
ReDS: A Framework for
Reputation-Enhanced DHTs

Ruj Akavipat, Mahdi N. Al-Ameen, Apu Kapadia, Zahid Rahman, Roman Schlegel, Matthew Wright

Abstract—Distributed Hash Tables (DHTs), such as Chord and Kademlia, offer an efficient means to locate resources in
peer-to-peer networks. Unfortunately, malicious nodes on a lookup path can easily subvert such queries. Several systems,
including Halo (based on Chord) and Kad (based on Kademlia), mitigate such attacks by using redundant lookup queries. Much
greater assurance can be provided; we present Reputation for Directory Services (ReDS), a framework for enhancing lookups in
redundant DHTs by tracking how well other nodes service lookup requests. We describe how the ReDS technique can be applied
to virtually any redundant DHT including Halo and Kad. We also study the collaborative identification and removal of bad lookup
paths in a way that does not rely on the sharing of reputation scores, and we show that such sharing is vulnerable to attacks that
make it unsuitable for most applications of ReDS. Through extensive simulations, we demonstrate that ReDS improves lookup
success rates for Halo and Kad by 80% or more over a wide range of conditions, even against strategic attackers attempting to
game their reputation scores and in the presence of node churn.

Index Terms—peer-to-peer; DHTs; security; reputation; distributed systems; systems and software; reliability, and availability

F

1 INTRODUCTION
Over the past several years peer-to-peer (P2P) systems have
been gaining popularity and mainstream acceptance. For
example, Skype, the popular P2P-based system, had 55
million concurrent online users in April 2013.1 BitTorrent
(http://www.bittorrent.com/) and even botnets are large P2P
systems that must achieve decentralized coordination to
locate resources. For example, in Skype one must be able
to locate the current IP addresses of contacts, and in a
distributed storage system one must be able to locate the
IP address of a node hosting a particular file. One class
of solutions called distributed hash tables (DHTs) maps
resources onto nodes in the P2P network and provides a
‘put-get’ abstraction where resources can be stored (put) in
the network and subsequently retrieved (get). The key idea
in DHTs is that each peer maintains a routing table with
only a few entries and yet any resource can be located by
routing queries through a few nodes, where “few” usually
corresponds to a number logarithmic in the number of
nodes in the network. Chord [1], CAN [2], Pastry [3], and
Kademlia [4] are examples of DHTs with these properties.

DHTs provide several important properties, such as scal-
able location of nodes and services, but do not protect
against malicious peers manipulating lookups, the opera-
tions used to locate resources in the system. For example,
an attacker may want to undermine the system’s operations
by providing fake lookup results for non-existent peers or to
make his own peers the end point of lookups so as to pollute
the network’s files and services. Such an attacker can easily
manipulate much of the system’s activity. In Chord, for
example, only about 10% of malicious nodes in the network
can subvert more than 50% of the searches [5]. Halo is a
system that exploits the deterministic mapping of routing-

1. Skype Numerology. http://skypenumerology.blogspot.com/

table entries to nodes in Chord to provide a ‘high-assurance
locate’ through redundant searches [5]. Several other DHTs,
such as Salsa [6], Cyclone [7], and NISAN [8] also utilize
redundant searching to tolerate malicious nodes in the
network. Kad (based on Kademlia) is an example of a non-
deterministic DHT that also incorporates redundancy into
the protocol; routing-table entries are a function of nodes
encountered in the system and are not easily predictable.

While all these techniques are able to improve the
success of lookups by a combination of redundancy and
diversity of the redundant lookup paths, they still allow a
non-trivial failure rate while incurring substantial overhead
for redundancy. For example, Halo still has a failure rate
as high as 5–6% for 20% malicious nodes utilizing a
logarithmic number of redundant lookups in the size of the
network (e.g., 13 lookups in a network of 10,000 nodes).
We show that Kad has a non-trivial failure rate of 17–21%
with only 10% malicious nodes, even with high redundancy.

We investigate an approach to improve DHT lookups
in the face of malicious peers. Our central observation is
simple: if a node uses redundant lookups and tracks which
nodes gave accurate results, then it can use this information
to improve the success rate of lookups that traverse it.

Our design approach based on this observation, Repu-
tation for Directory Services (ReDS), includes two novel
features. First, the querying node uses the redundancy in the
lookups and structure of the DHT to infer the honesty and
reliability of nodes throughout the lookup path, even though
direct observation is not possible. Second, peers employ
collaborative boosting, in which each node involved in the
lookup can improve the success of the route by picking the
next hop based on a form of constrained local boosting.

We note that quite a bit of work has been done on P2P
reputation systems (Hoffman et al. provide an extensive
survey [9]). However, this prior work mainly addresses the

Apu Kapadia
This article (preprint) has been accepted for publication in a future issue of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. The official preprint is available at http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.231.

http://www.bittorrent.com/
http://skypenumerology.blogspot.com/

2

‘free-rider problem’ in which some users unfairly use re-
sources provided by peers without providing any resources
themselves. This issue is orthogonal to our work, which
instead leverages reputation to detect malicious behavior
that aims to undermine DHT routing. While we are able to
leverage some of the findings of other work on reputation
systems, identifying malicious behavior in the DHT routing
layer presents unique design challenges that we address.

Contributions. Preliminary results on ReDS were pub-
lished as a work-in-progress paper examining ReDS in the
context of Salsa [10] and a workshop paper examining
Halo-ReDS under a limited adversary model [11]. Here we
make the following additional significant contributions:
• We show that reputation can be applied to a variety

of redundant DHT-based directory services to improve
lookup success rates. We specifically describe Halo-ReDS
and Kad-ReDS, which are implementations for Halo (a
deterministic DHT) and Kad (a non-deterministic DHT).
• Building on our approach of using a reputation tree to

make statistical inferences about where malicious nodes
reside in the DHT, we show how nodes along a lookup
path can make use of their local reputation trees for
collaborative boosting. We show a dramatic improvement
in success rates for this mode.
• Through analysis and simulation, we study the behavior

of Halo-ReDS and Kad-ReDS under adaptive adversaries
who attack only some fraction of the time in an effort to
game the reputation system. In particular we show that
attackers are limited to attacking at a low, ineffective rate.
• We evaluate the performance of Halo-ReDS and Kad-

ReDS under churn and show that while adaptive inference
suffers with churn, collaborative ReDS is more robust.
• We examine the possibility of sharing reputation scores

and show how such sharing can be attacked through slan-
dering and self-promotion attacks. Further, we identify a
new ‘use-based’ attack on shared reputation that would
greatly undermine most ReDS systems, leading us to
recommend using only first-hand observations.

2 SYSTEM AND ATTACK MODELS
2.1 System model
In a DHT objects indexed by keys are stored on and
retrieved from peers using put(key, object) and get(key)

operations, respectively. In both operations the DHT must
first perform a lookup operation to map the key to an owner
node o that stores the object. We describe the rest of the
system model in the context of Halo and Kad.

Halo and Chord. In Chord nodes are assigned to a virtual
address space that is organized in a ring (see Figure 1).
For example, the address space could correspond to the
output of SHA-1, and the next address after 2

160
� 1 is 0

again. IDs can be issued to nodes via a central authority
along with a certificate [12] (we discuss how attackers can
be prevented from manipulating their IDs in Section 2.2).
Resources, such as files, can be assigned virtual addresses
(the resource’s key) based on the hash values of their

v1

v2

v3
v4

v6

v5

k

v7
v10

v8
v9

locate(k)

(a) A Chord lookup progressing through the
DHT from querying node v1 to target key k,
with each hop cutting the remaining distance
to the destination at least by half.

k1

k2

k3

v1

v2

v3
v4

v6

v5

k

v7
v10

v8
v9

locate(k)

(b) Using the Halo technique, node v1 per-
forms three redundant “knuckle searches”
(each of these is a regular Chord lookup,
abstracted by dark arrows) yielding knuckles
k1, k2, and k3, which directly provide the
location of v10 (indicated by lighter arrows).

Fig. 1: Overview of the lookup process in Chord and Halo.

filenames. A resource’s owner is the clockwise-closest in
the virtual address space, i.e. the node with the lowest
ID greater than the target ID, modulo the size of the ID
space. Each node maintains a routing table of nodes called
“fingers” that are at exponentially increasing distances from
itself. When a node receives a locate request for a target
key t, it redirects the query to the closest finger to t.
This process results in efficient lookups with O(log n) hops
requiring only O(log n) storage at each node, where n is
the total number of nodes in the DHT (see Figure 1(a)).

While Chord has properties that promote stability under
independent node failures, lookups are easily subverted.
Simply adding redundancy to lookups does not help much,
as lookups often converge to the same nodes. Halo takes
advantage of the fact that each node v occurs in O(log n)
other nodes’ finger tables [5]. These nodes are called the
“knuckles” of v. Searching for those knuckles instead of the
target effectively disentangles the redundant searches (see
Figure 1(b)). Note that because of the clockwise-closest
relation, if a redundant search yields multiple candidates
for the target’s owner, the closest one (that is responsive)
is picked. Thus, as long as one of the lookups in a redundant
search returns the correct answer, the correct owner is
obtained.

3

Kad. Kad is a widely deployed DHT based on Kadem-
lia [4]. Distances in the Kad ID space are measured by
computing the XOR of two IDs and taking the output as
an integer. In Kad each node maintains a routing table
comprised of a ‘k-bucket’ for each exponentially increasing
interval of ID space from the node. Each k-bucket includes
up to k nodes from the corresponding ID range and is
dynamically populated by new nodes encountered in each
put-get operation, resulting in non-deterministic routing
table entries. More specifically, the j-th k-bucket of a node
contains learned nodes for which it shares the first j bits
of the ID and has a different j + 1-st bit. If a k-bucket is
full, then the least recently seen node is evicted to make
space for a new node.

Kad lookups proceed iteratively, where each node con-
tacts ↵ nodes at each step and receives the � closest results
from each of them. A short list of k nodes is maintained by
the querying node, and the list is updated with the ↵ ⇥ �
results returned at every step. At the next step, the querying
node contacts the closest ↵ unqueried nodes drawn from the
short list. Kad ensures O(log n) lookup steps by moving at
least one bit closer to the target ID with each iteration.

In Kad a ‘resource’ is stored on r different nodes (called
replica roots) around the key such that their Kad ID
falls within a specified distance, the search tolerance �.
Typically, r = 10 and � is set so that the Kad ID of a
replica root agrees at least in the first eight bits of the key.

2.2 Attack model
Malicious nodes in the system may attempt to sub-
vert lookup operations, e.g., by dropping or misdirecting
lookups. The adversary’s goal could be to cause peers
to use attacker-controlled nodes, e.g., as a way to spread
disinformation, spam (e.g. a marketing message in an MP3
or video file), or malware. Adversaries may also seek
to censor access to content through denial-of-service or
degradation-of-service attacks, in which lookup results lead
to invalid or incorrect nodes. The attacker’s most effective
strategy to achieve these ends in a P2P network is to control
a large number of peers in the system (or virtual peers by
controlling its location in the address space).

To prevent the number of malicious peers from grow-
ing without bound, we can leverage decentralized, social-
network-based anti-Sybil techniques, such as SybilIn-
fer [13] and SybilLimit [14]. Such defenses limit an ad-
versary to a small number of malicious nodes for each
connection he can socially engineer to honest users in the
social network. We thus expect that the attacker may be
able to socially engineer enough connections to inject a
constant fraction (e.g. up to 20%) of the total number of
peers into the network without detection. This requires
that users must be at least somewhat vigilant against
connecting to strangers. Interaction graphs have recently
been proposed to ensure that connections represent some
mutual activity [15].

We note that guarantees on the fraction of malicious
peers are also required for reasons orthogonal to lookup

routing. For example, if fraction f of the nodes are ma-
licious, then f of the correctly routed lookups will find a
malicious owner node that can provide malicious or spam
content or deny the request. Thus, effective Sybil defense
is necessary regardless of its impact on lookup routing.

An attacker who controls a significant fraction of mali-
cious nodes would seek to both manipulate lookup results
and deceive reputation systems. Thus, our design must
account for both types of attacks. We assume that lookup
operations going through a malicious node will be manipu-
lated to map the key to the closest malicious node instead of
the actual owner. We also assume the attackers can choose
to attack only a fraction of the time in an attempt to evade
detection. For an attack rate a, adversaries will attempt
to compromise a particular lookup(t) with probability a.
We assume powerful adversaries who can coordinate their
attacks by exchanging information in real time to flag t as
a target that should be attacked or not.

A standard assumption we make is that malicious nodes
cannot control their placement in the ring, and thus ma-
licious nodes are distributed uniformly at random in the
address space. To ensure that an attacker cannot manipulate
its location in the ID space, the central authority should
issue the node a random nonce and make the ID of a
node x be a function of x’s public key PU

x

and the nonce
N , e.g. ID

x

= H(PU
x

, N), where H is a cryptographic
hash function such as SHA-1. Further, the authority must
limit the number of ID requests from any entity by, e.g.,
requiring a valid credit-card number, verifying a valid
mobile-phone number by text message, or using a Sybil-
resistant admission-control prototol [16]. Peers can verify
the virtual addresses of nodes by checking signatures; e.g.,
Myrmic [17] provides such assurances for Kademlia.

We assume attackers will attempt to pollute routing tables
to increase the fraction of attackers in the tables. In the
context of Halo, control and regular lookups follow the
same process, and our technique for collaborative boosting
provides high success rates under malicious behavior and
thus ensures minimal chances of attackers gaining any extra
influence in the system. Since routing tables are updated
during regular lookup operations in Kad, we describe a new
attack on Kad routing tables and show how our approach
effectively limits routing table pollution in Kad (these
experiments are detailed in the online supplement (§6)).

3 REDS DESIGN

We now describe ReDS, our approach to augmenting
DHTs, like Halo and Kad, so that nodes can utilize the
successes and failures of individual lookups in a redundant
search to infer malicious nodes. ReDS then directs lookups
to avoid these nodes in two steps: 1) the originator of a
lookup picks the best possible start nodes (‘local boost-
ing’), and 2) each node involved in the lookup selects
high-performing fingers (‘collaborative boosting’), thereby
avoiding malicious fingers at every step.

We begin with a brief overview of the ReDS idea and
then explain how we apply this approach to Halo and Kad.

4

3.1 Overview
ReDS can be applied to DHTs that meet these requirements:

1) Redundant lookups can be performed with diverse
lookup paths.

2) Every querying peer has a choice of peers for each
entry (i.e. finger) in its routing table. We call the set
of peers available at each routing table entry the k-
bucket, adapting the terminology from Kademlia.

3) Given a set of targets based on the redundant search,
it is possible to select the correct target node within
that set if it exists.

4) The success or failure of a particular sub-lookup can
be linked to the first finger in that lookup.

The first requirement is the basis for systems like Halo to
provide robust lookups against moderately strong attackers.
Without redundancy and path diversity, the system’s lookup
success rate will be unacceptably low [5], [6], and ReDS
may not be able to distinguish between honest and mali-
cious peers. For the second requirement, it is important that
the choices for each k-bucket all meet the basic routing
requirements of the DHT. In particular, any node in the
k-bucket can cut the remaining distance to a target by
half. This requirement allows for preferential selection of
nodes within a k-bucket by avoiding malicious fingers while
maintaining path-length guarantees of lookups.

The third requirement allows a querying peer to assess
the set of targets returned by the various sub-lookups and
pick an honest target if it exists in the returned set. In most
DHTs, where ownership of a resource is by nodes who are
closest to the resource’s key, the closest target to the search
key can be considered to be a success. If the closest node in
the target set is honest, then it is guaranteed to be selected.
ReDS treats all targets that are not the closest to the target
as a ‘failed’ search.2 Note that we do not base reputation
scoring on application-level content or services, but only
on the information available to the routing mechanism.

The fourth requirement allows for a mechanism to at-
tribute successes or failures of a sub-lookup to particular
fingers. In some DHTs (e.g., Halo) this mapping is obvious
because each sub-lookup proceeds independently, but in
other DHTs (e.g., Kademlia) redundancy is built into the
search, and greater care is needed to avoid misattribution.

A system that meets these requirements, or can be
modified to meet them (e.g., Halo [5] modifies Chord [1]
to meet the first requirement), can apply ReDS as follows.
First, each peer should track the success rates of their own
lookups through each finger. The success rate through each
finger is used to calculate a reputation score for that finger.
Second, the requesting peer should use these reputation
scores to pick the peer with the highest reputation from each
k-bucket for subsequent lookups. With enough reputation
information, the failure rate at each hop in the lookup is
expected to drop significantly, because all nodes in the k-
bucket must be malicious to subvert a lookup. ReDS thus

2. In all DHTs that we know of, the owner of the key being looked up
will be closest peer to that key in the ID space. In Kademlia and Kad,
there may be multiple owners, but the closest peer should be one of them.

boosts the lookup success rate for that peer.
We distinguish between local boosting, in which a single

peer uses ReDS to improve its own lookups, and collabo-
rative boosting, in which all of the honest peers use ReDS
to improve both their own lookups and others’ lookups
through them. Note that boosting is helpful to the peer’s
own lookups, so it is incentive-compatible to assume that
all peers would collaborate in this way.

To better illustrate the ReDS design and show its general-
ity, we now describe how ReDS can be applied to Halo and
Kad, two very different DHTs — Halo has a deterministic
mapping of nodes to routing tables, whereas Kad has a
non-deterministic mapping. Also, redundant searches are
performed independently in Halo, whereas the results of
redundant searches in Kad are combined iteratively.

3.2 Halo-ReDS
Given the general description of ReDS above, we now
explain how we adapt Halo to be suitable for ReDS. Halo
was designed to have robust lookups through redundancy
and path diversity [5], thus meeting our first requirement.
Lookups in Halo are mostly recursive in that the querying
node simply asks its fingers for the knuckles of a target,
and success or failure in finding a knuckle can easily be
traced to a finger. Thus, Halo meets our third requirement.
The main challenge in applying ReDS to Halo is that Halo
(which is based on Chord) has a fixed set of fingers without
any choices. This violates our second requirement that each
peer have a choice of fingers in a k-bucket.

We therefore create k-buckets, one for each location
where a finger would be in the Chord ring. The k-bucket for
a given finger’s key (v+2

i) includes that key’s owner (the
original Chord finger) and the k � 1 predecessors of that
node. When the closest finger for a target key t is requested
from node u, u checks its reputation scores for the fingers
in the k-bucket closest to t and selects the best finger in
the bucket for that request. With this modification, we can
apply ReDS as described above. Additional system details
and an analysis of resultant path lengths are described in
the online supplement (§3) — we show that the path lengths
increase by at most one hop on average.

Halo-ReDS computes reputation scores as the fraction
of lookups that have succeeded through a particular finger.
A more sophisticated approach called “A-Boost” maintains
these fractions for various target regions in a reputation tree
to improve selection based on a target region. The intuition
behind this approach is that if all of the lookups through a
finger fail for one part of the ID space but usually succeed
elsewhere, then the failing part of the ID space is likely
to represent a malicious node further along in the lookup.
Thus, with additional per-finger tracking, fingers can be
avoided on just the regions of ID space for which they fail.
See the online supplement (§2) for more details on A-Boost.

3.3 Kad-ReDS
Unlike Halo, Kad inherently has k-buckets that we can eas-
ily leverage to satisfy the second requirement for applying

5

q45

↵27 ↵22 ↵25

�15 �12 �10 �14

�30 r⇤4 r7

Fig. 2: Lookup graph for a lookup initiated by node q45 for
key . Subscripts denote the XOR distance of the node from
the lookup target key , i.e. XOR(q45, key) = 45. Edges
from a node are directed toward the node from which they
are returned during the lookup process. Three successful
paths from a correct replica root r4 are shown in bold.

ReDS, which is choice of fingers. Kad lookups are also
inherently redundant over diverse paths, as each step of
the lookup includes multiple peers and each peer’s routing
table is set through opportunistic connections. This meets
our first requirement. The main issue with applying ReDS
to Kad is that Kad is an iterative DHT, in which each
step of the lookup involves asking multiple peers for their
fingers that are closer to the target. The querying node
selects the closest few of these peers to continue the lookup.
Some results between peers may overlap. Thus, mapping
the lookup results to the fingers in the querying node’s k-
bucket (our third requirement) is non-trivial.

To address this issue, we have the querying node con-
struct a lookup graph (see Figure 2) that tracks the paths
used to find the target owner during the lookup process. We
describe the exact algorithm in the online supplement (§4).
The main insight is that once a target node has been
determined (r4), the querying node (q45) can determine the
lookup paths (indicated by the darker edges) whose nodes
will be credited with +1 to their reputation score (a node on
multiple such paths will get multiple credits). We assume
that attackers will try to game this process by polluting
routing tables but eventually providing the correct target at
the end of the lookup in order to result in positive reputation
for the malicious nodes. We explain the details of this attack
and its limitations in the online supplement (§4 and §6).

3.4 Handling Churn
In our simulations (Section 4), we evaluate ReDS under a
dynamic network with churn. In large P2P systems peers
leave and rejoin the system at irregular intervals. This
churn makes relying on predictions based on past behavior
inaccurate at larger time scales. The attacker can also mod-
ulate the behavior of his peers to manipulate the reputation
system. We explored techniques to cope with churn, such
as exponentially weighted moving average (EWMA), but as
we show in Section 4.2, it is effective to update the scores
with equal weight to older and newer results. EWMA is still
recommended to deal with oscillation attacks, as described
in our security analysis in the online supplement (§8).
We also considered various exploitation-versus-exploration

tradeoffs, but deterministically picking the node with the
highest A-Boost score provided the best results. Since
all members of a given k-bucket have the same initial
reputation scores, one of them will be picked at random at
the beginning. If the selected node loses reputation because
of failed searches, another node is picked. Eventually, all
nodes are explored if they all display failures, and thus
we found both exploitation and exploration taking place on
an as-needed basis. Our findings for exploration validate
analysis in the online supplement (§8).

3.5 Shared reputation scores
An intuitive idea for improving ReDS is for peers to share
reputation information with each other. Shared reputation
is beneficial for and even a central part of many reputation
systems in the context of free-rider prevention [9]. We thus
explore how shared reputation could work in ReDS and
how well it would work.

Unlike reputation systems in many contexts, ReDS peers
cannot make use of reputation information shared by arbi-
trarily selected peers. They can only use reputation from
nodes who share the same fingers. We thus aim to identify
and maintain a list of the nodes with shared fingers and
regularly share reputation information with them.

Specifically, we worked out a shared reputation scheme
for Halo, which has deterministic finger selection. We
expect that shared reputation in Kad will be significantly
harder, since k-buckets are populated opportunistically. As
we show in our experiments and analysis, shared reputation
is ineffective in the face of malicious reputation sharing,
and thus we do not attempt to devise a scheme for Kad.
In the context of Halo we can define two nodes that share
the same finger f to be joint knuckles of each other for
finger f . In this approach, each node maintains a list of
joint knuckles for each of its fingers. The list can be
maintained by periodically performing the knuckle search
on each finger, which is already a Halo primitive. The node
then incorporates the scores of these joint knuckles into a
score for its finger. We divide the scheme into two phases:
(I) sharing reputation scores with joint knuckles and (II)
calculating the shared reputation scores.
Phase I: Sharing. We divide time into epochs based on the
assumption of loosely synchronized clocks (e.g. with the
Network Time Protocol (NTP)). At the beginning of each
epoch t

i

, a node compares its first-hand reputation score
with its score from epoch t

i�1. If the score has changed,
it broadcasts the updated score to its joint knuckles.
Phase II: Calculating reputation. After receiving all
updated scores, the node can calculate the shared reputation
score for each of its fingers. The average reputation score
is vulnerable to self-promotion and slandering attacks.
Wagner goes into great detail on aggregation methods that
are suitable for security applications, finding that median
is a strong solution [18]. We note, however, that median
always fails when the number of attackers is more than
50%. Having so many attackers among one’s joint knuckles
is possible due to the small sample size. Since we have our

6

own reputation information collected from local observa-
tions, we can do better.

In the online supplement (§7.1) we describe a novel
scheme for reputation aggregation called “Drop-Off”, in
which scores close to the node’s own local scores are more
likely to be considered for a final aggregation step. The
basic idea of Drop-Off is to probabilistically select scores
based on their closeness to the node’s local score and apply
the median to the selected scores. We find that Drop-Off
performs better than median in our setting. The simulation
results presented in Section 4.4 bear out our analytical
findings, but they also show the limited benefits of sharing
overall. Further, we present an attack on shared reputation
for ReDS in the online supplement (§7.2).

3.6 Communication overhead
To withstand malicious behavior, various approaches have
advocated the use of redundant lookups in DHTs [5]–[8],
[12]. Redundant lookups add overhead to lookups by a
constant factor equal to the amount of redundancy used.
ReDS can, for a particular robust DHT, provide similar
security assurances at lower levels of redundancy, or much
better security assurances at the same level of redundancy.
We mainly focus on the latter in this paper, but as an
example of the former, we note that a recursive version
of Halo can also provide high assurance with up to 22%
attackers but with the square of the typical redundancy (e.g.
169 for a redundancy of 13).

ReDS biases lookups towards honest nodes and away
from attackers, which puts more of the system load on
the honest nodes. Note that in a system with no attackers,
however, the load due to the honest nodes would already
rest entirely on the honest nodes. The load due to attackers
that are not servicing requests due to low reputation can be
addressed by solutions to the freeloader problem [9].

As described in the online supplement (§3), the use of
predecessors in the k-buckets leads to minimal additional
hops in the lookup path (e.g., 0.15 hops per lookup).
Finally, while the use of shared reputation increases com-
munication overhead, we show that shared reputation does
not offer any security advantages and thus advocate against
its use. There are no other communication overheads.
Thus, ReDS significantly outperforms existing approaches
at similar or reduced levels of communication overhead.

4 EXPERIMENTAL EVALUATION

We now describe our experimental setup and present results
from extensive simulations of Halo-ReDS and Kad-ReDS.

4.1 Experimental setup
We built simulators for both Halo-ReDS and Kad-ReDS in
Java. Each simulator includes the basic lookup mechanism
of the network,3 the A-Boost reputation tree for each node,
collaborative boosting, a model for node churn, and attacker

3. We use “network” to indicate the underlying DHT, i.e. Chord or Kad.

models specific to the network (see Section 2.2). For A-
Boost, the A-Boost scores are used only by the querying
node. For collaborative boosting, A-Boost scores are used
at intermediate nodes as well.

Setup for Halo-ReDS. All our simulations for Halo-
ReDS were run for networks with 1000 nodes.4 In our
experiments, we use a redundancy of 10 as suggested for
regular Halo with 1000 nodes in the network [5].

Setup for Kad-ReDS. Most of our simulations for Kad-
ReDS were run for networks with 10, 000 nodes. The
largest simulation was run for 100,000 nodes. In Kad and
Kad-ReDS, we initialize the system with n

l

lookups per
node to populate the k-buckets. We used k=10 and ↵=7
redundancy for most simulations.

Routing-table pollution. As discussed in Section 3.3 we
impose an attacker model on Kad that includes routing-table
pollution, and we modify the bucket replacement policy
to replace low reputation nodes. For Halo-ReDS, we do
not add a separate layer of activity in our simulations for
control lookups, because a control lookup operates exactly
the same as a regular lookup; when success rates are high
for lookups, routing tables will face minimal pollution.

Churn. To evaluate how the network handles node churn,
we add and remove nodes probabilistically after each
lookup (which are treated as atomic operations). The proba-
bility of a given node joining or leaving after a given lookup
is set based on the intended churn rate for that simulation
run. For example, in a simulation with n = 1000 nodes, a
colluding fraction of c = 20%, l = 250 training lookups,
and a churn rate of r = 25% over the whole simulation
(i.e., in a network with 1000 nodes, on average 250 nodes
leave the network and 250 new nodes join the network
over the course of the simulation), the probabilities for a
single node are p

leave

= p
join

= 0.00125, calculated as
p =

1
l·(1�c)·n

r·n
=

r

l·(1�c) where the (1 � c) stems from the
fact that only honest nodes do training lookups.

Nodes chosen for lookups. In a simulation every honest
node is selected as a querying node in turn, ordered accord-
ing to a random permutation that is repeated as necessary.
For A-Boost and collaborative boosting, this helps to build
the reputation trees of all the honest nodes. Nodes use the
deterministic maximum score as described in Section 3.4 to
select fingers for routing.

Shared reputation. When shared reputation is used, all
honest nodes are trained and queried similarly, with the ad-
dition that nodes gather shared reputation information from
joint knuckles when evaluating fingers. Shared reputation is
only available in Halo-ReDS, as described in Section 3.5.

Attack rate. Attack rate a is the probability with which
malicious nodes decide to attack a lookup (see Section 2.2).

Sampling. For some of our results, we used a continuous
simulation mode, in which the network is sampled at regular

4. Larger networks can be simulated, but take an impractically long
time to finish since each node in the network must build up reputation
information through lookups.

7

intervals as the simulation progresses. This allowed us to
monitor the evolution of the failure rate as nodes learn
more information about the network and as nodes join and
leave. To achieve this, we conducted alternating phases of
n
t

training lookups, during which reputation scores evolve
under normal system operation, and n

l

probing lookups,
during which the reputation system is frozen and the lookup
failure rate is recorded. In both phases, the attacker is
attacking lookups, but reputation scores are frozen in the
probing phase. Probing can thus be thought of as taking a
snapshot of the state of the network. One set of training
lookups and probing lookups is a slot. We then took the
failure rate achieved in the steady-state as the final result.
Since continuous simulations show changes over time, they
represent a single (often very long) simulation run.

In other (non-continuous) simulations we simply ran a
long training phase and then a single probing phase at the
end. Each data point in these graphs corresponds to an
average value with standard error bars from n

i

different
instantiations of the DHT, where we typically set n

i

= 10.

4.2 Attack success under churn
One issue with reputation in a DHT is that as nodes join and
leave the network (i.e., in the presence of churn), reputation
information becomes stale. We seek to determine whether
ReDS performance reaches a reliable steady state as churn
continues to affect the system.

Halo-ReDS. We ran Halo-ReDS experiments in continu-
ous simulation mode, in which all nodes were replaced on
average once every 800 lookups (160 slots) — by the time
a node has done 800 lookups, each node in the network has
been replaced once on average. We then let this simulation
continue for 20,000 lookups per node (4,000 slots, 20
million total lookups), and calculate the average failure rate
over the latter half of the simulation (i.e., the latter 2,000
slots) to get a steady state value for the failure rate (we
include a graph showing the time evolution of failure rate
to a steady state in the online supplement (§5)).

Comparison of different Halo schemes. We now compare
the failure rates of regular Halo, A-Boost, and collaborative
boosting for different colluding rates using non-continuous
simulations. Figure 3(a) shows the failure rate for these
schemes for attack rate a = 1.0. Due to churn, A-Boost
performs roughly the same as regular Halo. Collaborative
boosting, however, significantly reduces the failure rate,
down to 1.5% for a colluding fraction of 20%, an improve-
ment of 79% over regular Halo and 73% over A-Boost.

The results for an attack rate of a = 0.5 are shown
in Figure 3(b). Note that in such a scenario there is only
half as much information available to the reputation system
about attackers. The failure rate of regular Halo is now
approximately half of what it was for an attack rate of
a = 1.0, because only half of all lookups are attacked. A-
Boost now performs worse than regular Halo. Collaborative
boosting, however, performs much better than regular Halo
and A-Boost, reducing the failure rate by 40% and 50%
compared to regular Halo and A-Boost, respectively.

 0

 2

 4

 6

 8

 10

 4 6 8 10 12 14 16 18 20

F
a

ilu
re

 R
a

te
 [

%
]

Colluding Fraction [%]

Regular Halo
A-Boost

Collaborative

(a) Attack rate a = 1.0. A-Boost fails to improve over
regular Halo due to node churn. Collaborative boosting,
however, performs significantly better throughout.

 0

 1

 2

 3

 4

 5

 4 6 8 10 12 14 16 18 20

F
a

ilu
re

 R
a

te
 [

%
]

Colluding Fraction [%]

A-Boost
Regular Halo
Collaborative

(b) Attack rate a = 0.5. A-Boost performs worse
than regular Halo, while collaborative boosting performs
significantly better than either regular Halo or A-Boost.

Fig. 3: Halo. These graphs compare the failure rates for
different Halo algorithms and colluding fractions.

A-Boost suffers under churn, because it adapts slowly to
changes beyond its fingers. The reputation trees of nodes
that did not see the change in their fingers’ fingers (and
further down the tree) do not account for these churn events.
In collaborative boosting, however, nodes can rely on their
fingers to adapt to changes further down the lookup paths.
This greatly improves the speed at which lookup paths are
modified to address churn events.

Kad-ReDS. We now compare the performance of Kad
and both collaborative and A-boost versions of Kad-ReDS
under churn. We present results for r = 25% churn, and
k = 10 and ↵ = 7 redundancy. Figure 4(a) shows the failure
rate of regular Kad, A-Boost, and collaborative boosting for
an attack rate of a = 1.0. The performance of A-Boost and
collaborative are almost the same (within the margin of
error), significantly reducing the failure rate of Kad down
to 4-5% from 54% for c = 20%.5

The results for an attack rate of a = 0.0 are shown in Fig-
ure 4(b). In our attack model (Section 3.3), attackers pollute
routing tables even when they are not attacking lookups.
Figure 4(b) shows the failure rate slightly increases for 0%
attack rate compared to the failure rate for 100% attack
rate. We further discuss attack effectiveness in Section 4.3.
In all scenarios we tested, performance is improved by at
least 93.4% with Kad-ReDS compared to regular Kad.

5. Figure 4(a) can be compared with the results presented in the online
supplement (§6), where we see the performance of Kad-ReDS with k=10
and ↵=7 degrades from 2-3% failure rate to 4-5% due to the 25% churn.

8

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

A
ve

ra
g

e
 F

a
ilu

re
 R

a
te

 [
%

]

Colluding Fraction [%]

Regular Kad
A-Boost

Collaborative

(a) Attack rate of a = 1.0.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

A
ve

ra
g

e
 F

a
ilu

re
 R

a
te

 [
%

]

Colluding Fraction [%]

Regular Kad
A-Boost

Collaborative

(b) Attack rate of a = 0.0.

Fig. 4: Kad. Failure rates of different Kad-ReDS schemes
for different colluding fractions c. Both A-Boost and Col-
laborative are much more effective than Kad.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g

e
 F

a
ilu

re
 R

a
te

 [
%

]

Attack Rate [1]

c = 20%
c = 15%
c = 10%

c = 5%

Fig. 5: Halo-ReDS. The failure rate for different continuous
attack rates. Attacker effectiveness peaks before a = 1.0.

4.3 Overall attack effectiveness
In this experiment we study collaborative boosting by
measuring overall attack effectiveness, the maximum con-
tinuous failure rate that the attacker can achieve when his
nodes use a consistent attack rate (i.e. the same in training
and probing). This allows us to identify the best that the
attacker could do consistently over time.

Halo-ReDS. The results for Halo and A-Boost are shown
in the online supplement (§5). In brief, attack effectiveness
grows linearly with the attack rate in Halo, which is
expected, as there is no reputation system – attacking more
has no negative consequences. Attack effectiveness also
grows linearly with the attack rate in A-Boost, which is
unsurprising when we consider that A-Boost is about as
effective as regular Halo under churn.

Figure 5 shows the overall attack effectiveness that the
attacker can achieve against collaborative boosting. We see

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g

e
 F

a
ilu

re
 R

a
te

 [
%

]

Attack Rate [1]

c = 20%
c = 15%
c = 10%
c = 5%

(a) Kad.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g

e
 F

a
ilu

re
 R

a
te

 [
%

]

Attack Rate [1]

c = 20%
c = 15%
c = 10%
c = 5%

(b) Kad-ReDS. y-axis ranges from 0-8%.

Fig. 6: Kad. Overall attack effectiveness. Attackers perform
best by attacking with low attack rates.

that increasing the attack rate up to a point results in more
lookup failures. Beyond a certain attack rate, e.g., at 60%
for a colluding fraction of c = 20%, the overall failure
rate goes back down. Comparing the overall effectiveness
of collaborative boosting to A-Boost and regular Halo,
ReDS reduces effective failure rates by up to 70% for
c = 5%, 10%, and by up to 80% for c = 15%, 20%.

The peak in effectiveness comes from the attacker’s need
to balance exploiting positive reputation to subvert lookups
with maintaining those positive reputation values. Despite
the ability of attackers to operate at a peak rate, we note
that for colluding fractions of 20% and below, no matter
what rate the attackers attack with, collaborative boosting
limits their effectiveness to below 2.1%.

Kad-ReDS. We similarly examined overall attack effec-
tiveness in Kad. Figure 6 shows our results. Kad has very
different results (Figure 6(a)) from Halo due to routing-
table pollution. In particular, for Kad with colluding frac-
tion c = 20%, the failure rate is 80% when the attack rate is
a = 0.0 and drops to 54% when a = 1.0. The high failure
rate with no manipulation of lookups (a = 0.0) is due to
the effectiveness of routing-table pollution against Kad. As
the attack rate increases, routing-table pollution decreases,
which leads to the drop in failure rates. This effect on
routing-table pollution occurs because the results returned
by attacker nodes are always attacker nodes and are gen-
erally further away from the target than those returned
by honest nodes when the attacker manipulates lookups.
So whenever both attacker and honest nodes respond to a
lookup, the attacker nodes not only fail to manipulate the
lookup result but also do not appear in the later stages of the

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14 16 18 20

F
a

ilu
re

 R
a

te
 [

%
]

Slot

Collaborative
Shared Average
Shared Median

Shared Drop-off

Fig. 7: Shared reputation (c = 10%) at best performs about
the same as normal collaborative mode.

lookup process. This reduces the malicious nodes’ chances
of being opportunistically added to k-buckets.

In comparison, Figure 6(b) shows how effective Kad-
ReDS is in countering the route subversion attack described
in Section 3.3. The attackers gain a slight advantage with
lower attack rates. The reputation system, however, severely
limits the growth of the average failure rate by curbing
routing-table pollution. Kad-ReDS maintains a failure rate
of no more than 5.1% for all attack rates with c 20%,
which is a 93% improvement over Kad.

4.4 Effectiveness of shared reputation
In these experiments we explored whether sharing repu-
tation values can help lower the failure rate. We studied
shared reputation in the context of Halo-ReDS and again
simulated malicious nodes attacking at a rate of 1.0 for
different fractions of colluding nodes to see how the failure
rate evolves. We also looked at different ways of calculating
shared reputation: average, median, and the Drop-off algo-
rithm (see Section 3.5). The values returned by malicious
nodes were calculated to maximize the probability that the
value was accepted by the requesting node by taking into
account the shared reputation algorithm.

Figure 7 shows the results for 10% colluding nodes. We
see that while there is a slight difference in the convergence
speed at the beginning of the simulation (median and Drop-
off shared reputation converging slightly faster), the differ-
ence is not statistically significant. For a higher fraction
of colluding nodes at 20% and for attack rates lower than
a = 1.0 (not shown), shared reputation fails to improve the
failure rate over collaborative in any scenario.

New Nodes. Next we studied whether new nodes joining
the system can benefit from shared reputation. Intuitively,
shared reputation should be useful for new nodes joining
an existing Chord network. A new node does not have
any reputation information yet, so asking other nodes in
the network for shared reputation helps a node to make
routing decisions until it has collected enough observations.
In this experiment, we tested the failure rate of nodes
newly added to the Chord network, where those nodes rely
solely on shared reputation and collaborative boosting. The
results do not bear out this intuition, however. Figure 8
shows that using shared reputation for newly added nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

F
a

ilu
re

 R
a

te
 [

%
]

Colluding Fraction [%]

Collaborative
Shared Median

Shared Drop-off

Fig. 8: Shared reputation increases failures for newly joined
nodes.

does not improve the failure rate and can even worsen the
failure rate, e.g., for colluding fractions of 20%. This can
be explained by noting that using collaborative boosting
necessarily decreases the failure rate, as each node only
operates according to its first-hand observations. In shared
reputation, however, nodes become susceptible to slander-
ing and self-promotion of malicious nodes.

4.5 Kad-ReDS-specific experiments
In the online supplement (§6) we show how routing-table
pollution is severely limited by Kad-ReDS. We also show
how Kad-ReDS greatly outperforms Kad for various levels
of redundancy with and without collaborative boosting.

5 SECURITY ANALYSIS
Due to space limitations, we present our security analysis in
the online supplement (§8). To briefly summarize, we find
that the oscillation attack is the most important threat to
ReDS systems and examine three strategies that the attacker
could use. Our results show that such an attacker can be
effectively countered by updating scores with an exponen-
tially moving weighted average (EWMA), parameterized to
heavily weight recent behavior, as well as selecting peers
with the highest reputation scores instead of attempting to
explore other peer choices in the k-bucket. Other attacks on
first-hand reputation are limited. With shared reputation,
however, we identify a new use-based attack, which is
particularly relevant in ReDS. We show in analysis that
an attacker node could attack a large fraction of lookups
with little or no negative cost to its reputation. This attack
is a significant reason why we recommend against using
shared reputation in ReDS designs.

6 RELATED WORK
In a paper about secure routing in peer-to-peer networks
(focusing on Pastry, but generalizable to other protocols),
Castro et al. [12] argue that secure routing requires secure
assignment of identifiers, secure routing table maintenance,
and secure message forwarding. Secure assignment of iden-
tifiers is done through the use of a certificate authority (CA),
which binds identifiers to IP addresses. Solving the problem
of secure routing table maintenance requires modification
of the Pastry protocol to introduce additional constrained

10

routing tables. Lastly, secure message forwarding is ap-
proached by detecting failed routes and then applying
route diversity. Route diversity is achieved by forwarding
multiple messages until they reach a node that has the target
node for a key in its neighbor set. We argue that ReDS can
be used effectively for any system designed along the lines
of Castro et al.’s secure routing primitive.

Harvesf and Blough [19] describe a scheme using replica
placement to improve the robustness of Chord routing. By
placing several replicas of a key uniformly around the
Chord network, disjoint routes to the individual replicas are
created, which makes it likely that at least one search for
one of the replicas will use a route with no compromised
nodes. This replication approach is orthogonal to our work
(although Kad too uses multiple ‘replica roots’). ReDS
ensures that searches for each replica will succeed with
higher probability, and thus fewer replicas need to be
retrieved, or fewer replicas are needed in the first place.

Mickens and Nobel propose Concilium [20], which
attempts to distinguish between malicious behavior and
network problems and assigns blame to nodes if they
are found to subvert searches. It also depends on secure
identifiers (e.g., using a CA) like the scheme by Castro et
al. [12]. Concilium focuses more on diagnosis and identify-
ing malicious nodes. It requires nodes to perform network
tomography as well as propagate ‘Blame’ messages down-
stream to identify malicious nodes, both of which require
coordination. ReDS does not try to implicate and remove
bad nodes, but simply avoids them, thereby limiting the cost
of false positives and allowing for fast decisions. ReDS also
does not require nodes to coordinate reputation information
among themselves, reducing overhead and complexity.

Malicious attacks in DHTs can be partially addressed
by using the concept of quorums. A quorum is a group
of nodes that effectively acts as an atomic unit, replacing
individual peers in the DHT. There are several different
approaches to create and maintain quorums [21]–[25].
Young et al. propose a quorum-based system [25] that can
tolerate a large fraction of malicious peers — strictly less
than 1/3-fraction of a quorum. We note, however, that if 10-
20% of the nodes are attackers, then a substantial fraction
of quorums will be controlled by attackers. ReDS can thus
improve outcomes for quorum-based systems by applying
reputation at the quorum level instead of the node level.

7 CONCLUSIONS

We presented ReDS, a reputation-based mechanism for
improving the resilience of searches in deterministic and
non-deterministic DHTs, such as Halo and Kad, against
malicious nodes. We showed how information from failed
searches can be used collaboratively to avoid malicious
activity in the network. Our results improve significantly
over Halo and Kad, showing that even exclusively local
observations for reputation information can deliver large
gains to the success rate when used collaboratively. A
security analysis shows that strategic attackers are limited
from improving their attacks. Finally, we analyzed the

potential for shared reputation mechanisms and a novel
attack against shared reputation, and find that using only
first-hand observations is superior to sharing.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant Nos. CNS-1117866, CNS-
1115693 and CAREER award number CNS-0954133. We
also thank John McCurley for his editorial help.

REFERENCES
[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in SIGCOMM, 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker,
“A scalable content-addressable network,” in SIGCOMM, 2001.

[3] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Middleware, 2001.

[4] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” in IPTPS, 2002.

[5] A. Kapadia and N. Triandopoulos, “Halo: High-assurance locate for
distributed hash tables,” in NDSS, 2008.

[6] A. Nambiar and M. Wright, “Salsa: A structured approach to large-
scale anonymity,” in CCS, 2006.

[7] M. S. Artigas, P. G. Lopez, J. P. Ahullo, and A. F. G. Skarmeta,
“Cyclone: A novel design schema for hierarchical DHTs,” in P2P,
2005.

[8] A. Panchenko, S. Richter, and A. Rache, “NISAN: Network infor-
mation service for anonymization networks,” in CCS, 2009.

[9] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Comput. Surv.,
vol. 42, no. 1, pp. 1–31, 2009.

[10] M. Wright, A. Kapadia, M. Kumar, and A. Dhadphale, “ReDS:
Reputation for directory services in P2P systems,” in CSIIRW, 2010.

[11] R. Akavipat, A. Dhadphale, A. Kapadia, and M. Wright, “ReDS:
Reputation for directory services in P2P systems,” in WIT, 2010.

[12] M. Castro, P. Druschel, A. J. Ganesh, A. I. T. Rowstron, and
D. S. Wallach, “Secure routing for structured peer-to-peer overlay
networks,” in OSDI, 2002.

[13] G. Danezis and P. Mittal, “SybilInfer: Detecting Sybil nodes using
social networks,” in NDSS, 2009.

[14] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: A
near-optimal social network defense against sybil attacks,” in IEEE
S&P, 2008.

[15] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” in Eurosys,
2009.

[16] N. Tran, J. Li, L. Subramanian, and S. S. Chow, “Optimal sybil-
resilient node admission control,” in INFOCOM, 2011.

[17] P. Wang, I. Osipkov, N. Hopper, and Y. Kim, “Myrmic: Provably
secure and efficient DHT routing,” University of Minnesota DTC
Research Report, Tech. Rep. 2006/20, 2006.

[18] D. Wagner, “Resilient aggregation in sensor networks,” in ACM
SASN, 2004.

[19] C. Harvesf and D. M. Blough, “Replica placement for route diversity
in tree-based routing distributed hash tables,” IEEE Trans. Depend-
able Sec. Comput., vol. 8, no. 3, pp. 419–433, 2011.

[20] J. W. Mickens and B. D. Noble, “Concilium: Collaborative diagnosis
of broken overlay routes,” in DSN, 2007, pp. 225–234.

[21] M. Naor and U. Wieder, “A simple fault tolerant distributed hash
table,” in IPTPS, 2003.

[22] A. Fiat, J. Saia, and M. Young, “Making Chord robust to byzantine
attacks,” in European Symposium on Algorithms (ESA), 2005.

[23] J. Saia and M. Young, “Reducing communication costs in robust
peer-to-peer networks,” Information Processing Letters, vol. 106 (4),
pp. 152–158, 2008.

[24] B. Awerbuch and C. Scheideler, “Towards a scalable and robust
DHT,” in ACM SPAA, 2006.

[25] M. Young, A. Kate, I. Goldberg, and M. Karsten, “Practical ro-
bust communication in DHTs tolerating a Byzantine adversary,” in
ICDCS, 2010.

11

Dr. Ruj Akavipat received his PhD degree
from Indiana University Bloomington. He
joined Mahidol University, Thailand, as a lec-
turer in the Engineering Department in 2010.
His interest is in distributed systems, security,
mobile computing and computer technology
education.

Mahdi N. Al-Ameen is currently a PhD stu-
dent in Computer Science at the University
of Texas at Arlington (UTA). His primary
research interest is Information and Cyber
Security and is currently Graduate Research
Assistant at the iSec (Information Security)
Lab, UTA. He earned his B.S. in Computer
Science and Engineering from Bangladesh
University of Engineering and Technology
(BUET) in 2009. He was invited by the
Springer-Verlag to publish his undergrad-

thesis work on Sensor Network Topology and Fault Tolerance as
a book chapter in Advances in Wireless Sensors and Sensor Net-

works.

Dr. Apu Kapadia is an Assistant Professor
of Computer Science and Informatics at the
School of Informatics and Computing, In-
diana University Bloomington. He received
his Ph.D. in Computer Science from the
University of Illinois at Urbana-Champaign
(UIUC) in October 2005. For his dissertation
research on trustworthy communication, he
received a four-year High-Performance Com-
puter Science Fellowship from the Depart-
ment of Energy. Following his doctorate, he

joined Dartmouth College as a Post-Doctoral Research Fellow with
the Institute for Security Technology Studies (ISTS), and then as a
Member of Technical Staff at MIT Lincoln Laboratory.

Apu Kapadia is interested in topics related to systems security
and privacy. He is particularly interested in accountable anonymity,
mobile and pervasive computing, crowdsourcing, and peer-to-peer
networks. For his work on accountable anonymity, two of his papers
were named as ‘Runners-up for PET Award 2009: Outstanding
Research in Privacy Enhancing Technologies’. His work on usable
privacy controls was given the ‘Honorable Mention Award (Runner-
up for Best Paper)’ at the Conference on Pervasive Computing, 2007.
Apu Kapadia received the NSF CAREER award in 2013. He is a
member of IEEE and ACM.

Zahid Rahman is currently a PhD student
in Computer Science at Indiana University
Bloomington. He earned his BS degree in
Computer Science and Engineering from
Bangladesh University of Engineering and
Technology (BUET) in 2007. He is particu-
larly interested in privacy and security issues
related to sensors in pervasive and mobile-
computing systems.

Dr. Roman Schlegel has an MSc from EPFL
in Switzerland in Communication Systems
and a PhD in Computer Science from City
University in Hong Kong. During his doctoral
studies he also spent a year as a research
assistant at Indiana University Bloomington
in the US. After finishing his PhD he joined
ABB Corporate Research as a research sci-
entist for security in industrial control sys-
tems. His research interests include privacy,
network security and applied cryptography.

He is also a member of the IEEE, the IEEE Computer Society and
the ACM.

Dr. Matthew Wright is an associate profes-
sor at the University of Texas at Arlington.
He graduated with his Ph.D from the Depart-
ment of Computer Science at the University
of Massachusetts in May, 2005, where he
earned his M.S. in 2002. His dissertation
work addresses the robustness of anony-
mous communications. His other interests
include secure and Sybil-resistant P2P sys-
tems, security and privacy in mobile and
ubiquitous systems, and understanding the

human element of security and privacy. Previously, he earned his
B.S. degree in Computer Science at Harvey Mudd College. He is
a recipient of the NSF CAREER Award and the Outstanding Paper
Award at the 2002 Symposium on Network and Distributed System
Security.

1

ReDS: A Framework for
Reputation-Enhanced DHTs

(Supplementary Material)
Ruj Akavipat, Mahdi N. Al-Ameen, Apu Kapadia, Zahid Rahman, Roman Schlegel, Matthew Wright

F

1 SUPPLEMENTAL CONTENTS

In this supplemental document we provide detailed analysis
and investigation of ReDS. In particular, we include the
following contributions:
• Section 2 provides a detailed description of A-Boost,

the local mode of Halo-ReDS that we compare the
collaborative mode against in our simulation experiments.
• Section 3 briefly analyzes the effect of the collaborative

mode on path length in Halo-ReDS.
• Section 4 provides a detailed description of the Kad-

ReDS algorithm.
• Section 5 shows the evolution of failure rate for Halo

over time, illustrating how the failure rate achieves a
steady-state value.
• Section 6 shows results specific to Kad-ReDS, including

routing table pollution and parameter selection.
• Section 7 describes a novel mechanism for computing

shared reputation scores in the ReDS setting and our
analysis of this scheme.
• Section 8 is our complete security analysis, including a

detailed investigation of oscillation attacks and analysis
of an attack on shared reputation in the ReDS setting.

2 ALGORITHM FOR HALO-REDS WITH A-
BOOST (LOCAL BOOSTING)
In this section we provide an overview of A-Boost. This
material was also described in an earlier workshop pa-
per [1].

2.1 Local vs. adaptive boosting

In this section we discuss how a node initiating a lookup
process can ‘boost’ its chances of success by picking the
best first hop in the route based solely on local observations.

The first intuition behind ReDS is that robust DHT sys-
tems use redundant lookups that can be used to distinguish
good lookups from bad ones. In particular, such systems
rely on the fact that, among the IDs returned from a
redundant lookup, the ID closest to the target is a more

accurate response than any other returned ID.1 We present
three possible ways that a requesting peer can use this
information (the first two are instructive to help understand
the third technique, which is what we use for ReDS):

1-Boost: The requesting peer can mark all the helper
peers (we call the first-hop nodes selected for a redundant
search “helpers”, which are selected from the fingers of the
originating node) who provide the closest ID as slightly
more reliable than the helper peers who provide inaccurate
responses. After a number of lookups, the most reliable
helper peers will be found and used. In other words, the
requesting peer gains confidence that the first hop in a
lookup is honest. We call this approach 1-Boost because
the success rate of a lookup is boosted with one honest
node. The major drawback of 1-Boost is that the reliability
of a helper peer depends not only on the helper peer itself
but on all of the fingers it uses along the various lookup
paths. Thus, a perfectly reliable and honest helper peer may

be marked as unreliable, even when it can provide useful

lookups along some paths.

2-Boost: For each helper peer the requesting peer main-
tains a score for each corresponding entry in the helper
peer’s routing table. Depending on the lookup key, the
requesting peer can estimate which finger was used by the
helping peer and score that finger. On subsequent lookups,
the requesting peer can pick the helpers that maximize the
chances of a successful lookup through reputable fingers.
We call this approach 2-Boost because it aims to choose
paths where the first two nodes in the path are good.

Adaptive-Boost: The final step is to generalize 1-Boost
and 2-Boost to the entire lookup path. The requesting peer
can estimate the path taken to any possible target region
and maintains reputation scores for all nodes in the DHT
based on whether or not lookups through those nodes
succeeded. But this would result in a large data structure
and would take a huge number of lookups to obtain enough
information about all possible paths. Adaptive-Boost (A-

Boost) therefore estimates the reputation of nodes as far
along the path as possible, as long as there are enough

1. We note the requesting peer must verify the result by performing a
handshake with the peer owning the ID, to ensure the node exists.

2

0/2
1/3
0/0
2/2
0/1
0/0
0/2
1/1
0/0
1/2
2/3
0/0

f5

f4

f3

f2

f1

x

f5,4

f5,3

f5,2
f5,1

xf5,3,2

f5,3,1

1

16

x
f4,2

f4,1

f4,3

x

x

Fig. 1: Example reputation tree. f
i,...

denote fingers cover-
ing address chunks (shown as boxes). “x” marks an example
of the lookup targets and highlighted boxes are chunks that
would be combined if the number of observations in the
smaller combination (shown in projections to the right)
were insufficient. The number (v/y) in each box is the ratio
of total recorded successes (v) to total recorded lookups (y)
for that chunk.

observations at that depth. We define a parameter � as the
minimum number of observations required for the given
depth to be used in A-Boost.

A-Boost can effectively ‘shorten’ the lookup path with
respect to lookup reliability. Intuitively, as more lookups are
done it is increasingly likely that a future lookup will share
more of the path with prior lookups. If prior lookups are a
good predictor of future performance, then this allows for
the identification of reliable sub-paths or prefixes (the latter
part of the path remains unpredictable). The requesting peer
can then select helper nodes so as to use those reliable
sub-paths (A-Boost) more often than unknown or poorly
performing sub-paths.

2.2 A-Boost reputation tree
To model how ReDS with A-Boost operates, we use a
reputation tree. For each helper node, the requesting node
stores its scores in a tree that approximates the paths used in
lookups by that helper node. The ID space is divided into
contiguous regions called chunks according to the nodes
that will be on the path for any lookup into that chunk.

An example of how the chunks are aligned with the
fingers (f

i

) of a finger f is shown in Figure 1—each cell
represents one chunk. For example, searches into the first
chunk will go through finger f1, and searches into Chunks
5–8 will go through finger f4. Because we are using 2

m

chunks (for some integer m), we can further align the ID
space accurately down the chain of fingers by recursively
splitting up these ranges. For example, the second column
shows the fingers and chunks for f5 as f5,1, f5,2, f5,3, f5,4.
The figure also shows the fingers for f5,3 as f5,3,1, f5,3,2.
A lookup from f to the chunk marked with the second
‘x’ is expected to traverse the subpath f, f5, f5,3, f5,3,2.
If a large number of chunks is used, longer subpaths can
be estimated. We note that since fingers may not line up

exactly to chunk boundaries in the ID space, the mapping to
the reputation tree is approximate. As the number of nodes
increases, however, the number of boundary cases will be
negligible.

The reputation score for helper node f for a particular
target chunk is simply the number of successful lookups
divided by the number of attempted lookups at the lowest
level in the reputation tree with enough data, i.e. with at
least � observations. For example, using the chunk table
shown in Figure 1, if � = 5 and the lookup target is in
Chunk 12, then the total number of observations (= 1 < �)
is not enough. The algorithm then steps back one level from
f5,3,2 to f5,3. The lookup records in Chunks 11 and 12 will
be combined, since they are covered by f5,3, which yields
three records — still less than �. To get more observations
Chunks 9 to 16 will be combined as they are covered by f5
which is a parent of f5,3. At this point enough observations
(= 9) are obtained. The algorithm then produces 4/9 = 0.44
as a reputation value for this finger. In the case that the
total observations from all chunks is still less than �, the
reputation value of the finger is set to 0.5.

Thus the lookup success rate for the lowest relevant
subtree for which the helper peer satisfies the � threshold
can be used as the total reputation score for the helper
node for that lookup. Then the R helper nodes with the
highest scores are selected for the redundant lookup. Note
that Halo’s redundant lookups go to the various knuckles
of t, and thus each lookup has a different target. Therefore,
during scoring the reputation tree for a helper (finger) node
is updated based on the specific target for each lookup. For
each lookup in a redundant search for target t, a finger with
the highest reputation value for the target of the lookup,
which can be t or one of t’s knuckles, is picked. Also, while
selecting fingers for the redundant lookups, once a finger
is selected (based on the A-boost score) it is removed from
the pool of that redundant search. The process is repeated
until R fingers are selected for the R lookups.

3 HALO-REDS MODEL AND ANALYSIS

In a Chord lookup the lookup locates the predecessor first
and asks it to return the successor (the target node). Thus,
a malicious predecessor can still subvert a lookup for its
successor, because it controls all lookups for that successor.
To alleviate this problem we assume that each node knows
k0 additional successors (k0 + 1 in total), so that the last
hop is short-circuited as long as the lookup reaches the
k0-vicinity of the target. This adds a modest overhead of
storing and updating k0 nodes for each peer’s routing table.
As shown below, k0 is a constant that can be kept low.

A potential issue with this approach to building k-buckets
is that the predecessors of a finger are not as close to the
target at each hop, thereby increasing the lookup cost. Since
each hop may regress by at most k nodes at each hop, the
average number of nodes between the current hop and the
target node after hop i is at most n/2i � k/2i�1

+ 2k.
Therefore, assuming k < log n (which we can ensure
as a system parameter), after O(log n) hops there are at

q45

↵27 ↵22 ↵25

�15 �12 �10 �14

�30 r⇤4 r7

Fig. 2: Lookup graph for a lookup initiated by node q45 for
key . Subscripts denote the XOR distance of the node from
the lookup target key , i.e. XOR(q45, key) = 45. Edges
from a node are directed toward the node from which they
are returned during the lookup process. Three successful
paths from a correct replica root r4 are shown in bold.

most 2k + 1 nodes between the target and the current
hop. Note that we short-circuit lookups to the k0-vicinity
of the target. Thus, by setting k0 � 2k + 1, the system
administrator can ensure that the use of predecessors will
cost at most one additional hop compared to regular Chord.
In our simulations we used k = 2 and k0 = 8 for a 1,000-
node network and found that path lengths for Halo-ReDS
increased by 0.15 hops on average compared to regular
Halo.

4 KAD-REDS ALGORITHM
Kad-ReDS maintains a lookup graph that tracks the paths
used to find the target owner during the lookup process.
The querying node starts with itself as a vertex, as shown
in Figure 2. For each of the � results, a directed edge is
constructed to the intermediate queried node returning that
result. We note that duplicate nodes can be returned by
different queried nodes during a lookup step; e.g., �10 in
Figure 2 is returned by two different queried nodes ↵22

and ↵25. Cycles are also possible, as a node may return an
ancestor. The querying node incrementally builds such a
graph by using Algorithm 1 at each step of the lookup. For
example, in the next iteration the querying node q45 selects
the closest ↵ nodes �10, �12, and �14 to expand next.

After the search terminates with one or more replica
roots being identified, we mark each lookup path as being
successful if it terminated in finding the closest replica root
to the key. This is done by traversing the lookup graph in
depth-first search order as described in Algorithm 2, with
the closest replica root as the starting node u. Algorithm 2
avoids cycles by keeping track of nodes visited during the
traversal. Each finger appearing on a successful path is then
credited +1 to its reputation score, since it was involved in
locating the closest correct replica root. Other nodes in the
graph are not credited. For example, in Figure 2 reputation
scores of the contacts �10 and ↵25 in the k-bucket of q45 are
increased by 2, as two successful paths go through these
nodes. Our rationale for locating the closest replica root
is that it makes Kad-ReDS robust against attackers who
may attempt to insert a replica root close to the target key.

Algorithm 1: Building the lookup graph for Kad-ReDS
input : q : Querying node

i : Current lookup step
↵i : a queried node at step i
N↵(1 : �) : � result nodes returned by ↵i

Gi�1hV,Ei : Lookup graph at step (i� 1)
output: GihV,Ei at step i

if i = 0 then
Add vertices q and ↵i in V (Gi�1);
Add a directed edge e = (↵i, q), from ↵i to q in
E(Gi�1);

end
for each node �j in N↵ do

if �j is not a vertex in Gi�1 then
Add vertex �j in V (Gi�1);

end
Add a directed edge e = (�i,↵i) from �i to ↵i in
E(Gi�1);

end

Algorithm 2: UPDATING REPUTATION SCORE FOR
KAD-REDS
UpdateReputation() input : q : Querying node

GhV,Ei : Final lookup graph
u : A vertex in the graph GhV,Ei
visited : List of visited nodes

output: Updated reputation scores of q’s k-bucket contacts
if u is in visited list then

return;
end
if u = q then

return;
end
increment by 1 the reputation score of k-bucket contact u
of querying node q;
mark node u as visited ;
for each node v with an edge from u to v in G do

UpdateReputation(q, G, v);
end

By crediting nodes for locating the closest replica root, the
attacker is forced to insert itself at a location closer than
any other replica root, which is significantly harder.

During the lookup process, the querying node uses its
local reputation information to pick the best ↵ nodes from
the appropriate k-bucket. Each of the queried nodes in
turn collaborates by providing the best � contacts from
the appropriate k-bucket using their reputation scores from
first-hand observations. Thus, at each step the basic Kad
algorithm of cutting the remaining distance in half is
honored, except that a better choice is made while picking
nodes from within the k-buckets. We also modified the
bucket eviction policy, in which regular Kad replaces the
least-seen node when a new node is being added to an
already-full k-bucket. Kad-ReDS instead replaces the node
with the lowest reputation score, breaking ties by replacing
the least seen of the least reputed nodes.

4

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000

F
a
ilu

re
 R

a
te

 [
%

]

Slot [1]

Collaborative

Fig. 3: Halo (Continuous). The evolution of the failure
rate of Halo-ReDS with c = 20%. The failure rate appears
to stabilize around a steady-state value.

Attack model under Kad-ReDS. The k-bucket popu-
lation can change dynamically in Kad as nodes are en-
countered during the lookup process. To model the most
effective attack possible, we make the following change
to the attack model for Kad. When the attacker chooses
not to attack a query, he attempts to provide the correct
closest replica root at the end of the lookup to maximize
his reputation scores. Additionally, he attempts to pollute
routing tables with malicious nodes during the lookup
process. In particular, a malicious node knows about all
of the other malicious nodes and can provide them as
answers to a query. He does so only as long as they are
at least one bit closer in the XOR distance to the target,
since more distant malicious nodes will be ignored. This
approach allows the attacker nodes to be seen and possibly
selected for being added to k-buckets more than would
be expected. At the same time, malicious nodes can still
provide a correct lookup result upon termination of the
lookup process, ensuring a positive effect on reputation.

5 HALO-SPECIFIC EXPERIMENTS

Halo Continuous Simulation. Figure 3 shows the results
for c = 20% and attack rate a = 1.0. The failure rate
quickly drops from a relatively high rate of 7% early on,
when no reputation information is available, to less than
1%. As churn sets in the failure rate increases until it
reaches a steady state of around 1.5%, indicating that the
effect of node churn on ReDS is limited.

Overall attack effectiveness of Halo. As expected, if only
a fraction a of lookups is attacked, then the average failure
rate is a times the failure rate when the attack rate is 1
(Figure 4).

Overall attack effectiveness of A-Boost. In A-Boost,
which is generally about as effective as regular Halo under
churn, the results were quite similar (Figure 5). For a = 0.1
attack rate both systems had less than a 1% failure rate for
c =5% to 20%. For a = 0.5 and c =20%, the failure rate
was between 3.5% to 4.0%, and for a = 1.0 and c =20%,
the failure rate was between 6.9% to 7.5%.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g
e
 F

a
ilu

re
 R

a
te

 [
%

]

Attack Rate [1]

c = 20%
c = 15%
c = 10%
c = 5%

Fig. 4: The overall attack effectiveness in Halo increases
linearly with attack rate a.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1
A

ve
ra

g
e
 F

a
ilu

re
 R

a
te

 [
%

]

Attack Rate [1]

c = 20%
c = 15%
c = 10%
c = 5%

Fig. 5: The overall attack effectiveness for A-Boost also
grows linearly with a.

6 KAD-REDS-SPECIFIC EXPERIMENTS

We now turn towards evaluating our design for Kad-ReDS.
Our primary concerns for Kad-ReDS are whether routing
table pollution can be overcome, the general effectiveness
of the design under different redundancy parameters, and
the performance of A-Boost and collaborative boosting
under churn.

Routing Table Pollution. We find that routing table
pollution is the most critical factor in Kad and Kad-ReDS
performance. Thus, we first seek to understand the extent
of routing table pollution in these systems. To this end, we
perform a continuous time simulation with 10,000 nodes
under r = 25% churn. Each of the nodes performs 100
lookups in order to populate the k-buckets and build the
reputation system. We divide the simulation time into 400
slots of 2500 lookups each.

As discussed in Section 4, attacker nodes attempt to get
their own nodes into as many routing tables as possible.
In Kad-ReDS, however, attacker nodes with low reputation
scores will have little chance of being selected as the next-
hop contacts in future lookups and will eventually be kicked
out of many k-buckets. Figure 6 shows the pollution of
routing tables over the training period for both regular Kad
and Kad-ReDS. We see that the reputation system is very
effective, leading to a decreasing rate of pollution of routing
tables with Kad-ReDS, compared with increasing pollution
rates in Kad.

Redundancy. We also explore the performance of Kad-
ReDS in extensive, non-continuous simulations. First, we
break down the performance in detail without churn. Fig-

5

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

A
ve

ra
g
e
 P

o
llu

tio
n

Slot

Regular Kad
A-Boost

Collborative

Fig. 6: Kad (Continuous). Evolution of routing table
pollution over the lifetime of an experiment with c = 20%

and a = 1.0. Regular Kad faces increasing pollution over
time, while Kad-ReDS identifies and removes malicious
fingers from k-buckets.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

A
ve

ra
g
e
 F

a
ilu

re
 R

a
te

 [
%

]

Colluding Fraction [%]

α = 3
α = 5
α = 7

α = 10

(a) Kad.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20

A
ve

ra
g
e
 F

a
ilu

re
 R

a
te

 [
%

]

Colluding Fraction [%]

α = 3
α = 5
α = 7

α = 10

(b) Kad-ReDS, collaborative boosting. Note that the y-
axis is from 0-45%

Fig. 7: Kad (No Churn). Failure rates with k = 10, a =

1.0, and varying ↵ and c. Higher redundancy (↵) improves
both systems, but Kad-ReDS is much better than Kad for
↵ > 3.

ure 7 shows the effect of redundancy on regular Kad
without churn. We use an attack rate of a = 1.0. Figure 7(a)
shows how the failure rate decreases as the redundancy in-
creases. However, even with a high redundancy of ↵ = 10,
the failure rate when c = 10% is over 21%. Collaborative
boosting dramatically improves the system. Figure 7(b)
shows failure rates for Kad-ReDS. With a lower redundancy
of k = 10 and ↵ = 5, the failure rate when c = 10% is
less than 1%. When c = 20%, k = 10, and ↵ = 7, Kad
has a 56% failure rate, while Kad-ReDS has a 3% failure
rate, a 95% decrease.

7 SHARED REPUTATION
In this section we investigate shared reputation in ReDS in
detail. First, we propose the Drop-Off scheme for calcu-
lating reputation scores. We then show that this scheme is
more effective than median in our setting.

7.1 Drop-off
Prior work has investigated robust statistics for aggregating
values from possibly untrusted peers [2], [3]. For example,
the median of the scores is known to be more robust than
the average, since one extreme value that would greatly
impact the average merely shifts the median up to the
next value. In Drop-off we aim to provide a more robust
aggregator for reputation that is effective against both
slandering and self-promotion.

We now describe a novel scheme for reputation ag-
gregation called “Drop-off”, in which scores close to the
node’s own local scores are more likely to be considered
for a final aggregation step. The key assumption in this
approach is that the score from first-hand observations is
a better approximation of the correct score than scores
from slandering or self-promoting attackers. We aim to
balance between accepting (and hopefully gaining from
others’ reputation information, which may be different from
our own) while trying to limit vulnerability to slandering
and self-promotion attacks.

Let r
k

(f) be the first-hand reputation score of finger f ,
as measured by knuckle k. k receives a reputation score for
f from joint knuckle j, which is r

j

(f). k then calculates
w = 1� |r

j

(f)�r
k

(f)| and places r
j

(f) into a scoring bin

for f with probability w. Intuitively, the further j’s score
is from k’s the less likely it is to be included in the scoring
bin. k’s shared reputation score for j for the current epoch
is the median of the scores in the scoring bin.

We note that Drop-off does not consider historical
information, such as consistency with other peers. The
reasons for this are: (1) the attacker can manipulate such
an approach by acting differently for different peers and
thereby create confusion; and (2) attackers otherwise have
no incentive to oscillate in their shared reputation scores.
To the latter point, note that attackers attempting to slander
(or self-promote) will gain nothing by suddenly switching
to sharing a high (or low) score instead.

7.2 Attacks on shared reputation
We now evaluate Drop-off against slandering and self-
promotion attacks, the most prominent attacks against a
shared reputation system. The goal of these attacks in our
setting is to make a targeted peer select malicious fingers
for lookup operations.

The key assumption in this approach is that the score
from first-hand observations eventually converges to the
correct score for that node and is typically a reasonable
approximation of the correct score, at least relative to scores
from slandering or self-promoting attackers.

We now derive an equation to estimate the expected
score that the Drop-off method would provide. Let k be

6

the knuckle of a finger f and let r
k

(f) be k’s reputation
score for finger f based only on first-hand observations. For
both slandering and self promotion attacks, let us assume
that r

m

(f) is the reputation score of f as received from the
malicious knuckles and r

h

(f) is the reputation scores of f
as received from honest knuckles. Let n

h

be the number
of k’s joint knuckles of f that are honest and n

m

be the
number that are malicious. Finally, let d

h

= |r
h

(f)�r
k

(f)|
and d

m

= |r
m

(f)� r
k

(f)| be the differences between k’s
score and the scores from its honest and malicious joint
knuckles, respectively. Based on the Drop-off algorithm,
(1 � d

h

) is the probability of selecting the score from
an honest knuckle to calculate median. Letting p be the
probability that the number of honest nodes selected is more
than the number malicious nodes selected, we have:

p =

nhX

i=1

i�1X

j=0

✓✓
n
h

i

◆
(1� d

h

)

i

dnh�i

h

✓
n
m

j

◆
(1� d

m

)

j

dnm�j

m

◆

Let q be the probability that the number of malicious
nodes and honest nodes selected are the same, meaning that
the median will be calculated as rh(f)+rm(f)

2 . Assuming
that at least one honest node and malicious node are
selected, we get:

q =

n

0X

i=1

✓✓
n
m

i

◆
(1� d

m

)

i

dnm�i

m

✓
n
h

i

◆
(1� d

h

)

i

dnh�i

h

◆

Here, n0
= n

m

when n
m

 n
h

and n0
= n

h

when
n
m

> n
h

.
In total, the expected Drop-off score E[s

�

] is given by:

E[s
�

] = p⇥r
h

(f)+q⇥ r
h

(f) + r
m

(f)

2

+(1�p�q)⇥r
m

(f)

To illustrate the effect of the Drop-off approach, let us
consider the following simple numerical example of a self-
promotion attack against a knuckle K. Suppose that for
calculating the score of a malicious finger F , K finds 11
joint knuckles, of which six are attackers. Let us say that
the ‘true’ reputation score for F is 0.1 (only 10% of the
searches through it will succeed), while K’s estimated score
from first-hand observations is currently 0.3.

Assume for simplicity that all six attackers claim that
their reputation score for F is 1.0, while all five honest
nodes report a score of 0.1 for F . The average score is
0.59, which is much higher than the true score. The median
has reached the breakdown point, since more than half
of the nodes are malicious; the median score becomes
1.0. For Drop-off we first must examine the population
of the bucket. The expected number of honest nodes in
the bucket is four, while the expected number of malicious
nodes is 1.8. The actual population may vary, but for any
combination of nodes in the bucket such that the number
of honest nodes is more than the number of malicious
nodes, the Drop-off score will be 0.1. For this example,
that represents approximately 88% of the cases. In another
8.4% of the cases, there are equal numbers of honest and

malicious nodes, in which case the score is 0.55. In total,
the expected Drop-off score is 0.17.

The system works similarly against slandering attacks.
With this approach the Drop-off system provides much
better scores than those provided by taking the average.
It also provides a way to avoid the breakdown point that
the median faces against a majority of attackers as joint
knuckles.

8 SECURITY ANALYSIS

In this section we present an analysis of the security
of ReDS against various attacks. Since exploring these
possibilities by fixing one or a few parameters in simulation
would be tedious and time consuming, we analyze these
situations theoretically. We begin by discussing a range
of attacks and conclude that only oscillation attacks and
targeted attacks on keys are serious threats to ReDS. Thus,
we carefully analyze oscillation attacks and show how
to limit their effectiveness. Targeted attacks are a further
challenge and we plan to address them in future work. We
also examine a novel attack against shared reputation in
ReDS.

8.1 Attacks on first-hand observations
In ReDS a node maintains its own reputation tree for each
node in its k-buckets. Other than an oscillation attack,
there are several ways an attacker might try to manipulate
first-hand observations: whitewashing, bootstrapping, and
targeted attacks. We now discuss each in turn.

Whitewashing Attacks. In a whitewashing attack, a node
leaves and rejoins the system to get a better reputation
score. This attack can be partially mitigated by having
nodes cache reputation values for nodes that have left, up to
a memory limit. In DHTs with a k-bucket, we expect each
peer to keep O(k log n) nodes in memory for routing. When
a node leaves it should be removed from the k-bucket, but
a tuple containing its certificate and reputation score (just a
single overall value, not the full reputation tree) can be kept
in a least-recently-seen queue. If the node returns using the
same public key and ID, then it can be added back into a k-
bucket with its old reputation score as its starting top-level
score. A certificate, such as in X.509 format, can fit in 2 KB
(less with a more compact format and ECC). Thus, we can
easily store the 1000 most recently seen nodes in just a few
MB of memory. Although an attacker could attempt to cycle
that many identities through a given node’s cache, each
one would have to be accepted into the node’s k-buckets,
making the attack slow at best. In deterministic DHTs like
Halo, the attacker nodes would have be the correct finger
or finger’s predecessor positions to be accepted at all. Thus,
the attacker could not cycle many of its nodes through
the cache, and its poor reputation scores would remain in
memory for a long time, depending on the exact rate of
churn.

In non-deterministic DHTs like Kad, the attacker can
attempt to join the k-buckets of a new set of peers.

7

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c.
 o

f
L

o
o

ku
p

s
A

tt
a

ck
e

d

τ

α=0.01, β=1
α=0.5, β=1

α=0.01, β=100
α=0.5, β=100

Fig. 8: Analysis: One Threshold: For varying ⌧ and four
combinations of ↵ and �, the fraction of lookups attacked.

This is simply routing table pollution, however. As shown
in Section 6, Kad-ReDS prevents this attack from being
effective.

Another important mechanism for preventing whitewash-
ing is to use a sufficiently low initial reputation score.
whitewashing can be seen as an advance on the oscillation
attack, in which the attacker attempts to gain a higher
reputation score in the joining round than it would by
staying in the system and behaving honestly in a standard
oscillation attack. From the analysis of the oscillation attack
in Section 8.2, we could identify the expected score at a
time when the attacker’s reputation reaches its nadir (say,
s
low

) and the benefit of whitewashing would be greatest.
We should then set the initial reputation of joining nodes
to s

low

to remove the incentive for whitewashing as long
as the attacker behaves optimally in the oscillation attack.

Bootstrapping Attacks. In the beginning phase of the
system we do not have enough observations for nodes to
build their own reputation scores. In this phase we give
each node an initial reputation score, and the probability
of a node being selected for the first lookup from a given
k-bucket is 1/k. If the node returns a bad result, then the
requesting node immediately switches to another node in
the k-bucket, limiting the effect of an all-out attack in the
early phases of the system. With time, we get the required
observations, and peers can distinguish between the honest
and malicious nodes in their k-buckets.

Targeted Attacks on Keys. Attackers in ReDS may also
try blocking access to a specific resource, or provide a
malicious version of the resource, without attacking other
lookups in the system, i.e., the attacker only manipulates
lookups for a specific target key t. This is more challenging
for ReDS than generic attacks because it can only be
observed when the desired resource is being requested.
We believe that limited tracking of attacked keys may be
possible, but we leave further exploration to future work.

Targeted Attacks on Users. Similarly, an attacker may
be interested in preventing a specific peer from accessing
resources in the system. Since ReDS is most effective with
the collaborative help of other nodes, the benefits of ReDS
are limited against this attack.

8.2 Oscillation Attack
In an oscillation attack the attacker follows a strategic
approach, alternately acting as a benign node and then
a malicious node. By behaving as an honest node the
attacker increases its reputation scores in order to increase
the probability of being selected in future lookups, while
performing malicious activities in later periods. This attack
can be especially dangerous for ReDS when lookups are
made in recursive mode, since this adaptive behavior is
hard to observe when making indirect observations about
the performance of lookup paths beyond the first hop.

We now analyze the effectiveness of the oscillation attack
and show that it has limited ability to undermine the system,
especially over time. The intuition of our finding is that
the attacker must either lose opportunities to attack while
rebuilding his reputation score or maintain a low reputation
score and continually lose opportunities to attack.

Although in the rest of the paper we study a simpler
version of ReDS, we explore a more general version
of ReDS in this analysis. In particular, we leverage an
exponentially weighted moving average (EWMA) to track
nodes’ scores with more emphasis on recent activity. The
reputation score (s

i+1) of a given node just before lookup
i+ 1 is given by: s

i+1 = ↵r
i

+ (1� ↵)s
i

, where r
i

is the
result of the lookup and ↵ is the weight given to the most
recent results. We also allow the node to select a peer from
the k-bucket in a way that balances exploration (trying other
nodes) and exploitation (making use of the known scores).
To do this we set the probability of selecting the attacker
node a (let us call this event A), who has score s(a), as:

Pr[A] =

s(a)�P
j2k�bucket

s(j)�
,

where � is a weighting parameter. These two generaliza-
tions allow us to explore and understand the impact of these
design choices in analysis. Further, they actually make our
analysis easier, since this version of ReDS is probabilistic.
A deterministic ReDS would be harder to study. Finally,
since the main benefit of EWMA and exploration is to
limit oscillation attacks, and oscillation is not part of our
simulation attacker model, we explore these parameters
here instead of adding variables to our already extensive
simulations.

For the analysis we focus on a single attacker node and
make the following simplifications:
• We examine the case when there is exactly one attacker

and one honest node in a k-bucket.
• The honest node’s reputation score is fixed at s

h

.
• We do not consider churn.
• When the attacker acts as a benign node, its reputation

score is not affected by the malicious activities of any
other nodes in the lookup path.
The first assumption keeps our analysis tractable. We

note that if there are multiple attackers in a k-bucket,
then there are more interesting ways to do an oscillation
attack. For example, one node can try to build its score
while the other node attacks. Since it is not possible to

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

F
ra

ct
io

n

Lookup No.

Reputation

Pr[A]

Fig. 9: Analysis: One Threshold: The reputation scores
and Pr[A] as the lookups proceed for ↵ = 0.01 and � = 1.

‘out-honest’ the honest node, however, all attacker nodes
will typically have a lower score than any honest node. At
worst, the attacker could increase his attack opportunities
linearly with the number of attackers in a k-bucket, with
each attacker attacking in turn. It is important to note that
for reasonable fractions of attackers in the system, having
a large proportion of attackers in a k-bucket should be rare.

The second assumption is also for simplicity. If the
honest node’s score fluctuates moderately, it can open up
small opportunities for the attacker when the honest node’s
score is low. While a full examination of these possibilities
is beyond the scope of this analysis, intuitively there is little
for the attacker to gain. As we show below, we can tune
ReDS to pick the honest node after just one or two attacks
from an attacker. An attacker could also attempt to attack
only the honest node’s reputation from the perspective of
the querying node, e.g. by only attacking lookups that go
through the honest node. Doing so, however, is a targeted
attack that requires the attacker to sacrifice the reputation
of his other nodes without successfully undermining many
lookups. Such a targeted attack is beyond the scope of our
analysis, as mentioned in Section 8.1.

By not considering churn we lose out on the attacker’s
remaining opportunity to get lookups to attack. We evaluate
with churn in our extensive simulations.

The fourth assumption is the best strategy for our at-
tacker. By coordinating his malicious nodes to attack all at
the same time, he only risks losing reputation in an attack
when he is also maximizing his chance to modify a lookup
result. Thus, the oscillation attack is a global strategy.

To make the analysis tractable, we examine a limited set
of possible functions for the attacker to select the proba-
bility of attacking a lookup: one threshold, two thresholds,
and probabilistic. We examine each of these in turn.

One Threshold. We first consider a threshold ⌧ in which
the probability of attack on lookup i is p

i

= 1 when
Pr[A]

i

>= ⌧ and otherwise p
i

= 0. This captures the
intuition that the attacker should attack when it is being
selected often enough to have an impact and otherwise it
should rebuild his score.

The main metric we employ, and that our attacker seeks
to maximize, is the expected number of lookups that the
attacker can attack (E[attacks]) given the total number of

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c.
 o

f
L

o
o

ku
p

s
A

tt
a

ck
e

d

τ
2

τ1=0.2
τ1=0.4
τ1=0.6
τ1=0.8

Fig. 10: Analysis: Two Thresholds: For varying ⌧1 and
⌧2, the fraction of lookups attacked.

lookups L that the user performs through the k-bucket of
interest. This can be written as:

E[attacks|L] =
LX

i=1

Pr[A]

i

⇥ p
i

.

Since p
i

depends on Pr[A]

i

, and each round’s behavior
depends on the results of the prior rounds, we did not
seek a closed-form solution. Instead, we developed a simple
numerical simulation of the above formula for a range of
values of ⌧ , ↵, and �. We examine the effect of ⌧ for select
values of ↵ and �, as shown in Figure 8. We use ↵ = 0.01
as a slow-learning model, emphasizing longer histories,
and ↵ = 0.5 as a fast-learning model, emphasizing recent
behavior. Similarly, we use � = 1 as a lightly biased

model, emphasizing exploration among k-bucket members,
and � = 100 as a heavily biased model, emphasizing
exploitation of knowledge. Figure 8 shows that the attacker
can choose ⌧ to attack a substantial fraction of lookups in
both lightly biased models and in the slow-learning, heavily
biased model. In these models the attacker can identify a
peak at which ⌧ is optimal for the model. However, we
also see that the fast-learning, heavily biased model is very
effective against this attacker, with E[attacks] = 1 at all
values of ⌧ , i.e. the attacker effectively never gets selected
after the first attack. This is similar to the model that we
use in our simulations.

To further break down how the attacker modulates its
behavior, we examine the first few hundred lookups in the
slow-learning, lightly biased model in Figure 9. We chose
this model with ⌧ = 0.32 to show the best case for the
attacker. We see that the attacker’s reputation score steadily
declines until oscillating around 0.42. For comparison,
in our Halo-ReDS collaborative mode simulations with
c = 0.2 fraction of attackers, we found that approximately
80% of honest nodes have reputation scores between 0.6
and 0.8.2 The probability of being used (Pr[A]) similarly
declines until oscillating around 0.32. The single threshold
version of the oscillation attack is thus quite limited.

2. We expect that some honest nodes have lower scores from the
perspective of a given node because they are tried a small number of
times, have low success rates, and are no longer used due to other honest
nodes being available in the k-bucket.

9

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c.
 o

f
L

o
o

ku
p

s
A

tt
a

ck
e

d

c

ρ=0.2
ρ=0.4
ρ=0.6
ρ=0.8

Fig. 11: Analysis: Probabilistic: For varying ⇢ and c, the
fraction of lookups attacked.

Two Thresholds. Oscillating behavior may occur over
longer time scales. To examine this we extend the threshold
model to include a lower threshold ⌧1 and an upper thresh-
old ⌧2. The attacker will set p = 0 whenever Pr[A] ⌧1,
i.e. the attacker’s reputation score has dropped too much
to be selected very often. He will set p = 1 whenever
Pr[A] � ⌧2, i.e. the attacker has built up sufficient
reputation to attack again. The key question is how the
attacker will set the thresholds ⌧1 and ⌧2.

In Figure 10 we see the attack rates for lookups in
the slow-learning, heavily biased model. We have similar
results for each model as with the one threshold attacker.
First we note that in this model the attacker is never able
to attack more than 7.1% of lookups. Further, the attacker’s
best strategy is to keep his range of scores quite high,
requiring him to behave honestly for most lookups. In the
fast-learning, heavily biased model, the attacker can never
attack more than one lookup.

Probabilistic. Since the attacker can also employ a prob-
abilistic attacking strategy, we also examine a probabilistic
version of the oscillation attack. We let the attacker’s
probability p of attack for a given lookup i be:

p
i

= ⇢(Pr[A]

i

� 0.5) + c

for attacker-chosen constants ⇢ and c. Although this func-
tion is linear, it covers a wide range of possible attacker
policies. Figure 11 shows the change in number of lookups
attacked in the slow-learning, heavily biased model for
varying ⇢ and c. As with the other attacker models, the
attacker has very limited success (again, he can only attack
at most 7.1% of lookups). Additionally, the fast-learning,
heavily biased model still only allows for one attack.

In sum, in all three attacker models the oscillation attack
provides little to no advantage to the attacker.

8.3 A use-based attack on shared reputation
We now consider attacks on shared reputation. Despite the
relative resilience of the Drop-Off scheme, it is vulnerable
to a novel attack that greatly affects the possibility of
shared reputation in ReDS. This use-based attack works
against any ReDS system in which a given finger is used
more by some knuckles than others. The attacker seeks to

F
0.50.8

0.8

0.8 0.2
K1

0.2

0.8 0.8

0.8

K5's score bucket

0.5

K2
K3

K4

K5

Fig. 12: A use-based attack. F , a malicious finger, attacks
lookups from knuckles K4 and K5 but not those from K1,
K2, and K3. Scores are reported to K5, whose score bucket
is shown on the right.

limit the loss of reputation from attacks while attacking as
many lookups as possible. The attacker can achieve this by
attacking the lookups from its knuckles who use his node as
a finger more while not attacking lookups from other nodes.
When the joint knuckles share reputation information about
this malicious finger, they will have conflicting scores. The
attacker’s goal is to arrange its attacks so that the low scores
are mostly ignored by other nodes.

We now describe a use-based attack in detail as applied
to Halo-ReDS with shared reputation. A version of this
attack should also work against Kad-ReDS with shared
reputation, due to the XOR metric, or against any ReDS
system in which a large fraction of lookups go through just
a few fingers. For simplicity, we assume that each node in
the Halo DHT performs the same number of lookups. The
assumption is valid when peers perform a large number
of lookups, and the probability of a given peer to initiate
a lookup follows uniform distribution. With non-uniform
distributions of lookup rates, the attack should have the
same results on average.

In the use-based attack the attacker node acts as a
malicious finger for m of its k knuckles and as an honest
node for the remaining k �m knuckles. An attacker node
with ID a attacks the m most distant knuckles, as these
knuckles use node a to cover a larger fraction of the ID
space. In particular, a performs maliciously for the knuckles
having ID a � 2

log(n)�i, where i = 1, 2, . . . ,m. Given l
lookups using node a, we estimate that the number attacked
on average will be

P
m

i=1
l

2i = l
�
1�

�
1
2

�
m

�
.

We show an example of the attack in Figure 12. F is
a malicious finger with knuckles K1 to K5. Here m = 2,
meaning that lookups from K4 and K5 are being attacked,
accounting for 75% of the lookups through F . K5 is a new
node with reputation score 0.5 for F , whereas K4’s score
of 0.2 for F reflects F ’s attacks on its lookups. We show
the reputation scores sent to K5, which include three scores
of 0.8 from knuckles K1 to K3 and 0.2 from K4. Using
the median the score will be 0.8, while using Drop-off the
expected score is 0.75. In either case, the finger can thus
attack many lookups while retaining a high reputation.

We further study the use-based attack in a simple sim-
ulator of the Drop-Off scheme, using 10, 000 nodes and
10, 000 lookup operations. Since node a may not always

10

1 2 3 4 5
0

20

40

60

80

100

m

p
(%

)

f = 90%
f = 80%
f = 70%

Fig. 13: Percentage of cases (p%) in which a given attacked
knuckle computes the reputation score of the attacker finger
as 0.8 (s = 80%)

behave the same to a given knuckle, we define two param-
eters. For the m knuckles for which a acts maliciously, let
f represent the percentage of lookups through a that fail.
Let s as the percentage of successful lookups through a for
the k �m of knuckles for which a acts honestly.

For example, if s = 80% and f = 80%, the victim
knuckles give a a score of 0.2 and the other k�m knuckles,
0.8. In Figure 13 we consider the shared reputation scoring
of the m knuckles when using all k scores. When m = 1,
s = 80%, and f = 80% the lone victim knuckle uses
0.8 as the shared reputation score of a in p = 98.6% of
cases. At the same time, he can attack 50% of all lookups
going through it. If an attacker acts maliciously for more
knuckles, it causes more lookups to fail, but its credibility is
decreased to those knuckles. Thus, the value of p decreases
as we increase m. Figure 13 shows that for m = 5, we get
p = 43.1%, while the attacker can attack 78% of lookups.

In sum, the use-based attack enables the attacker to attack
a majority or large fraction of lookups while still getting a
good reputation score most or nearly all of the time.
Countermeasures. We first note that the Drop-Off scoring
scheme may not be the best suited to stop the attack, as it
is designed mainly to resist slandering and self-promotion
attacks. Basic schemes, however, fare even worse. Using

the median, the attacker would be able to attack half of
its knuckles and still attain an excellent reputation score.
For 10,000 nodes, this means the attacker could attack six
out of 13 knuckles, covering 98.4% of lookups and have a
perfect reputation score. Average is better, but is much more
vulnerable to slandering and self-promotion. One could
note that in Drop-Off, the node is ignoring its own score
to its detriment. Making the score more centered on the
node’s own local score, however, means not obtaining any
significant benefit from sharing reputation over only using
first-hand observations.

One could attempt to design a scheme specifically to
counter this attack, but it must also resist slandering and
self-promotion attacks. For example, one could weight
the scores of distant knuckles more heavily than nearby
knuckles to reflect greater use by distant knuckles. Unfortu-
nately, weighting the scores of any knuckles more heavily
gives them greater power to perform slandering or self-
promotion. Another countermeasure is to use a DHT in
which all fingers are used equally. This suggests that Salsa,
in which all local contacts are used equally [4], is more
suitable for shared reputation. Considering the combined
effect of the use-based attack, the limited benefits shown
in our simulations, and the overhead of shared reputation,
we recommend against shared reputation in ReDS.

REFERENCES
[1] R. Akavipat, A. Dhadphale, A. Kapadia, and M. Wright, “ReDS:

Reputation for directory services in P2P systems,” in Proceedings

of The ACM Workshop on Insider Threats, Oct. 2010, pp. 47–54.
[2] D. Wagner, “Resilient aggregation in sensor networks,” in SASN, Oct.

2004.
[3] H.-C. Hsiao, C.-Y. Wang, J. M. Hellerstein, W.-C. Teng, and

C.-L. Lei, “Veriable order statistics for secure aggregation,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-48, Apr 2009. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-48.html

[4] A. Nambiar and M. Wright, “Salsa: A structured approach to large-
scale anonymity,” in Proc. ACM Conference on Computer and Com-

munications Security (CCS), Oct. 2006.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-48.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-48.html

	main
	Introduction
	System and Attack Models
	System model
	Attack model

	ReDS Design
	Overview
	Halo-ReDS
	Kad-ReDS
	Handling Churn
	Shared reputation scores
	Communication overhead

	Experimental Evaluation
	Experimental setup
	Attack success under churn
	Overall attack effectiveness
	Effectiveness of shared reputation
	Kad-ReDS-specific experiments

	Security Analysis
	Related Work
	Conclusions
	References
	Biographies
	Dr. Ruj Akavipat
	Mahdi N. Al-Ameen
	Dr. Apu Kapadia
	Zahid Rahman
	Dr. Roman Schlegel
	Dr. Matthew Wright

	supplement
	Supplemental Contents
	Algorithm for Halo-ReDS with A-Boost (local boosting)
	Local vs. adaptive boosting
	A-Boost reputation tree

	Halo-ReDS Model and Analysis
	Kad-ReDS Algorithm
	Halo-Specific Experiments
	Kad-ReDS-specific experiments
	Shared Reputation
	Drop-off
	Attacks on shared reputation

	Security Analysis
	Attacks on first-hand observations
	Oscillation Attack
	A use-based attack on shared reputation

	References

