
Routing with Confidence:
Supporting Discretionary Routing Requirements in Policy Based Networks

Apu Kapadia∗, Prasad Naldurg, Roy H. Campbell

Dept. of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL, USA
{akapadia, naldurg, rhc}@uiuc.edu

Abstract

We propose a novel policy-based secure routing
framework that extends the mandatory nature of network
access-control policies and allows users to exercise dis-
cretionary control on what routes they choose in a given
network. In contrast to existing research that focuses
mainly on restricting network access based on user cre-
dentials, we present a model that allows users to spec-
ify discretionary constraints on path characteristics and
discover routes based on situational trust attributes of
routers in a network. In this context, we present three
levels of trust-attribute certification based on inherent,
consensus based, and inferred characteristics of routers.
We also define a “confidence” measure that captures the
“quality of protection” of a route with regard to vari-
ous dynamic trust relationships that arise from this in-
teraction between user preferences and network policy.
Based on this measure, we show how to generate paths
of highest confidence efficiently by using shortest path
algorithms. We show how our model generalizes the
notion of Quality of Protection (QoP) for secure rout-
ing and discuss how it can be applied to anonymous
and privacy-aware routing, intrusion tolerant commu-
nication, and secure resource discovery for ubiquitous
computing, high performance, and peer-to-peer environ-
ments.

1 Introduction

With the advent of Policy Based Networking (PBN),
network administrators now have the ability to spec-

∗Apu Kapadia is funded by the U.S. Dept. of Energy’s High-
Performance Computer Science Fellowship through Los Alamos Na-
tional Laboratory, Lawrence Livermore National Laboratory, and San-
dia National Laboratory.

ify, administer, and enforce an organization’s network-
access and utilization policies more effectively. PBN
has traditionally focused on which users have access to
what resources in a network [9]. A PBN framework
uses bandwidth management, traffic-flow management,
firewalling, caching, and other routing protocol and net-
work security solutions such as IPSec, VPNs, etc., to
provide differentiated services to groups of users in a
dedicated network.

For most part, the policies in a PBN refer to manda-
tory access control (MAC) and utilization policies that
the network, as a system, applies to its users. The
PBN architecture [10] organizes different network ob-
jects such as resources and services into different ob-
ject roles, and defines a policy as a relationship between
these object roles and different user groups. For exam-
ple, traffic from certain groups of users can be treated
preferentially, or access to certain network resources can
be restricted to users belonging to a specific group. In
addition, policies can be defined based on the attributes
of the traffic itself—e.g., music file transfers or other
application specific packets can be bandwidth-limited.
PBN Policies are stored in a (possibly distributed) policy
repository and enforced at Policy Enforcement Points
(PEPs) on firewalls, routers and switches, etc., using a
wide variety of mechanisms such as access control, fil-
tering, and queue management.

The PBN framework has greatly simplified the man-
agement and administration of organizational network
security policies. In this paper, we propose a novel ex-
tension to this framework that incorporates a user’s ex-
pectations and preferences, with the existing mandatory
network policies, to influence the path chosen by a user’s
traffic within this setting. Our motivation stems from the
observation that the discretionary demands of users have
been largely ignored in any formulation of PBN policies.

In addition to a user’s identity and group membership

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

information, our extended framework explicitly models
static and dynamic trust attributes of both users and net-
work objects and effectively captures the changing trust
relationships between them as the system evolves over
time. To illustrate this, consider a user who may want
to avoid certain routers based on the knowledge that the
routers may be compromised because they are running
outdated software with known security holes. The sys-
tem administrator may not have installed the latest patch,
or the patch may not be available. Note that the user’s
demands in this situation do not violate the mandatory
system policy in any way. While a user would be de-
pendent on the administrator in a traditional PBN, in our
proposed model, a user can encode this requirement and
discover a path dynamically, consisting of routers that
do not have this vulnerability, and use only these routers
until the vulnerability is patched.

Other examples of a user’s discretionary policies in
this setting include the ability to exclude routers that
belong to an administrative domain that the user does
not trust, or exclude routers that are dropping an unac-
ceptable fraction of packets, and so on. A point to note
here is that the trust attributes of both the user and the
network object are dynamic, in the sense that they may
change over time. We list different types of attributes of
both user groups and network objects and classify them
according to whether they are inherent, consensus based,
or need to be inferred by the user in some way. This ex-
tends the traditional notion of “Quality of Service” to
what we refer to broadly as the “Quality of Protection”
(QoP) [3, 14] of a network route. We explore the is-
sue of trust management and describe what entities are
needed to enable certification and validation of dynamic
trust attributes.

In order to capture the effect of dynamically changing
trust values and relationships on the quality of routes our
model can discover, we introduce a quantitative measure
called confidence. Using this metric, we describe differ-
ent functions to combine meaningfully the confidence
values of individual links along a route, presenting what
we believe is a novel quantitative model of trust rela-
tionships. This metric reflects the perceived threat quan-
titatively, and users change the confidence levels in re-
sponse to exposed threats and vulnerabilities. We show
how we can efficiently compute routes that maximize
the confidence a user can expect given the current threat
model and trust relationships. We explore these issues
in the context of three representative environments—a
military network, a ubiquitous computing scenario, and
a peer-to-peer network.

Yi et al. [13] propose the notion of secure routing for
ad-hoc military environments. To the best of our knowl-
edge, this is the only work besides ours that attempts to
accommodate users’ demands on secure routing. While

their work was limited to ad-hoc wireless routing en-
vironments and to certain credentials of the users, we
present a generalized protocol based on different types
of attributes of users and routers, as well as trust and
threat assumptions between these entities.

In addition to security, a user may also be interested
in setting up routes that preserve their privacy, in terms
of location anonymity or identity anonymity. Our model
enables users to set up routes through routers in a way
that does not compromise their privacy, leveraging on
our experience with Mist [1]. Users can specify trust and
threat attributes to avoid certain nodes and prefer some
routes over others, rather than relying on the system to
make anonymous routing decisions.

We envision a network in which users operate under
the overall network MAC policy, but have the flexibility
to apply dynamic trust attributes and relationships for
improved confidentiality, privacy, and availability guar-
antees of their communication. In the future we propose
to study different computational models of confidence
and extend our model with probabilistic analysis to cap-
ture stochastic behavior, and sensitivity analysis to study
how changing trust relationships and threat models can
impact the overall security of routes in a given network.

Overview—In Section 2 we present an overview of
our system’s architecture. Section 3 discusses how users
can specify path requirements based on desired path
properties. Section 4 describes our trust model and how
we quantify “good quality” routes. We present some ap-
plications of our approach in Section 5. After a discus-
sion in Section 6, we present our conclusions in Sec-
tion 7.

2 Architecture

In this section, we present a high-level architectural
view of our proposed model consisting of different net-
work elements. Similar to traditional PBNs, our network
includes a policy database, PEPs, and PDPs. We focus
our attention on corporate or private networks that are
effectively isolated from the Internet at large and provide
the adequate support to enforce cohesive administrative
and management policies across this network. Within
our network we also have the ability to certify different
static and dynamic attributes of users and network ob-
jects, through a centralized or distributed trust authority.

As shown in Figure 1, users connect to our routing in-
frastructure through access points. Services can be con-
nected to access points, or certain services may be avail-
able at the routing nodes itself (e.g., discovery services
that are part of the routing infrastructure). Based on the
certified attributes that the user chooses to disclose to
the authenticating system (for privacy reasons the users
may disclose only a subset of their current attributes),

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

OS Version = latest

id: Router 1

admin = John Doe

Attributes for router
points
access

Routers

3

2

1

u

u

u

Disk

High
Speed

Figure 1. Architecture Overview

the user is presented with a snapshot of the system con-
sisting of different network elements, including routers,
links and servers. Note that this snapshot is a restricted
view of the network, reflecting what resources a user is
authorized to use based on the user’s disclosed creden-
tials 1, according to the mandatory access policies of the
organization.

The user hence possesses a logical view of the
routers, their attributes, and their connectivity. When
a user wishes to communicate with another entity on the
network, he or she looks up the access point of the desti-
nation and computes a route to that access point. Within
this view of the network, our framework allows users to
restrict their preferences for routers, services and routes
even further, in accordance with their discretionary de-
mands. In the next few subsections we describe how
each part of this process works, along with the trust ne-
gotiation and bootstrapping that occurs in the system.
We begin with how attributes can be certified in our pro-
posed system.

2.1 Attributes

We define three types of attributes to capture both the
static and dynamic nature of evolving trust relationships
in our system—inherent attributes, consensus-based at-
tributes and inferred attributes. As we show later, these
attributes help us quantify the trust relationships in the
system.

Inherent attributes: These attributes are relatively
static characteristics of an entity, which can be certified
by a Certificate Authority (CA). Examples of inherent
user attributes include identity, role, age, and gender. In-

1We use credentials and attributes interchangeably since attributes
are certified and are presented as credentials

herent router attributes include physical location, admin-
istrative authority, physical security, clearance level, and
firewall security. A CA can create these certificates for
inherent attributes and distribute them a priori to users
and routers. For example, users can use these attributes
to set up routes through routers that are physically se-
cure and that belong to a certain trusted administrative
entity.

Consensus-based attributes: These attributes relate
to the behavior of an entity with respect to other entities
in the system. For example, routers in the network can
vouch for the integrity of neighboring routers if they ap-
pear to be routing packets correctly. A compromised
router may stop forwarding packets, and neighboring
routers would degrade their trust in that router with re-
spect to packet delivery. Users can therefore use these
dynamic attributes to set up routes through routers that
have been routing packets reliably on a need-to-use ba-
sis. Routers may decide that a certain user is not honor-
ing routing policies and exclude that user from future
negotiations. For example, the user may be running
a transfer protocol that does not have any congestion
control mechanism (e.g., non TCP-friendly multimedia
flows, or a denial of service attack). Hence routers may
or may not vouch for a user’s behavior, which would
hurt the user’s ability to set up future routes. This en-
courages good behavior of both users and routers within
the network. Since these certificates are issued for the
current behavior of a router or a user, it is impractical to
have the CA issue such certificates.

Therefore, we need a robust and efficient protocol
where routers and users can generate, agree, and dis-
tribute these relatively dynamic attributes. Since users
and routers, especially compromised ones, can lie about
these attributes, we plan to explore different intrusion

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

tolerant consensus protocols in the future, with different
assumptions (including Byzantine failure) for this part
of the framework. One option is to use COCA [16], an
online certification authority that uses threshold cryp-
tography to issue these certificates. The basic idea is
that at least k out of n routers would need to agree on an
attribute to issue a certificate for that attribute. COCA
comes with built-in intrusion tolerance for Byzantine
failures, and is reasonably efficient.

Inferred attributes: While entities in the network may
have inherent or consensus-based attributes, users may
have reasons not to trust certain routers, and likewise,
certain routers may not trust certain users. For exam-
ple a user might use probes to infer that certain routers
are running outdated versions of software with a known
vulnerability. This is an indicator that the router may be
compromised and is not trustworthy. Hence a user may
want to avoid such routers. Since these are attributes that
the user assigns to routers (or vice versa), these attributes
are local to the entity making the inference. No certifi-
cation is required for such attributes. Other examples
include latest patches, daemon processes, past behavior
observed by the user, etc.

In the next subsection, we briefly explore how to ac-
commodate a user’s privacy preferences.

2.2 Trust negotiation

We desire a system that honors the privacy of users. A
user would like to reveal only those attribute certificates
that are absolutely necessary to accomplish the user’s
goals. For example, a user may want to use the network
as a Student, without revealing the actual identity. Since
the logical view of the network depends on the creden-
tials of the user, this view is restricted based on the at-
tributes the user reveals to the network. Moreover, when
a user demands consensus-based attributes of routers,
the router may first demand that user present credentials
appropriate to that demand. For example the router may
disclose routing statistics only to users with a high level
of security clearance (high-priority users). This suggests
the use of trust negotiation protocols such as those pro-
posed by Yu et al. [15]. Such protocols can be effectively
used to bootstrap trust between users and routers based
on inherent and consensus based attributes.

2.3 Routing model

In this subsection, we formalize our routing model
and describe how users can specify their discretionary
policies based on attributes of routers in the organiza-
tion. As explained before, users can obtain a map of the
network that they are authorized to view according to
the organizational mandatory policy at startup. This map

lists all the routers, and links, and labels each router with
the set of static attributes that are valid on that router.
Users are allowed to update this map with dynamic at-
tributes at any point in time.

We model our network as a Kripke structure in order
to take advantage of what is called model checking [4]
and its accompanying formalism. Formally, a Kripke
structure is the tuple M = 〈S, S0, R, L〉, where S is a
set of states, S0 is the set of initial or start states, R ⊆
S × S is a total transition relation between states, and
L : S → P(AP) is a labeling function where P(AP) is
the power set of atomic propositions AP . Given a state
s ∈ S, L(s) is the set of atomic propositions that are
true in s.

Note how this formalism corresponds almost exactly
with the attribute-based routing framework we propose.
The set of routers corresponds to the set of states S
in the model. If two routers s1, s2 are connected then
(s1, s2), (s2, s1) ∈ R since we assume symmetric links.
Note relation R is total since our links are bidirectional.
Each relation in R corresponds to the connectivity be-
tween routers. The set of attributes at each router can
be viewed as atomic propositions (or truth valued state-
ments) about attributes in that that state. Therefore the
set AP is the set of all possible attribute-value pairs in
our system. Note, this set is finite in our model. The set
of start states S0 are specified by the user.

Since the network is logically mapped to a Kripke
structure, users can define their discretionary policies as
path characteristics using temporal logic formulas that
can be interpreted over what is called a computation tree
of a Kripke structure. Formally, an infinite computation
tree is obtained by unwinding the state-transition graph
by starting with a fixed start state and applying all tran-
sitions from that state to other states in the model, and so
on. Different types of temporal logic have been studied
extensively in the past [4] to describe properties of these
infinite computation trees. We believe that the most use-
ful logic for our case is Linear Temporal Logic (LTL)
which is used to specify characteristics of paths in this
tree. We do not define the syntax and semantics of LTL
as it is well known, but explain how we can use it to
specify properties in the next section.

Our biggest motivation for using this formalism is
the availability of automatic tools that can compute ef-
ficiently whether there exists a path in our model that
satisfies the constraints imposed by the LTL formula.
This process is called model checking. A model checker
always provides a counter-example (if one exists) to a
property specified by the user. Specifying the negation
of a desired property, yields a path (counter-example)
with the desired property. Model checkers can be mod-
ified to return more than one counter-example to yield
all paths that satisfy a specific type of LTL formula [8].

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

We show how we can adapt this technique in the next
section, and present a discussion on the suitability of
model checking, its time complexity, and highlight spe-
cific characteristics of our model that make it particu-
larly scalable with respect to the “state space explosion”
problem.

3 Path specification

LTL formulas are a powerful way for users to express
path requirements. As explained in the previous section,
model checkers can be used to generate multiple paths,
when they exist, that satisfy these constraints between a
source access point and a destination access point in our
model. Model checking algorithms for LTL formulas
in general have time complexity O(|M |2O(|f |)), where
|f | is the size of the LTL formula. However, note that
the algorithm is tractable in general for LTL formulas of
small size, and we expect that user specified LTL for-
mulas will be reasonable in size. As we discuss below,
there is more of a concern with the state space explosion
problem (the size |M |), which is not a concern for us
since |M | is the size of the network, and there is no state
space explosion in our model.

In this paper, we describe how we can optimize this
algorithm for a subset of LTL formulas that reduces to
the shortest path problem, which is polynomial in time
(e.g., Dijkstra’s shortest path algorithm). For future
work, we plan on exploring the utility of more complex
LTL formulas. It is useful to note here that model check-
ing is associated with what is called the “state space ex-
plosion problem,” which usually makes it unusable for
a large system with dynamic behavior. Typically, a state
transition occurs in a Kripke model when the truth val-
ues of the atomic propositions in that state change. As
a result, computation trees that represent all possible be-
haviors of the system by enumerating states and transi-
tions for all combinations of changes of these values, can
become very large. In our case, the attribute certificates
are fixed for a particular view of the network. We do not
model the changing values of these attributes as differ-
ent states for each router. The transitions can only oc-
cur between routers that have links between them in the
real network we are modeling. Therefore, we can limit
the size of our model by number of routers, links, and
attributes in our network. In terms of model checking
overhead, we do not suffer from the state-space explo-
sion problem, and we are only limited by the complex-
ity of algorithms for verifying LTL formulas. In gen-
eral, if the length of the formula |f | is small in compar-
ison to size of the network (Kripke structure), then for
all practical purposes the model checking takes place in
asymptotic linear time with respect to the size of the net-
work. Hence we believe that the use of model checking

for computing paths according to LTL specifications can
be a powerful and efficient tool.

Manna and Pnueli [6] in their discussion on the ex-
pressive power of temporal logic discuss three useful
classes of path properties—Invariance, Response, and
Precedence. Invariance properties are true in every state
in a path. These properties are useful to model user con-
straints such as “Only route through nodes that support
IPSec.” Response properties are useful to model quan-
titative properties of bidirectional paths, e.g., in terms
of round trip latency or available bandwidth. Prece-
dence properties capture the causal relationships be-
tween properties along a path. We explore these prop-
erties in turn and show they can be specified in LTL.

3.1 Global or invariance properties

Consider LTL formulas of the form G p. G is the
“globally” operator which means that in all states along
the path, proposition p must evaluate to true. We restrict
p to propositions on the attributes. The user requires that
p must hold at all routers. The algorithm for computing
paths that satisfy G p first eliminates all nodes from the
graph (Kripke structure) where p does not hold. This
solely depends on attributes at each router, and attributes
at one router do not affect the satisfiability of p at another
router. The graph that we are left with represents the
routers that the user is willing to route through.

3.2 Response properties

These properties are of the form G (p → F q) where
F is the “finally” operator. The formula asserts that it is
always true on our path that if proposition p is satisfied
at any node, eventually proposition q will be satisfied.
This property is useful to specify bounded-response and
causal relationships between attributes. Quantitative
versions of these properties (obtained by augmenting
both the model and the temporal logic carefully with
time variables as in [2]) can be used to specify path la-
tencies and bandwidth constraints.

3.3 Precedence properties

We look at the case when certain attributes along the
path must occur in a specific order. For example, the
user may want to set up a path that goes through routers
in a non-decreasing order of classification levels. Once
a packet enters a router with high level of security, it
must not pass through a node with lower security. Con-
sider the case when routers append sensitive informa-
tion to packets. If the packet is at a certain router, it
can never contain previous data from a higher clearance
router, and hence there is no information leakage. The

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

user can specify an attribute ordering p1, . . . , pn, where
exactly one of these is true at every router. If pi and
pj occur along a path, it must be the case that pi oc-
curred before pj . This can be specified with the LTL
formula: ¬

∨
i>j F (pi → F pj). Given this specifica-

tion, we can remove all edges from the graph that vio-
late the attribute ordering. Consider an edge (s1, s2). If
i > j, and pi ∈ L(s1), pj ∈ L(s2), then we remove the
edge (s1, s2) from the graph. Hence no path in the re-
sulting graph can violate the precedence specified by the
user. Moreover, any valid path that satisfies the prece-
dence property in the original graph, also exists in the
resulting graph, and these paths are exactly those in the
original graph that satisfy the precedence property.

Note that the user can specify global and precedence
properties independently. These transformations on the
graph described above are commutative. Given global,
response, and/or precedence requirements specified by
the user, we combine the resulting graph with the trust
model described next to find paths of highest “confi-
dence.”

4 Trust model

Once a user transforms the graph (as described
above) of the network satisfying the attribute require-
ments (e.g., via the user supplied G p LTL formula or
precedence formula), the user would like to set up a
route to a destination. A naı̈ve solution would be to
obtain the shortest path (in terms of hops) to the des-
tination. However, if the network is under attack, some
paths are more trustworthy than others. For example, it
may be known that there are intruders in the system with
physical access to machines. One would like to degrade
trust in routers that have lower physical security. It may
be known that certain machines have been compromised
without knowing the specific machines. In such a case,
users may degrade trust for machines run by certain ad-
ministrators, or for those machines that are running out
of date software.

Such a scenario suggests that we integrate this notion
of threats in the graph-based formalism we proposed so
far. We propose a quantitative measure of this interplay
between threat and trust as the confidence a user has in
the validity of the attribute under question. Users can
assign confidence levels to routers as a function of one
or more of their attributes of interest.

Definition 1. Given a router s ∈ S with attributes L(s),
a user’s confidence function C : S × P(AP) → [0, 1]
returns the confidence level for a router. We abbreviate
the confidence level C(s, L(s)) of router s as cs.

The exact nature of this confidence function will de-
pend on the types of attributes and how these values

can be composed to compute the confidence value of a
path. The confidence function we choose will depend
on this composition operator as we explain in the next
section. We believe that assigning these confidence lev-
els to routers is an important area of study and propose
to work on it in the future. In the next subsection, we
discuss how we can compute paths of high overall con-
fidence based on confidence levels of routers along the
path.

4.1 Trusted paths

We refer to any path from router a to router b as an
a, b-path. We assume that the user/sender is connected
through access point a, and that ca = 1 since the user
has to use that as their first hop, and that the destination
is either b or a user whose access point is b. In either case
we treat a and b as the endpoints of communication.

Definition 2. The path confidence Cπ of an a, b-
path π is obtained by applying a combiner function
K(c1, . . . , cn) that takes all the confidence levels ci of
the n routers si along the path π from a to b (s1 =
a, sn = b), and returns a confidence value for the path
in [0, 1].

We explore different combiner functions in this con-
text. To illustrate, consider the concept of “weakest
link.” There may be routers that are highly vulnerable,
and it is extremely likely that they will be chosen for at-
tack. The path confidence in this case can be defined as
the minimum of all confidence values of routers along
the path. Here K(c1, . . . , cn) = min{c1, . . . , cn}. So
when a user needs to pick a path based on its combined
confidence value, he or she can avoid paths with the low-
est path confidence levels.

Also consider the following example. A user may
conclude that the DoS vulnerability of a router is pro-
portional to the number of incoming links. Hence the
user would like a path that minimizes the average sum
of incoming links over all routers along a path, and does
not include any nodes with very high connectivity. In
this case, the user can use a second order statistic such
as variance to decide which path has the best “Quality of
Protection” for the given scenario.

One combiner function we focus on in the next sub-
section is the multiplication function. A multiplicative
measure of path confidence can be used to model vari-
ous properties of interest to a user: probability of success
of delivery, probability of no information leakage, prob-
ability that routers along a path will not collude, etc. In
the next subsection, we explore this in some detail and
describe efficient algorithms to compute path confidence
values using a multiplicative combiner function.

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

We note that there may be policies that combine sev-
eral such models and seeks optimal paths based on sev-
eral constraints (additive, multiplicative, weakest-link,
etc.). We are currently classifying such policies and their
corresponding algorithms.

4.2 Multiplicative combiners

We consider the case when K(c1, . . . , cn) =
c1 . . . cn, the product of confidence levels of routers
along a path. This multiplicative model of path con-
fidence that we focus on, applies to confidence levels
that were computed independently along a path. In this
model, a user assigns confidence levels based on the
probability of “good things happening” at each node.
Assuming independence, the probability of the desired
property being true along the entire path is simply the
product of all the confidence levels. We now present an
efficient method for computing paths of high path confi-
dence under the multiplicative model.

The main idea behind computing paths of high confi-
dence is that by applying the correct weights to edges
in a network connectivity graph, we can use shortest
path algorithms (that use additive weights) to find paths
with highest overall confidence (based on multiplicative
weights).

Consider the directed graph G that represents the
connectivity of routers specified by the Kripke structure
M . For each s ∈ S, we now assign − ln(cs) to be the
weight of all incoming edges to s. Note that all weights
are non-negative since confidence levels are in the range
[0, 1]. We now have a weighted directed graph G. Con-
sider a source node a and a destination node b.

Lemma 1. Let s be the sum of weights on the a, b-path
π in G. The path confidence Cπ of π is equal to e−s.

Proof. Let c1, . . . , cn be the confidence levels of all
the routers in π except a. Cπ = c1c2 . . . cn since
ca = 1. Now s =

∑n
i=1 − ln(ci) = −

∑n
i=1 ln(ci) =

− ln(c1c2 . . . cn). Hence e−s = eln(c1c2...cn) =
c1c2 . . . cn = Cπ .

Note that if there exists a ci = 0, then the path con-
fidence is 0. Here, s = ∞ since − ln(0) = ∞ and
e−s = 0, and there is no discrepancy for confidence lev-
els of 0. Essentially, any path which includes a router of
0 confidence will not be chosen by the user.

Lemma 2. For any two a, b-paths π1,π2 with total
weights w1, w2, we have w1 ≤ w2 if and only if Cπ1 ≥
Cπ2 .

Proof. From Lemma 1 we have that w1 ≤ w2 ⇔
−w1 ≥ −w2 ⇔ e−w1 ≥ e−w2 ⇔ Cπ1 ≥ Cπ2 .

Theorem 1. The k shortest a, b-paths in G correspond
to the k a, b-paths of highest path confidence in G.

Proof. This follows from Lemma 2 since if we order all
the a, b-paths in G in increasing order of weight, they
are ordered in decreasing order of path confidence.

Since all edge weights are non-negative, Theorem 1
allows us to apply k shortest simple (loopless) path algo-
rithms to find cycle-free paths of highest confidence. For
example, Dijkstra’s algorithm is the special case when
k = 1 and will yield a path with maximum path confi-
dence. Several algorithms have been proposed for ob-
taining the k shortest simple paths in a directed graph.
The best known worst case time complexity of these al-
gorithms is O(kn(m + nlogn)) [11, 12]. Hershberger
et al. [5] propose an algorithm that provides a Θ(n)
improvement in most cases. For small k (for exam-
ple, the user may want the 3 highest confidence paths)
these algorithms are efficient for all practical purposes.
Hershberger et al. [5] provide results of their algorithm
for large graphs (e.g., 5000 nodes, 12000 edges) based
on real GIS (Geographic Information Services) data for
road networks in the United States.

In addition to the models we present in this section,
we argue that the ability to specify both threat and trust
relationships using a combined metric is extremely pow-
erful. We plan to study how these values can vary over
time, using sensitivity analysis, stochastic analysis and
other techniques.

5 Applications

We present three concrete examples that showcase
the benefits of our new framework. We present the first
example in more detail, and suggest two other uses.

5.1 High performance and military environ-
ments

Consider an MLS (Multilevel Security system) user
u1 with sensitivity level Confidential in compartment
{Navy}, connected at the access point s1. User u2 has
security clearance {Confidential , {Army}} and is con-
nected at access point s19. Based on u1’s clearance (u1

chooses to only reveal this, not its identity), the sys-
tem presents the user with a logical view of the network
as shown in Figure 2(a). All routers in this system are
cleared for {Confidential , {Army,Navy}}. For sim-
plicity we look at only two inherent attributes: physi-
cal security, which can be high (unshaded nodes) or low
(shaded nodes), and domain, which can be D1, D2, D3

or D4 (we only show D1 and D2 in Figure 2(a) since we

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

u1

u2

D1

D2

(a) Logical view for u1

1

2

3

4

6

7

8

9

10

11

12

13

14

16

17

18

19

u1

u2

D1

D2

1

1

1

1

1

1

1

1

0.4

0.4

0.7
0.7

0.7

0.8

0.8

0.8

0.4

(b) Resultant view based on user’s policy, including confidence
levels

1

2

3

4

6

7

8

9

10

11

12

13

14

16

17

18

19

u1

u2

D1

2

0.8 0.8

0.8

0.4

0.4

0.4
0.4

0.8

0.8
0.8

1

1
1 1

1

1

1

1

1

1
0.7 0.7 0.7

0.7

0.7

0.7

11

D

1

1

0.7

1

1

1 1

0.7 0.8
1

1

0.7

0.7

1

1

0.8

0.8

0.4

0.4

0.4

(c) Resultant digraph for use with k shortest path algorithms

Figure 2. Military network example

use them as one of the constraints later). D1 can corre-
spond to a confidential network owned by the Army for
example.

User u1 desires to communicate with u2 and deter-
mines that u2’s access point is s19. We assume a net-
work component analogous to dynamic DNS which can
respond with a user’s current access point (u2 has chosen
to register its access point with the service). Now u1 has
been informed by trusted sources that there is an intruder
physically located on the premises, and that low physi-
cal security routers should be excluded. u1 specifies the
following LTL formula G physical security = high.
This eliminates s5, s15 from the logical view and results
in the graph shown in Figure 2(b).

By means of network probes, u1 determines the
inferred attribute OS version, which can be outdated
(square nodes) or latest (round nodes). u1 assigns a con-
fidence level of 1 to all routers. Routers with outdated

operating system versions (OS version = outdated) have
their confidence levels multiplied by 0.8 since they may
be compromised. Lastly, u1 would like to avoid ma-
chines in domain D1 because of a suspected insider at-
tack in that domain. User u1 multiplies the confidence
levels of routers in this domain by 0.4. User u1 has expe-
rienced large delays when routing through D2, and de-
grades confidence in those routers by multiplying their
confidence levels by 0.7. Figure 2(b) shows these con-
fidence levels for each node. Figure 2(c) shows the
resulting digraph with multiplicative weights. As de-
scribed in Section 4.1 we replace these weights by their
negative natural logarithm, and then apply k shortest
path algorithms [5] to obtain the three paths of highest
confidence. In this example it is easy to see that the
following are paths with the three highest path confi-
dences: 〈1, 3, 7, 12, 16, 18, 19〉, 〈1, 3, 6, 11, 16, 18, 19〉,
and 〈1, 3, 6, 10, 9, 13, 17, 19〉. The first two paths have a

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

path confidence of 0.392 (with respect to the logarithmic
weights, the total weight is 0.9365), and the third has a
path confidence of 0.32 (weight 1.139).

Once these three paths are obtained, the user needs to
set up a path through the routers. This is done using a
scheme that encrypts the packet multiple times, based on
the routers in the path, similar to onion routing [7], since
public keys of routers are assumed to be well known to
u1. The user encrypts the path in reverse order using
the keys of the routers in the reverse path. Each subse-
quent router decrypts the received route setup packet to
obtain the next hop and an encrypted route setup packet
for the next router. This technique hides the path from
the routers, which only know the previous and next hops
in the path. By means of this route setup, u1 can estab-
lish the chosen path to u2. Packets from u2 to u1 are
simply forwarded on the reverse path.

5.2 Ubiquitous computing

The previous example provided a detailed overview
on how our system works in a military environment.
In this section we briefly discuss applications to ubiq-
uitous computing. Users in ubiquitous computing envi-
ronments seamlessly interact with numerous devices and
services. In such an environment discovery of services
is one of the main applications. However, with such an
environment it is very easy for the ubiquitous system to
track a user’s movements or record user patterns. Us-
ing our system as a basic infrastructure or service, users
can maintain their privacy. Users only need to reveal as
much information as necessary to get a logical view of
the ubiquitous environment. Again, this is achieved by
trust negotiation as described in [15]. In a university set-
ting, a user may want to avoid using routers or services
that belong to other research groups, and eliminate these
by using global property specifications. While connect-
ing to certain services, a user may choose to maintain lo-
cation anonymity (for example, using Mist [1]) by creat-
ing a route that is hard to trace back. The user can assign
lower confidence levels to the domains that the user does
not trust since routers within a domain can presumably
collaborate to expose the location of the user. This will
give paths of higher confidence that the user trusts for
higher location privacy.

5.3 Peer-to-peer overlay networks

We consider peer-to-peer networks where it is fea-
sible for users to obtain topological information of the
overlay. We assume the user can form a logical view
of the overlay network based on information available
to the user. The user desires to perform searches for

content available at each peer. Applications include dis-
tributed file systems, file sharing, etc. Based on at-
tributes of peers in the overlay, the user can choose
to only search for content at routers that satisfy global
property specifications. That is, the user can avoid per-
forming searches at untrusted nodes for privacy reasons.
Additionally, the user may assign lower confidence lev-
els to nodes on which it expects the search to fail. This
can be based on past performance (inferred attribute).
If certain nodes seldom have content of interest to the
user, the user can assign lower confidence levels. On
the other hand, if a biology student is searching for re-
search papers related to cell division, confidence levels
for peers in the computer science department can be de-
graded since there is a very low chance of finding useful
content. Hence the user can set up a search path with the
highest confidence, so that the probability of the directed
search succeeding is high.

6 Discussion and future work

In this paper we focus on particular LTL specifica-
tions and provide efficient algorithms for finding paths
that meet those specifications. Pnueli et al. [6] argue
that global, response and precedence properties are of
most interest as path properties, and this provides some
justification to this focus. We are currently exploring
more complex user specifications in LTL and possible
algorithms for computing such paths. We are also in-
terested in using model checkers as a blackbox. The
user can provide complex LTL formulas and the model
checker would return paths according to the specifica-
tion. Sheyner et al. [8] use a similar technique for gener-
ating attack graphs in a network, although they are sus-
ceptible to the state space explosion problem because of
the way they model attack paths. Despite its benefits,
LTL may be somewhat limiting since all requirements
do not have an equivalent LTL specification. For exam-
ple, a user may want a path that passes through a certain
threshold number of domains, which cannot be repre-
sented without quantification on the domain attributes,
which is not allowed in LTL. In anonymous routing, this
would ensure that multiple domains would have to co-
operate to expose a users location. This suggests the use
of a higher level language (possibly graphical) coupled
with efficient algorithms.

We also want to explore how a user can assign con-
fidence levels to routers through a confidence function.
We believe that this is a powerful model for intrusion-
tolerant routing in networks under attack conditions.
Users can assume a certain threat model and update con-
fidence levels of routers that are suspected of being com-
promised. Our algorithm will compute paths of highest
confidence, which can then be used for intrusion tolerant

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

routing by routing along multiple high-confidence paths.
From a usability perspective, it is unreasonable to expect
users to be experts in policy definition languages. Users
would need a more intuitive interface for making dis-
cretionary demands, which would then be translated to
LTL formulas. We defer higher-level policy languages
for future consideration.

We assume global knowledge of router connectiv-
ity within a network. While this assumption is reason-
able for private networks, a scalable solution for larger
networks may require aggregation of routers, where at-
tributes are applied to aggregates. Applying our model
to ad-hoc networks would require further consideration
based on the degree of mobility of nodes. Users may
have to work with partial information on global connec-
tivity, and would need to reestablish routes more often.

7 Conclusion

We extend the mandatory access control nature of
PBN systems by empowering users to make discre-
tionary routing choices within a network. We propose
a formal model based on Kripke structures and define a
metric we call confidence level that captures both trust
and threat attributes quantitatively. We present tech-
niques for computing routes with high path confidence
based on a user’s preferences, within the constraints of a
mandatory organizational policy, for two cases—global
and precedence specifications. Based on confidence lev-
els provided by the user, we provide a transformation of
the graph using negative logarithmic weights that allows
us to use k shortest path algorithms to efficiently obtain
paths of highest confidence.

8 Acknowledgments

We thank John Fischer, Erin Wolf and Mahesh
Viswanathan for their helpful comments.

References

[1] J. Al-Muhtadi, R. Campbell, A. Kapadia, D. Mickunas,
and S. Yi. Routing Through the Mist: Privacy Pre-
serving Communication in Ubiquitous Computing En-
vironments. In Proceedings of The 22nd IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), 2002.

[2] R. Alur and T. A. Henzinger. Logics and models of real
time: A survey. In Real Time: Theory in Practice, Lec-
ture Notes in Computer Science 600, Springer-Verlag,
pp. 74-106., 1992.

[3] R. H. Campbell, Z. Liu, M. D. Mickunas, P. Naldurg,
and S. Yi. Seraphim: Dynamic Interoperable Security
Architecture for Active Networks. In OPENARCH 2000,
Tel-Aviv, Israel, March 26–27, 2000.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[5] J. E. Hershberger, M. Maxel, and S. Suri. Finding the
k shortest simple paths: a new algorithm and its imple-
mentation. In Proceedings, 5th Workshop Algorithm En-
gineering & Experiments (ALENEX). SIAM, Jan 2003.

[6] Z. Manna and A. Pnueli. The temporal logic of reactive
and concurrent systems. Springer-Verlag, 1992.

[7] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
Anonymous Connections and Onion Routing. IEEE
Journal on Selected Areas in Communication: Special
Issue on Copyright and Privacy Protection, 1998.

[8] O. Sheyner, S. Jha, and J. M. Wing. Automated Gener-
ation and Analysis of Attack Graphs. In Proceedings of
the IEEE Symposium on Security and Privacy, Oakland,
CA, May 2002.

[9] M. Sloman and E. Lupu. Security and Management Pol-
icy Specification. Special Issue on Policy-Based Net-
working, 16(2), March 2002.

[10] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling,
B. Quinn, S. Herzog, A. Huynh, M. Carlson, J. Perry,
and S. Waldbusser. Terminogy for Policy-Based Man-
agement. RFC 3198, November 2001.

[11] J. Y. Yen. Finding the K shortest loopless paths in a net-
work. In Management Science, volume 17, pages 712–
716, 1971.

[12] J. Y. Yen. Another algorithm for finding the K shortest
loopless network paths. In Proceedings of 41st Mtg. Op-
erations Research Society of America, volume 20, 1972.

[13] S. Yi, P. Naldurg, and R. Kravets. Security-Aware Ad
Hoc Routing for Wireless Networks. Poster presenta-
tion, ACM Symposium on Mobile Ad Hoc Networking
& Computing (Mobihoc), 2001.

[14] S. Yi, P. Naldurg, and R. Kravets. Integrating Quality of
Protection into Ad Hoc Routing Protocols. In The 6th
World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI), Orlando, Florida, August 2002.

[15] T. Yu, M. Winslett, and K. E. Seamons. Supporting
Structured Credentials and Sensitive Policies through In-
teroperable Strategies in Automated Trust Negotiation.
ACM Transaction on Information and System Security,
February 2003.

[16] L. Zhou, F. B. Schneider, and R. van Renesse. COCA:
A Secure Distributed On-line Certification Authority.
ACM Transactions on Computer Systems, 20(4):329–
368, November 2002.

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04)
0-7695-2141-X/04 $ 20.00 © 2004 IEEE

