
Distributed Enforcement of Unlinkability Policies:
Looking Beyond the Chinese Wall

Apu Kapadia∗

Institute for Security Technology Studies (ISTS)
Dartmouth College, USA

Prasad Naldurg
Microsoft Research, India

Roy H. Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign, USA

Abstract

We present a discretionary access control frame-
work that can be used to control a principal’s ability
to link information from two or more audit records
and compromise a user’s privacy. While the tra-
ditional Chinese Wall (CW) access control model is
sufficient to enforce this type of unlinkability, in dis-
tributed environments CW is inefficient because its
semantics requires knowledge of a user’s access his-
tory. We propose a restricted version of the CW
model in which policies are easy to enforce in a
decentralized manner without the need for an ac-
cess history. Our architecture analyzes system poli-
cies for potential linkability conflicts. Users can
identify specific threats to their privacy, typically
in terms of trusted and untrusted roles in the con-
text of RBAC (role based access control), following
which the system attaches automatically generated
policy constraints to the audit records. When these
constraints are enforced appropriately, they imple-
ment unlinkability policies that are provably secure
and precise for a fixed protection state. We extend
the model with a versioning scheme that can handle
evolving protection state, including changing roles
and permissions, trading precision to maintain the
security of deployed policies.

∗Apu Kapadia was funded in part by the U.S. Dept.
of Energy’s High-Performance Computer Science Fellowship
through Los Alamos National Laboratory, Lawrence Liver-
more National Laboratory, and Sandia National Laborato-
ries, and in part by the Bureau of Justice Assistance, under
grant 2005-DD-BX-1091. The views and conclusions do not
necessarily reflect the views of the sponsors.

1 Introduction

We address the privacy concerns of users ac-
cessing services within an organization such as a
university or corporate network. Local and exter-
nal administrators from across various departments
may monitor a user’s accesses to various resources
through audit records. In the case where “link-
ing” these accesses is not explicitly sanctioned by
a mandatory policy, such linkages can compromise
the privacy of users. We present a model that allows
users to express and refine unlinkability concerns
and have them enforced by the system without the
need for explicit coordination such as maintaining a
user’s access history.

In the context of our problem, unlinkability is
defined as the infeasibility of an adversary to corre-
late two transactions initiated by the same user. To
address this problem, researchers have proposed a
number of cryptographic mechanisms to construct
anonymous credentials [3, 1, 2, 7] that make it com-
putationally infeasible for a server to link the use
of these credentials. There are systems, however,
in which users simply cannot be anonymous. For
example, an organization may be required to keep
detailed audit records about who accessed payroll
information by law. In such systems, it becomes
important to provide unlinkability through access
control, allowing for linkability in only certain cases,
e.g., legal subpoenas, or only by certain trusted indi-
viduals in the organization. In this paper we focus
on providing unlinkability through access control,
with the observation that denying access to related
audit records prevents the possibility of linking the

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

contents of the audit records.1
We consider the setting in which a variety of

databases with independent access control mecha-
nisms often store the audit records of users’ actions
and service invocation requests across departmental
boundaries. This makes enforcement of unlinkabil-
ity a difficult task. In theory, centralized mecha-
nisms based on the Chinese Wall (CW) model can
solve this problem. For example, a CW policy could
ensure that administrators can access at most one
dataset within a “conflict of interest” (COI) class.
By grouping datasets corresponding to users actions
into a COI class, the CW model will ensure that no
administrator can access two or more such datasets,
thereby providing unlinkability. The implementa-
tion of such a policy, however, must maintain a his-
tory of administrators’ accesses. In a distributed
setting, maintaining this access history across de-
partments may render this approach infeasible or
impractical. Centralized solutions present a bottle-
neck for distributed access to resources and act as a
single point of failure for access control. Distributed
enforcement of CW policies requires the propaga-
tion of history information that must be kept consis-
tent across different databases, incurring high com-
munication and computational overheads.

In this context, we introduce an access control
model for policy-based unlinkability, which is a
restricted form of the CW model. Our model ad-
dresses the problem of restricting accesses by a sin-
gle domain administrator to multiple audit records
belonging to the same user as defined by a “session”
and does not require an implementation to maintain
the access history of users in the system. We out-
line an enforcement framework based on this model
that can analyze the system protection state for un-
linkability threats, and change the authorizations
based on the user’s requirements (except when they
are explicitly required by system policy) to counter
these threats. For example, given a set of services
as defined by Alice’s session, the system may inform
Alice that network administrators can access audit
records of her accesses to multiple services within
her session, and thereby track her actions in the or-
ganization. Alice can negotiate a set of constraints
to prevent certain administrative users from link-
ing her transactions, while allowing certain trusted
administrators to do so. These constraints are at-
tached to individual audit records and local access

1Denying access to a record does not leak information
about a user’s access. Administrators issue queries for
records such as “Alice’s access to the wireless network,” and
feedback of the form “access denied or record does not exist”
does not reveal whether Alice accessed the wireless network.

control decisions can be made based on these con-
straints, allowing for the distributed enforcement of
users’ unlinkability policies.

We prove that our framework is both secure and
precise with respect to enforcing the negotiated poli-
cies. We first prove these results under the strong
tranquility assumption where the protection state
(role and permission assignments) of the system
does not change over a session, i.e., the adminis-
trators’ access rights remain fixed. Subsequently,
we show how we can relax these assumptions and
present an approach that uses versioning to handle
changes in the authorizations under a weak tranquil-
ity assumption, sacrificing precision for the ability
to change protection state. Using versioning we can
always identify the set of users for which the policies
are secure and precise. In both cases we show how
users can add new flows to their existing sessions,
refining their unlinkability requirements iteratively.
In other words, it is not necessary for a user Alice
to specify all her possible accesses beforehand.

We briefly summarize our contributions:

1. We introduce an access control model for scal-
able and decentralized enforcement of unlinka-
bility policies without the need for maintaining
the access history of users (Section 2).

2. We outline an enforcement architecture based
on our access control model and prove that it
is secure and precise for fixed protection state
(Section 3).

3. To address evolving protection state, we
present an approach based on versioning. We
prove that our approach maintains the secu-
rity of deployed unlinkability policies by trad-
ing off precision for evolving protection state
(Section 4).

We present discussion, related work and conclu-
sions in Sections 5, 6 and 7 respectively.

2 Access control model

In this section, we provide some background on
the Chinese Wall model and present our model in
relation to its simple security condition.

2.1 Chinese Wall Model

Policies in the Chinese Wall (CW) Model group
objects belonging to a company into a Company
Dataset (CD). CDs can be grouped into Conflict

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

of Interest (COI) classes. The overall goal of this
model is that no subject can read objects from two
or more CDs within the same COI class. Once a
subject reads from a particular CD, future accesses
to other CDs within the COI class are denied. In
particular, the semantics of CW policies allow an
individual to access objects from any one CD of
their choosing in a COI class, and prevents fur-
ther accesses to objects in other CDs in that class.
Typically, Chinese Wall policies are enforced using
centralized history-based approaches [10] or require
explicit coordination [8], which is expensive in prac-
tice.

Let CD(o) be the CD of object o (similarly
COI (o)) and PR(u) be the set of objects that u
has read. Each object belongs to exactly one COI
class. This behavior is formalized in the following
security condition:

Definition 1. CW-Simple Security Condition:
A subject u can read an object o if and only if any
of the following holds:

1. There is an object o′ such that u has accessed
o′ and CD(o′) = CD(o).

2. For all objects o′, o′ ∈ PR(u) ⇒ COI (o′) #=
COI (o).

Since our system addresses only read accesses to
objects, we omit discussion of the CW-*-Property
that governs write accesses.

2.2 Our model

In this subsection, we show how we can mod-
ify the simple security condition in the CW model
to capture the notion of unlinkability in our con-
text. We assume a distributed system for sharing re-
sources that allows us to specify and enforce system-
wide access control policies. Users in the system ac-
cess services by presenting credentials resulting in
an access transaction. Objects (audit records) re-
lated to an access transaction are stored in one or
more databases.

Definition 2. An audit flow for a given ac-
cess transaction is the set of audit records I =
{o1, o2, . . . , om} related to that access transaction.
A collection of audit flows S = {I1, I2, . . . , In} that
a user desires to keep unlinkable, is called a session.

Sessions are associated with individual users and
may be open-ended, i.e., they last for the lifetime of
the system and users are allowed to update the list
of transactions in their session.

It is possible to enforce unlinkability policies us-
ing the Chinese Wall model. The user’s session can
be specified as a COI class, where each audit flow is
equivalent to a CD. The CW model would prevent
administrators from accessing audit records of two
or more audit flows within the specified session. The
distributed enforcement of CW policies, however,
requires a mechanism to record and disseminate ac-
cess history across the system. We present an alter-
native access control model that does not maintain
the access history of users, making distributed en-
forcement of linkability policies more efficient.

We assume that users and access permissions are
organized into roles using RBAC. The underlying
RBAC system governs read accesses to audit records
in the absence of unlinkability policies. We refer to
these permissions as “static read access”:

Definition 3. If in the underlying RBAC system
a user u has read access to a database d, then we
say that u has static read access to all the audit
records in database d. Similarly, u has static read
access to an audit flow I if u has static read access
to any audit record in I. Static read access can be
overridden by linkability policy constraints.

Our unlinkability specification will guarantee
that subjects with static read access to two or more
different audit flows within a session are denied ac-
cess to any object within that session. Note that
the set of behaviors allowed in this model is more re-
strictive than CW, which allows access to one object
of the subject’s choosing. We show that our model’s
semantics allows the enforcement of policies in a de-
centralized setting, where access decisions can be
made local to the object being accessed.

Recall, that an object o is an audit record for
some transaction T (o). Let I(o) be the audit flow
for transaction T (o). Let Session(o) be the session
that contains I(o) (we assume that an audit flow
can be part of only one session).

Users supply a set of roles called the “deny set”
that the unlinkability policies should apply to. For
example, a student Alice may not want other stu-
dents (e.g., part-time student administrators) to
link her transactions, and would add the Student
role to her deny set. Subjects not in the deny set
are not explicitly denied from linking audit flows
within the session. We explain this in more detail
in Section 3. Let DenySet(o) be the deny set asso-
ciated with Session(o).

We define the simple security condition for Un-
linkability as follows:

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

Definition 4. Simple Security Condition
(SSC1) for Unlinkability: A subject u is granted
read access to an object o if and only if the following
hold:

1. u has static read access to o.

2. if u ∈ DenySet(o) and there is no object o′ such
that u has static read access to o′, and o and
o′ belong to different flows in the same session
(Session(o′) = Session(o) and I(o) #= I(o′)).

This means that subjects in the deny set of a
session with static read access to two or more audit
flows within that session are denied access to any
objects within the session. This semantics does not
give subjects the ability to access exactly one flow of
their choosing within a session (as in the CW model)
and is applied only to subjects identified as unlink-
ability threats by the user (as defined by the user’s
deny set for that session). SSC1 can be enforced
easily if all the audit flows in a session are specified
in advance. For “open-ended” sessions where all the
audit flows are not known in advance (a more realis-
tic assumption), however, we modify SSC1 to allow
read access to at most one audit flow within a ses-
sion, but access to the flow of the subject’s choosing
is not guaranteed. We call this SSC2:

Definition 5. Simple Security Condition 2 for
Unlinkability (SSC2): A subject u is granted read
access to an object o if the following hold:

1. u has static read access to o.

2. if u ∈ DenySet(o) and there is no object o′ such
that u has static read access to o′, and o and
o′ belong to different flows in the same session
(Session(o′) = Session(o) and I(o) #= I(o′)).

Furthermore, if a subject u is granted read access
to an object o then the following hold

1. u has static read access to o

2. u will not be granted read access to any object
o′ such that I(o) #= I(o′) and Session(o′) =
Session(o)

In short, a subject with static read access to two
or more audit flows in a session may be able to ac-
cess zero or one audit flow in the session, but access
to a particular audit flow of the subject’s choosing
cannot be guaranteed.

In the remainder of this paper we show that our
access control model can be realized in a distributed
environment by attaching policies to data, which are

enforced locally. Since evolving protection state can
result in a violation of the simple security condition,
we present a system that uses versioning to maintain
the security of deployed policies.

3 Enforcement architecture

Throughout this paper we will refer to three
types of policies. Flow policies are explicit represen-
tations of data flows between databases. The policy
(d1, d2) allows database d1 to propagate copies or
transformations of data to d2. The system can use
these flow policies to construct graphical represen-
tations of audit flows throughout the system. Ac-
cess policies are Permission-Role assignments (d, r),
where role r may access database d. Lastly linkabil-
ity policy constraints are described in Section 3.2,
and are attached to audit records. Access to an au-
dit record is granted to users based on the access
policy for that database, and the linkability policy
constraints of that audit flow, which can override
the former.

Policy

Negotiation

Server

Access
Transactions

User

1 2

4

5

6

3

7

Audit log databases

Policy
Database

Figure 1. System Architecture

We now present a high level overview of our en-
forcement architecture using an end-user example
scenario as shown in Figure 1. (1) In the first step,
a concerned user Alice sends her session informa-
tion to the policy negotiation server (PNS). This is
a set of identifiers (or unique types) corresponding
to access transactions to unique servers. In steps
(2)-(3), the PNS looks up relevant information for
each service including access policies and flow poli-
cies, builds the audit flows I1, · · · , In, and analyzes
them for unlinkability conflicts. The PNS presents
Alice with a set of roles whose users can access her
audit-record information from two or more audit
flows, e.g., Security Officer and Student Adminis-
trator.

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

In Step (4) Alice identifies her discretionary un-
linkability requirements in terms of roles (we call
this Alice’s “deny set”) whose users she wants to
prevent from linking her audit information, e.g.,
Student Administrator. The PNS may not be able
to enforce some of Alice’s choices if there are manda-
tory access requirements, e.g., the request to add Se-
curity Officer to Alice’s deny set may be disallowed
by mandatory system policy. After Alice and the
PNS agree on Alice’s deny set, (5) the PNS sends
Alice a certificate with policy constraints for her au-
dit records. This certificate is digitally signed and
is tagged to Alice’s audit data. The PNS also stores
Alice’s discretionary policies and session informa-
tion in the policy database because Alice may later
want to add more transactions to her existing ses-
sion. In Steps (6)-(7), for each access transaction,
Alice presents these certificates during authentica-
tion, which are attached to audit records that make
up the audit flows. Access to an audit flow is allowed
only if the accessing user’s role is not precluded by
the policy constraints. We assume that all interac-
tions are cryptographically secured for authenticity,
confidentiality, and integrity and that policy con-
straints are known only to Alice, the PNS, and the
reference monitors that enforce those constraints.

3.1 Construction

We now propose an approach to enforce unlinka-
bility for Alice’s session by analyzing the roles that
are explicitly granted static read access to each au-
dit flow. In our construction, a PNS examines all
the users in this set of roles and constructs a set of
conflicting roles for that session.

Definition 6. A role c is a conflicting role for
a session S if there exists a user u assigned to role
c who has static read access to two or more audit
flows in session S.

For example, say Network Admin has static read
access to I1, Local Admin has static read access to
I2, and there are users in the Student role that also
belong to both Local Admin and Network Admin.
In this case Student is a conflicting role for I1 and
I2, since there exists a Student user with static read
access to both audit flows. The PNS identifies the
set of conflicting roles and presents this set to the
user, who picks a subset of these conflicting roles
as the “deny set.” Alice may decide that Student
administrators are indeed potential threats to her
privacy and add Student to her deny set. Linkabil-
ity policy constraints are generated that will ensure

that all read accesses to audit flows satisfy SSC1.
We also assume that for the purposes of accessing
audit records, the system has access to all the roles
that a user can activate, not only those that the
user has activated currently.

Note that in our enforcement architecture stu-
dents who are not linkability threats (i.e., those
with static read access to only one flow), will still
be allowed to access Alice’s audit records. A ref-
erence monitor enforcing access to the audit-record
database will check the policy constraints and allow
or deny access appropriately. We formalize these
concepts, and show how we can provide users with
unlinkability with respect to audit flows. The key
idea here is that Alice can specifically deny users
of certain roles from linking her information. We
believe that our system will provide users with a
usable presentation of potential threats to their pri-
vacy in the form of conflicting roles, and allow users
to easily select roles that they consider to be privacy
threats.

In our technical report [5], we describe how the
PNS constructs a user’s session graph by analyzing
flow and access policies in the system to identify
conflicting roles (the description includes a detailed
time complexity analysis). Briefly, the session graph
models audit flows by representing databases and
roles as vertices, and information flows as edges.
This graph can be analyzed to identify conflicting
roles. We assume that access transactions are de-
fined only periodically in a system, and the PNS can
reuse audit flow graphs to construct session graphs
for users, thereby reducing the computational bur-
den at the PNS. For simplicity, we avoid the details
in this paper and focus on how policy constraints
are generated and enforced once the conflicting roles
have been identified.

3.2 Generating and enforcing policy
constraints

Using the session graph, PNS returns to Alice the
set of conflicting roles C in S. Alice picks a subset
of these roles CAlice as her deny set.

The members in Alice’s deny set should be pre-
vented from linking Alice’s flows. Note that not
all users in the deny set are linkability threats, and
hence we need to make sure that only the users who
can link Alice’s flows must be denied access. We
define Alice’s policy constraints PS for session S as
the tuple 〈CAlice,R1, . . . ,Rn〉, where Ri is the set of
roles with static read permission to information flow
Ii (for compactness, Ri includes only those roles

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

that have a common user with some role in CAlice).
Records for audit flows in session S are tagged

with PS . When a user u attempts to access an audit
record, the database’s reference monitor first checks
to see if u has static read access for that database.
If so, it then checks the attached PS to see if any
of u’s roles are in CAlice. If so, the reference moni-
tor checks to see if u’s role-set URA(u) has a non-
empty intersection with at least two different sets in
{R1, . . . ,Rn}. If so, the user has static read access
to two or more flows in S, and the user is denied ac-
cess by the reference monitor. In the worst case, for
users with static read access to the database, the ref-
erence monitor needs to compute n+1 intersections,
where each intersection takes O(|URA(u)|+ |Γ|) op-
erations (using hash-tables), which is O(|Γ|). Γ is
the set of roles in the system. Hence the time com-
plexity for evaluating PS is O(n|Γ|) if u is in Alice’s
deny set. If not, the time complexity is O(|Γ|), the
cost of computing the intersection URA(u)∩CAlice.
As mentioned earlier, PS is known only to Alice, the
PNS, and the reference monitors at each database.

At this point, a valid question is why not generate
policy constraints with user IDs. There are two rea-
sons for this. Firstly, if a user u was identified to be
a linkability threat, then adding u to the policy con-
straints will prevent u from accessing two or more
flows. If u is removed from a particular role and is
no longer a linkability threat, however, u will still
be denied access. Our scheme adds more precision
to the system by allowing users who are no longer
linkability threats to access audit records. And sec-
ondly, in large systems we expect a role based for-
malism to be a more compact representation of link-
ability conflicts.

We now prove that our system is secure, sound,
and precise under certain assumptions.

Definition 7. Strong Tranquility asserts that
the static access permissions associated with the
users of the system (i.e., the user-role assignment
(URA) and the permission-role assignment (PRA))
do not change by system operation.

Policy constraints are generated based on the
current protection state of the system (i.e., the URA
and the PRA). Changes to the protection state
can result in policy constraints that are “out of
date.” We first prove that our constraints are se-
cure, sound, and precise with under the strong tran-
quility assumption. We relax this assumption in
Section 4 and show how we can trade precision for
security when the protection state and the session
information are allowed to change. The following

theorems trivially hold because of the strong tran-
quility assumption, which makes the properties hold
by construction of session graph S and policy con-
straints PS .

Due to space limitations, we omit the proofs of
the following theorems. Please refer to our technical
report [5] for the proofs of theorems in this paper.

Theorem 1. (SSC1 Security) Assuming strong
tranquility, if a user u with a role in Alice’s deny
set CAlice, has static read access to two or more
audit flows in Alice’s session I1, · · · , In, the pol-
icy constraints will prevent u from accessing these
flows. Furthermore, Alice was presented with all of
u’s roles as conflicting roles.

Theorem 2. (Soundness) Assuming strong tran-
quility, if a user u is denied access to a flow Ii by
the policy constraints, then the user has static read
access to two or more audit flows in the session S.

The following theorem is simply the contraposi-
tive of Theorem 2. In the following sections we will
only refer to security and precision, since precision
follows from soundness.

Theorem 3. (Precision) Assuming strong tran-
quility, if a user u has static read access to exactly
one audit flow within a session, then u is not denied
access by the policy constraints.

3.3 Open-ended sessions

Our construction maintains security and preci-
sion for a predefined session. Consider the case
when user Alice does not know all her transactions
a priori. Alice would like to dynamically generate
constraints for new audit flows, without invalidat-
ing her constraints to older audit flows. We extend
our algorithm to allow users to add audit flows to
existing sessions and generate new constraints ap-
propriately.

Constraints for a new flow In+1 can be gen-
erated by extending Alice’s existing session graph
for I1, I2, . . . , In. We prove that enforcing the
incrementally-generated constraints for each flow in
an open-ended session provides security and preci-
sion with respect to SSC2.

Theorem 4. (SSC2 Security)
Assuming strong tranquility, if a user u with a

role in Alice’s deny set CAlice, has static read ac-
cess to two or more audit flows in Alice’s session
I1, · · · , In+1, then the policy constraints will prevent
u from accessing two or more of these flows.

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

Theorem 5. (Precision)
Assuming strong tranquility, if a user u has static

read access to exactly one audit flow within a ses-
sion, then u is not denied access by the policy con-
straints.

3.4 Mandatory audit flows

The PNS may consider access by certain conflict-
ing roles to be mandatory. For example, the PNS
may mandate that student administrators cannot be
denied access, and are exempt for policy constraints.
If there are exempted users that can access two or
more audit flows, the user is informed of this. Our
goal is to make the privacy implications of sensitive
information explicit to the user. Users will have
complete information of who can link the user’s in-
formation, and will proceed only if they agree to the
PNS’s mandatory policy.

In the next section, we relax the strong tranquil-
ity assumption and present a discussion of what
policies we can enforce when the permissions are
allowed to change and investigate the trade-off be-
tween security and precision.

4 Security under weak tranquility

Our strong tranquility assumption in Section 3.2
is restrictive since the users, roles, and permissions,
which define the protection state in any organiza-
tion will change over time. Once the protection
state changes, it may not be possible to enforce
some of the unlinkability requirements. New con-
flicts may emerge that may invalidate existing pol-
icy constraints.

In this section, we extend our results to model
the effect of changing the protection state. Our
proposed solution uses versioning to localize the im-
pact of these updates. Since our policy enforcement
mechanisms are decentralized, i.e., records belong-
ing to a particular flow in a database are tagged
with access restrictions, it is important to guaran-
tee the security of these access restrictions under
evolving protection state without requiring updates
to deployed policies. Similar to maintaining consis-
tent access histories for CW policies, we consider
updating policies throughout the system to be in-
feasible.

We define the notion of weak tranquility which
captures the effect of changing permissions on the
satisfaction of unlinkability properties.

Definition 8. Weak Tranquility for user u
with respect to policy constraint PS states that

the access permissions (i.e., the URA and the PRA)
associated with a user u of the system do not change
in such a way that it violates the security and pre-
cision of the enforcement of PS for user u.

Our goal is to guarantee that changes to the pro-
tection state can preserve the weak tranquility prop-
erty for as many users as possible during the lifetime
of the system and identify such users for each policy
constraint in the system.

When a policy is agreed upon by the user and the
PNS, the policy constraints certificate is stamped
with the current system version number maintained
by the PNS. When users are added to the system,
they are also assigned the current system version
number. The user’s version number will be up-
dated when certain changes are made to the pro-
tection state. A user u can access an audit record
belonging to flow I only if Version(u) ≤ Version(I),
which implies that weak tranquility holds for u with
respect to the policy constraint for I. We assume
that reference monitors have access to the current
version number for a user (e.g., policy database or
a revocation-based certificate approach). We prove
Lemma 1 based on the following update rules for a
user’s version number.

Lemma 1. Consider audit flows I1, . . . , In in a
session S. After any change to URA or PRA,
if for a user u, Version(u) ≤ Version(Ii) for all
i = 1, . . . , n, then weak tranquility holds for user u
with respect to the policy constraints PS.

Proof. We prove this for each possible update to the
protection state, and hence the lemma holds by in-
duction on the number of updates to the protection
state. For the base case, there are no updates to the
protection state, and the lemma trivially holds by
strong tranquility, which implies weak tranquility.

New User u Created: No change to system ver-
sion number. Assign current system version number
to user u. u has not been granted any static read ac-
cess and weak tranquility trivially holds for u with
respect to PS . Weak tranquility for other users with
respect to PS is not affected by this change.

New Role r Added: No change to system version
number. No permissions have changed in the sys-
tem, and weak tranquility holds for all users with
respect to PS .

User-Role (u, r) Assignment Added: When a
User-Role assignment (u, r) is added, it is possible
that u now has static read access to two or more
flows in session S, but will not be denied access

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

to two or more flows by the policy constraints. To
maintain the security property of PS with respect to
u, the system version number is incremented, and u
is assigned the new version number. Hence existing
policies PS will deny access to u based on u’s ver-
sion number. Weak tranquility for other users with
respect to PS is not affected by this change.
User-Role Assignment (u, r) Deleted: No
change in version number. We only need to exam-
ine the case when u had static read access to two
or more flows in S before the user-role assignment
was deleted. If u continues to have static read ac-
cess to two or more flows in S, then u must activate
roles other than r, which must appear in the orig-
inal policy constraints. Hence u will be prevented
access by the policy constraints if u has a role in
the deny list of the constraints (security property).
If u does not have any roles on the deny list (see
discussion for privilege escalation for the case when
r ∈ CAlice), then u is allowed access. If it is the
case that u no longer has static read access to two
or more audit flows, then r was necessary for access
to two or more flows. Hence r ∈ URA(u) is a neces-
sary condition for being denied access by the policy
constraints. Since now r /∈ URA(u), the policy con-
straints will allow u to access flows in S (precision).
Weak tranquility for other users with respect to PS

is not affected by this change.
User u Deleted: Version number does not change.
Equivalent to iteratively removing all User-Role as-
signments for u. Delete all the User-Role assign-
ments.
Role r Deleted: Equivalent to iteratively remov-
ing all User-Role assignments for r followed by re-
moving all PRA(r). Note that after this operation,
the system version number remains unchanged.
Permission-Role (d, r) Assignment Added:
This means that a role r has been granted static
read access to some database d. Since this role may
not have been included in the session graph, it is
possible that some users in r can now access two or
more audit flows, and will not be denied access by
the policy constraints, violating the security of the
policy constraints, and weak tranquility does not
hold for users in r with respect to existing policy
constraints PS . If there are any users assigned to
role r, the system version number is incremented,
and all users in r are assigned the new version num-
ber. Weak tranquility for other users with respect
to PS is not affected by this change.
Permission-Role (d, r) Assignment Deleted:
This means that the static read access to database

d has been removed for a role r. It is possible that
users in r are no longer a threat to linkability, but
will still be denied access by policy constraints, vio-
lating the precision of the policy constraints. Hence
weak tranquility does not hold for users in r. If
there are any users assigned role r, the system ver-
sion number is incremented, and all users in r are
assigned the new version number. Weak tranquility
for other users with respect to PS is not affected by
this change. Note that the security of policy con-
straints is not affected by adding the assignment
(d, r). For every policy, however, we would like to
maintain the set of users for which weak tranquility
holds, which is why we update the version numbers
for affected users.

Privilege Escalation: Consider the situation
when a user has access to only one flow in a session.
After accessing this information, the user is removed
from a particular role, and then added to a new role,
giving the user access to another flow in the session,
violating the unlinkability requirement. The version
number of the user, however, is incremented when a
new user-role assignment is added, which will pre-
vent this kind of privilege escalation. Similarly, in-
crementing the version number on the addition of a
new permission-role assignment prevents privilege
escalation due to changing permission-role changes.
More generally, privilege escalation is prevented by
the fact that a user’s version number is incremented
whenever the user’s static permission set increases.
It is important to note that if a role r is removed
from a user’s role-set, it is possible that r is on the
deny list of some policy constraint, and that the user
will now be able to link flows in that session, which
was disallowed before this removal. With cooper-
ation from the security officer, a user can remove,
and subsequently add, r to his/her role-set result-
ing in one form of privilege escalation. We assume
that the security officer is trusted, and that privi-
lege escalation from the removal of a conflicting role
is semantically correct and secure. An alternative
approach would be to define this type of privilege
escalation as not secure, and increment the version
number when a user-role assignment is removed.

Under versioning, the following theorems follow
easily from Lemma 1. Please refer to our technical
report for the proofs [5].

Theorem 6. (Secure) If a user u with a role in
Alice’s deny-set CAlice, has static read access to two
or more audit flows in Alice’s session I1, · · · , In+1,

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

then the policy constraints will prevent u from ac-
cessing two or more of these flows.

Theorem 7. (Precise up to Versioning) If a
user u has static read access to exactly one au-
dit flow within a session S = {I1, . . . , In}, then
u is not denied access by the policy constraints if
Version(u) ≤ Version(Ii) for all i = 1, . . . , n.

After the policy constraints have been gener-
ated, previously deployed policy constraints grad-
ually lose precision by being overly restrictive to
users affected by evolving system permissions. This
imprecision, however, is restricted only to users who
gain new permissions, and users of roles for which
database permissions change. We argue that the
latter case is rare and can be performed at prede-
fined system epochs. To cope with degrading preci-
sion, the PNS can choose to honor the policy con-
straints for a certain time period called unlinkability
window. This window can either be a static param-
eter in the system, or can be negotiated with the
user. As mentioned earlier, changes in flow poli-
cies are considered to be non-trivial changes. These
changes can take place in epochs that honor the un-
linkability window. When this is not possible, all
data along the new flow is tagged as sensitive and
is only allowed access by designated administrators.
Users can be informed in general that changes in
flow policy are possible, and that certain designated
administrators will have access to audit flows in the
session.

5 Discussion

Guaranteeing the unlinkability of a user’s ac-
cesses is a hard problem in general because of
other channels of observation outside the scope of
anonymizing protocols or an access control system.
Motivated adversaries can physically observe a user
accessing a printer, room, etc. We have made
an initial attempt at characterizing the semantics
of unlinkability in a distributed setting as a con-
fidentiality property. We assume that users will
take the necessary physical safeguards for their pri-
vacy and our model provides the user with the spe-
cific guarantee that two or more records within the
user’s session will not be accessible by certain in-
dividuals, preventing the linkability of the contents
within the records. Our model does not address
context-sensitive authorizations. A more sophisti-
cated model could allow users to specify circum-
stances in which their records can be linked (for
example, in the case of a medical emergency).

In our model, the user specifies a deny set based
on the conflicting roles identified by the PNS. De-
pending on the system, the set of conflicting roles
could be quite large. To simplify the process of
specifying privacy constraints, therefore, a usable
interface would be needed in practice. Perhaps the
system, or its users, can maintain lists of untrusted
roles used in previous deny sets and thereby reduce
the number of decisions that need to be made by
users.

Our enforcement architecture uses versioning to
maintain the security of policies, but these policies
lose their precision as protection state evolves. Our
solution does not claim to achieve optimality. Bet-
ter enforcement mechanisms (e.g., a more sophisti-
cated versioning scheme) may yield better precision
under evolving protection state. Ideally, distributed
reference monitors would identify exactly whether
a user violates the security and precision of a pol-
icy and deny access accordingly. Such approaches,
however, may require a more sophisticated version-
ing scheme, which could increase the complexity of
the system. Our solution takes the conservative ap-
proach of identifying users for which the system can-
not guarantee security and precision. Further study
is required to measure the rate of degradation of
precision in realistic systems.

6 Related Work

Research on the privacy of a user’s accesses has
focused on cryptographic mechanisms for anony-
mous authorization. To provide unlinkability, re-
searchers have explored the construction of creden-
tial systems that satisfy the multi-show property
whereby the owner of a certificate can construct
two or more credentials with the same attributes
that are unlinkable[12, 9]. Anonymous credentials
presented by Chaum [3] relies on the interaction
with a trusted third party for unlinkability. Ca-
menisch, Lysyanskaya et al. [2, 7] extend this un-
linkability based on computational zero-knowledge
proofs, and the credential system proposed in [9] de-
fines “Chameleon certificates” that provide a user
complete control over the amount of information
revealed as well as computational zero-knowledge
proofs for unlinkability of credentials. In contrast,
our research focuses on enforcing unlinkability poli-
cies using access control mechanisms. As mentioned
earlier, in some systems it may not be feasible to al-
low anonymous access to resources.

The Separation of Duty (SoD) problem is tra-
ditionally viewed as preventing a single user from

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

performing different actions on the same object in
the course of a workflow to protect transactional
integrity [11]. In contrast, we prevent a user from
accessing different audit records associated with dif-
ferent information flows initiated by a single user.
Sandhu’s work on Transaction Control Expressions
(TCE [10]) shows how dynamic SoD constraints can
be enforced adequately using history if the infor-
mation about each transaction is annotated with
the object itself. Simon and Zurko [11] argue that
such history is essential to enforce general SoD con-
straints, violating our requirement of not maintain-
ing an access history. Gligor et al. [4] formalize
the relationship between SoD and RBAC and show
how RBAC is not sufficient to enforce all types of
SoD properties, especially dynamic SoD constraints.
More recently, Li et al. [6] show how directly en-
forcing static SoD policies is intractable, let alone
dynamic SoD policies, and show how statically mu-
tually exclusive roles can be engineered to enforce
these constraints on a best-effort basis. In the con-
text of our unlinkability problem, annotating audit
records in different databases with history informa-
tion does not provide us with a mechanism to en-
force unlinkability as these data objects are inde-
pendent and local history cannot be used to enforce
global constraints. Instead, our proposed solution
annotates different audit records with policy con-
straints to enforce unlinkability. Furthermore, we
show how unlinkability constraints can be computed
in polynomial time, and show that it is tractable to
enforce such policies under relaxed semantics.

7 Conclusions

We explore the problem of unlinkability in the
context of administrators accessing a user’s audit
records in a distributed environment. Since Chinese
Wall policies are difficult to enforce in a distributed
environment, we propose new semantics that allow
for the enforcement of unlinkability policies without
having to maintain any access history. We present
an enforcement architecture for our access control
model and show how audit flows for different ac-
cess transactions can be analyzed to generate pol-
icy constraints for unlinkability. With appropriate
tranquility assumptions on the underlying autho-
rizations, we prove that these constraints can guar-
antee unlinkability when enforced locally. To main-
tain the security of deployed policy constraints un-
der evolving protection state, we propose a solution
based on versioning that maintains security by trad-
ing precision for evolving protection state.

Acknowledgments

We thank Marianne Winslett and the anonymous
reviewers for their helpful comments.

References

[1] S. Brands. Rethinking Public Key Infrastructures
and Digital Certificates; Building in Privacy. MIT
Press, 2000.

[2] J. Camenisch and A. Lysyanskaya. An efficient
non-transferable anonymous multishow credential
system with optional anonymity revocation. In
EUROCRYPT, 2001.

[3] D. Chaum and J.-H. Evertse. A secure privacy pre-
serving protocol for transmitting personal informa-
tion between organizations. In CRYPTO, 1986.

[4] V. D. Gligor, S. I. Gavrila, and D. F. Ferraiolo. On
the formal definition of seperation-of-duty policies
and their composition. In In Proceedings of the
IEEE Symposium on Research in Security and Pri-
vacy. (Oakland, CA.), 172–183, 1998.

[5] A. Kapadia, P. Naldurg, and R. H. Campbell.
Distributed Enforcement of Unlinkability Policies:
Looking Beyond the Chinese Wall. Technical
Report, University of Illinois, UIUCDCS-R-2006-
2689, 2006.

[6] N. Li, Z. Bizri, and M. V. Tripunitara. On
Mutually-Exclusive Roles and Separation of Duty.
In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), Octo-
ber, 2004.

[7] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. In Selected Areas of Cryptog-
raphy, Volume 1758 LNCS, 1999.

[8] N. H. Minsky. A Decentralized Treatment of
a Highly Distributed Chinese-Wall Policy. In
Proceedings IEEE 5th International Workshop on
Policies for Distributed Systems and Networks
(POLICY 2004), pages 181–184, June 2004.

[9] P. Persiano and I. Visconti. An Anonymous Cre-
dential System and a Privacy-Aware PKI. In R.
Safavi-Naini and J. Seberry, editors, Information
Security and Privacy, 8th Australasian Conference,
ACISP 2003, volume 2727 of Lecture Notes in
Computer Science. Springer Verlag, 2003.

[10] R. Sandhu. Transaction control expressions for
separation of duties. In Proceedings of the 4th
Aerospace Computer Security Applications Confer-
ence, 1998.

[11] R. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. In IEEE Computer Secu-
rity Foundations Workshop, pages 183–194, 1997.

[12] E. R. Verheul. Self-Blindable Credential Certifi-
cates from the Weil Pairing. In Proceedings of the
7th International Conference on the Theory and
Application of Cryptology and Information Secu-
rity, pages 533–551. Springer-Verlag, 2001.

Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'07)
0-7695-2767-1/07 $20.00 © 2007

