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Abstract

Social search systems such as Aardvark and Facebook Questions allow users to pose
questions to their social network in real time. Upon receiving a question on a particular
topic, Aardvark for example forwards the question to available “experts” close to the
querier in the social network to facilitate immediate, relevant answers to questions
that prove too complex for web searches, e.g., when “Googling it” is not likely to yield
adequate answers. While such systems have tremendous potential to tap into expertise,
they are monolithic and do not provide adequate privacy. For example, Aardvark and
Facebook have complete knowledge of the social network’s structure, and users cannot
pose anonymous queries or hide their areas of expertise. Thus the success of these
systems will be limited to more general categories of questions and expertise, since
many users will avoid asking or answering questions related to sensitive topics such as
health, political activism, sexual orientation, and even innocuous questions which may
make the querier seem ignorant.

We propose Pythia, the first distributed peer-to-peer (P2P) social-network architec-
ture that provides queriers and experts with anonymity and yet provides a mechanism
to locate relevant experts. Through simulation on social network graphs, we show
it is possible to strike a balance between privacy, timely satisfaction of queries, and
proximity of experts to queriers, while maintaining scalability. Furthermore we ex-
plore statistical attacks specific to this domain, and show how queriers and experts can
maintain their anonymity over time to defend against such attacks. We thus provide
the first blueprint of a privacy-aware, P2P system for social search, and hope to spur
future research into the development of such systems.



1 Introduction

We focus on a compelling application of social networking called social search. Social search
is a broad category that exploits an asker’s social network to find answers that are more
relevant to the asker of the query. For example, search results for movie recommendations
could be ranked based on movie rankings from the asker’s friends or people close in the social
network.

A new class of what we call live social search systems is now emerging—social search
systems such as Aardvark1 [20] leverage the power of social networks to connect askers with
online experts (i.e., humans with domain expertise) who are close to the asker in the social
network, thus facilitating live exchanges of information between real humans. Aardvark
claims “The vast majority of questions are answered within 10 minutes.” Horowitz and
Kamvar [20] draw the distinction between the library model of search, where askers search
for the right document to answer a question vs. the village model, where askers seek to get
connected with right human because it is unlikely their complicated question can be satisfied
by an existing document. In fact, Google recently acquired Aardvark, noting on their blog
“sometimes the information just is not online in one simple place.”2 While we have used
Aardvark as an exemplar of such a system, there is considerable interest in this model of
social search. Facebook Questions is currently being rolled out to its users, and provides a
social search service. Its tagline is “Ask the Facebook community a question on any topic
and get quality answers from people you know.”3 Cha-Cha,4 features experienced human
guides who search the web, sift through the results, and return relevant search results to the
querier. Thus we don’t consider Cha-Cha to fit under the model of live social search since
they provide a human-mediated “library search” as opposed to a “village search”.

Unfortunately, centralized systems such as Aardvark and Facebook do not provide ade-
quate privacy to users because they maintain full knowledge about the social network. For
example, the identities of askers and experts, participants’ interests and expertise areas, and
their communication are all known to such systems. In addition, a user’s identity and profile
immediately become available to the other users when the user posts a query or answers
a question. The user’s location is also revealed, making it easier for an adversary to gain
additional knowledge about that user.

While these systems support general queries related to restaurant recommendations,
home improvement, and product recommendations, the inability to ask or field queries pri-
vately limits the scope of queries and advertised expertise. For example a pro-choice or
pro-life advocate may want to field queries about the topic but not want her colleagues, or
anybody (including the social search service) to know of her leanings. Similarly, experts may
want to engage in political activism and keep their involvement secret. Askers, too, may ask
questions on these topics and others such as health related or legal issues, only under the
cover of privacy. In some cases, users may simply be embarrassed to ask “simple” questions
with the fear of being perceived as ignorant. Even if the social search service kept identi-

1http://www.vark.com/
2http://googleblog.blogspot.com/2010/02/google-acquires-aardvark.html
3http://www.readwriteweb.com/archives/why\ facebook\ questions\ could\ be\ zuckerbergs\

dream.php
4http://www.chacha.com/
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ties private with respect to communicating askers and experts, the social service itself has
knowledge of all this information. All this information is vulnerable to abuse, subpoenas,
secondary use, unauthorized data aggregation, and is also a prime target for data breaches.
Thus, in addition to the existing social search systems supporting non-private questions and
answers, a system is needed that supports private queries and responses, where askers and
experts are private to each other and no central authority can uncover private expertise or
an individual’s queries (we formalize the security goals in Section 2.3).

We propose Pythia,5 the first distributed peer-to-peer social network architecture that can
support sensitive queries and answers in a privacy-aware way. Since Pythia is a distributed
system, there is no central clearinghouse for queries and answers. Queries are routed anony-
mously within the social network to experts in a way that both askers and experts can
maintain anonymity. While there exist systems to route traffic anonymously in distributed
systems such as Tor [12] or Crowds [28], and even along social links [26], it is not clear how
such routing-layer solutions can help find available experts in the social neighborhood of an
asker while maintaining anonymity. Furthermore, Tor provides weak anonymity guarantees:
it does not provide unobservability or privacy against a global passive adversary. Pythia
aims to provide both these properties. Using existing anonymizing networks with a central-
ized server like Aardvark is also unsatisfactory because the central server is a central point
of failure, and the server cannot leverage social network vicinity to route queries in a user’s
network. Our design of Pythia therefore addresses the trade-off of balancing privacy and
quality in the system making use of requisite routing-layer protocols.

The central idea in our design of Pythia is to partition the social network into communities
or flood zones and then use local flooding to send questions to online experts within the
community. Such flooding provides a high degree of privacy within the community (as we
explain in Section 3) but yet limits the amount of flooding to maintain scalability. When
no nearby experts are found, we argue that beyond 2 or 3 hops in the social network, it
probably doesn’t matter where the expert is located in the social network, and thus any
remote community with online experts can be contacted using remote flooding within the
distant community. We show that for a low constant amount of overhead, Pythia supports
private queries (with anonymity relating to the cluster size) while maintaining the quality
of responses when nearby experts are available.

We evaluate our architecture through extensive simulations and analyze statistical in-
tersection attacks that apply to this new domain of P2P social search systems. At a high
level, attackers are able to log the presence (online vs. offline) of nodes and correlate this
information with questions and answers observed in the network with the goal of learning
the identities of the experts for a particular topic. We analyze the degradation of anonymity
of experts as they field questions over time. We analyze various categories of questions and
expertise (rare topics vs. common topics for example) as well as users with different prefer-
ences (how many questions they are willing to answer in a day or week). We use real-world
data on these aspects for parameter selection in our simulations. Finally, we show that
time-aggregation based defenses improve the anonymity of participants.

5In Greek mythology, Pythia was the gateway to the Delphic Oracle, “the most important oracle in
Greece,” and “answered questions put to her by worshippers.” See http://www.answers.com/topic/
delphic-oracle

3



Contributions We make the following contributions: 1) We identify a new class of
privacy-aware P2P systems for the exciting area of live social search, where the system must
match askers and experts without any centralized knowledge, and must defend participants’
privacy. 2) We present the design of Pythia, the first decentralized, peer-to-peer live social
search system that supports private queries and responses while maintaining the quality of
answers in the system. 3) Through extensive simulations, we show that it is indeed possible
to balance privacy and quality in a P2P social search system. We show how privacy of askers
and experts degrade over time, and evaluate defenses. 4) We provide a roadmap for future
research to realize the potential of P2P live social search.

2 System Model and Design

In this section we describe the high-level system model we assume for P2P social search
systems, and then describe our security goals and adversary model. In the following section
we present our communication architecture for Pythia to address these security goals and
adversary model.

2.1 P2P Social Network

Several systems [11,21,30] have been proposed for building P2P social networks, where nodes
are connected to friends’ nodes to form a large, distributed peer-to-peer network connected
by social links [26]. Creation of such a network can be bootstrapped through an existing
social networking platform such as Facebook, or through instant-messaging applications such
as AOL Instant Messenger, Skype, or Google Talk. The creation of this underlying network
is not the focus of our paper, and discuss the system model and architecture assuming such
an underlying P2P social network.

2.2 System model

We assume that a user is connected to, and has knowledge of his/her list of friends in the
social network. Every user has a list of declared expertise areas, i.e., topics for which he/she
can answer questions. In this paper we do not seek to measure and evaluate the level of
expertise, and thus the expertise areas are self-declared. For example, Alice’s set of expertise
areas could be {restaurants, Bloomington IN, military intelligence analyst, computer net-
works, environmental activism}. Some of these expertise areas are private expertise areas,
and are not known to other users in the network. In such cases, the expert prefers to answer
others’ questions anonymously, and not be known as an expert in that area. We focus on
private expertise areas because it is straightforward to locate non-anonymous experts using
a distributed hash table (DHT) that stores the IP addresses of experts for a particular topic,
for example. Therefore, in the remainder of the paper we assume that each node’s expertise
areas are kept private from other users in the system.

Each user in the social network is represented as a node. Nodes may be online or offline
at any given time. An online node may also be idle at any time. Sometimes online users
are busy or not at the computer and therefore not available for conversation. We refer to
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Query topic:
{health,

     alcohol} ?

?

Expertise:
{education,

health} 

Bob Evelyn

Figure 1: High-level system model. The nodes and links represent part of the larger social
network. Bob issues a query related to alcohol abuse as indicated with the query tags. The
query is routed (routing mechanism depends on specific architecture) to expert Evelyn who
responds to Bob.

such cases as having idle status. This online and idle status of nodes is visible only to their
friends. Offline nodes cannot assist in routing queries and responses. While idle nodes can
route messages, only available (not idle) nodes are capable of answering questions.

A peer with a query can attach a set of query tags to the query, where the tags indicate
topics related to the query. Based on the query tags, the query routing protocol attempts to
find experts for the specified tags close to the asker in the social network. We expect that
some queries will be best directed to nodes close to the asker in the social network, although
in the absence of adequate expertise in the social vicinity, queries will be directed to more
distant experts. Once the query is routed to an available expert, the expert can provide a
response. We further assume that not all available experts will answer the question, and
will depend on how responsive the expert is. To this end, we assume experts are willing to
answer only a few questions per week.

2.3 Security goals

The first two properties are standard to P2P anonymizing networks, the other three are
specific to Pythia:

Anonymous queries: Routed queries should not be attributable to a specific identity be-
yond a “reasonable” probability. We purposefully leave this probability threshold unspecified
to support algorithms that strike different trade-offs between privacy and other properties.
For example, it may be reasonable to offer anonymity of “1 in a 10” rather than “1 in a
million.” This property allows privacy-conscious askers to make queries related to health
conditions for example, while hiding their identity. In our work, we deliberately evaluate
settings where “1 in a 10” or “1 in a 20” anonymity is considered adequate enough for “prob-
able deniability” [28], where there is a reasonable chance with which the user can say he/she
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wasn’t the originator of a query. The reason for this level of anonymity will be made clearer
below when we talk about expertise unlinkability. We also note that Pythia supports larger
levels of anonymity even though we use “1 in 10” and “1 in 20” anonymity in our examples.

Anonymous responses: Similar to anonymous queries, the answer being routed back to
the asker should not be attributable to a particular identity beyond reasonable probability.
In the event the asker and expert choose to engage in a conversation, the anonymity property
applies to the conversation transcript. In other words, a particular identity cannot be tied
to the conversation with reasonable probability.

The following three properties are unique to P2P live social search systems. While the
previous properties apply to particular instances of communication, the next three properties
seek to hide interest and expertise areas of users:

Unobservable queries and responses: We also seek to hide whether nodes are asking
questions or providing answerers. Note that anonymous queries/responses may allow an
attacker to observe that a particular node is asking or answering a question, allowing the
attacker to narrow down the set of possible users for a particular answer or question. With
this property, the attacker cannot tell which nodes actually asked or answered a question at
all.

Expertise unlinkability: A peer’s private expertise areas should not be attributable to her
identity beyond reasonable probability. For example, Bob may be an academic professional
who is also a pro-choice advocate who doesn’t want to widely advertise his association with
the pro-choice movement. An attacker might notice that Bob always seems to be online when
pro-choice answers are received and links this area of expertise with Bob. (see Section 5).
Thus, anonymity much greater than “1 in 50” is not necessary since the prior probability of
a user being an expert in a particular topic is assumed to be in that general range.

Interest unlinkability: This property states that an asker’s private query tags should not
be attributable to her identity beyond reasonable probability. For example, Alice may want
to ask several queries about terrorist organizations she hears about on the news but may
worry about being labeled a terrorist. An attacker might notice that Alice always seems to
be online when terrorism related queries are sent and link this area of interest with Alice.

2.4 Attack model

Type of adversary. We assume honest-but-curious attackers, where nodes in the net-
work participate in the protocol fairly but try to infer as much information as possible from
passive observations. We assume a strong version of such adversaries, where all the honest-
but-curious attackers collude with each other. Such nodes are hard to detect (as opposed to
an active attacker who may falsify messages, drop messages, and so on) and attempt to use
their observations to uncover the expertise areas of anonymous experts or topics of interest of
anonymous askers. Furthermore, such adversaries include the global passive adversary who
can observe all communications in the system. As described in Section 3, Pythia employs
some special nodes called representatives that need to be trusted for delivery of messages,
but we assume these nodes can also be adversarial. We also assume the adversary has full
knowledge of the structure of the social network.

Adversary’s capabilities. The attackers can pose as regular users in the system and thus
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receive all the queries and answers that are exchanged in the communities.6 Even though
attackers cannot tell who is asking or answering questions, the attackers can observe the on-
line/offline and idle status of the nodes whenever a question or answer is sent in a community.
We assume a strong attacker who can determine such online/idle status of nodes through
network-level pings, communication attempts via instant messaging, or through simple in-
stant message (or even Facebook) status messages. More specifically, over a period of time,
the attackers observe the network and whenever a particular topic is asked or is answered
by experts in the community, the attackers collect online/offline and idle status of nodes in
the community. Using and linking this collected information, the attackers try to determine
the asker of a particular topic or the answerers of a particular topic.

Adversary classes. We classify the attackers based on their knowledge of the network and
specific capabilities:

• Global Attacker. This powerful attacker has the knowledge of the online/offline and
idle status of all the nodes in a community at any time. While such an attack would
be difficult in practice, a set of attackers can, for example, try to become friends with
everybody in the system. In the extreme case, all nodes in the network are “friends” with
at least one attacker, and thus their online and idle status is known to the attackers. We
assume the attackers add nodes to the existing social network to attack the existing
nodes, and are outside adversaries.

• Colluding Attackers. These attackers have partial knowledge of the network; i.e. they
can observe the online/offline and idle status of only their friends. We assume some
fraction of users c (where 0 < c < 1) are attackers and are thus inside adversaries. We
assume these malicious nodes are uniformly distributed across the network, although in
the future we plan to examine other attack models where attackers may be clustered into
communities (relating to different ways in which botnet infections spread). This scenario
represents a botnet of compromised nodes inside the network, and these nodes are used
to observe other nodes.

Moreover, we assume that these two types of attackers can have two different capabili-
ties:

• Linkable. Attackers have the ability of linking answers generated by a particular expert
in the community for example by comparing the context of answers in that topic. Answers
authored by the same expert could have similarities in writing style, similar typos and
punctuation, and so on. Thus we assume that attackers with this capability can link
messages from the same expert.

• Unlinkable. Attackers do not have ability to infer any useful information from the
answers in a particular topic to link them to a particular expert.

Thus we have four types of adversaries: Global-Linkable, Global-Unlinkable, Colluding-
Linkable, and Colluding-Unlinkable. Next, we describe Pythia’s architecture in Section 3 and
evaluate these four adversaries in the context of Pythia in Sections 4 and 5.

6Since attackers can inject questions by copying questions and thereby obtain answers for those questions,
we assume attackers can receive answers as well.
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3 Architecture

Figure 2 shows the high-level architecture of Pythia. The central idea in Pythia is to partition
the nodes in the social network into anonymizing communities or flood zones. Questions
from a community are received by all nodes in the community by means of a local flood.
The local flood allows anonymous answerers to receive questions without having to reveal
their expertise areas. Furthermore, to provide asker/answerer unobservability, all nodes ask
and answer questions at regular intervals (including dummy questions and answers) and
thus attackers cannot readily pinpoint which nodes are asking or answering questions. If no
answerers are found in the local community, questions are forwarded to a remote community
(with known answerers) as part of a remote flood.

Each community has a special representative. In many distributed systems such as P2P
networks (e.g., KaZaA, Gnutella and Skype), sensor networks and ad-hoc wireless networks,
some leaders (or coordinators and super nodes) play a specialized role in the application that
requires frequent communication with the other members of the set. The purpose is to strike
a balance between the efficiency of centralized search, and the autonomy and load balancing
which provides better performance and scalability. These super node based peer to peer
networks have been subject of recent studies [5,7,15,16,18,24,32,35]. Also, we assume that
if these representatives go offline, a new representative is elected.

The role of the representative will be made clear below. In Pythia, time is divided into
time intervals {t1, ..., tn}, where questions and answers are exchanged and distributed at the
end of each time interval as coordinated by the representative. As we will show later, longer
time intervals provide better privacy against attackers, but delay communication times. For
practical purposes, one can assume time slots are “a few minutes” long. We again note the
representative can be adversarial, but is trusted to perform communication tasks honestly.

Communities are small enough to limit the overhead of flooding as well as to target
answerers who are close to the asker in the social network, but large enough to provide an
anonymity set that has reasonable degree of anonymity. Our work does not seek to provide
near-complete anonymity (i.e., where the answerers can be any of a several million nodes in
the network) but attempts to strike a good trade-off between privacy and performance. In
this context, we assume that being anonymous within a set of “tens to a hundred” nodes is
a good balance. The size of communities, however, is a system parameter, and represents
a trade-off between privacy and performance. Smaller communities provide lower privacy,
but ensure that the overhead of flooding of queries is a low constant (as opposed to a full
flood of the entire network, which has overhead linear in the size of the social network for
example). In the following sections, we first describe Pythia’s components then we describe
different phases of the social search algorithm.

Pythia first establishes communities, following which questions and answers can be routed
in the system. We now describe the various stages and the Pythia protocol.

3.1 Creating social communities

In Pythia, all nodes in the social network are grouped into self-organizing clusters called
communities. In this paper we do not focus on optimizing community creation, and instead
modify the distributed clustering scheme proposed by Ramaswamy et al. [27] for our pur-
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Figure 2: Node 1 in Community 1 initiates a query with the tag politics. The query follows
a random walk (using Onion routing) along social links and is eventually sent to the repre-
sentative node 5. The representative then initiates a local flood of the query as indicated
(along with other received queries). The answerer in the community is unresponsive. The
representative, having received no responses, asks the DHT for communities with answerers
in politics, and initiates a remote flood in Community 2 by contacting representative node
6. Node 8 is a responsive answerer who responds to the query, and the response is sent
to representative node 6 via a random walk, then related to representative 5, and finally
received by node 1 in the next flood by node 5.

poses. Each community is initiated by a node called the initiator and established based on
nodes’ connectivity requiring only local knowledge about neighboring nodes. Each commu-
nity has a group ID and each node belongs to a single community. Every user knows which
of his/her friends’ are in his/her community. The initiator of a community, once formed, can
act as the representative of the community. The representative is seen as the head of the
community and is responsible for forwarding questions and answers on behalf of users in the
community as described in Section 3.2. In addition, from the perspective of other commu-
nities, the representative of a community is a conduit for communicating with nodes inside
the community. Communities can have more than one representative, but they can only
have one initiator. For simplicity we assume that communities have only one representative.
Since it is not the focus of our paper, we briefly summarize Ramaswamy et al.’s community
creation protocol in Appendix A.

3.2 Routing messages and finding answerers

The aim of the routing algorithm is to implement a routing technique that effectively dis-
tributes the messages to the answerers in the social network while providing anonymity to
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Figure 3: In each time period ti, every online node sends three real or fake messages to
the representative. The “intent to answer” messages are in response to the questions which
were asked in the previous time period ti−1 and the answers are in response to the questions
which were asked two time periods previously, ti−2. The representative separates, mixes and
initiates a local flood of all the real questions, pseudonyms of volunteers and real answers. It
initiates a remote flood of the questions which do not get enough volunteers in the community.

the asker and the answerers. To simulate a distributed social search, nodes in Pythia partici-
pate in four phases: advertising, asking, showing their intent to answer and answering. In all
phases, the same protocol is used while the type of messages is different. All the messages in
a community are forwarded to the representative of the community, all of them are padded
to have the same size, and all are encrypted by the public key of the representative.

3.2.1 Messages sent by user nodes

As a building block, Pythia uses Onion routing [14] to deliver messages from nodes to
representatives. We assume that the list of IP addresses in a community is available to all
nodes after community creation. The sender of a message can pick a set of n random nodes
and progressively build a circuit as done in Tor [12] (we conservatively set n = 6, which
provides adequate “mixing time” in social networks, such that from the receiver’s point of
view the message could have originated anywhere in the social network. The particular choice
for this parameter is orthogonal to this work, and it suffices to pick a value that provides
adequate mixing). After a circuit is established, and session keys between the sender and
each node in the circuit, the sender creates an “onion packet” by encrypting the message
with each node’s key. As a node receives a message, it decrypts the outer layer, and passes
it to the next node in the circuit. This approach prevents attackers in collusion with the
representative to link a particular message with a particular sender, providing asker/answerer
anonymity.

For asker/answerer unobservability an extra step is needed. As illustrated in Figure 3,
during every time period ti, every online node sends three separate messages to the repre-
sentative, along three different routes, at randomly chosen times in the interval. Every time
period, a user can ask up to one question, and sends qi in time period ti. Each online user
also sends one “intent to answer” message vi−1 for a question received in the previous time
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period ti−1. Representatives pick at most α answerers (at random) to answer the question
(e.g., we set α = 2 in our simulations), and thus at most α selected answerers from the set of
answerers who sent volunteer messages for the question are informed about this selection in
the previous time period ti−1 (how nodes are informed will be made clear in Section 3.2.2).
Online nodes send one answer ai−2 for the question they selected in ti−2 and askers must
wait between 2 to 3 time periods to receive answers to their question. For all these messages,
if the online node does not have a legitimate question, intent to answer, or answer, the node
sends a dummy message. Thus attackers cannot directly observe who is asking or answering
questions.

The three types of messages sent by nodes in the community are:

Question message qi = 〈t, rep, qid , T, fake bit , question〉. This message consists of the
time period t when the message was sent, a representative identifier rep, a question identifier
qid , a set T of topic tags, a fake bit fake bit and the question string. As we said earlier, every
representative in the community has a unique identifier. For simplicity in the routing layer,
we assume this field is the representative’s IP address, so that the final node in the onion
circuit can send the message directly to the representative. The question id is a sufficiently
long (e.g., 160 or 256-bit) random identifier (and thus unique with high probability) which
distinguishes questions. This identifier will be used by representatives for routing answers
for appropriate questions. The topic tags shows the topic of the question which is used for
finding appropriate communities that have answerers in this expertise and for asking the
questions to them. The fake bit is for identifying the question as a fake or real question. If
the fake bit is true, the question string is a dummy string and the representative does not
need to flood the question to the community.

Intent to answer message vi = 〈t, rep, qid , pnym, v bit〉. This message consists of the
time period t, a representative identifier rep, a question identifier qid , a user’s pseudonym
pnym and a “volunteer to answer” bit v bit . Each node picks one question it is willing to
answer per time period, and sends a one-time pseudonym for the question it has volunteered
to answer. If the user is busy or idle, a dummy message must still be sent as indicated by
the “volunteer to answer” bit.

Answer message ai = 〈t, rep, qid , fake bit , answer〉 consists of the time period t, repre-
sentative identifier rep, question identifier qid , a fake bit , and the answer string. Every
online node must answer at most one question per time period, and if a real answer is not
sent, it is signaled by the fake bit . The usage of representative identifier and question identi-
fier is similar to its use for other messages. If the fake bit is true, the answer string contains
the real answer for the identified question.

All messages are sent via an Onion route to the representative and all nodes send the same
types of encrypted messages. Moreover, encrypted messages have fixed sizes so the adversary
cannot infer the content from the message size. Attackers therefore cannot pinpoint which
nodes are asking and answering questions.
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3.2.2 Actions taken by representative

At the end of each time period, after receiving the three types messages described above
from online nodes in the community, the representative floods a QRA message to all nodes,
containing questions, chosen responders, and answers. We describe the flooding mechanism
as well as the QRA message next.

QRA message The QRA message flooded by the representative at the end of each time
period contains three blocks as described next, the current time period, and a digital signa-
ture. This message can thus be verified for freshness (through the time slot id embedded in
the message) and integrity.

Question block. At the end of time period ti, the representative collects all questions 〈qi〉
received in time period ti, and creates a question block 〈qi〉′ with all the real questions. If
questions with topic tags for which there exists no expertise in the local community are
found, they are forwarded to a remote community with answerers in that area. Advertised
topics for communities are obtained through a DHT. We describe the expertise advertising
process next, in Section 3.3.

Respond block. Next the representative collects all the intents to answer blocks 〈vi〉 where
users have previously indicated which of the questions in ti−1 they are willing to answer.
Based on parameter α, the representative picks at most α intents per question, and creates
a respond block 〈vi〉′ containing only the selected intents. Answerers that have been picked
to answer, find their one-time pseudonym in the respond block.

Answer block. The representative collects all received answers 〈ai〉 for questions in ti−2, and
creates an answer block 〈ai〉′ with these answers.

We note that reordering the messages within each block is not necessary: first we assume
the representative is adversarial and thus all adversaries know the order in which messages
were received by the representative. We rely on the Onion routing mechanism to provide
anonymity to the sender of a message. While even such mechanisms are open to attack and
counter defenses, this is not the point of our research. A system like Pythia opens up new
avenues for attack, and we evaluate those avenues even in the face of perfectly anonymous
routing.

Flooding To reduce load, the representative floods the messages through his/her social
links. Flooding through the social network is done in the usual way with nodes relaying
messages and ensuring that messages are not resent along a link. Sometimes local flooding
cannot reach all nodes in the community because of online/offline pattern of nodes and it is
possible that in some cases some nodes are isolated from other nodes in the community and
therefore cannot receive the messages that the representative has flooded to the community.
To solve this problem, nodes that do not receive the flood at the time period boundary
(after a timeout period) initiate a direct connection to the RP requesting the message. The
representative sends all messages directly to the unconnected nodes. Note that this direction
communication takes place only for the messages sent by the representative and thus do not
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reveal any information to attackers for compromising privacy. The content to the message
received from the representative is the same for all nodes, whether by direct connection or
through other nodes.

Remote flooding When a local representative rep local sends a question to a remote com-
munity via the remote representative repremote , repremote includes the question in its QRA
block, except the identity of the representative is changed to repremote . Answers are routed
back to the originating representative rep local when received. In the interest of space, we
omit details on this protocol, but provide results from our simulation for both local and
remote floods. While users may need to wait an extra time interval to get remote answers,
we note that usually we expect queries to be satisfied locally and if not, users would wait for
a remote answer. Our protocol, however, can be easily modified to send a remote query in
parallel, in which case two communities are posed the question simultaneously as opposed
to falling back to a remote community when a local answer is not available.

Messaging overheads At each time interval, the traffic generated in each community
can be analyzed by calculating the messages sent by each member and the representative.
Consider N members in each community. Each member generates three messages: one
question, one answer and an intent to answer message. Assuming the size of each message
as 500 bytes, N ∗ (500 + 500 + 500) = 1500 ∗ N bytes of traffic is sent to representative
by users during a time interval. The representative floods a QRA message containing three
blocks at the end of each time period. Assuming that users ask on average 2 questions per
week,7 the number of real questions asked in a day is 0.29 ∗ N in the community. In other
words, about 30% of members are asking a question per day. In an overly conservative
estimate, assuming all questions are asked in one time interval in a day and assuming that
the community receives half of this amount of questions from remote communities, the size
of total questions would be 0.45∗N ∗500. Assuming getting 2 answers for each question, the
size of total answers is 2 ∗ 0.45 ∗N ∗ 500. The size of QRA’s response block is 0.45 ∗N ∗ 70.
Thus the size of one QRA message is 0.45 ∗ N ∗ (500 + 1000 + 70) which is flooded by the
representative to N members. Therefore with a community size of 100 within a time interval,
146.5 KB traffic is received by the representative and it sends out 69 KB to the community.

3.3 Advertising and reputation

When nodes join the network, they need to send their list of interests to the representative.
To prevent linkage attacks, users send individual messages through an Onion circuit, where
each message contains only one expertise area. Furthermore, users pick a random time slot
from the range of 1 to β time slots in the future to advertise each interest. We assume β
is large enough (e.g., 1 week) so that there is enough churn and online/offline/idle/available
activity that expertise updates cannot be linked with specific users in the community.

Upon receiving such advertisements, the representative stores the expertise areas of users
to the Community Interest distributed hash table that lists interests of all nodes in a com-
munity. Every node can access the DHT (Distributed Hash Table) and verify whether its

7The median active users in Aardvark [20], issued 3.1 queries per month.
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expertise has been added to the DHT. The DHT’s entries are available to anyone in the
social network thus everyone in the social network can look up the expertise areas that a
community advertises (or which communities advertise a particular expertise area) but no
one knows who in the community is an answerer in what area. Interests are removed from
the DHT every 2β time slots unless the interest is advertised again. Thus users must re-
advertise their interests by picking a new random time slot after the previous advertisement.
We leave more sophisticated methods for advertising interests as well as the determination
of lower values of β for future work.

Furthermore, we assume that nodes can advertise their expertise along with reputation
information for that expertise. For example, users can accumulate anonymous digital cash [3]
for answering questions, and then prove their wealth (e.g., different credit thresholds can
be used to establish low, medium, and high levels of expertise). A detailed reputation
mechanism is outside the scope of this paper and we leave details and evaluation for such
a scheme to future work. Absent such a scheme, remote communities can be picked at
random, although in our evaluation we assume such a scheme to identifying suitable remote
communities.

4 Attacks and Defenses

In Section 3 we describe Pythia’s architecture and justified the design choices for attaining
the various privacy goals; in this section we provide the details of our attacks. Honest-but-
curious attackers can gain complete or partial information about online and idle status of
nodes within a community for each time period. In particular, the anonymity set for a user
associated with an anonymous query or response is the set of non-idle users for the particular
time period. In a stronger attack, questions and answers exchanged in Pythia also contain
public information about topic tags, and attackers can use this additional information to
correlate the online/idle status of nodes across time periods. Topic tags can also be used to
uncover the identities of answerers for particular topics, or the askers of certain topics. Since
attacks against expertise/interest linkability are stronger than attacks against anonymous
queries/responses, we study the degradation of privacy against expertise/interest linkability.
Without loss of generality, we now describe attacks against expertise linkability, which we will
analyze through simulation based on realistic parameters. We note that representatives are
the only nodes who know which messages are local (initiating by nodes in their community) or
remote (coming from other communities), and to give adversaries this capability we assume
the representatives are also adversarial. Thus, the adversary we consider is strong and has
the capability to identify which community is the originator of a question or an answer.
Dummy messages between communities will not help and the goal of the adversary is to
de-anonymize the identity of the expert in a community.

We now describe the attacks used by the various attackers. In all the attacks, attackers
pick a sensitive topic to attack (i.e., to determine which users have that topic as an expertise
area) and collect information about nodes who are online and not idle in each time slot when
an answer for that topic is observed.
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4.1 Intersection attack—linkable answers

This attack is used by the Global-Linkable and Colluding-Linkable attackers. The main idea
is that every time an answer for a topic is received it can be linked to the previous answer,
and so the attackers can eliminate idle and offline users as candidates for the answerer behind
the answer(s). Global attackers can eliminate more candidates because they have a global
view of status, whereas colluding attackers can eliminate only those nodes that they are
able to observe. As the colluding fraction increases more nodes can be eliminated resulting
in smaller anonymity sets for users, whereas lower colluding fractions will result in larger
anonymity sets for the answerers. These attacks show the worst case anonymity for users,
since it assumes a strong adversary that can link multiple answers from the same answerer.

4.2 Counter Attack—unlinkable answers

This attack is used by the Global-Unlinkable and Colluding-Unlinkable adversaries. In this
scenario, attackers cannot link answers by the same answerer, and thus answers for a par-
ticular expertise area could come from one or more answerers. Furthermore, since these
answerers may not be online at the same time, the naive intersection attack described above
will not work to easily eliminate candidates.

In this attack, the attacker maintains a counter table to log the presence of users when
questions are answered. The counter table contains a counter value for every node in the
community that the attacker can observe. In the beginning, the counter value is initialized
to zero. The aim of the attackers is to find the answerers with expertise e′ in a community
C. To do so, whenever an answer with the expertise e′ is observed in the community, the
attacker increments the counter for every online and non-idle node for that time interval. The
attackers record the counter value across time periods (for up to 4 weeks in our experiments).
Presumably, the answerers who have mostly answered questions in this particular topic have
a higher counter value and are de-anonymized. To study the effectiveness of this attack, we
consider the following attack strategy: the attacker sorts the list of answerers by descending
order of counts, and then “draws a line” somewhere in the list with the hope that a large
number of answerers are included in the section of the list above the line. For example, the
nodes with the highest counts are likely to be answerers, and drawing a line higher up in the
list will uncover a few answerers (at the risk of missing several answerers below the line). For
studying such performance, the use of precision and recall are the most appropriate metrics.
For the selected set (above the line) Precision is the ratio of the number of answerers in the
selected set to the total number of users in the set. For example, if attackers are trying to
uncover nuclear answerers and the top 3 nodes are picked; then, if 2 are nuclear answerers,
the attackers have a precision of 66.67%. However, the attackers may have missed 20 other
nuclear answerers in the community of 100, resulting in a recall of 3

23
, since only 3 of the 23

nuclear answerers were in the selected set. Through simulation we find the average precision
and recall for various points at which the attacker may draw the line, showing the tradeoffs.
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4.3 Time-aggregation defense

The attack is successful only as long as the attackers have few nodes that are online and not
idle. However, if the time is delayed in sending the questions and answers then the attackers
have to observe online and offline nodes over a longer time interval spanning multiple time
periods. Thus attackers need to consider candidates that were not idle at any time period
within the delay interval. A time delay causes the intersection set to enlarge and the and the
node counter to increment. We have analyzed the attack over different time-aggregations
and show how the attack degrades as the time-delay increases.

5 Evaluation

We first evaluate Pythia for its ability to maintain the privacy and anonymity of answerers
in the face of adversaries as described in Section 2.4. Next, we evaluate its performance,
i.e., its ability to pair askers with answers and the social-network distance of answerers from
askers. We create a realistic simulation of a Pythia network that mimics current production
social-search services like Aardvark.

5.1 Usage models

Unlike searching for files in P2P networks, social search involves more social interactions [36].
For simulating this complex process resembling a large-scale social search engine, we defined
asking, answering, expertise and online/offline models using released data about Aardvark
and Skype [20,25,29].

Online/Offline Model For simplicity, we assumed users are all from a country with 3
time zones. We assume that Pythia’s client can be run by default similar to Skype so peer
lifetime matches PC operation schedules, i.e., the client is turned-on during the day and
turned-off during the night. We considered 6:00 am as the start hour of day and 12:00 am
as the end of the day. According to [25,29], in Skype 95% of peers disappear after 10 hours
of activity. Therefore by having three time zones, people start their PCs some time during
the day after 6:00 am and are online for 10 hours. A day is divided into 288 time-slots
where each time-slot constitutes a 5 minute time-interval. The time span simulated in the
experiments set to 4 weeks to analyze the degradation of anonymity over a month. The time
at which users come online depends on the time zones to which they are assigned. Note that
users may still be idle while they are logged into the system; we discuss the idle status of
users in the answering model paragraph below.

Expertise Model Every user can ask questions in 36 different topics by tagging the
question with its topic. In our system users are assigned a different number of expertise
topics according to the rough distribution of users and topics in Aardvark as described by
Horowitz and Kamvar [20]. Table 1 shows the topic distribution used in our simulations.

Users were randomly chosen for each percentage group (based on the probabilities in
the first column of Table 1). Depending on the percentage group, the number of topics
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Table 1: Distribution of percentage of users and number of topics
Percentage of Nodes Minimum Topics Maximum Topics

2% 1 2
17% 3 4
31% 5 8
27% 9 16
17% 17 32
6% 33 36

was randomly selected from the minimum and maximum range. The topics were randomly
selected from the topic pool containing 36 topics and assigned to the user. We defined
three types of expertise categories: Common, Uncommon and Rare. We have considered
36 expertise topics equally divided among the three categories. Further, common topics are
assigned to 70% of nodes, uncommon topics are assigned to 30% and rare topics are assigned
to 6% of nodes (relating to the number of standard deviations around the mean distribution
of topics). For example, if Topic 4 is a common topic, approximately 70% of the nodes have
Topic 4 in their list of areas. Likewise, if Topic 31 is a rare topic, only about 6% of the nodes
will have Topic 31 as their expertise area. Nodes can answer a question with a tag/topic if
they have the associated expertise topic listed in their interests. We note that topics such as
restaurants and movies might fall into the common category where most users are interested
in such topics. While many users may not consider such topics to be sensitive we assume
some users want to keep their “common” interests or hobbies private.

Asking Model Although according to Horowitz and Kamvar [20] the median active user in
Aardvark issued 3.1 queries per month, in our asking model every user issues on an average
2 queries per week. The reason for choosing this number is that the data presented by
Horiwitz and Kamvar [20] indicate the network has grown dramatically from October 2008
to October 2010. And if these systems become more popular, people may ask questions more
often. We believe that an average of about 8 queries per month is a reasonable assumption
as such systems get more popular. We also point out the degradation of anonymity is faster
with our choice of this parameter. According to the normal distribution, the distribution of
common, uncommon and rare questions are respectively 70%, 28% and 2% (relating to the
number of standard deviations around the mean distribution of topics).

Answering Model According to Horowitz and Kamvar [20], in Aardvark 20% of the users
are more active than others and these active users are responsible for 85% of the responses.
In Pythia, we model this pattern by labeling 20% of users as active users and the remaining
as passive users. If an active answerer gets a query, she responds with an 85% probability
while if a passive answerer gets that question, she responds with a 15% probability. Although
people are online for most of the day, they may be unresponsive. For active users we randomly
chose 15% of their online time slots to be idle and for passive users we chose 85% of their
online time slots to be idle. Like Aardvark, Pythia users can choose the maximum number of
times in a day that they can be bothered for answering a question. Simulated users answer
1 to 5, chosen uniformly at random, questions a day.
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The representative attempts to obtain α = 2 answers for any question and if not found
locally, sends the question serially to the representatives of other communities until it gets
at least α = 2 answers. In our experiments we find that on average 0.25 remote communities
are contacted per question.

5.2 Security Evaluation

To test Pythia with various potential topologies of a social network we created randomly
generated scale-free graphs using the Network Work Bench8 (NWB) tool and the Barabasi-
Albert (BA) model. The BA model is known to have similar properties to social networks
“in the wild” [2]. When generating the graphs we used a minimum links parameter of 5
to set the minimum number of outgoing links of a user to 5. This parameter is specific to
NWB. We created 5 graphs with 60,102 nodes. Communities are created using the process
discussed in Section. 3.1. A subset of communities is taken due to the computational
complexity of the simulation. The subset communities are sized between 85 nodes and
115 nodes (µ = 95.526, σ = 8.6702). Each graph was used for 5 simulation experiments.
Therefore, each group of 5 experiments had the same social network structure, topology
and number of communities but had different distributions of expertise and online/offline
assignments to the nodes. The graphs represent values (as the case may be) after 4 weeks
of system operation. Standard error bars are plotted for all values. Our data show that the
confidence intervals for estimating the average are reasonable for our simulation parameters.

We now evaluate attacks as described in Section 4. We vary the number of colluding
attackers from 5% to 30% of the nodes in the network. We evaluate defenses by aggregating
over time intervals ranging from 5 minutes to 12 hours.

Intersection attack by Global-Linkable adversaries Figure 4 shows how Global-
Linkable attackers can degrade the anonymity of answerers watching answers for a topic
and linking them to the answerers. The X-axis indicates the number of questions that
answerers have responded to after 4 weeks and the Y-axis indicates the average size of an-
swerers’ anonymity sets. We see that the number of questions that an expert in common
topics has answered is much more than the number of questions that he/she has answered
in uncommon and rare topics. This difference is because of the distribution of questions as
explained in the asking model (Section 5.1).

Through the intersection attack, answering more questions in a topic decreases the
anonymity of the answerer more because attackers can observe more answers that can be
linked to the answerer and observe who was online and not idle at those times. Figure 4(c)
shows that people answering rare questions have better anonymity than answerers of un-
common and common questions over similar timespans. The anonymity as it relates to the
number of questions is similar. For example, after answering 4 questions in a particular rare
topic, the average size for the anonymity set is 31.82 while it is 29.11 and 28.95 for answering
the same number of questions in a particular uncommon and common topic. The graphs also
show that even answering 5 questions in a particular common, uncommon or rare topic dur-
ing 4 weeks, the average size of anonymity set is about 20. We also note that after answering

8http://nwb.slis.indiana.edu/
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Figure 4: Anonymity set vs. number of questions answered for Common, Uncommon, and
Rare topics against a Global-Linkable attacker after 4 weeks. As the number of questions
answered in a 4-week time period increases, the anonymity set decreases as expected. As a
defense, questions can be sent at larger time intervals and this “aggregation” defense is shown
in each graph. For 5-minute time intervals, e.g., users desiring privacy for uncommon topics
can restrict themselves to answering 4 questions in 4 weeks and expect “1 in 4” anonymity,
which is better than the prior probability of being an expert in that topic. Time aggregations
of 4 hours will allow enough anonymity to answer 11 questions over 4 weeks.

18 questions over 4 weeks for a common topic, the anonymity set is still more than size 2 on
average, which is still better than the approximately 70% prior probability of the node being
an expert in that topic. For uncommon topics, after answering 11 questions over 4 weeks the
anonymity set is of size 4, which is better than the approximate 30% prior probability. For
rare questions, the prior probability is approximately 6% and holds for 5–6 questions after 4
weeks. The anonymity set for answerers in uncommon and rare topics degrades faster than
for answerers in common topics. This is because common questions are usually answered in
close-by time slots in a day and the same nodes are online in those time-slots. However, rare
and uncommon questions are not frequently asked and there is a long time gap from when
the previous question was answered.

Figure 4 illustrates that if the time-aggregation defense is used in sending the questions
and answers, the average size of anonymity set increases for a particular number of questions.
For example, in the case of answering 4 questions in a particular common topic, the average
size of anonymity set for time intervals of 5-minute, 30-minute, 2-hours, 4-hours and 12-
hours are respectively, 28.95, 34.95, 46.40, 60.39, and 82.05. You can see that how the attack
degrades as the time-delay increases. This attack degradation is because the attackers have
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Figure 5: Anonymity set vs. number of questions answered for Common, Uncommon, and
Rare topics against a Colluding-Linkable attacker after 4 weeks of time in all. As the num-
ber of questions answered increases in a 4-week timespan, the anonymity set decreases as
expected. As a defense, questions can be sent at larger time intervals and this “aggregation”
defense is shown for uncommon topics.

to observe online and offline nodes over a longer time interval spanning multiple time periods.

Intersection attack by Colluding-Linkable adversaries As in the previous attack, the
anonymity degrades as an answerer answers more questions in a particular topic. Figure 5
shows the decline in anonymity as more answers are observed and linked by the colluding
attackers. As the percentage of colluding attackers increases, the size of the anonymity set
decreases and there is a greater decline in the size of the anonymity set as more answers
are observed from the answerer. For example, from Figure 5(a), at the end of 4 weeks, the
anonymity set for an answerer who answers one question in a common topic with 5% of col-
luding attackers is 79.1 and declines to 68.3 and 54.4 when the colluding percentage increases
to 10 and 20 respectively. As observed in the Global-Linkable Attack, the anonymity set for
answerers in rare and uncommon topics degrades faster than the anonymity set for answerers
in common topics. Assuming about 10% attackers in the system, experts for common and
uncommon topics can answer 18 and 10 questions respectively in 4 weeks and still have “1
in 40” anonymity, while experts for rare topics can answer 4 questions in 4 weeks and have
more than “1 in 50” anonymity, which is much greater than the prior probabilities in all
cases.

Figure 5(d), shows the effect of time aggregation for colluding percentage 30% on the size
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Figure 6: Precision vs. Recall for different number of answers received for Common, Un-
common, and Rare topics against a Global-Unlinkable attacker in a 4-week timespan. The
X-axis represents recall and the Y-axis represents precision in all cases. As the number
of answers for a question increases, the precision increases. Each point is accompanied by
standard error bars along both axes.

of the anonymity set as the number of answered questions in a uncommon topic increases.
Time aggregation improves anonymity since the attackers cannot easily intersect online and
idle nodes. For example, the anonymity set after 4 weeks and for 10 answers for time interval
5 minutes is 11.1 and increases to 13.1 and 28.84 when time interval is increased to 30 minutes
and 4 hours respectively.

Counter attack by Global-Unlinkable adversaries Figure 6 shows how Global-Unlinkable
attackers can degrade the anonymity of answerers by applying the counter attack (see Sec-
tion 4.2). The counter table contains a counter value for every node in the community. To
find the local answerers with a particular expertise, attackers increment the counter for every
online, non-idle node whenever an answer with this expertise is observed in the community.
In our experiments, the attackers record the counter value across 4 weeks. Then after 4
weeks, they sort the list of answerers by descending order of counts, and draw a line after
each answerer, up to the 85th answerer, in the list with the hope that a large number of
answerers are included in the section of the list above the line.

Figure 6 plots the precision vs. recall (see Section 4.2) curves for the attacker , where
each point in the graph corresponds to a particular position of the line in the sorted list of
counts. Looking at the graphs in Figures 6(a), 6(b), and 6(c), we see the precision is flat for
a particular number of answers while the recall is increasing from 0 to 1. The flat precision
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shows this attack is not successful in finding the answerers at top of the list and answerers are
uniformly distributed in the list. Uniform increase in recall shows that reaching to the end
of the list, more answerers are found. Thus even though attackers can say that the answerers
are among the nodes above the 85th node in the list, they cannot find the answerers by a
high enough assurance. Even after 4 weeks, the precision is at best 0.43 for common topics,
whereas the prior probability is 0.7, and thus attackers cannot perform better than what was
already known. We see similar results for uncommon questions, and for rare questions even
after 4 weeks, experts have at least “1 in 10” anonymity because precision is about 10%.
In general attackers perform poorly (compared to the Global-Linkable) attack because there
are multiple experts for the same topic answering questions on that topic but online/offline
or idle/not-idle at different times. Thus it is not the case that experts in a particular topic
“bubble” to the top of this list. While we expected this behavior intuitively, our experiments
confirmed our hypothesis.

As explained in Section 4 Global-Unlinkable attackers cannot link answers by the same
answerer, and thus answers for a particular expertise area could come from one or more
answerers. This is the reason of seeing more number of answers for a particular common,
uncommon and rare topic in this attack compared with the intersection attack during a
4-week period. Similar to intersection attack, because of the distribution of questions, we
see more number of questions that have been answered by experts in common topics than
the number of questions that have been answered in uncommon and rare topics. In our
experiments, the maximum number of answers in a particular common, uncommon and rare
topic are respectively, 140, 70 and 14 and the minimums are 20, 3 and 1.

Figures 6(a), 6(b), and 6(c) illustrate that when people answer more questions in a
particular common, uncommon and rare topic, the precision increases more and the attack
is more effective in de-anonymizing the experts because more data about online and not idle
status of answerers is available to attackers and the counter value for answerers who have
mostly answered questions in this particular topic is higher.

Figure 6(d) shows that the time-aggregation defense (for common topics) makes very
little difference for this attacker, because the attack is already quite weak as seen in the
previous three graphs. For example, in the case of answering 100 questions in a particular
common topic, the maximum precision for time intervals of 5-minute, 3-hours and 12-hours
are respectively, 0.43, 0.41 and 0.38.

Note that since we show the attack is already quite ineffective with Global-Unlinkable
adversaries, in the interest of space we omit results for Colluding-Unlinkable adversaries.

Implications of our results Thus, if we assume adversaries can link responses from
experts by noticing similarities in text (Global-Linkable adversaries), the anonymity of users
degrades over time. This is a fundamental limitation of anonymity systems that cannot
control the content of messages being exchanged. On the other hand our results are promising
by showing that if answers are not linkable, anonymity improves greatly. Users must therefore
ensure that their messages do not contain revealing characteristics. Filtering text to break
linkages is a subject of ongoing research in our group.
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5.3 Comparison with Random Walk

Pythia’s design supports unobservability of messages and is thus more secure than solutions
that use random walks to find questions in the neighborhood. Flooding however pays the
price of potentially finding answerers farther away in the social network than with random
walks. Random walks are also vulnerable to issues such as graph disconnectivity. In this
section we evaluate Pythia against the technique proposed by Kacimi et al. [22], and show
that Pythia performs reasonably well or even better than the random walk depending on
the metric under evaluation.

Random Walk Experiment In the technique used by Kacimi et al. [22], a node creates
a query packet consisting of her question, the expertise of the question and two dummy
answers. The node then selects one active online friend and forwards the packet to her. On
receiving the packet, the receiving node stores the message and the forwarding node in a local
table. Every node, on receiving the packet, selects one of their active online friends, different
from the sender, and forwards the question packet. The node also stores the friend to whom
it forwarded the query packet in its local table. After getting a question, if the node has
the expertise, she responds according to her active or passive behavior which is assigned to
the node by the answering model. When the node responds to the question, it replaces one
of the dummy answers in the question by her answer. If the number of real answers in the
query packet is less than two then it forwards the query packet to another active friend. If
the node does not have the expertise to answer the question or does not answer the question
according to the answering model, then it forwards the question to another active friend
with a 99/100 probability. This forwarding probability acts as a randomly chosen TTL for
every query packet. If the user decides not to forward the question, if the number of answers
is two, or there are no online friend to send the question to, the questions along with its
answer(s) are sent back along the path it was forwarded until the asker receives it.

Security Comparison with Random Walk Kacimi et al.’s technique aims to provide
security against the platform (e.g., Facebook). As such the idea of “replacing” dummy
answers with real answers can be observed by colluding nodes on either side of an answerer,
thus greatly reducing the expertise anonymity of users. Furthermore, their technique makes
the asker send multiple random walks. Colluding friends noticing the same question from
Alice can easily infer that Alice originated the question. In our evaluation, we fix this problem
by initiating a single path from the asker. Despite the security weaknesses of Kacimi et al.’s
scheme, we next evaluate the performance of Pythia in the context of their scheme.

Performance Comparison with Random Walk In our experiments the average num-
ber of nodes contacted is set to 100 for Pythia Local (where only local nodes are contacted)
and for the random walk.

Average number of answers received. On an average, questions in Pythia receive 2, 2.01
and 2.06 answers for common, uncommon and rare topics respectively. As seen in Figure 7(a),
for all topics, the average number of answers received for a question from a local community
in Pythia is higher than the average number of answers received per question in the random
walk experiment. When the required number of answers are not received from the local
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Figure 7: Performance Comparison of Pythia with Random Walk

community, the question is forwarded to remote communities. Random walk receives fewer
answers on average than Pythia because as we see in the next graph a larger fraction of
questions go unanswered. In Pythia, the average number of answers received from a local
community is 1.99, 1.94 and 1.73 for common, uncommon and rare topics respectively while
the average number of answers received in the Random Walk experiment is 1.92, 1.86 and
1.52 for common, uncommon and rare topics respectively. Higher number of answers are
observed for rare topics in Pythia because when a question does not receive the required
number of answers from the local community, the representative forwards the question to
other communities. For common and uncommon topics, the minimum required number of
answers are usually received from the local community and therefore these questions are not
forwarded to remote communities.

Average number of unanswered questions. Figure 7(b) shows the percentage of questions
not receiving any answers from the local community in Pythia to the percentage of questions
not receiving any answer in Random Walk. In the Random Walk experiment, the question is
forwarded along a single path which may be cut short when no online nodes are present or if
the node chooses not to forward the question further. Thus, not all questions get answers—
0.4%, 2.1% and 8.5% of questions in common, uncommon and rare topics respectively do
not get any local answers. In the random walk experiment, 4%, 6% and 18% of common,
uncommon and rare questions respectively do not get any answers.

Average distance of askers to answerers. The distance of askers to answerers in the local
community is greater for common and uncommon topics in Pythia than in Random Walk as
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can be seen in the Figure 7(b). This behavior is expected because a random walk is expected
to hit an expert within a few hops for such areas. In contrast, two experts from the entire
community are picked at random in Pythia, and may not be as close. However, the distance
of answerers for rare topics is better in Pythia than compared to Random Walk. This is
expected because a random walk would take much longer to find experts and could stray far
away from the asker in the social network. Pythia on the other hand locates rare experts
from the community when available. Answerers in remote communities are on an average
at a distance of 4 hops from the asker. The average minimum distance of rare answerers to
askers in a local community in Pythia is 3.11 while it is 3.46 in Random Walk.

6 Discussion

Community Creation. Creating communities is an important part of Pythia. A small diame-
ter to reduce distance between all nodes in the community and low variance in sizes between
all communities to offer a uniform level of anonymity across communities is desirable. Cur-
rently we use a process discussed in Section 3.1 to provide a baseline set of communities to
use with Pythia, but future work can seek to improve these properties. Creating communi-
ties with more population increases the anonymity of users. On the other hand it decreases
the performance. Finding the best practical size for communities is left to future work.

Supporting conversations. In this paper we consider single exchanges of one question and
answer. Ideally, askers and answerers would have the ability to continue their conversation.
For greatest privacy, messages can be related by the representative by following the similar
exchange of messages and QRA blocks, but that will introduce a 1 time-period delay for
each message. We leave such extensions and their analysis to future work.

Shielding. We have evaluated the degradation of anonymity for an expert over the course
of 4 weeks. Our assumption is that daily online/offline patterns of a particular user will
be stable across days, and experts would expect to see a lot of the same users at the same
times across different days. We are currently exploring what we call shielding sets, where
participants would recognize the set of users that are usually online while they are online,
and only ask or answer questions when a large fraction of these users are online. Participants
can thus keep track of their anonymity sets, and compute their loss of anonymity when they
ask or answer questions. Such a study needs long term data about the online/offline patterns
of users, and we are seeking such data for further exploration.

Reputation. One major function of Aardvark is to learn which participants are responsive
and good at answering questions on what topics. By building reputation scores for users,
questions can be targeted more effectively. Assigning and managing reputations for each user
hinders anonymity and privacy. A reputation scheme is needed which provides reputations
that can be used to target experts while at the same time protecting the anonymity of
users. Pythia’s community-based design is particularly amenable to assigning reputations to
communities. A reputation system at the granularity of a community helps locate experts for
a particular topic without actually identifying the expert. We discuss a possible approach in
Section 3.3. Flooding helps to ensure that questions reach experts as well as other potential
users that can answer the question. Thus certain communities might build up reputation
for certain topics, while keeping the actual expert anonymous within the community. One
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alternative is to assign cryptographic tokens such as digital cash [3, 6] to experts, who can
accumulate credit for their answers, and prove the accumulated wealth while maintaining
anonymity. Such techniques will improve the targeting of questions to the right experts and
thus improve the quality of answers received.

Tagging. Currently we assume a mechanism to match query tags with areas of expertise.
In the simplest case, string matching will ensure that property tagged queries will be matched
with areas of expertise. In practice, however, a mechanism is needed to correlate similar tags
and areas. Web ontologies9 would be a suitable way to achieve semantic mapping of tags to
areas.

We leave the area of distributed ontology mapping to future work, but in general one
could envision a DHT-based approach, where experts can lookup the query tags to see if there
is a mapping to his or her interests. Of course, in the interest of privacy, some mechanism
is needed to obtain such mappings in a privacy-preserving way. A naive solution would be
for all nodes to keep the entire ontology locally, and then make semantic mappings without
any loss of privacy.

Hybrid approaches. One interesting approach to balance quality and privacy would be
to “hook” into existing centralized social search engines. Queriers can send a question to
Aardvark through a local flood, following which the question enters Aardvark through several
(say 3) peers in the community. Aardvark can then send the question to experts close to
the peers in the social network. Queriers can thus make anonymous queries through hook
nodes, and receive reasonable quality answers from Aardvark.

Incentives. It is important to note that freeriding is a problem in systems such as Pythia
where user participation is required. Incentive mechanisms that promote user participation
and discourage freeriders will be useful. We have based our model on the real-world system
Aardvark, which largely relies on altruism. We have already discussed digital cash techniques
to incentivize users to build reputation and thus answer truthfully and also frequently. Simple
policies can help control freeriding for e.g., number of questions that users can ask may
depend on how recently the user has joined or on the number of questions that a user
answered. This would be an interesting area for future research as incentive mechanisms
can also take into account the quality of answers provided which can be combined with a
reputation system.

7 Related Work

Locating a person with some specific expertise or knowledge has been addressed in several
contexts such as knowledge sharing, Q&A systems, social search and peer-to-peer systems.

Knowledge sharing is a broad topic discussing the transmission of knowledge from one in-
dividual to another. Traditional knowledge sharing networks include websites such as MAKE
Magazine10 and eHow.11 Torrey et al. [33] study how information is searched for and learned
in the traditional web. Adamic et al. [1] studied knowledge sharing and its relation to Yahoo
Answers, an online question-and-answering (Q&A) service, as well as what type of questions

9http://tomgruber.org/writing/ontology-definition-2007.htm
10http://makezine.com/
11http://www.ehow.com/
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people asked. Q&A services come in a number of different forms. Popular services include
Yahoo! Answers, Amazon Askville, Wiki-answers, and Google Groups. These services allow
users to post their questions and answer other questions using pseudonyms. The only privacy
provided by these websites is the use of pseudonyms, and due to their centralized nature,
user IPs can still be tracked. None of these are live social search systems as they offer only
offline communication, and the service does not actively find experts for queries.

Several social search applications exist that use an individual’s social network to parse
out their most relevant search results. For example, Google now has a social search feature
as part of their web browser.12

Danezis et al. show how search preferences can be shared with a select group of friends
of the user in a social network [10]. The end goal is to rank search engine results based on
preferences of the social group. Target groups that are “cohesive” (densely linked) are used
for propagating preferences using a broadcast approach. One possibility for future work is
to leverage these groups in Pythia. While they provide a framework for sharing information
within such groups, it is not clear if it can be used to send questions and locate experts.
Our protocol is tailored to the orthogonal problem of communicating questions and answers
privately as opposed to sharing search preferences privately.

Other services such as Cha-Cha set up a “human middleman” to maximize the number of
relevant results returned to the user. Many of these demonstrate the power of humans to filter
out inconsequential data during searches. Duggan and Payne [13] show that individuals with
greater knowledge in an area show increased search performance. The issues associated with
domain-knowledge and search success are also well researched topics [4,17,19]. Aardvark [20]
modified the traditional form of Q&A networks to improve the quality and relevance of
answers by instantaneously leveraging the user’s social networks. The downside to Aardvark-
style live social search systems are that they are a central clearing house of questions and
answers and thus provide less privacy to their users.

Cutillo et al. [9] describe a peer-to-peer architecture implementation for social networks.
Their goal is to remove centralized control and to provide privacy by leveraging trust amongst
the trusted friends in the network. Li et al. [23] study the feasibility of P2P as a web search
engine infrastructure. These systems however do not support live social search. Pythia can
be seen as complementary to such systems as it can implement live social search on top
of P2P social networks. Wu et al. present a P2P based distributed search system called
Sixearch.org [34]. Sixearch (Social Web search via adaptive peers) is a P2P search engine
for locating static content, e.g., document collections. This system could be considered
a successor to the Freenet system proposed by Clarke et al. [8]. We are considering a
modification of Sixearch.org software as a Pythia implementation as future work.

Related to the flooding-style of routing in Pythia, P5 [31] is a protocol for scalable
anonymous communication over the Internet. Users of the system locally select a level
of anonymity and performance and map themselves to a broadcast group, which provides
requisite performance. Although it provides anonymous communication, it lacks specific
features required by Q&A networks.

Last, and most related to our work, Kacimi et al. [22] present a protocol that allows
anonymous opinion exchange among users connected over an untrusted social network plat-

12http://www.google.com/support/websearch/bin/answer.py?hl=en\&answer=165228
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form. We have pointed out the shortcomings of this approach along with a comparative
evaluation in Section 5.3.

8 Conclusions

We present Pythia, a privacy-aware peer-to-peer system for live social search. We have
made the first comprehensive attempt at designing such a distributed system with strong
privacy guarantees, and show the feasibility of our approach through extensive simulations.
While this work provides an important first step, we hope to spur further research in areas
such as privacy-aware query routing, defenses against intersection attacks in such systems,
incentivizing use of such systems for sensitive queries, and assigning reputation to anonymous
experts. We are entering an age of social networking applications, where social search is
bound to succeed through services such as Aardvark and Facebook Questions. Yet much
work remains to be done to support private queries about sensitive issues. Without such
systems, the full potential for social search will not be realized.
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A Community Creation Protocol

When a node is looking to join a community, it checks to see if there are any initiators
located within its friends-of-friends network. If there are no initiators in that range, it
becomes an initiator itself. Over time, the network will reform these communities to optimize
the initiators to produce clusters of equal size and remove node outliers (nodes without a
cluster). This process is done by following the “Two Hop Return Probability” calculation
discussed in [27] and comparing it to a Two Hop Probability threshold. The tuning of this
threshold value is beyond the scope of this paper. Nodes determine the community they
belong to based on attraction values received from their peers about specific initiators keyed
by a random initiator ID (I). This process uses a flooding mechanism limited by a TTL. The
attraction values are calculated, starting with each initiator I, using the following process:

1. Each I calculates AI = 1
|Edges|I

and sends a message with TTL = 2 to all neighbors N .

2. For each n ∈ N , n records AI . All values received for each I will be added to AI . n
then sends out a message AI = AI/

1
|Edges|n with the TTL − 1 to all its neighbors N .

3. This process repeats until TTL = 0

4. A node then chooses its initiator I which has the highest AI .

The community creation process will happen over an extended period of time. The
bootstrapping process will involve each node getting a list of friends and friends-of-friends
from the social networks they belong to. They can then use these lists as the full search
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space for community creation. An optimal algorithm for the bootstrapping is beyond the
scope of this paper as we are primarily concerned with designing Pythia to provide optimal
privacy during the Q&A process and assuming that communities are created in the optimal
manner. We leave the study of more optimal clustering to future work, but demonstrate
here that existing algorithms are viable.
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