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ABSTRACT
P2P systems rely on directory services for locating peers
with the desired content and services. Directory services are
themselves decentralized, such as with distributed hash ta-
bles (DHTs) that allow for efficient locating of objects with-
out a centralized directory. As a system distributed over a
diverse set of untrusted nodes, however, directory services
must be resilient to adversarial behavior by such malicious
insiders. While redundancy-based DHTs such as Salsa and
Halo mitigate the effects of adversarial behavior, they incur
substantial overhead due to redundant lookups. We propose
Reputation for Directory Services (ReDS), a framework for
using reputation management to enhance the security and
reduce the costs of redundancy-based DHTs in the face of
insider attacks. We present ReDS designs for both Salsa
and Halo, and we show that peers can significantly boost the
success rates of directory lookups by considering past perfor-
mance. For example, our simulations show that Salsa-ReDS
can reduce lookup failure rates by up to 94%. We find that
applying ReDS effectively cuts the redundancy required by
both Salsa and Halo in half to get comparable results.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; C.2.0 [Computer-Communication
Networks]: General—Security and protection

General Terms
Security

1. INTRODUCTION
Peer-to-peer (P2P) architectures are gaining popularity

and importance for applications ranging from massive-scale
Internet content delivery to Internet telephony. For exam-
ple, content delivery networks such as Akamai already de-
liver large quantities of their traffic using a distributed net-
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work, and are extending their reach to ordinary Internet
clients using a P2P model [1]. The popular Skype Voice-
over-IP system employs a P2P model, with a global decen-
tralized user directory and calls routed through peers [9].

As a means to efficiently locate other peers and resources
in a distributed setting, P2P systems must provide direc-
tory services. As a simple example, a directory service
in a P2P file-sharing system lets a user know which other
peers have the files she wants. These directory services are
themselves decentralized, such as with distributed hash ta-
bles (DHTs) [10], which allow for efficient locating of objects
without any centralized directory.

Since P2P architectures inherently must distribute func-
tionality to a diverse set of peers across various network
domains out of the control of any single authority, these
peers cannot be fully trusted. The lack of a central author-
ity for fundamental tasks such as routing and directory ser-
vices means that the network must be resilient to malicious
insiders to be usable by honest participants. Numerous rep-
utation systems have been proposed to detect misbehaving
peers and punish them or block them from using the the sys-
tem. Hoffman et al. [4] provide an extensive survey of such
systems. Most of these systems are focused on application-
level information, such as the quality of resources (e.g., files)
that a peer provides. Directory services, however, form the
backbone of P2P systems. An unreliable directory service
can render the entire P2P network unusable since adver-
saries can prevent wholesale access to files, or even selec-
tively censor access to specific data. Furthermore, directory
services have unique properties with respect to reputation
that make them worth investigating separately from general-
purpose reputation systems. We propose Reputation for Di-
rectory Services (ReDS), a framework for using reputation
management to enhance the security of locating information
in distributed systems.1

Sybil-detection approaches based on social networks [3,13]
are important to ensure that the number of peers controlled
by the attacker is limited. Unfortunately, social engineer-
ing can allow an attacker to connect to many points of the
underlying social network and use those connections to re-
main undetected despite controlling a fraction of all peers.
Against such an attacker, and as a way to provide defense in
depth, the P2P directory service should be made resilient to
attack. Robust DHT systems, such as Salsa2 [8] and Halo [5],

1We presented the high-level ReDS idea in the context of
Salsa in a 4-page work-in-progress paper [12].
2Although Salsa has been attacked for use as an anonymity



are an important first step towards secure directory services.
They use redundancy in the lookup process to ensure that
peers can find the correct information with high likelihood,
even when a subset of corrupt nodes manipulate many of
the lookups. These systems, however, also require a rel-
atively high overhead — up to O(log n) times the cost of
non-redundant lookups are needed to achieve high reliability
when the attacker controls a modest fraction of the peers [5].

1.1 Contributions
Our first contribution is to show that reputation can be

applied to robust DHT-based directory services to improve
lookup success rates. Robust DHT systems compare the
different results from redundant lookups to pick the closest
match. Prior to this work, DHT systems did not use this
information to improve their future results. For example, if
five out of the ten lookups returned the incorrect result, this
information can be used to avoid future lookups that share
similar paths to the failed paths. This allows us to generate
reputation based on first-hand observations.

Our second contribution is to detail how we apply this in-
formation to get substantially improved lookup performance
beyond what simple reputation can provide. We apply ReDS
to Salsa and Halo (we briefly describe these systems in §3).
In particular, we give a model for directory services and the
attacker (§2) and then present our designs for ReDS in a
static system (§4.2) and then in a dynamic system (§4.3).
These designs leverage the specific structure of DHTs to
generate more detailed reputation information. DHTs are
structured specifically so that lookups are routed through
the network in a predictable fashion. Thus, based on the
success or failure of various lookups, the original querier can
make inferences about the nodes along the lookup paths.

Our third contribution is to show, through detailed sim-
ulations (§5.1), that ReDS peers can substantially improve
their resilience to attacks with the same amount of lookup
overhead. In Salsa-ReDS, for example, we can cut the failure
rate by up to 94% in reasonable scenarios (§5.2).

Finally, we discuss some of the key issues that we have not
fully addressed in this paper (§6), such as how ReDS handles
adaptive adversaries and how reputation information could
be shared between peers to further enhance performance.

2. SYSTEM AND ATTACK MODELS
In this section we describe the high-level system model for

distributed directory services followed by the attack model
we assume in this paper.

2.1 System model
The broader category of directory services includes all sys-

tems that provide a means for queriers to find information
that enables them to access resources in the system, includ-
ing all types of data and services. The Domain Name Service
(DNS) is a well-known example of a directory service that
translates human-readable addresses into IP addresses. A
distributed directory service is a P2P directory service that
stores information on the various nodes and adapts dynam-
ically to nodes joining and leaving the system. Such P2P
directory services are implemented using distributed hash ta-
bles (DHTs), and thus DHTs are the focus of our study. In

system [2,7], it remains a viable robust DHT. The attack on
lookups presented in [11] is easily mitigated via a handshake
with the resulting peer.

particular, we focus on structured DHTs with redundancy
such as Salsa [8] and Halo [5], both of which we describe
in Section 3. These systems have many desirable features
for the ReDS framework and provide a rich environment to
study these features in detail.

DHTs support a distributed implementation of put and
get operations, in which objects are indexed by keys. For
example, objects can be inserted into the directory using
put(key), and retrieved using get(key). In both operations,
the directory service must first map the key to a particular
owner o in the system. Once o has been located, the resource
can be inserted or retrieved from o. DHTs such as Salsa
and Halo provide a distributed operation called a lookup,
in which the requesting peer calls lookup(key) to find the
owner o of key. Thus, lookups are the fundamental low-level
operation supported by DHTs and enable higher-level direc-
tory services to be implemented efficiently in a distributed
setting. Lookup operations proceed by nodes iteratively (or
recursively) looking up their routing tables and advancing
the lookup operation closer to the destination. We call the
nodes that route a lookup operation fingers. A lookup in a
DHT with n total nodes involves contacting O(log(n)) fin-
gers. If no nodes in the system are malicious, lookup oper-
ations succeed with high probability (transient failures may
occur when nodes join or leave the system).

Malicious nodes in the system may attempt to subvert
lookup operations, e.g., by dropping, or misdirecting lookup
operations. In this case, DHTs like Salsa and Halo use re-
dundant routing strategies to improve the likelihood of suc-
cess. Querying nodes have a list of helper nodes that are used
to initiate the redundant lookups. In Salsa, they are called
local contacts, while Halo uses the querying nodes’ fingers
as helper nodes. The helper nodes may return different val-
ues to the querying node. In DHTs like Salsa and Halo, the
ownership relation is defined as the clockwise closest node to
the object’s key in the circular ID space. Thus, even if one
redundant lookup returns the correct result, by taking the
closest answer to the target search key, the querying node
will obtain the correct owner.

Tran et al. propose an attack on Salsa in which the at-
tacker provides an answer that is closer to the target than
the real owner [11]. This attack is easily mitigated by having
the requesting peer retain the search results until the owner
is verified through a simple handshake protocol; each closest
result is tested until the true owner is discovered.

2.2 Attack model
We study ReDS in the context of a malicious insider who

seeks to manipulate directory service lookups. The adver-
sary’s goal could be to cause peers to use attacker-controlled
nodes for services and information, for example as a way to
spread spam or malware or to exploit peers requesting ser-
vice. It may, however, simply be a denial of service strategy
in which lookup results lead to invalid or incorrect nodes.
To achieve these ends, the attacker’s most effective strategy
against a highly distributed network is to control a large
number of peers (or virtual peers by controlling its loca-
tion in the address space) in the system. Social-network-
based anti-sybil techniques such as SybilInfer [3] and Sybil-
Limit [13] may be employed to prevent the number of mali-
cious peers from growing without bound. Nevertheless, we
expect that through social engineering, the attacker may be
able to inject a constant fraction of the total number of peers
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Figure 1: Salsa Virtual Tree: Node 15 in group
G1 has global contacts in groups G0, G2, and G6.
Arrows on the bottom show a recursive lookup
path; the lines get darker as they get closer to the
target.
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Figure 2: Halo Knuckles: Using the Halo tech-
nique, node v7 performs three redundant “knuckle
searches” (each of these is a regular Chord lookup,
conceptually indicated with wavy arrows) yielding
k1, k2, k3, which in turn provide the location of v3.

into the network without detection. We expect such an at-
tacker to both directly manipulate lookup results as well as
try to deceive any attempt at using reputation or malicious
node detection. Thus, we must devise system designs that
are robust to both types of attack.

In particular, we assume that once a lookup operation
traverses through a malicious node, it will manipulate the
subsequent lookup operation to map the lookup key to the
closest malicious node rather than the true owner. For now,
we also assume that the attacker will always subvert lookup
operations, and we leave more sophisticated attack models
to future work. As we will see, our ReDS approach keeps
track of which helper nodes perform well for lookups to what
regions, thus greatly mitigating such attacks. As a result,
ReDS forces attackers to focus on more targeted attacks.
Although we expect that adversaries who attack only part
of the time will be reflected in reputation scores, we leave the
study of such attack models to future work (see Section 6).

3. SALSA AND HALO
In this section, we briefly describe the Salsa and Halo

systems, so as to better describe how we apply ReDS to
each of them (see Section 5). We give a concrete example for
Salsa, and provide a high-level description of Halo assuming
familiarity with Chord [10].

3.1 Salsa
Salsa is a fully distributed directory service for node dis-

covery in anonymity systems [8]. Salsa is a structured P2P
system, similar to Chord [10], in which there is an ID space
that is mapped to by a consistent hash function (e.g. SHA-1
mapping to a 160-bit ID space). The Salsa architecture is
based on a virtual balanced binary tree, as depicted in Fig-
ure 1. Nodes are placed into groups created by dividing the
ID space into contiguous regions — group G1 in the figure
contains nodes with IDs in the range 8 to 15. All nodes know
the peers in their group (their local contacts), as well as a

small set of global contacts that are outside of their group. In
particular, global contacts are selected randomly, but based
on the virtual tree structure, as indicated by the colors in
Figure 1. By using the global contacts in a recursive lookup
process, as depicted by the arrows in the figure, a lookup
will reach a member of the target’s group in O(log2 G) steps,
where G is the number of groups in the system. To protect
against malicious nodes manipulating lookups, Salsa uses re-
dundant lookups, in which the requesting node asks a subset
of its local contacts to perform lookups for the same target.
Randomness in global contact selection provides path diver-
sity, which prevents the redundant lookups from using the
same node in the lookup path, since using the same node
would negate the benefits of redundancy. A useful benefit of
the structured ID space is that, when a requesting node re-
ceives conflicting results, the actual target owner is the clos-
est to the target by definition. These benefits make Salsa a
potentially useful directory service for many applications in
which reliable service is needed, not just for anonymity.

3.2 Halo
Chord [10] is a well-known structured P2P system with

good stability properties under independent node failures.
Unfortunately, locate operations are easily subverted with
adversarial behavior in Chord. For example, in a network
with 10,000 nodes, just 10% malicious nodes can result in
50% failed lookups [5] (where the target key belongs to a
non-malicious node). A naive redundant search in which,
for example, a node v initiates five different searches for tar-
get t, is not particularly effective either, because the struc-
ture of Chord forces these paths to converge closer to the
target. Even as high as 13 redundant searches in this case
would still result in 20% failures in Chord. Halo [5] makes
the simple observation that each node v occurs in O(log n)
other nodes’ finger tables. We call those nodes the knuckles
of v. Thus searching for those knuckles instead of the actual
target effectively“disentangles” the redundant searches. Ka-



padia and Triandopoulos [5] show that the knuckle locations
can be accurately predicted, and lookups for these knuck-
les need at most one additional hop than a regular Chord
lookup. They also show that knuckles exist 75% of the time
at the predicted locations (this is an inherent consequence
of the structure of Chord). While 25% of the redundant
lookups directed at knuckles are destined to fail, the per-
formance of Halo is still significantly better than Chord. In
this example, less than 2% lookups fail with 13 redundant
lookups.

3.3 Limitations
Salsa and Halo both use redundancy and path diversity

to reduce lookup failures. A problem with these systems,
however, is that lookup paths grow with the size of the sys-
tem. Although this growth is merely logarithmic, it means
that very large systems have paths with non-trivial lengths
(e.g., for a system with 100,000 nodes, paths will be approx-
imately 5.5 and 8.3 peers long for Salsa and Halo, respec-
tively). If any of the peers on such a path is controlled by
the attacker, the result from that lookup path will be cor-
rupted, so longer paths are inherently less secure. Robust
DHTs compensate for this by increasing redundancy; while
sufficient to provide robust lookups, this adds greatly to the
system overheads. For example, achieving high robustness
requires O(log n) times as much communication in Halo for
lookups than in Chord.

4. REPUTATION FOR DIRECTORY SER-
VICES

We now present the design of Reputation for Directory
Services (ReDS). We first give a high-level overview of the
design. We then describe the ReDS design in detail for a
static system. Finally, we present a modified system for a
dynamic environment in which the peers join and leave.

4.1 ReDS Overview
The first intuition behind ReDS is that robust DHT sys-

tems use redundant lookups (initiated through helper peers)
that can be used to distinguish good lookups from bad ones.
In particular, such systems rely on the fact that, among the
IDs returned from a redundant lookup, the ID closest to the
target is a more accurate response than any other returned
ID.3 We present three possible ways that a requesting peer
can use this information:

1-Boost: The requesting peer can mark all the helper
peers who provide the closest ID as slightly more reliable
than the helper peers who provide inaccurate responses. Af-
ter a number of lookups, the most reliable helper peers will
be found and used. In other words, the requesting peer gains
confidence that the first hop in a lookup is honest. We call
this approach 1-Boost because the success rate of a lookup
is boosted with one honest node. The major drawback of
1-Boost is that the reliability of a helper peer depends not
only on the helper peer itself but on all of the fingers it uses
along the various lookup paths. Thus, a perfectly reliable
and honest helper peer may be marked as unreliable, when
it can provide useful lookups along some paths.

2-Boost: With 2-Boost, for each helper peer, the request-
ing peer maintains a score for each corresponding entry in

3Again, we note the requesting peer must verify the result
by performing a handshake with the peer owning the ID.

the helper peer’s routing table. Depending on the lookup
key, the requesting peer can estimate which finger was used
by the helping peer, and score that finger accordingly. On
subsequent lookups, the requesting peer can pick the right
helpers that maximize the chances of a successful lookup
through reputable fingers. We call this approach 2-Boost
because it aims to choose lookup paths where the first two
nodes in the path are honest.

Adaptive-Boost: The final step is to generalize 1-Boost
and 2-Boost to the entire lookup path. In this approach, the
requesting peer can estimate the path taken to any possible
target region and maintains reputation scores for all nodes
in the DHT based on whether or not lookups through those
nodes succeeded. Of course, this would result in a large data
structure, and it would take a huge number of lookups to ob-
tain enough information about all possible paths. Adaptive-
Boost (A-Boost) therefore estimates the reputation of nodes
as far in the path as possible, as long as there are enough
observations at that depth. We define a parameter γ as
the minimum number of observations required for the given
depth to be used in A-Boost.

A-Boost can effectively “shorten” the lookup path with
respect to lookup reliability. Intuitively, the more lookups
that are done, the more likely it is that a future lookup
will share more of the path with prior lookups. If the prior
lookups are a good predictor of future performance, this will
allow the requesting peer to identify reliable sub-paths or
prefixes (the latter part of the path remains unpredictable).
The requesting peer can then select helper nodes so as to use
those reliable sub-paths (A-Boost) more often than unknown
or poorly-performing sub-paths.

4.2 Static ReDS
We now describe more specifically how to implement

ReDS with A-Boost in a static environment, in which peers
remain in the system nearly all the time. While the static
environment is not very realistic in most large P2P systems,
it allows us to analyze and evaluate ReDS in more detail.
We describe how ReDS can be implemented in a dynamic
environment, i.e., one in which peers do leave and join the
system, in Section 4.3. To model how ReDS with A-Boost
operates, we use a reputation tree. For each helper node, the
requesting node stores its scores in a tree that approximates
the paths used in lookups by that helper node. The ID space
is divided into contiguous regions called chunks according to
the nodes that will be on the path for any lookup into that
chunk. For simplicity, we assume that each lookup follows
a path in a balanced binary tree from the root to one leaf,
and the leaves represent 2m chunks, for some integer m.

An example of how the chunks are aligned with the fingers
(fi) of a finger f is shown in Figure 3—each cell represents
one chunk. For example, searches to the first chunk will go
through finger f1, and searches to chunks 5–8 will go through
finger f4. Because we are using 2m chunks (for some integer
m), we can further align the ID space accurately down the
chain of fingers by recursively splitting up these ranges. For
example, the second column shows the fingers and chunks
for f5 as f5,1, f5,2, f5,3, f5,4. The figure also shows the fin-
gers for f5,3 as f5,3,1, f5,3,2. A lookup from f to the chunk
marked with the second ’x’ is expected to traverse the sub-
path f, f5, f5,3, f5,3,2. If a larger number of chunks are used,
longer subpaths can be estimated.

The reputation score for helper node f for a particular tar-
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Figure 3: Example reputation tree. fi,.. denote
finger-covering address chunks (shown as boxes).
’x’s mark examples of the lookup targets and high-
lighted boxes are chunks that would be combined
if the number of observations in the smaller com-
bination (shown in projections to the right) is in-
sufficient. The number (v/y) in each box is the ra-
tio of total recorded successes (v) to total recorded
lookups (y) for that chunk.

get chunk is simply the number of successful lookups divided
by the number of attempted lookups at the lowest level in
the reputation tree with enough data, i.e. with at least γ
observations. For example, using the chunk table shown in
Figure 3, if γ = 5 and the lookup target is in chunk 12, the
total number of observations (= 1 < γ) is not enough. The
algorithm then steps back one level from f5,3,2 to f5,3. The
lookup records in chunk 11 and 12 will be combined since
they are covered by f5,3, which yields three records which is
still less than γ. To get more observations chunk 9 to 16 will
be combined as they are covered by f5 which is a parent of
f5,3. At this point enough observations (= 9) are obtained.
The algorithm then produces 4/9 = 0.44 as a reputation
value for this finger. In the case that the total observations
from all chunks is still less than γ, the reputation value of
the finger is set to 0.5.

We observe that, in general, the reputation tree may not
be a balanced binary tree. In this case, ReDS requires the
tree of possible lookup paths have a maximum depth (i.e.
maximum path length) of O(log(n)) hops with no greater
than O(log(n)) fanout at each level. ReDS also requires the
ID space can be divided into progressively smaller chunks
that map to the possible lookup paths. Any robust DHT
that fulfills these requirements in a static environment will
provide enough lookups for creating a useful reputation tree.
Given such a tree, there are myriad ways to calculate rep-
utation scores and use them for selecting helper peers. We
propose the lookup success rate for the lowest relevant sub-
tree for which the helper peer satisfies the γ threshold can
be used as the total reputation score for the helper node
for that lookup. Then the R helper nodes with the highest
scores are selected for the redundant lookup.

Salsa-ReDS. Applying ReDS to Salsa can be done by map-
ping the reputation tree to the Salsa virtual tree. Since the

Salsa tree is also a balanced binary tree with groups as the
leaves, this mapping is straightforward. However, a single
real node may be represented by several virtual nodes in the
tree. For example, in Figure 1, a lookup through helper peer
15 for an ID in group G6 will have three virtual nodes, but
only one real peer (52) in the path. The requesting node will
still get accurate reputation information about the path over
time, but malicious nodes may not be detected as quickly as
they would if the true path was known.

Halo-ReDS. Applying ReDS to Halo is similar. One differ-
ence with Salsa is that the fingers may not line up exactly
to chunk boundaries in the ID space, so the mapping to the
reputation tree is only approximate. However, as the num-
ber of nodes increases, the number of boundary cases will be
negligible. Additionally, unlike Salsa, in which all redundant
lookups have the same target t, Halo’s redundant lookups
go to the various knuckles of t, and thus each lookup has a
different target. Therefore, during scoring, the reputation
tree for a helper (finger) node is updated based on the spe-
cific target for each lookup. For each lookup of target t,
a finger with the highest reputation value based on the t’s
knuckle as a target is selected for the knuckle. Once a finger
is selected it is removed from the selection pool of that re-
dundant search. The process is repeated until R fingers are
selected for the R knuckles.

4.3 Dynamic ReDS
In large P2P systems, peers generally leave and rejoin the

system at irregular intervals. This churn makes relying on
predictions based on past behavior inaccurate at larger time
scales. The attacker can also modulate the behavior of his
peers to manipulate the reputation system. In ReDS, we
mitigate these risks in two ways. First, we make the rep-
utation scores follow an exponentially weighted moving av-
erage, so as to balance between the most recently observed
behavior and longer-term behavior. Second, we increase the
amount of exploration to ensure that the requesting peer has
a diverse set of information about potential helper peers.

Moving Average. We first describe our use of an expo-
nentially weighted moving average. Let r(hi, t) be the repu-
tation score for helper peer hi after t lookups. At time t+1,
the requesting peer performs a lookup, for which helper node
hi provides a result that we describe with random variable
X. X = 0 if the lookup through hi fails and X = 1 if
the lookup succeeds. The requesting node then updates the
reputation score as:

r(hi, t + 1) = αX + (1− α)r(hi, t).

Note that in a static system, this calculation generates rep-
utation scores that oscillate near the score that would be
given by taking the success rate. An initial reputation score
has to be set for each node, e.g. r0 = r(hi, t = 0). r0 could
be set according to the expected level of misbehavior or op-
timistically set to r0 = 1.0. ReDS should not be used with
a pessimistic setting such as r0 = 0.0, as the attacker peer
who provides a single good lookup result will have a higher
reputation than any unused nodes.

This simple approach allows the reputation score to adapt
to changes in the lookup path or in the behavior of any given
peer. Further, the system can be tuned to the system’s
relative dynamism by changing the value of α. We can set α
higher for more dynamic systems to emphasize more recent
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behavior, and lower in less dynamic systems to make better
use of long-term information on peer reliability. α should
never be set too low, however, as the attacker could take
advantage of this to manipulate the system, without the
system being responsive enough.

Enhanced Exploration. We now turn to the balance of
exploration and exploitation. In Static ReDS, we emphasize
exploitation of reputation information for the best lookup
results. In dynamic systems, however, we must ensure that
there is sufficient reputation information for a larger set of
helper peers. When exploitation is high, relatively few peers
are used for any given subtree, maximizing the chances of
getting a good path. This means, though, that the loss of a
small number of highly reputable helper peers or changes in
their paths could cost the requesting peer much of reputa-
tion information that has been built up about those paths.
The relative lack of information about other helper peers
leaves the requesting peer without enough information to
make good selections. To provide a balance between explo-
ration and exploitation, we propose to select from all avail-
able helper peers, while probabilistically biasing the selec-
tion to more reliable peers.

In particular, we use the following mechanism to create a
probability distribution for selecting helper peers. Consider
helper peers hi, for i = 0, 1, . . . m − 1, each with reputa-
tion score r(hi, t). We take the sum S =

Pm−1
i=0 r(hi, t).

Then we define a probability value p(hi, t) = r(hi, t)/S
as the probability of selecting helper peer hi. Note thatPm−1

i=0 p(hi, t) = 1.
For more flexibility in the balance between exploration

and exploitation, we can calculate a modified reputation
score r′(hi, t) = f(r(hi, t)) used to calculate the p(hi, t) val-
ues. We propose the function f(x) = xβ , where β is the
exploitation parameter, a value that dictates the amount of
exploitation by increasing or decreasing the relative differ-
ences between scores before they are used to created the
probability distribution.

5. EVALUATION
We now present results from extensive simulations of

Salsa-ReDS and Halo-ReDS. We first describe our experi-
mental setup, then present the simulation results.

5.1 Experimental setup
We built simulators for Salsa-ReDS and Halo-ReDS in

Java. In static mode, both simulators operate with a fixed
set of attackers and nodes, with static routing tables. Our
implementation of Salsa-ReDS supports continuous time
simulation, enabling us to study a dynamic system in which
nodes join and leave the system over time.

All our simulations were run for networks with 10,000
nodes. Each data point in our graphs corresponds to an av-
erage value over 100 different instantiations of the DHT. In
each instantiation, a node was selected as the querying node.
If a reputation system is present, the node first performed r
training lookups to build its reputation system. Then 1,000
lookups were performed without updating the reputation sys-
tem, and only the results from the lookup without updating
the reputation system are used to measure the system per-
formance. This approach allows us to take a snapshot of the
system after the r training lookups, rather than collecting
lookup outcomes while reputation systems are still adapting.

5.2 Simulation Results

Boosting comparison. Figure 4 compares regular Halo’s
performance with 1-, 2- and A-Boost algorithms. The simu-
lations were run using a redundancy of four and 1,000 train-
ing lookups. The plot shows that A-Boost significantly im-
proves Halo’s lookup failure rate and consistently performs
better than 1-Boost and 2-Boost, as expected. For example,
with 15% malicious nodes in the network, Halo fails 27.4%,
1-Boost 16.8%, 2-Boost 12.6%, and A-Boost 8.3% of the
time. With 30% malicious nodes in the network, the failure
rate increses to 82.6% for Halo, 64.3% for 1-Boost, 56.6%
for 2-Boost, and 53.7% for A-Boost.

The effect of training time on performance. Figures 5
and 6 compare the performance of “Simple” Halo and Salsa,
respectively, with A-Boost applied to both systems. We
show results for a redundancy of four after 100, 200, 500
and 1,000 training lookups. The graphs shows that the per-
formance of A-Boost depends on the amount of information
collected. For example, in Salsa, when the fraction of ma-
licious nodes is 0.3 (30% of nodes are bad), A-Boost with
100 training lookups reduces the failure rate by 75%, while
A-Boost with 1000 training lookups reduces the failure rate
by 94%. Note that the latter is actually a 77% decrease over
the former, from 7.4% failures with 100 training lookups to
just 1.7% failures with 1000 training lookups. A-Boost does
especially well at providing high assurance. For example,
in Salsa with 15% malicious nodes, Salsa fails in 6.6% of
lookups but fails in only 0.6% of lookups using A-Boost af-
ter 100 training lookups. We did not observe any failures
after 1000 training lookups.

In Figure 6, we show results for Halo with A-Boost at
the same redundancy, even though the locate failure rates
are relatively high, to illustrate a lower assurance scenario.
A-Boost continues to provide substantial benefits.

The effect of redundancy level on performance. Fig-
ures 7 and 8 compare the performance of Simple Salsa and
Halo, respectively, with performance of both systems using
A-Boost under different levels of redundancy. We simulated
both systems with the following parameters: redundancy of
3, 5, 7 and 10; 100, 200, 500, and 1,000 training lookups; 25%
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Figure 5: Locate failure rates for Simple Salsa and
Salsa-ReDS with increasing training lookups.
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Figure 6: Locate failure rates for Simple Halo and
Halo-ReDS with increasing training lookups.
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Figure 7: Locate failure rates for Simple Salsa and
Salsa-ReDS with increasing redundancy for 25%
colluding nodes.
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Figure 8: Locate failure rates for Simple Halo and
Halo-ReDS with increasing redundancy for 15%
colluding nodes.

colluding nodes for Salsa and 15% colluding nodes for Halo.
Figure 7 shows that for Salsa with A-Boost after just 100
training lookups, we get almost the same performance for
a redundancy of three as Simple Salsa with a redundancy
of seven. After 500 training lookups, Salsa with A-Boost
performs the same at redundancy three as Simple Salsa at
redundancy ten. Halo shows similar results.

Dynamic environment. Figure 9 shows how A-Boost
with moving average scoring and more exploration performs
in a dynamic environment. The simulation has nodes leav-
ing and joining the system at approximately the same rate
as the requesting node makes lookups, i.e. one node leaves
and one node joins on average for every lookup. We set
the moving average weight α = 0.5 and set β = 1.0 in the
exploratory request scheme. The other parameters are the
same as in Figure 5. We find that A-Boost also performs well
despite the volatility in the system. As should be expected,
since A-Boost must balance exploitation and exploration,
the results are not as good. For example, with 30% attack-
ers, the failure rate after 100 lookups is 11.6%, as opposed
to 7.4% in the static system. Nevertheless, the results still
show a substantial improvement over Simple Salsa.

6. DISCUSSION
Adaptive adversaries. Currently we assume that adver-
saries try to subvert all lookups. While we believe that our
scheme will also effectively point out adversaries that are
malicious for some fraction of the time (e.g., the adversaries
may try to degrade the service of the DHT by attacking
20% of the time instead of 100% of the time as we currently
assume), this hypothesis remains to be validated. We note
that the attacker can only evade detection by substantially
reducing his attacks. For example, if the attacker attempts
to build up reputation, he must provide accurate results.
Then his peers’ reputation will quickly degrade relative to
honest peers once his attack begins, as long as we apply
Dynamic ReDS with appropriate parameters. We also note
some adversaries might target certain types of content, and
thus behave normally except for when queries are made for
certain types of content. We believe it is possible to extend
our technique to build reputation for types of content and
other possible targets.

Coordinated Attacks. An attacker may attempt to de-
termine when he has a good chance to control all redundant
copies of the same lookup and only modify the lookup results
when he will be successful. While this may require real-time
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Figure 9: Comparing Simple Salsa and Salsa with A-
Boost in the dynamic environment for redundancy
4 under different percentages of colluding peers.

coordination, it is a threat to undermine ReDS. This threat
can be mitigated by conducting the redundant lookups in
sequence, rather than in parallel. This requires the attacker
to decide at the first lookup whether to attack or not. The
additional delay due to this technique can be partially offset
in some applications by performing lookups in advance. It
may also be possible to tradeoff between security and per-
formance by conducting lookups partially in parallel. Since
the attacker can attempt to delay the early lookups to gain
an advantage, unusually slow lookups can be used as part of
the reputation score.

Shared reputation. In this paper we study how peers
can boost the success rates of their lookups by maintaining
only first-hand reputation information. In particular, nodes
do not share second-hand reputation information with other
nodes and, as demonstrated, must perform several training
lookups each to build up reputation effectively. As Hoffman
et al. note [4], there may often be insufficient data for repu-
tation when only first-hand information is available. Lagesse
et al. combat this problem with exploratory requests, in
which the requesting peers asks for irrelevant and verifiable
information purely to build reputation scores [6]. While ex-
ploratory requests may be necessary in some systems, we
note that redundant requests in robust P2P systems pro-
vide a large pool of verifiable requests with no additional
overhead just for building reputation scores.

In the future, we plan to explore strategies to share such
reputation information to potentially lead to faster conver-
gence of reputation and possibly drastically reduce the num-
ber of training lookups. Since we assume adversarial set-
tings, a reputation sharing scheme would have to be robust
against adversaries who can falsify reputation information.

7. CONCLUSIONS
In this paper, we propose Reputation for Directory Ser-

vices (ReDS), a general framework for reputation manage-
ment to enhance the security and performance of robust dis-
tributed hash tables (DHTs) in the face of malicious insid-
ers. We describe how to apply ReDS to two DHTs, Salsa

and Halo, and show through simulation and analytical anal-
ysis that Salsa-ReDS and Halo-ReDS both perform signifi-
cantly better than without ReDS after as few as 100 training
lookups. We believe that the ReDS framework represents a
significant step in improving the robustness of P2P systems
and that more can be to build on this design.
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