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ABSTRACT
Emerging “live social search” systems such as Aardvark.com allow
users to pose questions to their social network in real time. Peo-
ple can thus obtain answers from real humans for questions that
prove too complex for web searches. Centralized systems that bro-
ker such queries and answers, however, do not provide adequate
privacy. The success of these systems will be limited since users
may avoid asking or answering questions related to sensitive top-
ics such as health, political activism, or even innocuous questions
which may make the querier seem ignorant.

Since social search systems leverage the structure of the social
network to better match askers and answerers, standard ideas that
hide this structure such as “connect to Aardvark via Tor” fall short.
Thus new techniques are needed to preserve the privacy of askers
and answerers beyond the currently understood anonymity tech-
niques. We explore the new and unique challenges for privacy,
and propose Pythia, a decentralized architecture based on “con-
trolled flooding” to enable privacy-enhanced social search that re-
tains some degree of social network structure.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; K.6.m [Management of
Computing and Information Systems]: Miscellaneous—Security

General Terms
Algorithms, Security

Keywords
privacy, social search, peer-to-peer, question-and-answer systems

1. INTRODUCTION
We are all experts at something. At some level we may be e.g.

movie critics, food connoisseurs, or photographers, and are happy
to share our expertise with those who inquire. Often we too are
faced with complicated questions that are too difficult to “google”.
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Imagine a world where any person with a question is connected to
the right (and available) person who can immediately answer that
question. Such is the promise of an emerging class of what we call
“live social search" systems.

Social search systems such as Aardvark (http://www.
vark.com/) [11] leverage the power of social networks to con-
nect askers with online experts (i.e., humans with domain exper-
tise) who are close to the asker in the social network, thus facilitat-
ing live exchanges of information between real humans.1 Horowitz
and Kamvar [11] draw the distinction between the library model of
search (e.g., web searches), where askers search for the right doc-
ument to answer a question vs. the village model (e.g., Aardvark),
where askers seek to get connected with right human because it
is unlikely their complicated question can be satisfied by an exist-
ing document. In fact, Google recently acquired Aardvark, noting
on their blog “sometimes the information just is not online in one
simple place.”2 While we have used Aardvark as an exemplar of
such a system, there is considerable interest in this model of live
social search. Facebook Questions is currently being rolled out to
its users, and provides a social search service.

Centralized systems such as Aardvark and Facebook, unfortu-
nately, do not provide adequate privacy to users because they main-
tain full knowledge about the social network. For example, the
identities of askers and experts, participants’ interests and exper-
tise areas, and their communication are all known to such systems.
While these systems support general queries related to restaurant
recommendations, home improvement, and product recommenda-
tions, the inability to ask or field queries privately limits the scope
of queries and advertised expertise. For example, a pro-choice or
pro-life advocate may want to field queries about the topic but
not want her colleagues, or anybody (including the social search
service), to know of her leanings. Similarly, experts may want
to engage in political activism and keep their involvement secret.
Askers, too, may ask questions on these topics and others such
as health related or legal issues, only under the cover of privacy.
In some cases, users may simply be embarrassed to ask “simple”
questions with the fear of being perceived as ignorant. Even if the
social search service kept identities private with respect to com-
municating askers and experts, the social service itself has knowl-
edge of all this information. All this information is vulnerable to
abuse, subpoenas, secondary use, unauthorized data aggregation,
and is also a prime target for data breaches (a central point of fail-
ure). Connecting to such services over anonymizing networks such
as Tor [9] to hide the identities of askers and answerers break the

1Aardvark claims “The vast majority of questions are answered
within 10 minutes.”
2http://googleblog.blogspot.com/2010/02/
google-acquires-aardvark.html
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utility of the system because the structure of the social network is
used to match askers and answers based on their proximity in the
social network. Furthermore, centralized services can manipulate
or censor queries and answers and restrict communication between
users in the system, anonymous or not. Thus existing routing-layer
anonymity solutions do not suffice.

If we are to realize the true potential of live social search for a
range of topics, we need to develop decentralized solutions. Fur-
thermore, we need to rethink the design of current anonymity sys-
tems to expose the structure of the social network just enough to
make relevant matches between askers and answers. Within the
context of such systems, we need to understand what the new pri-
vacy requirements are. Traditional notions of sender or receiver
anonymity, for example, which aim to keep the identify of the
sender or receiver secret do not capture properties such as exper-
tise unlinkability for answerers or interest unlinkability for askers.
For example, even if individual messages cannot be tied to Alice,
one may be able to determine Alice is a pro-choice expert. Exper-
tise areas may be leaked based on how such systems are structured
(are similar experts connected to each other?), or how expertise is
advertised in the system in order to attract queries. Thus providing
expertise/topic unlinkability goes beyond anonymity of messages.

Towards building such systems we characterize the system
model and security goals for decentralized live social search sys-
tems and propose Pythia. The central idea in Pythia is to partition
the social network into communities or flood zones and use local
flooding to send questions to online experts within the commu-
nity. Such flooding provides a high degree of privacy within the
community (as we explain in Section 3), yet limits the amount of
flooding to maintain scalability (see our analysis in Section 3.2).
When no nearby experts are found, we argue that beyond 2 or 3
hops in the social network it probably doesn’t matter where the
expert is located in the network, and any remote community with
online experts can be contacted using remote flooding within the
distant community. We show that for a low constant amount of
overhead, Pythia supports private queries (with anonymity relat-
ing to the cluster size) while maintaining the quality of responses
when nearby experts are available. We conduct a preliminary eval-
uation of privacy under a specific adversarial model and elaborate
on future directions, demonstrating that privacy-enabled live social
search is a rich area for further research. An extended version of
this paper appears as a technical report [17].

2. SYSTEM MODEL AND SECURITY
GOALS

We describe the high-level system model we assume for P2P so-
cial search systems, our security goals and the adversary model.

2.1 System model
We assume that a user is connected to and has knowledge of

his/her list of friends in the social network (e.g., by bootstrapping
off established social networks such as Facebook or instant messag-
ing systems). Every user has a list of self-declared expertise areas,
i.e., topics for which he/she can answer questions. For example, Al-
ice’s set of expertise areas could be {recipes, military intelligence
analysis, computer networks, environmental activism}. Some of
these expertise areas are private expertise areas, and are not known
to other users in the network. In such cases the user prefers to not
be known as an expert in that area.

Nodes (users) may be online or offline at any given time. Their
online and idle status is visible to their friends, as with instant mes-
saging applications. Offline nodes cannot assist in routing mes-

sages. While idle nodes can route messages, only available (not
idle) nodes are capable of answering questions.

A peer with a query can attach a set of query tags to the query,
where the tags indicate topics related to the query. Based on these
query tags, the query routing protocol attempts to find experts for
the specified tags close to the asker in the social network. Once
the query is routed to an available expert, the expert can respond.
We assume that not all available experts will answer questions, and
whether they do will depend on how responsive the expert is.

2.2 Security goals
The following three properties are unique to P2P live social

search systems:
Expertise unlinkability: A peer’s private expertise areas should

not be attributable to her identity beyond a certain threshold proba-
bility. For example, Bob may be a pro-choice advocate who doesn’t
want to advertise his association widely with the pro-choice move-
ment. We assume a threshold that is sufficient to provide plausible
deniability. For example, some authors consider a probability of
0.5 to be sufficient [20]. We assume more conservative probabil-
ities on the order of 0.1 to be sufficient for plausible deniability.
However, in cases where the prior probability is higher than 0.1,
we say plausible deniability is attained if the threshold is below the
prior probability. For example, if 33% of nodes in a community are
experts on a particular topic, then if the attacker cannot infer Alice
is an expert in that topic with probability more than 0.33, we say
plausible deniability is attained.

Interest unlinkability: An asker’s private query tags should not
be attributable to her identity beyond a certain probability. For ex-
ample, Alice may want to ask several queries about terrorist orga-
nizations she hears about on the news but may worry about being
labeled a terrorist. We assume the same probability threshold as
discussed for expertise unlinkability.

Unobservable querying and responding: Anonymous (but ob-
servable) queries and responses may allow an attacker to observe
that a particular node is asking or answering a question, allowing
the attacker to narrow down the set of possible nodes related to a
particular answer or question. We seek to prevent this attack and
hide whether nodes are asking questions or providing answers at
all. Note that although nodes in the system may observe queries
and answers being exchanged, they do not know whether individ-
ual nodes are issuing queries or answers.

Sender anonymity: One important note is that we assume that the
primary goal of an attacker is to uncover the expertise or interest
area of a user. For such a requirement sender anonymity is neces-
sary but not sufficient. Clearly if sender anonymity is broken for
a message, the expertise area of the sender is also broken. Sender
anonymity, however, does not imply expertise unlinkability. As al-
ready mentioned, expertise areas may be leaked based on how such
systems are structured (are similar experts connected to each other
in clusters?), or how expertise is advertised in the system in order
to attract queries. Thus, providing expertise or topic unlinkability
goes beyond message anonymity, and the system must be carefully
designed to preserve querier/expertise unlinkability in addition to
sender anonymity. As a result our proposed system Pythia uses un-
derlying sender anonymity techniques as just one building block to
provide the requisite privacy.

2.3 Attack model
We evaluate two classes of adversaries: global attackers can

view all messages exchanged in the system and infer the on-
line/offline and idle status of all the nodes at any time. Colluding at-
tackers have only partial knowledge of this type—we assume some



fraction of nodes c (0 < c < 1) are compromised and these collud-
ing attackers can infer the online and idle status of their neighbors
only, and view messages exchanged with their neighbors.

Attackers can have two different capabilities related to what they
can infer about messages: the messages are linkable if adversaries
can tell the answers (or questions) are authored by the same an-
swerer (or asker). For example, perhaps the writing style is unique
enough to link answers by the same expert. Otherwise, the mes-
sages are unlinkable. Using and linking observed information, at-
tackers try to determine the asker of a particular topic or the an-
swerers of a particular topic. We assume all adversaries have full
knowledge of the structure of the social network, and are honest
but curious, i.e., they participate in the protocol correctly, but try to
infer what they can based on their observations.

Thus we have four adversaries: Global-Linkable, Global-
Unlinkable, Colluding-Linkable, and Colluding-Unlinkable.

3. ARCHITECTURE
Figure 1 shows the high-level architecture of Pythia. The central

idea in Pythia is to partition the nodes in the social network into
anonymizing communities or flood zones. Questions from a com-
munity are received by all nodes in the community by means of
a local flood. The local flood allows anonymous answerers to re-
ceive questions without having to reveal their expertise areas. Fur-
thermore, to provide asker/answerer unobservability, all nodes ask
and answer questions at regular intervals (including dummy ques-
tions and answers) and thus attackers cannot readily pinpoint which
nodes are forwarding, asking or answering questions. If no answer-
ers are found in the local community, questions are forwarded to a
remote community as part of a remote flood.

Communities are small enough to limit the overhead of flood-
ing as well as to target answerers who are close to the asker in
the social network, but large enough to provide plausible deniabil-
ity as explained in Section 2.2. Our work does not seek to provide
near-complete anonymity (i.e., where the answerers can be any of a
several million nodes in the network), but attempts to strike a good
trade-off between privacy and performance. The size of commu-
nities, however, is a system parameter, and represents a trade-off
between privacy and performance. Smaller communities provide
lower privacy, but ensure that the overhead of query flooding is a
low constant (as opposed to a full flood of the entire network, which
has overhead linear in the size of the social network for example).

In Pythia, time is divided into intervals {t1, ..., tn}, where ques-
tions and answers are exchanged and distributed at the end of each
time interval as coordinated by a representative who is reelected
periodically. As we will show later, longer time intervals provide
better privacy against attackers, but delay communication times.
For practical purposes, one can assume time slots are a few min-
utes long. We note the representative can be adversarial (and pose
as one of the four types of attackers outlined in Section 2.3).

3.1 Creating social communities
In Pythia, all nodes in the social network are grouped into self-

organizing clusters called communities. We assume a distributed
community-forming algorithm such as the one proposed by Ra-
maswamy et al. [19], which results in a representative for that
community. In this scheme, nodes are clustered based on social
relationships and each node belongs to a single community and all
community members are known to each other. Communities may
have more than one representative, although, for simplicity, we as-
sume that communities have only one representative. Since it is not
the focus of our paper, we refer the reader to our technical report
for more details on the community creation protocol [17].
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Figure 1: Node 1 in Community 1 initiates a query with the tag
politics. The query via an onion route is sent to the representa-
tive node 5. The representative then floods the query to the local
community (along with other received queries). The answerer
in the community is unresponsive. The representative, having
received no responses, may choose a random community or ask
the DHT for communities with answerers in politics, and initi-
ates a remote flood in Community 2 by contacting representa-
tive node 6. Node 8 is a responsive answerer whose response is
sent to representative node 6 via an onion route (like a query
message), then relayed to representative 5, and finally received
by node 1 in the next flood by node 5.
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Figure 2: Timeline in Pythia

3.2 Routing questions and answerers
To simulate a distributed social search, nodes in Pythia partic-

ipate in three phases: asking, showing their intent to answer, and
answering. In all phases the same protocol is used with different
message types. All the messages in a community are forwarded
to the representative of the community, and are padded to have the
same size to thwart traffic analysis of messages in transit.

As a building block, Pythia uses Onion routing [10] to deliver
messages from nodes to representatives. We assume that the list
of IP addresses in a community is available to all nodes after com-
munity creation. The sender of a message can pick a set of n ran-
dom nodes from the community and progressively build a circuit
through these nodes. We conservatively set n = 6, which pro-
vides adequate “mixing time” in social networks, such that from
the receiver’s point of view the message could have originated any-
where in the community. The particular choice for this parameter
is orthogonal to this work, and it suffices to pick a value that pro-
vides adequate mixing. To create an “onion packet”, the message is
encrypted with the public key of the representative and each node
in the circuit. As a node receives a message it decrypts the outer
layer and passes it to the next node in the circuit. This approach
prevents attackers in collusion with the representative to link a par-
ticular message with a particular sender, providing asker/answerer
anonymity unless all nodes along the path are compromised. As
with mix networks [7, 16] we assume nodes along the route add



delays and reorder messages to thwart timing attacks. Since mes-
sages are exchanged periodically, tens of seconds of delay at each
hop should be sufficient. Note that to initiate a two-way conversa-
tion, an asker generates a “reply onion” [3, 5] to send the question.
The reply onion is transmitted to the representative who is the last
node of the chain. Then representative uses the reply onion to ini-
tiate the return chain for sending answers.

To obtain the public keys of nodes for setting up onion routes,
Pythia can benefit from existing centralized or distributed key man-
agement approaches applied in peer-to-peer systems [8, 12,14, 25].
However, to avoid revealing any information about the circuit, the
sender should be given a list of public keys of all the nodes within
the community instead of the nodes in the circuit. An approach
could be using a DHT to store several replicas of the communities’
lists of public keys, and to obtain and use keys based on agreement.
The nodes on the DHT responsible for storing the lists would ver-
ify if the authorized IP address is updating or retrieving the list. To
defend against global passive adversaries an extra step is needed to
provide asker/answerer unobservability. As illustrated in Figure 2,
during every time period ti, every online node sends three sepa-
rate messages to the representative, along three different routes, at
randomly chosen times in the interval. Due to the time delays im-
posed by nodes along the onion route, messages are received by the
representative at random times in the interval.3

For every time period, a user can ask up to one question, and
sends qi in time period ti. Each online user also sends one “in-
tent to answer” message vi−1 for a question received in ti−1. If
questions with topic tags for which there exists no expertise in the
local community are found, then they are forwarded to a remote
community. In Pythia the remote community is chosen randomly.
However, this selection can be done more efficiently and purpose-
fully if users can advertise (see Section 5) their topics of interests
anonymously and a DHT mechanism provides the correlations be-
tween communities and topics so that questions can be directed to
appropriate communities with potential answerers in that area.

Although many experts may be volunteered to answer a partic-
ular question so as not to overburden experts who are willing to
answer only a couple of times a day, representatives pick at most α
answerers (at random) to answer the question (e.g., we set α = 2
in our simulations), and thus at most α selected answerers from
the set of answerers who sent volunteer messages for the question
are informed about this selection in the previous time period ti−1.
Answerers that have been picked to answer, find their one-time
pseudonym in the respond block.

Online nodes send one answer ai−2 for the question they se-
lected in ti−2 and askers must wait between 2 to 3 time periods to
receive answers. For all these messages, if the online node does
not have a legitimate question, intent to answer, or answer, then
the node sends a dummy message through the onion routing. Thus,
attackers cannot directly observe who is asking or answering ques-
tions. Moreover, encrypted messages have fixed sizes so the ad-
versary cannot infer the content from the message size. We note
that the representative selects the α answers after discarding the
dummy messages. We note that reordering the messages within
each block is not necessary. We assume the representative is adver-
sarial and thus all adversaries know the order in which messages
were received by the representative. Pythia relies on onion routing
to provide anonymity to the sender of a message.

3The route length and average delays at each hop should be tuned
so that messages are likely to be received by the representative
within the time period.

3.3 Messaging overheads
Our controlled flooding approach does not induce high over-

heads. At each time interval, the traffic generated in each com-
munity can be analyzed by calculating the messages sent by each
member and the representative. Based on the format of messages
and Pythia’s protocol, even with a large community size of 10,000,
every time period only 17MB of traffic is received by the represen-
tative and it sends out only 7MB to the community. With smaller
community sizes of hundreds to a thousand nodes, the traffic is on
the order of a few hundred kilobytes to a megabyte total per time
period. Thus the overhead of dummy messages is low and the rep-
resentative is not overwhelmed with traffic. We provide details of
this analysis in our technical report [17].

4. EVALUATION
Pythia uses two-way onion routing with mixing and dummy traf-

fic to provide unobservability of question asking and answering,
sender unobservability and resistance against traffic analysis at-
tacks, especially for the global adversaries who can observe all
traffic in the system. Moreover, the use of two-way onion rout-
ing with mixing ensures that even a malicious representative cannot
actively modify questions and answers to great benefit because the
representative does not know who the recipients of the messages
are. While this architecture also provides resistance against attacks
to interest/expertise unlinkability, attackers can attempt to correlate
information about who is online and not idle to deduce the expertise
of a victim. We now evaluate our system under such attacks.

To demonstrate our hypothesis that privacy and utility can in-
deed be balanced for privacy-aware social search, we simulated a
P2P system of 60,000 nodes partitioned into social communities of
around size 100. To test Pythia with various potential topologies
of a social network, we created 5 randomly generated scale-free
graphs with 60,000 nodes using the Network Work Bench4 (NWB)
tool and the Barabasi-Albert (BA) model. Each graph was used
for 5 different simulation experiments. Communities were created
using the process discussed in Section 3.1. A subset of commu-
nities was taken due to the computational complexity of the simu-
lation. The subset communities were sized between 85 nodes and
115 nodes (µ = 95.526, σ = 8.6702).

Human models from Skype and Aardvark usage were used to
simulate queries and answers. We defined three types of expertise
categories: Common, Uncommon and Rare where 70%, 30% and
6% of nodes respectively have expertise in these topics. Each user
can ask questions on 36 different topics by tagging the query with a
topic. In our system users are assigned different numbers of exper-
tise topics according to the rough distribution of users and topics in
Aardvark as described by Horowitz and Kamvar [11]. In our sim-
ulation, every node issues on an average 2 queries per week while
20% of users are active [11]. If an active answerer gets a query,
she responds with an 85% probability. We assumed users are all
from a country with 3 time zones and are online for 10 hours.5 We
make a simpler assumption in this paper that the user is online for
10 contiguous hours (but we vary the idle times randomly), and in
the future we plan to use a better model for online/offline behavior.
We provide details of usage models in our technical report [17].

As one example depicted in Figure 3, we studied the degrada-
tion of anonymity after four weeks of system operation under the
Global-Linkable model defined in Section 2.3. Anonymity sets for
experts were measured depending on how many questions they an-

4http://nwb.slis.indiana.edu/
5According to [18, 21], in Skype 95% of peers disappear after 10
hours of activity.

http://nwb.slis.indiana.edu/
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swered in the four-week period. Adversaries were able to observe
the online/offline/idle status of all users in the network and correlate
questions and answers with those observations. As a private expert
answers more and more questions, adversaries are able to narrow
down the set of potential users that may be that expert. We note
that while our analysis focuses on questions answered in a single
category only, one could interpret these results for questions an-
swered in multiple categories (if answers from the same person are
linkable) since the attack would be the same. We can see that for
various levels of aggregation (time scales at which questions and
answers are exchanged in the network) the anonymity set degrades
faster for lower aggregation times and slower for higher aggrega-
tion times. We posit this adversary is too strong, since we assume
the adversary can link responses from the same expert together.
Further research is needed into determining how effective stylom-
etry is (i.e., linking texts to a particular author, or recognizing a set
as coming from the same author), and how to defeat it [4].

Figure 4 shows that experts have a high degree of anonymity
against Global-Unlinkable adversaries. In this attack, adversaries
maintain presence counts of users while answers are received for
sensitive topics. After 4 weeks, adversaries sort the list of answer-
ers by descending order of counts, and draw a line after each an-
swerer in the list with the hope that a large number of answerers are
included in the list above the line. Figure 4 plots the precision vs.
recall curves for the adversaries, where each point corresponds to
a particular position of the line in the sorted list of counts. The flat
precision shows this attack is not successful in finding the answer-
ers at top of the list and answerers are uniformly distributed in the
list. Even after 4 weeks, the precision is at best 0.1 for rare topics,
which provides plausible deniability.

Finally, in our simulations, we found the average social distance

between askers to local answerers was about 3 as a result of the
clustering algorithm. We hope future work can further reduce this
distance based on better clustering.

Implications of our results. Thus, if we assume adversaries
can link responses from experts by noticing similarities in text,
the anonymity of users degrades over time (albeit less so for
Colluding-Linkable adversaries). This is a fundamental limitation
of anonymity systems that cannot control the content of messages
being exchanged. On the other hand our results are promising
by showing that if answers are not linkable, anonymity improves
greatly. Users must therefore ensure that their messages do not
contain revealing characteristics [4].

5. DISCUSSION
Shielding. We propose the use of shielding sets, where partici-

pants would recognize the set of users that are usually online while
they are online, and only ask or answer questions when a large frac-
tion of these users are online. Participants can thus keep track of
their anonymity sets, and compute their loss of anonymity when
they ask or answer questions. Such a study needs long term data
about the online/offline patterns of users.

Metrics. For expertise unlinkability, it would be better to char-
acterize the probability of a person being an expert using the prior
probability to then calculate the posterior probability of being an
expert based on the size of the anonymity set. This information
could be combined with other information relating to the estimate
of how many experts are suspected to exist within the anonymity
set. We leave such refinements to future work.

Advertising. When nodes join the network, they may advertise
their expertise using a DHT based approach. A representative can
then select remote communities more efficiently and purposefully
and direct questions to communities with potential answerers for
a topic. However, a sophisticated method is needed to resist link-
age attacks where joins/leaves of nodes in communities cannot be
easily correlated with entries added/removed from the DHT.

Reputation. Nodes could advertise their expertise along with
reputation information for that expertise. For example, users could
accumulate anonymous digital cash [2] for answering questions,
and then prove their “wealth” as an indicator of reputation. A de-
tailed reputation mechanism is outside the scope of this paper and
we leave details for such a scheme to future work.

Incentives. Our current model largely relies on altruism. In ad-
dition to reputation mechanisms, simple policies can help control
freeriding; e.g., the number of questions that users can ask may de-
pend on how recently the user has joined or on the number of ques-
tions that a user has answered. Incentive mechanisms could take
into account the quality of answers provided, which could then be
combined with a reputation system.

6. RELATED WORK
Torrey et al. [23] study how information is searched for and

learned in the web. Adamic et al. [1] studied knowledge shar-
ing and its relation to Yahoo Answers. Popular Q&A services in-
clude Quora, Yahoo! Answers, Amazon Askville, Wiki-answers,
and Google Groups. These services allow users to post their ques-
tions and answer other questions. None of these are live social
search systems as they offer only offline communication, and the
service does not actively seek experts. Some social search appli-
cations use an individual’s social network to filter out the most
relevant search results. For example, Cha-Cha sets up a “human
middleman” to maximize the number of relevant results returned to
the user. Such services demonstrate the power of humans to filter



out inconsequential data during searches, but still fall within the
library model of searching for documents.

Cutillo et al. [6] describe a peer-to-peer architecture implementa-
tion for social networks. Li et al. [15] study the feasibility of P2P as
a web search engine infrastructure. These systems however do not
support live social search. Wu et al. present a P2P based distributed
search system called Sixearch.org [24]. However, Sixearch locates
static content. Related to the flooding-style of routing in Pythia,
P5 [22] is a protocol for scalable anonymous communication over
the Internet. Although it provides anonymous communication, it
lacks specific features required by Q&A networks. Last, and most
related to our work, Kacimi et al. [13] present a protocol that al-
lows anonymous opinion exchange among users connected over an
untrusted social network platform. However, it does not protect
against honest-but-curious nodes within the P2P network and thus
has weaker protections for privacy.

7. CONCLUSIONS
We present Pythia, a privacy-aware P2P system for live social

search. We have made the first significant attempt at designing such
a distributed system with strong privacy guarantees, and show the
feasibility of our approach through extensive simulations. While
this work provides an important first step, we hope to spur fur-
ther research in areas such as privacy-aware query routing, defenses
against intersection attacks, incentivizing use of such systems for
sensitive queries, and assigning reputation to anonymous experts.
We believe social search is bound to succeed through services such
as Aardvark and Facebook Questions in this social networking age.
Yet much work remains to be done to support private queries about
sensitive issues. Without privacy-aware systems, the full potential
for social search will not be realized.
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