. 1998; Carbonell 1986;
Veloso 1994]. Recent research has begun to apply this approach to interactive capture
and replay of planning rationale to support human planners [Veloso et al. 1997] and
for guiding search for information [Leake et al. 1997a]. Our project builds on these
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foundations but addresses two new issues. The first is how to capture and provide
useful information when it is not practical to obtain a full derivational trace. The
second is how to maintain and apply case libraries from multiple designers who may
have different conceptualizations of the problem and domain.

In a related spirit, but storing much more structured rationale information than
DRAMA, is Clark’s [Clark 1991] model of argumentation applied to geological ap-
praisal. In that model, decisions are annotated with structured arguments (which
could be represented by CMaps) aimed at helping experts to construct and improve
their risk assessments. Their argumentation is a form of cooperative knowledge shar-
ing, just as DRAMA is intended to enable designers to express, explain, and share
their conceptualizations of designs.

Conversational CBR

Conversational case-based reasoning (CCBR) systems guide the retrieval process
through an interactive dialogue of questions. As described in [Aha and Breslow
1997], this approach has gained widespread acceptance in CBR shells for help desk
applications; it provides both flexibility in the order of information presentation and
useful incremental feedback on promising alternative cases. However, because poor
questions or question organization may prevent retrieval or slow identification of the
right cases, a substantial case engineering effort may be required to craft the set of
questions involved, in some cases preventing the method from being applied at all.

Like CCBR, the DRAMA approach is in the spirit of interactive retrieval, but
under different constraints. The prior analysis required to craft carefully targeted
questions for designs would be rejected by the intended end users of DRAMA, and,
at least for expert designers, the situations for which examination of prior cases is
most useful are likely to be hard to anticipate. On the other hand, unlike CCBR
systems used in a help desk context, for which it is necessary to build up a picture
of the caller’s situation, DRAMA can benefit from “free” contextual information:
Because DRAMA is used as a design environment as well as a retrieval tool, it has
considerable knowledge of the basic task context without the need of addressing any
queries to the user.

Both DRAMA, in its initial retrieval phase, and CCBR systems are aimed at
retrieving the most appropriate complete solution from previous cases. However, in
its retrieval to support adaptation, DRAMA provides the ability to perform retrievals
focused on subparts of the problem for the user to compose. As the user adapts part
of the design, the retrieval context changes automatically, loosely corresponding to
CCBR systems’ adjusted rankings as more information becomes available.
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Knowledge Navigation

Case-based reasoning principles have been applied to aiding navigation and guid-
ing interface design for web-based information sources (e.g., [Hammond et al. 1996;
Jaczynski and Trousse 1998]), as well as for capturing and reusing knowledge about
how to satisfy information needs using other information sources such as corporate
databases [Fagan and Corley 1998] and hierarchical memories [Leake 1994; Leake et
al. 1995]. All this work is relevant to the storage and reuse of information about how
to navigate through a case memory of concept maps. The capability for a user to
navigate directly through a hierarchy of cases, as in DRAMA’s retrieval by browsing
a CMap hierarchy, has recently been investigated in the HOMER system [Gdker et
al. 1998]. Interactive navigation through linked networks of cases has also been ex-
tensively studied in the context of ASK systems [Ferguson et al. 1992|, structured
hypermedia systems in which users navigate through explanatory conversations by
selecting alternatives from a carefully-selected set of predefined relevant links. In
contrast, the CMap framework described in this chapter focuses on retrieval when
appropriate links are difficult to anticipate a priori.

Having described a practical interactive approach to maintaining case-base knowl-
edge content, the next chapter moves on to describe support for maintaining repre-
sentations of case-base content. Such representational maintenance is especially im-
portant for organizations in which knowledge will be accessed and employed in a wide
variety of rapidly changing contexts.



5

Metamorphoses: Representational
Maintenance

In building CBR systems to support knowledge management and build corpo-
rate memories, it is increasingly important to be flexible in the representation of
experience. Achieving widespread case-based reasoning support for corporate memo-
ries requires the flexibility to integrate various implementation-dependent representa-
tions with existing organizational resources and infrastructure. Effective techniques
for maintaining case representations can be extremely useful in deploying case-based
systems in many aspects of corporate experience sharing.

Constructing corporate memories that identify, acquire, and share relevant ex-
periential knowledge across an organization is an important and challenging task.
Knowledge that is stored and processed in ways optimized for one task (e.g., queries
on a centralized database) may need to be used in a substantially different man-
ner (e.g. for transfer and use over the web). Though the knowledge itself may not
change, how it is collected, stored, distributed, and used may vary throughout the
organization and as organizational goals change. Thus it is important to examine
representational support mechanisms for varying implementation needs in building
and maintaining corporate memories.

The Metamorphoses project relates three major types of representation used in
CBR implementations, discusses their typical strengths and weaknesses, and describes
practical strategies for building corporate CBR memories to meet new requirements
by transforming and synthesizing existing resources, that is, by appropriate mainte-
nance of the case knowledge representation.

69
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5.1 Metamorphoses Overview

Achieving widespread case-based reasoning support for corporate memories will
require flexibility in integrating implementations with existing organizational infras-
tructure and resources, as well as with new vehicles for sharing knowledge. We need to
investigate not only that particular implementations address some pieces of the puz-
zle, but also general implementation infrastructure on which all systems can build.
CBR systems as currently constructed tend to fit three general implementation mod-
els, defined by broad implementation constraints on representation and process, which
reflect evolutionary developments in CBR practice. We call these models task-based,
enterprise, and web-based.

Traditionally, task-based implementations have addressed system goals based only
on the constraints imposed by the reasoning task itself. Most research systems, for
example, focus on particular (often idiosyncratic) methods and representations opti-
mized to address a specific reasoning task, either to demonstrate the effectiveness of
the method or to meet specific task goals.

Recently, there has been an increasing and successful trend of incorporating CBR,
into enterprise systems (e.g., [Watson 1997; Stolpmann and Wess 1998]) to lever-
age corporate knowledge assets by knowledge management (e.g., [Becerra-Fernandez
and Aha 1999]). Enterprise implementations reflect the additional implementation
constraints imposed on CBR systems as part of an overall enterprise architecture
(see [Kitano and Shimazu 1996]). In our view, the most important implementa-
tional constraint in this context is that typically such CBR integrations must op-
erate in conjunction with database systems, the mainstay of corporate knowledge
activity. This will usually mean inter-operation with the more prevalent relational
database systems (e.g., [Gardingen and Watson 1998; Kitano and Shimazu 1996;
Allen et al. 1995]), but may also include object database systems (e.g., [Ellman
1995]). Thus enterprise CBR implementations provide for and make use of database
functionality. Note that not all “enterprise CBR systems” will have an enterprise
implementation in this sense.

Currently, CBR systems are emerging that take advantage of recent developments
in knowledge representation and sharing on the world-wide web (e.g., [Shimazu 1998;
Gardingen and Watson 1998; Doyle et al. 1998]). Web-based implementations re-
flect additional constraints imposed on CBR systems by conforming to structured
document representation standards for web/network communication, in particular
XML—Extensible Markup Language [Bray et al. 1998]. Note that our type distinc-
tion here is based on the construction of the reasoning system itself, not on how it
presents information. Thus a task-based implementation might have a web interface,
and a web-based implementation might not.
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Figure 5.1: Relating CBR implementation types.

Other constraints, for example proprietary software inter-operability or Standard
Generalized Markup Language (SGML) compliance, could be used to characterize
enterprise or web-based implementations (and certainly more than one factor may
apply). We have chosen constraints that are timely, are representative of the type
of implementation concern, and that have broad applicability. As such, these imple-
mentation characterizations are intended to be useful, not perfect. They represent
implementation targets in constructing corporate memories, and varying task aspects
and contexts may prefer one to another. Thus it is important to understand (1) how
the models compare, (2) their individual construction, (3) their combination, and
especially (4) how one representation may be constructed by transforming another.
Transformations are useful when new task criteria suggest a model that differs from
current implementation (conversion), and when differing models are used in different
aspects of a combined system (combination—e.g., database storage, web communi-
cation, task-based front end).

This chapter describes work on the Metamorphoses project to develop a framework
of practical constructions and transformations, represented in Figure 5.1 (dashed lines
represent additional information requirements), that we expect will play an important
role in building and maintaining case-based corporate memories.

5.2 Implementation Models

Our implementation characterizations can be applied at many levels of typical
CBR systems, and here we find it useful to differentiate CBR process knowledge
containers (retrieval, adaptation, evaluation) and (case) representation knowledge.
Although we recognize the importance of complex object and object-oriented database
models, as well as SGML ([ISO86 1986]), here we restrict our discussion to relational
database models and XML.

Task-Based: Task-Based implementations account for the bulk of current CBR
practice. These systems allow for highly tuned and efficient metrics and representa-
tions, but it may prove difficult to reuse them outside of the system context. Some
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efforts have used standardized representations to ameliorate these difficulties (e.g.,
[INRECA 1994]), but this is not widespread.

Enterprise: Integrating CBR implementations with enterprise database systems
imposes standardization constraints that are almost universal in the enterprise com-
munity. Representations must accord with the table model of relational database
systems (RDBS), while process must adopt Structured Query Language (SQL) con-
ventions. CBR systems gain the strengths of the underlying RDBS, such as security,
concurrency control, backup/recovery, and scalability. Moreover, integration allows
the use of enterprise data both for normal corporate tasks (e.g., reporting), as well
as for reasoning. However, because SQL has been designed to provide certain per-
formance guarantees, it is limited in power, so refined metrics may be difficult to
construct. Also, while complex cases are representable, they may be difficult to
model in manual construction.

Web-based: XML is emerging as the vehicle for knowledge representation on
the web. It provides a medium that allows (1) definition of customized representa-
tional markup languages and (2) application independent exchange of these complex
hierarchical representations over existing web/network channels. XML also allows
for customizable display of information using the associated Extensible Style Lan-
guage!. While XML is currently viable for use (e.g., for transfer and parsing), it is
a fairly new standard, so support (e.g., for browsing) is limited though growing. Its
usability for applications such as CBR is also still evolving relatively rapidly [Hayes
and Cunningham 1999]. Thus some benefits are immediately available for individual
systems, but developing standard representations for community knowledge sharing
will be a crucial task for widespread use in the field. Since XML is primarily a
representation standard, it is not as tightly coupled with process as are databases,
so task-based applications are generally required for process. However, direct struc-
tured query mechanisms, analogous to SQL, are under development [Sengupta 1998;
W3C 1998].

5.3 Realizing Implementations

The realization of a framework for automatic implementation transformation in-
volves outlining process and representation for each model, as well as defining and
exemplifying the inter-model transformations. This section outlines the enterprise
and web-based models (we omit the wide-ranging task-based model), and section 5.4
describes the transformations.

thttp://www.w3.org/TR/1998/WD-xsl-19981216
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Enterprise/RDBS

Constructing an enterprise implementation involves associating a case structure
with a corresponding relational database schema. Figure 5.2 shows an Entity Re-
lationship (ER) model for typical CBR systems, where stored data represents cases
(problems) which result in proposed decisions (solutions), and their outcomes (eval-
uations). This ER model can be fully implemented in a RDBS. The construction
is straightforward for feature-vector case structures, where a single table row corre-
sponds to a case. For more complex case structures, relational normalization tech-
niques are used to model the data.

Case Decision
(Problem) (Solution)

Outcome

(Evaluation)

Figure 5.2: Entity Relationship diagram for a typical case-based reasoning process.

Database systems can also be used for CBR process, for example by implementing
k-nearest neighbor (k-nn) retrievals. A number of novel data structures have been
proposed in the database literature for efficient implementation of k-nn algorithms
(e.g., [Berchtold et al. 1997]), but standard database systems do not currently offer
such support. However, if the similarity metric can be expressed as a numeric-valued
function, database cases can be retrieved as ordered by the similarity results. Thus,
in our view, the database/CBR processes may take place on at least three levels:

1. Simple Storage: The database is used only as a storage medium. All cases
are retrieved and processed by an external system. This combines the storage
benefits of the database systems with task-based processing power, but requires
a full task-based implementation. The basic query to the database in this case
is:

SELECT * FROM case_table

2. Simple Retrieval: A simple selection is performed based on conditions applied
from the target, and the resulting subset is processed externally. This shifts
part of the processing task to the database system, but may require considerable
modeling effort to pre-compute similarity as in [Shimazu 1998], or to relax query
specifications as in [Gardingen and Watson 1998; Daengdej and Lukose 1997].
The basic query here is:
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SELECT * FROM case_table WHERE conditions

3. Metric Retrieval: A metric function is used to order the rows based on a sim-
ilarity value, metric(c)—a function of the target case c. This uses only the
database system itself to perform a full k-nn analysis. This method is inefficient,
since it must both compute and sort with every record and it loses the efficiency
of optimized database indexing. Thus metric retrieval has been rejected previ-
ously in principle [Shimazu et al. 1993], but could prove useful (given available
computing power) for some (smaller-scale) implementations, since it does not
require additional/external case processing for retrieval. Determining the util-
ity of this method for a particular application requires testing in context. We
have used metric retrieval with good response time in a prototype application
containing 4709 cases with 24 numeric-valued features. The basic query is:

SELECT * FROM case_table ORDER BY metric(k)

To take full advantage of database capabilities, a pre-selection of the cases in the case-
base could be performed using simple retrieval before evaluating metric retrieval, to
reduce (if possible by exact/ranged matching) the number of retrieved cases.

Web-based / XML

Based on the entity-relationship model of CBR in Figure 5.2, we can also describe
the structure of a full CBR system using an XML document type definition (DTD).
Selected lines from the DTD are shown below:

<!ELEMENT CBR (DATA, PROCESS?)>

<!ELEMENT DATA (PROBLEM, SOLUTION, EVAL?, RESULT?)>
<!ELEMENT PROBLEM (ATTRIBSET)>
<!ELEMENT ATTRIBSET (ATTRIB | ATTRIBSET)+>

<!ELEMENT PROCESS (METRIC+, ADAPT*)>

XML documents conforming to this CBR DTD describe the structure (i.e. meta-
data) of particular CBR systems. Components of the case base are expressed as
relations (attribute sets) and their constituent attributes. Complex hierarchies are
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supported by allowing sub-relations inside a relation (i.e., an ATTRIBSET inside an-
other ATTRIBSET in the DTD). In contrast to other DTDs for CBR [Shimazu 1998;
Hayes et al. 1998|, we allow representation of both process (similarity, adaptation,
evaluation) and (case) representation, either together or individually. For example,
a long-term goal for this work is to develop an implementation that incorporates
MathML?2, an XML DTD for describing mathematical structure and content, to rep-
resent similarity metrics.

Using the XML model: An instance of the above DTD describes the actual
case structure, which is used by a separate XML application to generate the proper
structural definition (a separate DTD) of the case data. The actual case data can
then be defined as conforming instances of the generated DTD. This two-step process
has the following advantages:

1. Consistency: By generating the case data DTD from the CBR system markup,
we ensure that no separate check is necessary to assert that the structure of the
case data (i.e., the separate DTD defining how the data should be structured
and validated) is consistent with the data format required by the reasoning
system.

2. Validation: Document type definitions in which the system attributes are rep-
resented as generic identifiers (tags) instead of XML attributes allow the case
data to be validated against its DTD (as generated for consistency with the
system) to ensure its integrity (i.e., the case data is in the form expected by the
system). Given the DTD for the case data and the data itself, the validation
can be performed by standard XML tools.

While XML has no particular associated process for retrieval, evolving query lan-
guage implementations such as DSQL in DocBase [Sengupta 1998] and XML-QL
[W3C 1998] will enhance the applicability of XML as a web-based CBR implementa-
tion model.

5.4 Transforming Implementations

Perhaps as important as the implementations themselves is the transformation
of one implementation to another. This is useful in two situations: When new task

http://www.w3.org/TR/REC-MathML/
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criteria prefer a model that differs from current implementation, and when differ-
ing implementation models are used in different aspects of a combined system (e.g.,
database storage, web communication, task-based front end). Here we outline the
transformations in the framework.

Web-Based — Enterprise

An XML representation of case structure can be converted to a database system
using an XML application that processes XML markup tags/content and generates
appropriate Data Definition Language (DDL) statements to create tables in a re-
lational database. Consider the following fragment of a CBR system description,
relating a people to their automobiles:

<ATTRIBSET NAME="Person'>
<ATTRIB ID="ID" REQD="REQD" TYPE="longint'">SSN
</ATTRIB>
<ATTRIB TYPE='"char" SIZE="20" REQD="REQD'">Name
</ATTRIB>
<ATTRIBSET NAME="Auto">
<ATTRIB TYPE="char'">Make</ATTRIB>
<ATTRIB TYPE="int'">Year</ATTRIB>
</ATTRIBSET>
</ATTRIBSET>

By parsing this XML fragment and mapping the XML structure to relational
table structure, the patterns can be translated into the following relational DDL
statements:

create table Person (SSN longint not null,
Name char(20) not null);
create table Auto (Person_SSN longint not null,
Make char(50), Year int);

For complex case structures, the application can adopt a simple foreign key strat-
egy by augmenting a substructure with the key of the parent structure. In order
to facilitate a possible future back-translation, this application should also update
a database catalog (organized list) with the role of each created tables in the CBR
model. A similar transformation application can be used to transform XML case data
to fill the generated tables.
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Web-Based — Task-Based

The main task in transforming an XML implementation to a task-based imple-
mentation is to identify a mapping between XML and task-based structures. We
assume that the user or developer of the task-based systems will have the necessary
tools and information to create case data in the task-based model. Taking the case
representation language CASUEL [INRECA 1994] as an example, an application like
the one described in section 5.4 can generate appropriate CASUEL declarations from
the XML structure. This process is similar to the Web-Based— Enterprise generation
process, except that the generated statements are in CASUEL instead of SQL.

Enterprise — Web-Based /Task-Based

Transforming an existing database model into a conforming XML model or task-
based model is more involved. Because the database lacks explicit case structure
(when using more than a single table), transformation applications need to understand
the role of various database objects in the CBR representation. Maintaining a catalog
of the database objects and their roles, as suggested in section 5.4, should significantly
reduce the amount of reasoning required prior to transformation. This process of role
determination can be performed in several ways:

1. Manual interaction: The system may ask a user to assist in the process of
determination of the roles of each of the objects,

2. Catalog information: The system may use a catalog that includes the roles of
each of the objects,

3. Mining: The system may use data mining techniques to determine appropriate

database objects and their roles.

The dashed lines in Figure 5.1 represent the extra information requirements for
these transformations.

Task-Based — Web-Based /Enterprise

Converting from task-based to an XML or database format also depends on the
actual task-based model, and the availability of tools that can assist in such trans-
formation. For example, cases represented using CASUEL can be mapped into the



5. Metamorphoses: Representational Maintenance 78

corresponding XML schema or a database format using an application built on top
of a CASUEL parser.

Having described techniques for maintaining case content and representation, the
next chapter goes on to present practical methods for measuring a CBR system’s
performance in order to guide case-base maintenance processes.



6

Competence & Performance

Much significant work in case-base maintenance focuses on developing methods for
reducing the size of the case-base while maintaining case-base competence, “the range
of target problems that can be successfully solved” [Smyth and McKenna 1999a].
Strategies have been developed for controlling case-base growth through methods
such as competence-preserving deletion [Smyth and Keane 1995] and failure-driven
deletion [Portinale et al. 1999], as well as for generating compact case-bases through
competence-based case addition [Smyth and McKenna 1999a; Zhu and Yang 1999].

The goal of achieving compact competent case-bases addresses important perfor-
mance objectives for CBR systems. First, sufficient competence is a sine qua non
for performance: no CBR system is useful unless it can solve a sufficient proportion
of the problems that it confronts. Second, compacting the case-base may help to
increase system efficiency by alleviating the utility problem for retrieval [Francis and
Ram 1993; Smyth and Cunningham 1996]. As an added benefit, compact case-bases
decrease communications costs when case-bases are used as vehicles for knowledge
sharing or are transferred in distributed CBR systems (cf. [Doyle and Cunningham
1999]).

However, case-base compactness is only a proxy for performance in a CBR system,
rather than an end in itself. For example, decreased retrieval cost from a smaller case-
base may be counterbalanced by increased adaptation costs or decreased quality. Thus
optimizing the performance of a CBR system may require balancing tradeoffs between
competence, quality, and efficiency [Portinale et al. 1999; Smyth and Cunningham
1996]. In addition, adjusting the case-base to optimize performance may require
reasoning about the system’s performance environment, taking into account that
patterns in problem distribution make some cases more useful than others [Leake
and Wilson 1999b]. Consequently, effective maintenance requires remembering why
cases are being remembered (or forgotten)—to serve the overall performance goals of

79
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the CBR system for a given task—and optimizing maintenance decisions accordingly
[Leake and Wilson 1999b]. Thus performance criteria need to play a more direct role
in guiding case addition and deletion.

This chapter examines the benefits of using fine-grained performance metrics to
directly guide case addition and deletion, and presents some experiments on their
practicality. It begins by discussing the competence/performance dichotomy and the
factors that should guide case-base maintenance. It then illustrates the importance
of adding direct performance considerations to maintenance strategies, by showing
that in some cases, increased performance can be achieved without sacrificing either
competence or compactness. It next presents a performance-based metric, guided
by cases’ contributions to adaptation performance, to guide case addition and dele-
tion. Experiments examine the common alternative practice of reflecting perfor-
mance with fixed adaptation effort thresholds, illuminating tradeoffs in adaptation
cost and case-base compression, and then compare the effects of competence-based
and performance-based strategies. Our results show that performance-based deletion
strategies are especially promising for non-uniform problem distributions, which have
received little attention in previous analyses of case-based maintenance, but which
are often important in real-world contexts.

6.1 The Competence-Performance Dichotomy

Case-base maintenance is fundamentally driven by performance concerns. For
example, Leake and Wilson’s [1998] definition of case-base maintenance is explicitly
performance-related:

Case-base maintenance implements policies for revising the contents or
organization of the case-base in order to facilitate future reasoning for a
particular set of performance objectives.

In this definition, the performance measure evaluates the performance of a particular
CBR system for a given initial case-base and sequence of target problems.

To relate the competence and performance of CBR systems, it is useful to revisit
the notions of competence and performance. When Chomsky [1965] formulated the
original competence-performance dichotomy in linguistics, he used competence to
describe the “in principle” abilities of an ideal speaker, unaffected by factors such as
processing limitations, and used performance to describe how language was actually
used by real speakers under real constraints in real situations. “Competence” in
CBR has a specialized meaning—the range of target problems that a system can
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solve [Smyth and McKenna 1999a]—but the idea of “problems that a system can
solve” can be taken to reflect an idealized competence. For example, if retrieval and
adaptation time are allowed to be arbitrarily long, the competence of the case base for
a sequence of input problems depends only on the “in principle” adequacy of system
knowledge.

In practice, processing constraints are important, and current case-base com-
petence research often reflects them in adaptation effort thresholds, which treat
a case to be “adaptable” to solve a problem only if it can be adapted within a
fixed limit on the number adaptation steps allowed (e.g., [Portinale et al. 1999;
Zhu and Yang 1999]). Defining competence in terms of cases within the adaptation
threshold combines one aspect of “idealized” competence (that the set of cases can be
partitioned into adaptable and non-adaptable cases, with all adaptable cases treated
as being equivalent) with the pragmatic concerns reflected in guaranteeing an upper
bound on the required adaptation effort.

This chapter argues for a finer-grained approach, called performance-based, to
make its decisions directly reflect expected impact on top-level performance goals (in
these examples, goals for processing efficiency). In order to develop this approach, it
first identifies the relevant performance goals and their relationships.

6.2 Performance Goals for Case-Base Maintenance

In general, there will be multiple performance measures for a CBR system, and
there is no guarantee that all of them can be maximized simultaneously. In order
to balance these measures to achieve the best overall performance, it is useful to
distinguish top-level goals from goals that are only instrumental, rather than targets
in themselves. For example, the goal of decreasing case-base size is not pursued for
its own sake (provided space is available), but instead, as an instrumental goal of
the higher-level goal to decrease retrieval time. Decreasing retrieval time is itself
an instrumental goal to the top-level performance goal of improving problem-solving
speed. A maintenance system that recognizes that compactness is an instrumental
goal, rather than a top-level goal, can make better decisions about how to manage
compactness compared to other goals, for example, by sacrificing compactness when it
improves performance. However, when compactness is used as a proxy for efficiency
and simply maximized, the maintenance process may miss better opportunities to
maximize efficiency.

In section 2.2, it was noted that there are three types of top level goals for CBR
systems:
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1. Problem-solving efficiency goals (e.g., average problem-solving time)
2. Competence goals (the range of target problems solved)

3. Solution quality goals for problems solved (e.g., the error level in solutions)

It was also noted that addition and deletion strategies are also guided by the following
constraints:

1. Case-base size limits (if any)
2. Acceptable long-term /short-term performance tradeoffs
3. The availability of secondary sources of cases

4. The expected distribution of future problems

Varying instantiations of these constraints would give rise to different strategies.
For example, if short-term performance is crucial and long-term is less important,
and current problems are concentrated in a small part of the case-base, it may be
acceptable to sacrifice current competence and build it back through future learn-
ing. By their very nature, competence criteria aim at maximizing coverage, rather
than trading off coverage and efficiency based on the expected problem distribution,
but as we show later, making such tradeoffs may be useful for non-uniform problem
distributions.

6.3 The Value of Performance-Based Criteria

Making the right decisions about cases to retain requires augmenting competence
criteria with consideration of the performance effects of alternative cases. Usually
this is thought of in terms of achieving a better tradeoff between competence and
efficiency. However, in some situations, performance considerations can even improve
efficiency without loss of competence or compactness. This is illustrated with a simple
example.

For this example, it is assumed that the most easily adaptable case is always
retrieved for each problem, and that the case-base is built from a set of candidates
by a greedy algorithm which, for each step, adds the candidate case that provides the
greatest increment to competence, until achieving full coverage [Zhu and Yang 1999].
Consider building a case-base from 3 cases, A, B, and C as shown in Figure 6.1.
The line segment at the bottom of the figure represents the problem space, where
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D1 D2 D3

Figure 6.1: Three example cases and their coverage.

problems are associated with points on the line. For example, problems could be
the desired yield strength for a metal, and solutions the manufacturing processes to
obtain it. Suppose that if case C; solves problem p;, the cost to adapt C to solve a
new problem ps is «|p; — po|, for some fixed a > 0.

The horizontal positioning of A, B, and C along the problem axis reflects the
specific problems that each one solves, and the horizontal intervals adjacent to each
case reflect the space of problems that it can be adapted to solve, given the system’s
adaptation knowledge. The interval surrounding A is an open interval on the right;
case A cannot be adapted to solve the problem solved by case C. All other endpoints
are closed. To build the case-base, a greedy competence-based case addition algorithm
selects first case A and then case C, resulting in the case-base CB; = {A, C'}, which
provides maximal competence. We note, that C'By = {B,C} provides the same
competence.

If the problem distribution is uniform, it can be shown that the difference between
the expected adaptation cost for solving problems using case-base C'B; instead of
CBy is aDy(Dy — Dy/4)/(Dy 4+ Dy + D3). If we fix Dy and D3 and let Dy — oo,
the expected average adaptation cost difference goes to D,. Intuitively, almost all
problems will then fall to the left of case B, and those problems will be Dy closer to
case B than to case A. Thus for this example, there are two competing case-bases
with the same competence and the same size, but with different performance, so it
is only possible to choose between them based on performance, not competence or
compactness—and in fact, a competence-based greedy case addition algorithm picks
the wrong one. This example demonstrates that performance-based considerations,
distinct from competence and compactness, can play an important role in case-base
selection.
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6.4 A Performance-Based Metric for Case Selec-
tion

This section describes a strategy for performance-based case selection, inspired by
Smyth and McKenna’s [1999a] RC-CNN algorithm. That algorithm compacts case-
bases using a compressed-nearest-neighbor (CNN) algorithm [Hart 1968] whose inputs
are ordered by a relative coverage (RC) metric, to give priority to cases expected to
make the largest competence contributions. By analogy to the RC metric, which
estimates each case’s unique contribution to the competence of the system, this work
has developed a relative performance (RP) metric aimed at assessing the contribution
of a case to the adaptation performance of the system.

Competence & the RC Metric

The RP metric depends on two standard definitions from case-base competence
research, the coverage set of a case (the set of problems from the target set that the
problem solves) and the reachability set of a problem (the set of cases that solve that
problem). Tt also depends on the representativeness assumption that the contents of
the case-base are a good approximation of the problems the system will encounter, but
can also be weighted to reflect different expected problem frequencies. The following
background on basic competence definitions and the RC Metric is derived from [Smyth
and McKenna 2001].

Competence Definitions. Competence contributions of individual cases can be
characterized by two sets. The coverage set of a case is the set of all target problems
that this case can be used to solve. It is assumed that the Solves predicate exists for
any target CBR system. The reachability set of a target problem is the set of all cases
that can be used to solve it. While it is not possible to enumerate all possible future
target problems (T), the case-base (C) itself can be used as a representative of the
target problem space to efficiently estimate these sets as shown in definitions 6.1 and
6.2.

CoverageSet(c € C') = {c € C : Solves(c,c')} (6.1)

ReachabilitySet(c € C') = {c' € C': Solves(c', ¢)} (6.2)

The Representativeness Assumption—that the case-base is a representative sample
of the target problem space—is fairly strong. Smyth and McKenna argue, however,
that that the representativeness assumption is one currently made, albeit implicitly,
by CBR researchers. If a case-base were not representative of the target problems to
be solved then the system could not possibly address the task requirements.
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Relative Coverage. The relative competence contribution of an individual case
is estimated by the relative coverage (RC) measure, which estimates the competence
contribution of an individual case, c, as a function of the size of the case’s coverage
set.

1

RelativeCoverage(c) = 2 |ReachabilitySet(c')]

c'eCoverageSet(c

(6.3)

RC weights the contribution of each covered case by the degree to which these
cases are themselves covered. It is based on the idea that if a case ¢’ is covered by n
other cases then each of the n cases will receive a contribution of 1/n from ¢’ to their
relative coverage measures.

The RP Metric

The RP value for a case reflects how its contribution to adaptation performance
compares to that of other cases. To approximate the benefit of adding the case to the
case-base, it is first assumed that the similarity metric will accurately select the most
adaptable case for any problem. For each case that might be added to the case-base,
its contribution to adaptation performance is estimated. A number of metrics have
been explored, including a “performance benefit” (PB) metric estimating the actual
numerical savings that the addition of each case provides. However, best results were
obtained by considering a case’s relative adaptation performance, the percent savings
it provides compared to the worst alternative case that solves the problem. If we let
RS(c, ¢) stand for ReachabilitySet(c') — {c}, for a fixed case-base CB we define:

AdaptCost(c,c)

RP(c) = 1-
(C) Z maxc”GRS(C’,C)AdaptOOSt(C”’ cl)
¢ € CoverageSet(c)

This metric can be used to guide either case addition—favoring cases with high
RP values—or case deletion—favoring cases with low RP values. By adding an addi-
tional weighting factor, reflecting the expected probability of new problems similar to
those in the case-base being encountered in the input stream, this formula can reflect
expected problem distributions. Even if the distribution is not known completely, this
adjustment can refine case selection to improve performance for likely “hot spots” in
the case-base [Leake and Wilson 1999b].

Because the actual relative performance of a particular case depends on the other
cases in the case-base, using completely accurate RP values to guide case deletion
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would require recalculating RP values after additions or deletions, which could be
extremely expensive. A more practical alternative, which we will refer to as RP-
CNN, is to do a one-time RP calculation, and then to use that estimate to order
the cases presented to CNN, analogously to RC-CNN. A key question is whether this
approximate information is sufficiently accurate to improve performance. We test
RP-CNN and compare its effects to RC-CNN in Section 6.5.

6.5 Experimental Results

To explore the relationships between compactification strategies and performance,
four experiments were conducted. These examine (1) how the choice of adaptability
thresholds affects system performance, (2) the tradeoffs between compressed case-
base size and expected adaptation costs for CNN, (3) the performance obtained by
RC-CNN compared to RP-CNN for uniformly-distributed problems, and (4) their
comparative performance for non-uniformly distributed problems.

The experiments were conducted in a simple path planning domain that models
an inter- /intra-city transportation network. Concentrated areas of local connectivity
represent cities. Paths are viewed as different modes of transport between locations;
they do not correspond directly to grid lines but do reflect the grid distance between
location points. Models are generated randomly, based on specifications of the number
and size of the cities, the number of locations in each city, the minimum distance
between cities, and the maximum number of paths connecting locations. The model
generator ensures that all locations are reachable through some path from all other
locations, if necessary adding paths to ensure connectivity.

The planner combines case-based planning with a generative (breadth-first) path
planner to adapt cases by extending their paths. This enables natural control over
the allowable adaptation, by setting a threshold on the allowed number of adaptation
steps. Path cases represent the starting and ending locations, the path between them,
and the path distance. Cases are retrieved based on minimizing the combined distance
between the starting and ending locations in a case and a new travel problem.

Performance Effects of Competence Coverage Thresholds

Competence-preserving addition and deletion methods must determine the com-
petence contributions of cases, which depends on the system’s ability to retrieve and
adapt particular cases. As described previously, the adaptability judgment is of-
ten based on an adaptation threshold, with all cases that can be adapted within the
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threshold treated as equally adaptable to the problem. This blurs the adaptability dif-
ferences between particular cases, sacrificing some ability to select high-performance

cases. The first experiment examines the performance effects of case-bases generated
by RC-CNN for different thresholds.

For each test, we generated a model consisting of 3 city areas of size 20 by 20,
with 40 locations in each city. We randomly generated case-bases of sizes 1000, 750,
500, and 250 from the possible starting and ending location pairs in the model. Each
case-base was then reduced in size by the RC-CNN method, and the reduced case-
base was tested with 100 randomly selected probes from the model space. Each test
was repeated 10 times, selecting a new initial case-set and test probes for each trial
and averaging the results.

Higher threshold values increase the variance in adaptation costs for problems
that a case covers, decreasing pressure to add nearby cases. Consequently, adapta-
tion performance was expected to decrease as the threshold values increased. This
basic trend appears in the results of Figure 6.2, which shows average adaptation ef-
fort on the test problems as a function of the threshold. This effect is seen across all
case-base starting sizes, but lower thresholds were better at exploiting the range of
cases in large case bases, selecting closer cases (resulting in lower adaptation costs).
This can be explained in that all the case-bases in the experiments were large enough
to provide adequate coverage, but that, at high thresholds, case choice was not suffi-
ciently selective to take full advantage of the wider choice of cases by choosing better
case distributions.

Compressed Size vs. Adaptation Cost Tradeoffs

The previous experiment illustrates how adaptation effort thresholds used by RC-
CNN can affect the adaptation effort required for a system to solve problems. How-
ever, required adaptation effort is not the only concern: There is a tradeoff because
lower thresholds decrease the range of problems that each case can be used to solve,
leading to the expectation that less compression is possible for a given competence
level. In this experiment the effects of different case threshold levels on the case-base
size obtained using RC-CNN are examined.

Using the basic experimental procedure described previously, the resulting case-
base size at four different threshold levels was determined, from 1 to 10, for initial
case-bases of 250, 500, 750, and 1000 cases. It was expected that as the adaptation
threshold increased, the size of the case-base produced by RC-CNN would decrease.
It was also expected that the resulting size would be ordered by the sizes of the
case-bases, with the greatest compression being achieved for large case-bases. These
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Figure 6.2: Adaptation effort as a function of threshold, for RC-CNN compression.

predictions are borne out in Figure 6.3. It is interesting to note the very substantial
compression ratio achieved for a threshold of 10.

CNN, RC-CNN and RP-CNN for Uniform Case Distributions

A third experiment compared the effects of basic CNN, RC-CNN, and RP-CNN
on case-base compression and adaptation efficiency, using the same basic procedure
and starting with a case-base of size 1000, with adaptation boundary of 5. For CNN,
the mean case-base size was 262, for RC-CNN, 204, and for RP-CNN, 284. With a
uniform distribution of test problems, mean adaptation cost for CNN was 2.96, for
RC-CNN was 3.19, and for RP-CNN was 2.87. Thus as expected, RP-CNN provided
some gains in efficiency at a cost of increased case-base size, while RC-CNN provided
substantial gains in case-based compression at the expense of some efficiency. This
provides partial independent confirmation for the results of [Smyth and McKenna
1999al.
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Figure 6.3: Case-base size as a function of threshold level, for RC-CNN compression.

RC vs. RP Deletion for Non-Uniform Case Distributions

In order to test the performance of our metric under non-uniform problem dis-
tributions, an experiment was designed in which routes with origin and destination
in certain cities are requested more frequently. Both the number of cities that com-
prise the high traffic area and the frequency of requests for routes in that area are
parameters of the experiment. At the beginning of the experiment, a subset of cities
of the desired size is selected at random, and routes that start from and end in those
cities are considered high-traffic routes. Test probes are randomly generated from the
high-traffic areas in proportion to the specified frequency, with the remaining probes
randomly generated from the lower-traffic areas.

Using the same model setup as in the earlier experiments, conditions were tested
in which one and two of the three cities comprised the high-traffic routes. The ex-
periments were conducted with a 95 percent frequency rate for high-traffic probes,
using the RP metric, with a weight factor to reflect the probability of a particular
problem occurring (based simply on whether the problem was in a high-traffic area,
and the probability of problems in that area). The effects on compression by case
deletion were evaluated, first by running CNN to determine a target size for the com-
pressed case-base, then by ordering the candidate cases according to the metric being
tested (RC or RP), and deleting the least desirable cases according to the metrics,
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Figure 6.4: Average adaptation effort for non-uniform case distributions.

until reaching the determined size. Here it was expected to find greater performance
benefits for RP than in the previous experiment, because RC focuses on coverage
alone, while the revised RP favors useful cases in high-traffic areas. This was borne
out in our results, which are shown in figure 6.4 for two experimental configurations:
one high-traffic area and two low-traffic areas of equal size (1/3), and two high-traffic
areas and one low-traffic area (2/3), for RC-CNN using an adaptation threshold of 10.
The graph shows the median effort to solve cases after reduction of the case-base, for
cases within the adaptation limit, for initial case-base sizes ranging from 250 to 1000
cases. For all but one test, performance with RP surpasses RC. Benefits are strongest
with more focused areas (1/3), and benefits of RP appear to increase with larger
initial case-bases, perhaps because the wide range of cases allows RP to fine-tune its
choices.

Performance Benefit Metric

As mentioned earlier, one of the other metrics tested was the “relative perfor-
mance benefit” (PB) metric. The performance benefit value for a case is obtained
by calculating the expected savings in adaptation cost from adding that case. Using
the representativeness assumption, the the judgment of expected adaptation costs is
based on the effects on adaptation costs when solving the problems described by the
cases in the case base.

The PB metric aims to predict the performance benefit of adding a case to the case
base. In formulating the definition, it is first assumed that the similarity metric will
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accurately select the most adaptable case for any problem. For each case that might
be added to the case base, its contribution to adaptation performance is estimated by
comparing the total savings in adaptation cost (the performance benefit, Per Bene fit)
that it produces for the cases it covers, compared to the case base without that case.

The the maximum benefit for all cases in the case base is also recorded, to nor-
malize results and obtain a value between 0 and 1 for the relative performance of that
case compared to others in the case base. We let R(¢, ¢) be ReachabilitySet(c')—{c},
and define

PerBenefit(c) = Z maz(0, ming ¢ g o) (AdaptCost(c", ') — AdaptCost(c,c)))
¢ € CoverageSet(c)

The relative performance (PB) gain from adding a case is simply the percent of the
maximum possible performance benefit provided by any case in the case base:

PerBenefit(c)
maz.copPerBenefit(c)

PB(c) =

Note that because of the representativeness assumption, all PerBenefit values should
differ from the expected average benefit by the same fixed constant, so RelativePer-
formance properly reflects the expected benefit of adding a case.

In experiments, the PB metric, as RP and RC, was used to order a CNN compact-
ification of the case base. The PB-CNN tests performed worse than both RP-CNN
and RC-CNN; as well as worse than straightforward CNN itself in some instances.
Because the performance effectiveness of adding a new case may change significantly
as new cases are added to the case-base, it is likely that the PB metric was limited by
the experimental choice of the one-time calculation for CNN ordering. A long-term
goal of the work is to re-examine other metrics such as PB in comparison to oth-
ers using an incremental metric re-computation at each step of the compactification
process.

6.6 Comparison to Previous Research

The importance of utility-based considerations for maintenance is well-known.
Smyth and Keane’s [1995] seminal competence work, for example, proposes footprint-
utility deletion, in which case deletion decisions are based first on competence cat-
egories and then on utility. Smyth and Cunningham [1996] examine the tradeoffs
between coverage, quality, and efficiency, illustrating how case-base size can affect
retrieval and adaptation costs, as well as quality. van Someren, Surma, and Torasso
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[1997] suggest using on a cost model for the CBR system to guide decisions about
the size of the case-base.

Portinale, Torasso and Tavano [1998] present a case deletion strategy aimed at
favoring useful cases in a combined CBR-MBR system. Their method replaces old
cases with new cases solved by the MBR system, provided the new case covers the
problem of the replaced case, within a fixed adaptation effort threshold, and requires
more effort than the case being replaced. The Learning by Failure with Forgetting
strategy [Portinale et al. 1999] applies another heuristic, periodically deleting cases
that have remained unused longer than a predefined time window and “false positive
cases.” These are valuable heuristic methods, but differ from the RP metric’s more
quantitative approach, which balances the expected future performance contributions
of alternative cases in the global context of competing cases in the case-base, rather
than assessing cases independently.

As discussed previously, the framework here is based on the competence modeling
framework of [Smyth and McKenna 1999a]. We agree with the importance of compe-
tence criteria, and advocate developing combined competence/performance metrics
for tuning the maintenance process to achieve a desired balance between competence
and performance concerns. For example, in a combined CBR+MBR system that can
solve any problem from scratch, it may be appropriate to base maintenance decisions
solely on efficiency, but in a domain where it is impossible to reconstruct deleted
cases, competence concerns should receive considerable weight.

The previous chapters have developed a theoretical background for and practical
approaches to case-base maintenance. The last part of the thesis takes the work that
has been developed for case-base maintenance and generalizes the ideas to the general
knowledge maintenance problem in case-based reasoning.
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Beyond the Case Base

It is important to note that the lessons learned from research in case-base main-
tenance are general, and we would like to take these lessons beyond the case-base.
It has been recognized that knowledge containers other than the case-base can be
equally important targets for maintenance, and the high-level goals addressed by the
CBM framework are common across all the CBR knowledge containers. Multiple
researchers have addressed pieces of this more general maintenance problem as well,
considering such issues as how to refine similarity criteria and adaptation knowledge.
As with case-base maintenance, a framework of dimensions for characterizing more
general maintenance activity, within and across knowledge containers, is desirable
to unify and understand the state of the art, as well as to suggest new avenues of
exploration by identifying points along the dimensions that have not yet been studied.

This chapter extends and generalizes the CBM framework, presenting an over-
all perspective on maintaining CBR systems. It takes case-base maintenance as
a starting point, adapting and generalizing the analysis of case-base maintenance
to extend to other knowledge containers. The generalize framework applies across
knowledge containers to characterize possible approaches to maintenance of all CBR
system knowledge containers, in what we refer to as case-based reasoner maintenance
(CBRM). CBRM processes can include not only the revision of knowledge in individ-
ual knowledge containers, but also the coordinated updating of multiple knowledge
containers, the strategic transfer of knowledge between knowledge containers, and
meta-maintenance—maintenance of maintenance knowledge, in order to achieve in-
direct revisions of knowledge containers such as lazy case-base updating.

93
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7.1 A General Framework for Case-Based Reasoner
Maintenance

The CBM framework developed in chapter 2 is flexible enough to provide a general
set of dimensions for describing maintenance systems, beyond case-base maintenance
alone. In developing the overall maintenance framework, we first define the more
general case-based reasoner maintenance:

Case-based reasoner maintenance implements policies for revising one or
more knowledge containers in order to facilitate future reasoning for a
particular set of performance objectives. [Wilson and Leake 2001]

The same CBR performance goals described in section 2.2 guide this more general
process, but under more general constraints:

1. Knowledge container and component processing constraints (e.g., case-base size
limits, adaptation effort thresholds)

2. Acceptable long-term /short-term performance tradeoffs
3. The availability of secondary sources of knowledge

4. The expected distribution of future problems

Regardless of the knowledge container(s) involved, maintenance policies are de-
termined by methods for data collection, triggering, operation types, and execution.
In this section we extend the framework developed for case-base maintenance to gen-
eralized case-based reasoner maintenance. As with case-base maintenance, the goals
of this extended framework are to illuminate current practice by identifying classes
of maintenance methods; to identify research opportunities where parts of the space
of possibilities have not been addressed in previous work; and to help identify which
maintenance approaches are most appropriate for particular performance goals. We
do not claim that we provide a final taxonomy or a complete summary of CBRM,
but that the framework provides a useful way to describe central aspects of current
practice in CBRM and to identify opportunities for future maintenance research.

Extending the CBM Framework to CBRM

Adapting the case-base maintenance framework to other knowledge containers
maintains the overarching structure, but requires adjustments of some specific fea-
tures. The finer-grained distinctions in operation types and triggering will change
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according to the knowledge container being maintained, but both dimensions still
apply. For example, operations for similarity maintenance may have different targets
(e.g., weighting schemes), but the notion of revision level (implementation, represen-
tation, or knowledge level) still applies. One set of possible similarity operations is
presented in [Heister and Wilke 1998].

Conditional triggering will also have different general conditions. Triggering may
be based on conditions when using a particular knowledge container (e.g., the average
efficiency or quality of adaptation or retrieval), or based on the results of overall rea-
soning. Thus the space-based CBM type of triggering may not apply for adaptation,
but considerations for adaptation efficiency thresholds certainly would. We discuss
issues dealing with the selection of which knowledge container to maintain in order
to meet performance goals in section 7.2.

While the notion of broad vs. narrow scope still applies, the implications are
relative to the particular knowledge container. In the large, revising the entire case
base may take far longer than revising the entire similarity weighting scheme, but
both might be considered to have broad scope within their knowledge container.

Categorizing Policies for Other Knowledge Containers

Having extended the framework for CBRM, we present some examples of how
the generalized framework may be applied to knowledge containers other than the
case-base. Here we discuss policies that affect the other three well-known knowl-
edge containers identified in [Richter 1998]: similarity, adaptation, and vocabulary.
We propose, however, that the same general framework could be applied to other
knowledge containers—maintenance knowledge itself, for example.

Similarity Maintenance. There is a large body of work dealing with methods for
learning feature weighting schemes in k-nearest neighbor classifier lazy learning algo-
rithms. Such policies typically consider a static set of training cases/instances (syn-
chronic) in learning, are user-initiated (ad hoc), perform execution off-line (training
happens off-line from system use), and are applied to the entire training set (broad).
For a discussion and comparison of these types of methods, see [Wettschereck et al.
1997].

Munoz-Avila and Huellen [1996] describe a policy that analyzes adaptation effort
after each problem-solving episode, in order to adjust feature weights according to
their relative relevance. This policy is synchronic, periodic, on-line, and makes narrow
changes.
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Zhang and Yang [1999] propose a method for continually updating a feature
weighting scheme, based on interactive user responses to the system’s behavior. This
is synchronic, conditional (on receiving user feedback), on-line, and broad.

Adaptation Maintenance. Leake, Kinley, and Wilson [1996] present an internal
case-based reasoning approach to domain-level case adaptation in the DIAL system
for disaster response planning. If adaptation is required to apply a response plan,
DIAL first checks for applicable adaptation cases. When no adaptation cases apply,
new adaptation cases can be learned by recording traces of rule-based or interactive
manual adaptation. This type of adaptation learning is synchronic, based on the
system’s current adaptation knowledge (i.e., if there are problems, the rule-based or
manual adaptation mechanism is invoked). The timing is conditional (if the adapta-
tion is unable to be made automatically). The activation is on-line, during case-based
planning for disaster response. The scope is narrow (it applies to one adaptation case).

Hanney and Keane [1996] describe a mechanism for learning adaptation rules by
induction from differences in case knowledge. If two cases differ in only a small
number of attributes, then the differences in those attributes can form the basis of
adaptation rules from one context to another. If there are consistent adaptation types
found among potential subsets of cases, then the type of difference can be learned as
adaptation rule. This policy is synchronic, ad hoc, off-line, and broad.

Vocabulary Maintenance. In chapter 4, we describe DRAMA, an interactive CBR
system for aerospace design that uses a proactive policy to help maintain the system
vocabulary (see also [Leake and Wilson 1999a]). The cases in the system are con-
ceptual aircraft designs, for which the designers have a great deal of freedom in
externalizing their design conceptualizations, freely defining new features to describe
design cases. The proactive vocabulary policy examines the current design context
and offers suggestions on appropriate concepts and relations that have been used pre-
viously. In this way the vocabulary is built in parallel with the case library. This
policy is based on the current state of vocabulary knowledge, and is synchronic. The
timing is ad-hoc, since the interactive nature of the system is under user control. The
integration is on-line, and the scope is narrow.

Minor and Hanft [2000] describe an interactive framework that supports the main-
tenance of term dictionaries in parallel with the revision of case content. Terms are
linked in with the current vocabulary (synchronic), at the user’s request during pro-
cessing (ad hoc and on-line), with narrow changes being made to the vocabulary.
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7.2 Coordinating Maintenance Across Knowledge
Containers

The multiple knowledge containers of CBR overlap; knowledge available in one
can replace missing knowledge in another [Richter 1998]. As a result, just as builders
of CBR systems can select the most convenient form in which to provide knowledge
to an initial CBR system, maintainers of CBR systems can choose where to focus
their maintenance efforts, applying effort where it is most convenient or effective. For
example, the same overall effects on system accuracy might be achieved by case-base
reorganization—which we consider part of case-base maintenance—or by adjustment
of the similarity measure—which affects the similarity knowledge container. This
raises two new issues for CBRM that do not arise at the individual knowledge con-
tainer level: Selection of the knowledge container to maintain, and managing inter-
actions between maintenance operations in different knowledge containers.

Selecting the Container to Maintain

When performance goals dictate the need for maintenance, a CBRM system must
determine which knowledge container(s) to revise. In some situations, only one knowl-
edge container will be an appropriate target, while in others multiple candidate revi-
sions could be made. For example, failure to solve a problem could be addressed by
adding a new case, by adjusting similarity criteria (if the problem could have been
solved starting from an existing case, but that case was not retrieved), or by adding
adaptation knowledge. How to perform the credit assignment to identify which knowl-
edge container to adjust has received some initial attention (e.g., [Leake 1996b]), for
identifying indexing problems vs. missing cases), but is largely an open issue. When
changes to multiple containers could be effective, utility-based choices may be needed
to decide which container(s) to revise.

Managing Interactions Between Knowledge Containers

Just as maintenance operations in one knowledge container may reduce the need
for maintenance in others, maintenance in one container may necessitate maintenance
in others as well. This may arise in either of two ways. First, some maintenance op-
erations, such as revisions to the case representation vocabulary, intrinsically affect
multiple knowledge containers: In order for the system to function, knowledge con-
tainers such as similarity and adaptation knowledge must be revised to handle the
new representations. Thus vocabulary revisions to any container must be coupled to



7. Beyond the Case Base 98

associated operations to adjust the other containers. Second, maintenance operations
in one knowledge container may require adjustments to other containers, in order to
maintain performance or exploit revisions. For example, [Leake et al. 1997c| shows
that realizing the benefits of augmented adaptation knowledge may depend on asso-
ciated revisions of similarity criteria, in order to focus retrieval on appropriate cases
for the revised adaptation knowledge. Heister and Wilke [1998] also provide a listing
of the knowledge containers affected by the operations defined in their architecture.

Case Knowledge — Adaptation Knowledge

As a first step towards examining the role of knowledge transfer in case-base
maintenance, this research has investigated strategies for transferring case knowledge
into adaptation knowledge. Such transfers have three possible motivations:

e Space savings, if, e.g., a small amount of added adaptation knowledge can re-
cover the coverage of a larger number of cases, or if the adaptation knowledge
can be captured in a more compact form than the cases it replaces.

e Coverage improvements, if, e.g., the new adaptation knowledge permits solution
of problems beyond the ones that could be covered by the deleted case (if the
new adaptation knowledge is applied to other cases in the case library).

e Problem-solving time savings, if, e.g., the decrease in case-base size provides
case retrieval time savings greater than the additional cost for retrieving and
applying the new adaptation knowledge.

To explore the effects of transferring case knowledge to adaptation knowledge
during case-base maintenance, an experiment was performed to compare the problem-
solving accuracy of a CBR system for price prediction. The Boston housing price data
at the UCI Machine Learning Repository [Blake and Merz 2000] was used for testing.
This data set contains 506 instances, each with 12 continuous attributes and 1 binary
attribute. The adaptation learning method in the experiments was a simplified version
of the strategies of [Hanney and Keane 1997] for inductive learning of adaptation rules
by correlating differences in case situations with differences in their predictions. The
goal of the experiments was to compare performance losses due to deletion strategies
to the baseline, to test the benefits of adding knowledge transfer to case deletion
strategies, and to compare the benefits of competence-preserving deletion to random
deletion plus knowledge transfer. The system was tested under a number of baseline
and transfer conditions. Unexpectedly, the transfer of case to adaptation knowledge
showed no benefit over conditions in which case knowledge was simply compacted.
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Moreover, there was a significant processing cost to adaptation rule learning. Given
the relatively small size of the case-base, which was divided for training and testing, it
may be that the example sets of uncovered deleted cases were insufficient for accurate
learning of adaptation rules. The effectiveness of such an approach, however, was
shown in concurrent research described in [Shiu et al. 2001]. The extra step of
clustering in their approach may be a crucial step in the adaptation learning process.

This general view of case-based reasoner maintenance depends on three things:
characterizing individual maintenance policies for specific knowledge containers, mak-
ing strategic decisions about which strategies to apply, and characterizing how those
policies are coordinated and integrated across knowledge containers, to produce ef-
fective “system-wide” maintenance procedures. In the next chapter, an example of
CBRM is presented for maintaining similarity knowledge.
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CBMatrix: Similarity Maintenance

Chapter 2, illustrated diachronic case-base maintenance with an example from
the CBMatrix system. In the light of a system for testing similarity maintenance
techniques, this chapter, takes a closer look at case-based recommender support for
scientific computing in the CBMatrix project. It begins with an overview of the CB-
Matrix project, discuss the role of case-based reasoning in recommender systems for
scientific computing, and describe experiments for a data-structure recommendation
task. In particular, it describes the use of genetic algorithms to perform similar-
ity maintenance, by refining the similarity criteria of the CBMatrix recommender
component.

8.1 CBMatrix Overview

Scientific problem-solving environments (PSEs) provide scientists and engineers
with a framework of integrated problem-solving tools and resources that they can
easily compose and apply in their particular task domains (e.g., [Gannon et al. 1998;
Houstis et al. in press]). Increasingly, PSEs are being developed as applications of
component architectures [Armstrong et al. 1999a]. Component architectures simplify
and expedite the solution design process by encapsulating functional units of exe-
cutable code within high-level interface specifications for composition; by facilitating
the design and execution of distributed applications, enabling them to be composed
from standard component services and resources; and by supporting distributed and
collaborative problem-solving. Projects such as the DOE Common Component Ar-
chitecture (CCA) [Armstrong et al. 1999a], for example, define specifications enabling
scientists and engineers to write software components for high-performance comput-
ing that can be reused and composed in a wide range of computing environments.
This paradigm of composing functional software units and resources shifts the focus of
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problem-solving from iteratively building workable system implementations to inter-
actively designing optimized solution strategies from existing high-level components.

Designing effective PSE solution strategies depends on making good choices about
the organization and configuration of component tools and resources, and consider-
able expertise may be needed to achieve full benefit from the tools and resources
provided by a PSE. Consequently, artificial intelligence methods to develop “recom-
mender systems” [Kautz 1998| to guide tool selection, organization, and application
have a valuable role to play in realizing the full potential of PSEs [Abelson et al. 1989;
Gallopoulos et al. 1994; Ramakrishnan 1997]. In particular, the component paradigm
affords significant opportunities for integrating “recommender components” that users
may invoke to aid them in selecting and configuring individual components, com-
posing multiple components, and in selecting, monitoring and managing computing
resources.

CBMatrix is a research project in augmenting scientific PSEs with recommender
components to support both novice and expert problem-solving. It is part of an
overall effort in software component systems and PSEs for scientific computing at
Indiana University (e.g., [Villacis et al. 1999; Gannon et al. 1998]), and it fo-
cuses on applications of case-based reasoning (CBR) [Kolodner 1993; Leake 1996a;
Watson 1997] as the artificial intelligence methodology for making recommendations.
Case-based reasoning systems reason and learn by storing records of specific prior
problem-solving and re-applying their lessons in analogous situations. By unobtru-
sively recording the decisions of experts as they use a PSE to solve problems, and
providing those decisions as suggestions to guide new problem-solving, CBR provides
a vehicle for capturing and sharing expert knowledge.

The rest of this chapter describes our perspective on recommender components
in scientific PSEs, presents the motivations for a case-based reasoning approach to
making such recommendations, and illustrates this approach with developments in
the CBMatrix project. In particular, we describe the similarity maintenance aspects
of the CBMatrix recommender. Examples are drawn from our work with the Linear
System Analyzer, a problem-solving environment for developing strategies to manip-
ulate and solve large-scale sparse linear systems of equations [Gannon et al. 1998].
This domain is particularly good for the study of maintenance issues, as small per-
turbations in the environment (e.g., changes in machine usage or available memory)
can have a large impact on performance.
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8.2 Recommenders for Scientific PSEs

The goal of developing recommender components is to increase the effectiveness of
problem-solving activity in PSEs. There are two important and complementary ways
to further this goal, and they influence how recommender components are constructed
and used. The first, user support, deals with helping the user to make decisions more
effectively. For example, one way to support a user in setting the parameters for a
linear solver might be to invoke a particular visualization tool—helping the user to
understand the nature of the matrix in question, in order to select an appropriate
parameterization. While the visualization tool itself is not part of the component
solution strategy (linear system — parameterized solver — result), it may have played
a key role in parameter choice for a similar prior problem-solving episode, and thus
a user support recommender component could suggest using the visualization tool as
part of current solution setup. The second, component support, is aimed directly at
optimizing the operation of components and component compositions. For example,
a component might directly recommend the best data structure representation for a
sparse linear system, based on characteristics of the system, in order to achieve good
performance with a given solver.

Recommendation Types

Recommender components can be useful at all levels of scientific problem-solving,
from high-level mathematical modeling to mesh manipulation to (non-)linear algebra
to data analysis and visualization. Regardless of the level in question, we can typi-
cally divide possible types of recommendations into one of the following categories.
Each of the following provides a suggested mapping: wuser task + task contert —
recommendation.

e User Support: Given the description of a user task and intended decision,
propose resources that can provide helpful information to better enable the
user’s decision making. This could be applied as an alternative or addition to
any of the component-based recommenders described in the following points.

e Strategy Selection: Given a specification of the problem to be solved, select
an overall strategy for addressing the problem. For example, given a matrix,
select a set of preconditioners and a solver that would give a good solution.

e Component Selection: Given the context (e.g., the characteristics of a dif-
ferential equation or linear system to solve) in which a needed component (e.g.,
some linear solver) will be executed, recommend the best component for the
task (e.g., a particular sparse linear solver). Note that the context could be
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richer, for example, in selecting a preconditioner for a given linear system and
a given solver.

e Component Parameterization: Given a component that takes parameters,
and a context for that component’s execution, recommend the best values for the
parameter set. Note that some parameters may be fixed by the user, and would
themselves become part of the context. Note also that remaining parameters
could be recommended based solely on a partially specified parameter set, a
kind of parameter completion recommendation.

e Resource Selection: Given a software component that needs to be executed,
as well as the parameter settings and input to that component (or a descrip-
tion of the input), recommend a computational resource to use when executing
the component. This could involve selecting the initial resources for a run or
selecting more appropriate ones during a run, for components to automatically
move themselves to more appropriate resources.

Recommenders for PSEs must also be flexible enough to support to users with
varying levels of expertise, providing the information they need and shielding them
from superfluous information. Recommender components should serve these goals
for novices by guiding their decision-making, and for experts by providing them with
advice when needed, along with explanations to help them evaluate the advice pro-
vided.

Artificial Intelligence Recommendation Methods for Scientific
Computing

An intelligent component library for scientific computing may include a range of
components using different artificial intelligence methods individually or in combi-
nation. For tasks that are well understood a priori (e.g., selecting direct methods
for dense matrices), experts can specify a set of rules that fully cover the range of
recommendations associated with varying circumstances. Thus these types of rec-
ommenders leverage an existing strong domain theory. Traditional rule-based expert
systems have been integrated into a number of scientific systems (e.g., for configuring
PDE solver libraries [Laug 1994], for selecting elliptic PDE solution methods [Dyksen
and Gritter 1992], and for selecting ODE numerical solvers [Kamel et al. 1992]).
Because the methods rely on static pre-defined knowledge, they are considered non-
learning.

For tasks without hard-and-fast rules (e.g., selecting preconditioned iterative meth-
ods for non-symmetric systems), techniques that learn how to make recommendations
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by using sets of previous examples are more appropriate. Fager-learning methods
(e.g., induction of decision trees, backpropagation in neural networks, and inductive
logic programming) attempt to make generalizations based on a given set of examples
(e.g., by deriving a set of rules). The generalizations are then used to make recom-
mendations. This presumes that there is an implicit and relatively strong domain
theory that can be exposed from the given set of examples. Research on agent-based
frameworks for distributed, collaborative problem-solving and simulation [Joshi et
al. 1997], for example, has extended and integrated earlier research on neuro-fuzzy
techniques for categorization as part of addressing the algorithm selection problem
for elliptic PDEs [Weerawarana et al. 1997]. More recently, inductive logic program-
ming techniques have been used to learn rules for tasks such as numerical quadrature
[Ramakrishnan et al. 2000], and analyzing performance effects in elliptic PDE solvers
[Houstis et al. in press].

For learning tasks in which there may not be a relatively strong domain theory
implicit in the working set of examples, lazy-learning methods (e.g., instance-based
learning, case-based reasoning) that reason from specific examples instead of general-
izations are more appropriate. In terms of processing, lazy-learning methods typically
incur a greater on-line performance cost, but they have a much lower cost for incre-
mental learning of new examples.

Our research concentrates on applications of case-based reasoning methods. Learn-
ing is an intrinsic part of the case-based reasoning process, because the solutions to
prior problems and their outcomes are saved as cases to extend the reasoner’s knowl-
edge. When similar situations arise in the future, successful prior cases are retrieved
to suggest useful reasoning to reapply, and failure cases are retrieved to warn about
potential problems to avoid.

Because CBR systems can learn from single examples without requiring that those
examples be generalized, CBR is an appealing method for automatically capturing
information without traditional knowledge engineering. In addition, case-based rea-
soning can be helpful even if few examples are present. Whenever a relevant case is
available, it can be applied; the system can be useful without having cases covering
the entire space of potential problems. CBR has been applied to scientific computing
tasks such as algorithm selection for solving elliptic PDEs [Joshi et al. 1996] and to
guiding settings for mesh generation [Hurley 1995]. Central issues for CBR are how to
index cases in memory and how to assess similarity between a new problem situation
and problems solved previously, as well as how indexing and similarity criteria change
and must be maintained over time.
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8.3 CBMatrix

We have been developing a series of case-based recommender components, collec-
tively referred to as CBMatrix. This section describes work in developing and refining
one such CBMatrix component for data structure selection.

Data Structure Recommendation

We have constructed a CBMatrix component for recommending data structures to
use in solving partitioned matrix blocks from large sparse linear systems. In solving
these sizable sub-matrices, efficient data structures must be used to store the individ-
ual matrix blocks while allowing standard operations to be applied effectively. The
selection of an appropriate data structure for each block can significantly increase the
performance of the linear solver system, speeding up the overall problem solving pro-
cess. Even a small percentage improvement over standard performance could mean a
significant reduction in problem solving time.

Because there are no hard-and-fast rules for selecting the best data structure,
it is usually chosen based on intuitions about the sparsity pattern of the overall
matrix or by simply relying on one standard representation for all problems. Applying
CBR to data structure selection promises three main benefits. First, by automating
the choice of appropriate data structures, it enables novices to take advantage of
resulting performance gains and relieves the expert of the burden of manual data
structure selection (especially when that choice would be made for each block of a
partitioned matrix). Second, a CBR system can improve its performance by storing
cases corresponding to expert choices and results. Third, cases can be used to inform
users (to teach a novice or provide support for an expert), by explaining system
recommendations with examples of similar situations.

Given a new matrix, the system recommends the data structures that were most
appropriate for similar matrices solved in the past. The similarity judgment is based
on easy to compute characteristic features of the matrices (e.g., number of non-zeros,
degree of bandedness). The first version of our system used a weighted k-nearest
neighbor algorithm (e.g., [Watson 1997]) to determine its recommendations, select-
ing a predetermined number of similar situations and using the results from that set
to determine which data structure to suggest. Our measure of goodness was per-
formance in flops, and the baseline data structure for performance comparisons was
compressed sparse row. Tests with various methods for determining a data structure
recommendation from the k-nearest neighbors indicated that the most direct method
(selecting the overall closest) produced the best results. The second version of the
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system used only this method. This produced good results in cross-validation testing
(seeding the case-base with a portion the case data and retrieving against the rest),
and mixed results for individual selections in completely new situations presented to
the linear solver system. The third version implemented a similar algorithm to the
second, but performed more data normalization. In cross-validation tests, the system
made nearly perfect data structure selections. In informal tests using completely new
situations, significant performance increases were found in approximately half of the
probes.

Refining Similarity Criteria

With encouraging results in initial tests, we were interested in how machine learn-
ing techniques might be used to refine our similarity metric. In computing similarity,
it is possible for certain features to be more predictive of data structure choice (e.g.,
the relative number of non-zeros in a matrix is a likely candidate). If such features
are known, they can be assigned a greater weight in the similarity computation. Like-
wise, less predictive features can be assigned a lower weight or even dropped entirely,
increasing the speed of nearest-neighbor retrieval by decreasing the number of feature
comparisons.

We conducted a set of tests that used genetic algorithms (GAs) [Goldberg 1989
to automatically determine a good set of feature weightings for matrix characteristics
in the data structure selection task. The set of data-structure cases was divided
into three distinct sets: a set to use as a reduced case-base, a set to train the GA,
and a set to evaluate the weighting scheme learned by the GA. For our randomly
chosen test sets, unweighted retrieval accuracy was perfect. This was excellent for
the selection task itself, but obviated accuracy as a goal in evolving weight sets. The
goal of minimizing the number of required features still remained, however, and the
GA evolved a set of weights which preserved perfect accuracy, but reduced the number
of features used at all by 63 percent (24 to 9). Taking minimization of the number
of features as a new goal, the GA found a weight set that reduced the number of
features by 92 percent (24 to 2) with a 7 percent loss in accuracy. In order to test
whether the GA could assist in accuracy, we explicitly selected 58 cases that gave
some degree of error in the unweighted condition. We performed tests that used the
difficult set alone (48 training, 10 testing) and combined that set with additional
randomly selected instances (152 training, 20 testing). Though the weightings in this
second set of tests could not be taken to apply for the entire population, they did
show showed that the GA could both improve accuracy, when gains were to be made,
and reduce the number of features used.
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8.4 Developing CBMatrix

A long-term goal of this project is to develop new case-based recommender com-
ponents in conjunction with the latest component architecture research developments
at Indiana University. The Indiana University Extreme! Computing Group has built
CCAT [CCAT Project 2000], an implementation of the Common Component Archi-
tecture (CCA) for High Performance Computing specification [Common Component
Architecture Forum 2000; Armstrong et al. 1999b]. CCAT has been used to imple-
ment a CCA version of the Linear System Analyzer (LSA), a problem-solving envi-
ronment for developing strategies to manipulate and solve large-scale sparse linear
systems of equations [Gannon et al. 1998; Bramley et al. 1998]. The LSA pro-
vides users with a palette of components that can be selected and wired together to
construct complete applications. These components differ from subroutines, libraries,
etc., in that component composition involves linking binaries, rather than source code
to re-compile, and in that components interact on a peer-to-peer basis without one
component designated as the “main” program. We expect experience gained in this
framework to facilitate construction of recommender components in other PSEs.

Within the CCAT framework, components are being designed that learn by cap-
turing parameter settings (e.g., for a particular solver), component configurations
(e.g., sequences of preconditioners and solvers), and information on resource charac-
teristics (e.g., load patterns on particular machines). Feedback on performance will
be gathered both from the user (unobtrusively, for example when the user rejects
suggested parameter settings) and from monitoring performance information (e.g.,
when reasoning from the prior case leads to expectations that conflict with observed
performance). This component framework provides an interactive environment in
which the context and case usefulness may easily shift over time, an ideal setting for
maintenance research.

Having developed research in case-base maintenance theory and practice, and
having extended case-based maintenance work to other knowledge containers, the
final chapter describes conclusions and future directions for this work.
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Conclusion

This dissertation has covered theoretical and practical issues surrounding the
maintenance problem in case-based reasoning, both for knowledge contained in the
case-base and beyond. This chapter concludes the dissertation with a discussion of
lessons learned and future directions.

9.1 Maintenance Framework

This work has presented a first coherent picture of the maintenance problem for
knowledge contained in the case-base and extended the framework to address the gen-
eral maintenance problem for knowledge containers in CBR. This general framework
characterizes knowledge container maintenance policies in case-based reasoners. It
presents basic dimensions for maintenance policies in terms of three subprocesses—
data collection, triggering, and execution—and characterizes key design choices in
terms of those dimensions. Factors considered include the type of information col-
lected, timing, and integration of data collection; the timing and integration of main-
tenance triggering; whether the approach is reactive or proactive; the types of main-
tenance operations used; and the timing, integration, and scope of maintenance exe-
cution. The usefulness of framework has been demonstrated in describing and com-
paring multiple maintenance approaches, as well as in identifying new opportunities
for maintenance work.

Many maintenance issues remain to be investigated. Because, to our knowledge,
the role of usage trends (diachronic analysis) in guiding maintenance has not yet
been explored in other research, we consider it an especially promising area. The
simple trend-based maintenance described in chapters 2 and 3 has application to
a particularly well-behaved type of change in the case-base that appears in other
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contexts as well (e.g., updating old prices based on inflation, for real-estate appraisal)
but would fail to apply to more subtle trends that would require more sophisticated
methods.

Another form of trend information that might be exploited, for example, is pat-
terns in the types of problems that are being solved. Examination of these patterns
may identify “hot spots” in the problem space and determine subsets of the case-base
to be consulted first, while (if storage were limited), less useful cases could be archived
[Leake and Wilson 1999b]. Racine and Yang [1997] observe that recent cases may be
likely to be useful; trend analysis could provide other types of suggestions for which
cases should be most accessible.

Reactive maintenance has received a great deal of attention, but the reactive ap-
proach presumes that there has been some type of system failure or critical condition
to which the policies are reacting. This implies that reasoning in reactive situations
will not meet performance goals, or will not meet them as well. Proactive main-
tenance, in which policies anticipate maintenance needs before failures occur and
proactively make changes, can help provide a more uniform way to continue meeting
performance goals.

9.2 Regularity

The discussion of regularity assumptions provides steps towards understanding
and responding to deviations from desired regularities. We defined measures to cal-
culate the amount of problem-solution regqularity and problem-distribution reqularity
that exist for the problem sequences that a case-based reasoning system encounters.
The dissertation also went on to discuss methods that may be used for responding
to and exploiting changing characteristics of the problems the CBR system solves, as
well as of the environment in which its solutions must be applied. In particular, we
described opportunities for maintenance strategies that perform their changes based
on analysis of problem-solving and case-base characteristics over time—diachronic
case-base maintenance strategies.

These definitions are useful for three reasons. First, they delineate the factors that
affect regularity assumptions for CBR and their relationships—that regularity is not
a property of the system or world individually but of the relationship between task,
system, and the external world. Second, they provide a quantitative criterion for
comparing the performance of particular CBR systems. Third, and most important,
is that by giving standards for measuring regularity, they also give standards for
detecting changes that require maintenance.
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Determining the right response to shifting context generally requires knowledge
that is unlikely to be available from a single snapshot of the CBR system’s state.
However, by examining trends in retrieval performance, system errors, and presented
problems, the system may be able to respond more effectively. Sometimes, patterns
of failures alone will be sufficient to hypothesize the relevant aspects of the situations
and respond to changes. Even when they are not, however, a system can still respond
usefully by informing the system user or maintainer of detected patterns that bear
scrutiny or require investigation.

As CBR systems are more widely fielded for long-term use, it will become neces-
sary to monitor both problem-solution regularity and problem-distribution regularity
assumptions and to respond intelligently when they fail. We have provided a practi-
cal starting point for how to detect and respond to situations in which the reuse of
experiences goes wrong.

9.3 Interactive Maintenance

The DRAMA project investigates an integrated interactive approach to case-based
design support and maintenance. This approach is motivated by the complexity of
aerospace design, which is such that autonomous intelligent design tools are currently
infeasible, but tools that interactively support and aid the designer have promising
potential.

This dissertation has described a knowledge-light framework for supporting human
aerospace designers by capturing and reusing cases representing knowledge about spe-
cific prior designs, about circumstances in which those designs were useful, and about
how those designs were adapted to prior needs. This framework provides natural
and implicit maintenance support for case-authoring that also fosters consistency in
representational vocabulary. The dissertation has also presented experimental results
providing predictions of the benefit of the system’s retrieval mechanism to support
adaptation for different classes of users, for different levels of innovation, and at dif-
ferent levels of design completeness.

Knowledge-light frameworks necessarily involve tradeoffs; for example, the system
can suggest components but cannot evaluate the user’s designs or adaptations. Future
research will investigate providing warnings when new designs match prior design
cases that have known problems.

In developing DRAMA a set of principles was identified that is expected to have
wide applicability to CBR integrations into interactive systems:
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e Representations should be easily comprehensible and interactively adaptable by
end users; visual representations may be especially useful.

e Support for representation generation should help assure consistent representa-
tions, but must not prevent the user from developing new representational ele-
ments when needed. CBR’s “retrieve and adapt” process to build new cases can
facilitate standardization by reusing prior representational components. This
can naturally build up the case library and the representational vocabulary in
parallel.

e Retrieval must tolerate representational discrepancies.

e Interactive support systems must be sufficiently integrated into the processes
they support to be able to unobtrusively monitor and proactively exploit infor-
mation about the task context.

The strongest overall conclusion is that interaction must be across all parts of the
CBR system—initial knowledge capture, representation, retrieval, and adaptation—
and across the larger task. Frameworks that allow the user and system to support
each other in a shared task context, building up and using shared knowledge, have
the potential to leverage off the strengths and alleviate the weaknesses of both system
and user. Developing these frameworks is a challenging but promising research area.

Because the CMap tools provide the capability to share CMaps across the World
Wide Web, designs from multiple designers and sites can be imported into the system’s
design process. Work is under way at the University of West Florida to develop CMap
facilities for managing concurrent CMap generation and modification. Ideally, the
design context for a particular engine, for example, could be updated as designers at
other sites make changes in its specifications.

In addition to refining the system as an aid to recording and reusing design in-
formation, we see a long-term opportunity to apply it to reuse of information about
design processes. A CMap-style interface could be used to capture traces of the
steps used in generating a design (e.g., conceptual design, specification, numerical
simulations, etc.), to capture how a design was formulated and to guide reasoning
throughout the design process.

9.4 Representational Maintenance

The dissertation has presented a categorization of current CBR implementation
models into three classes, and shown how this view leads to practical support for
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building and maintaining case-based corporate memories by facilitating representa-
tional maintenance. The general transformations from one implementation model
representation to another allow for the conversion of existing implementations and
facilitate the combination of implementation types to meet new and changing task
requirements.

Based on this work, we have identified three challenges for the CBR community:
(1) to create community standard XML representation specifications for CBR, (2) to
build a set of standard methods/libraries for translating between these XML repre-
sentations and standard database representations, and (3) to develop standard CBR
functionality within database systems. This will require shifting some attention to
building infrastructure for the field in areas that are constrained enough to be feasible
and consequential enough to be worthwhile. Community standards for representation
have long been sought in many areas of Al. The structural foundations provided by
web-based and enterprise media, coupled with the impetus for developing successful
case-based corporate memories provides an environment ripe for achieving this goal
for CBR. By providing general representational frameworks that already have ties to
the world of practical application, as well as the tools to integrate them with one
another and with traditional practice, the CBR community can shape the building
blocks for constructing the next generation of successful research and industrial CBR
systems. As CBR practice evolves, we expect the different implementation types to
become increasingly integrated, and we hope to facilitate that transformation.

9.5 Competence & Performance

An important current of CBR research studies how to develop strategies for achiev-
ing case-bases that are competent and compact, as a proxy for good system perfor-
mance. This research has presented an argument for integrating performance consid-
erations more directly into case addition and deletion procedures, in order to allow
finer-grained optimization of case-base contents. The dissertation shows that the
relationship between competence, compactness and adaptation performance is more
subtle than a simple tradeoff—in some circumstances, adaptation performance can be
increased without sacrificing competence or compactness—motivating the search for
ways to refine case addition and deletion procedures to improve performance results.
It also presents empirical studies demonstrating relationships between competence
criteria, adaptation performance, and case-base size, as well as an initial step to-
wards developing a performance-guided metric for estimating the performance value
of adding a case to a case-base.

Much remains to be done to refine this approach and provide a richer model in the
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long-term. Such work includes refining the performance metric; performing more the-
oretical and empirical analyses of the tradeoffs and factors involved, considering both
retrieval and adaptation costs; and combining competence and performance metrics
to achieve metrics that balance both factors as desired. However, we believe that just
as the direct connection of retrieval criteria to adaptation abilities led to important
progress [Smyth and Keane 1998], the direct connection of case-base construction to
performance criteria promises important advances for case-base maintenance research.

9.6 Case-Based Reasoner Maintenance

This work has take the general lessons learned from research in case-base mainte-
nance and applied them to knowledge containers beyond the case-base. Likewise, the
directions for CBRM follow those for CBM. The general view of case-based reasoner
maintenance is embodied in three aspects: characterizing individual maintenance
policies for specific knowledge containers, making strategic decisions about which
strategies to apply, and characterizing how those policies are coordinated and inte-
grated across knowledge containers, to produce effective system-wide maintenance
policies.

Coordinating maintenance across knowledge containers is an important area for
future research. Despite considerable research on maintenance policies for individual
knowledge containers, there has been comparatively little investigation of how to
select containers to maintain and how policies that affect more than one knowledge
container interact with one another. Deciding which knowledge container to maintain
and how to do so in order to address performance goals will be important in managing
more complex maintenance agendas. One interesting area is knowledge container
transfer, moving knowledge from one container to another to locate knowledge where
it can be most easily and effectively used. Shiu et al. [2000] describe a method for
transfer from the case-base to adaptation knowledge.

To exploit advances in case-based reasoner maintenance, the advances must be
accompanied by increased understanding of how to apply them. A long-term goal of
our work on characterizing maintenance policies is to combine the characterizations
with descriptions of the tasks, domains, and performance objectives for which par-
ticular policies are likely to be appropriate, to help guide policy selection decisions
when developing CBR systems.
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9.7 Similarity Maintenance

The research has presented a perspective on recommender components for problem-
solving environments in scientific computing, as well as applications and current devel-
opment of case-based reasoning recommender components in the CBMatrix project.
In the context of CBMatrix, it has developed techniques for maintaining the system’s
similarity knowledge using genetic algorithms.

The success of case-based recommender components depends on being able to
select useful features for assessing the similarity of scientific computing problems.
However, this burden can be ameliorated through the application of machine learning
methods to enable automatic refinement of feature weightings (e.g., the GA approach
described in Section 8.3). Other research issues include how to make the system
adjust its recommendations in response to changes in the external processing envi-
ronment (e.g., by monitoring and responding to error trends detected over time, as in
[Leake and Wilson 1999b]; how to effectively access cases distributed across case li-
braries from different component instantiations (e.g., [Doyle and Cunningham 1999]);
and how to determine which cases to retain and which to delete, in order to reduce
storage requirements as large numbers of problems are solved [Leake and Wilson
1998]. A long-term goal for CBMatrix is to investigate machine learning approaches
to compacting case bases through both explicit generalization of similar cases (e.g.,
[Domingos 1995]), and implicit generalization by choosing a smaller representative
subset of cases (e.g., [Aha et al. 1991]). As component-based PSEs for scientific com-
puting continue to develop, CBR will play an important role in making intelligent
recommendations to support component use by experts and novices at all levels of
the problem-solving process.

9.8 Dénouement

Further examination of the general maintenance task is a long-term research goal,
both to refine our understanding and to guide the development of case-based rea-
soner maintenance theory and practice. The framework and practical maintenance
techniques presented here build a solid foundation for further investigation, both
of maintenance practice and of issues and opportunities for new maintenance ap-
proaches. The whole provides a unifying framework and algorithms for constructing
and maintaining CBR systems that may be used over extended periods of time and in
changing environments—a valuable resource for researchers, implementers, maintain-
ers, and users of CBR systems; that is, a useful guide for the husbandry of experience.
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