
PEREA: Towards Practical TTP-Free Revocation
in Anonymous Authentication

Patrick P. Tsang†, Man Ho Au‡, Apu Kapadia†, Sean W. Smith†

†Department of Computer Science ‡Centre for Computer and Information Security Research
Dartmouth College School of Computer Science and Software Engineering

USA University of Wollongong, Australia

{patrick, akapadia, sws}@cs.dartmouth.edu, mhaa456@uow.edu.au

ABSTRACT
Several anonymous authentication schemes allow servers to
revoke a misbehaving user’s ability to make future accesses.
Traditionally, these schemes have relied on powerful TTPs
capable of deanonymizing (or linking) users’ connections.
Recent schemes such as Blacklistable Anonymous Creden-
tials (BLAC) and Enhanced Privacy ID (EPID) support
“privacy-enhanced revocation” — servers can revoke mis-
behaving users without a TTP’s involvement, and without
learning the revoked users’ identities.

In BLAC and EPID, however, the computation required
for authentication at the server is linear in the size (L) of
the revocation list. We propose PEREA, a new anonymous
authentication scheme for which this bottleneck computa-
tion is independent of the size of the revocation list. Instead,
the time complexity of authentication is linear in the size
(K � L) of a revocation window, the number of subsequent
authentications before which a user’s misbehavior must be
recognized if the user is to be revoked. We prove the se-
curity of our construction, and have developed a prototype
implementation of PEREA to validate its efficiency experi-
mentally.

Categories and Subject Descriptors
K.6.5 [Operating Systems]: Security and Protection—
Authentication; E.3 [Data Encryption]: Public key cryp-
tosystems

General Terms
Algorithms, Security

Keywords
anonymous authentication, privacy-enhanced revocation,
subjective blacklisting, non-membership proofs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

1. INTRODUCTION
Anonymous authentication schemes allow users to authen-

ticate to service providers (SPs) as some anonymous mem-
ber of a group. Fully-anonymous authentication, however,
can give users the license to misbehave since they cannot
be held culpable for their actions. For example, a web-
site such as Wikipedia may allow anonymous postings, but
then cannot hold users who deface webpages accountable.
To mitigate this problem, several schemes support revoca-
tion of anonymous users, where a trusted third party (TTP)
can take action against misbehaving users. At a high level,
authentication in these schemes requires users to send SPs
their pseudonyms encrypted with the TTP’s key; SPs can
present a misbehaving user’s escrowed identity to the TTP
as part of a complaint procedure. For example, schemes
based on group signatures [1, 6, 15, 22] feature an Open
Authority (OA), who uses privileged information in combi-
nation with the offending user’s authentication transcript to
revoke users. Optionally, the OA can provide the SP with a
linking token to recognize the offending user’s connections.
Other classes of schemes based on dynamic accumulators [2,
7, 13, 23, 24] and hash chains [21] also rely on TTPs. We
omit details on the subtleties of the various schemes, and
simply emphasize that all these schemes feature a TTP that
can deanonymize users or link1 their accesses.

Having a TTP with such power, however, is undesirable—
users are never guaranteed the anonymity of their connec-
tions. Users must trust the TTP to judge their “misbehav-
iors” fairly and not be susceptible to bribery or coercion by
powerful adversaries. This potential for reduced privacy may
be unacceptable for users such as whistleblowers, activists,
and journalists in countries with restricted freedom of press.

Eliminating TTPs, but at a cost.
Enhanced Privacy ID (EPID) [9], and our own Black-

listable Anonymous Credentials (BLAC) [26] are two re-
cently proposed schemes that for the first time eliminate
the reliance on TTPs for revocation, thus providing privacy-
enhanced revocation [26].2 SPs can add an entry from an

1We say that an entity X can link a user’s connections if X
can infer that the connections belong to a single user with
probability better than random guessing.
2Brickell and Li refer to this concept as “enhanced revoca-
tion” in the context of EPID [9], and we called this con-
cept “anonymous blacklisting ” in the context of BLAC. As
will become clear, we now distinguish between the action of

anonymous user’s authentication transcript to a blacklist (or
revocation list), following which the revoked user cannot au-
thenticate. No TTP is needed to perform these actions, and
revoked users remain anonymous. Privacy-enhanced revoca-
tion also allows for subjective judging [26], where SPs can re-
voke users at their discretion since the privacy of users is not
at risk. In contrast, TTP-free schemes such as e-cash [4] and
k-Times Anonymous Authentication (k-TAA) [25] support
accountability in only narrowly defined applications where
misbehaviors can be mapped to too many authentications
(such as “double spending” a digital coin).

While BLAC and EPID eliminate the reliance on TTPs,
the amount of computation at the SP required for authen-
tication is linear in the size of the blacklist, i.e., O(L) where
L is the number of entries in the blacklist. At a high level,
the client has to prove in zero knowledge that each entry in
the blacklist was not produced by him/her, resulting in L
such proofs. A blacklist with thousands of entries (several
entries may correspond to misbehaviors by the same user)
would make the costs of authentication prohibitive and pose
a severe bottleneck at the SP. For example, for a blacklist
with 1,600 entries, BLAC requires 1.68s of computation at
the SP and 431.8 KB of communication for a single authen-
tication [26]. These numbers would approximately double
for 3,200 entries. In our paper on BLAC, we acknowledged
this limitation and listed “more efficient blacklist checking”
as an open problem.

PEREA, an efficient alternative.
We propose PEREA (Privacy-Enhanced Revocation with

Efficient Authentication), an anonymous authentication
scheme without TTPs in which the time complexity of au-
thentication at the SP (the bottleneck operation) is inde-
pendent of the size of the blacklist. Instead, the amount of
computation is linear in the size K of the revocation window,
the number of authentications before which a misbehavior
must be recognized and blacklisted for a user to be revoked.
For example, if K = 10, the SP must blacklist a user’s mis-
behavior before that user has made 10 subsequent authen-
tications. Note that a blacklisted user is not revoked if he
or she has already made K subsequent authentications, and
therefore we differentiate between the action of blacklisting
and the end result of whether the user is actually revoked.
Since the SP may take some time to recognize misbehav-
iors (e.g., malicious edits on Wikipedia may not be detected
immediately), these K authentications can be rate limited
to K authentications every T minutes. Combined with rate
limiting, SPs have enough time (T) to recognize misbehav-
iors, and honest users can authenticate anonymously at an
acceptable rate (one authentication every T

K
minutes on av-

erage). For example, for K = 10, T = 60, SPs must judge
misbehaviors within 60 minutes, and users can authenticate
once every 6 minutes on average.

In practice we expect K � L, leading to much better
performance that is independent of the number of blacklist
entries. For example, L can grow to thousands of entries in
an application such as Wikipedia, while K can be limited to
a constant as small as 10 or 20 in the context of PEREA. We
note that the amount of computation at the user is increased
(as compared to BLAC and EPID), but we show that this
trade-off is well worth the benefit (Section 5).

blacklisting and the end result of revocation.

On rate limiting.
We argue that rate limiting is an implicit scalability re-

quirement in both BLAC and EPID. If a user performs
10,000 misbehaviors before being detected in BLAC or
EPID, the number of entries L in the blacklist grows by
10,000 for that single misbehaving user, resulting in unac-
ceptable overhead (O(L)). Furthermore, blacklisting is less
effective at deterring misbehavior if users can do all the de-
sired damage before being detected and blacklisted. In our
paper on BLAC [26], we suggested that the rate of authen-
tication should be limited for this reason.

Our contributions.
• We present PEREA, an anonymous authentication

scheme without TTPs that supports privacy-enhanced
revocation. PEREA is the first such scheme with com-
putation at the service provider independent of the size
of the blacklist.
• We introduce the concept of a revocation window, the

number of authentications within which a misbehaving
user must be blacklisted if he or she is to be revoked.
These semantics allow for a more efficient solution than
with existing approaches.
• We evaluate the performance of PEREA both analyti-

cally and experimentally, and prove the security of our
construction without random oracles. We have built
a prototype implementation, and compare its perfor-
mance with BLAC. We demonstrate that PEREA out-
performs BLAC in server computation.3

Paper outline.
We present an overview of our solution and its security

requirements in Section 2. After presenting the individual
cryptographic building blocks in Section 3, we present our
construction in Section 4. We present a detailed evalua-
tion, both analytically and experimentally, in Section 5. We
present a discussion of several issues related to PEREA in
Section 6, and conclude in Section 7.

2. OVERVIEW
Since our solution is based on accumulators, we start

by describing the limitations of existing accumulator-based
schemes, followed by a high-level overview of our scheme.
We then describe the security goals of our solution.

2.1 Accumulators
A dynamic accumulator, or simply an accumulator as we

call it in this paper, is a constant-size cryptographic con-
struct that represents set membership. Elements may be
added to (i.e., “accumulated”), or removed from, the accu-
mulator. Furthermore, anyone can prove in zero knowledge
that certain element is “in” the accumulator if and only if
the element has indeed been accumulated. In the context of
anonymous authentication, users can authenticate by prov-
ing in zero knowledge that their pseudonym is in the ac-
cumulator, where the accumulator represents a “whitelist”
of valid pseudonyms [13]. Using a recent scheme [23], users
could instead prove their non-membership in an accumulator
representing a “blacklist” of revoked pseudonyms. In both

3We did not compare PEREA experimentally with EPID,
which has the same asymptotic performance as BLAC.

these approaches, authentication is performed in constant
time at the server.

Why current approaches fail. The limitation of current
accumulator-based approaches is that someone must add
or remove pseudonyms from the accumulator. In exist-
ing schemes, the user must provide the SP with his/her
pseudonym encrypted with a TTP’s key. The SP can re-
voke that user’s access by providing the user’s encrypted
pseudonym to the TTP, which then decrypts and adds or
removes (depending on whether the accumulator is a black-
list or whitelist) the pseudonym from the accumulator. Op-
tionally, the TTP can announce the pseudonym to the SP,
who then updates the accumulator itself. As mentioned ear-
lier, we seek to eliminate TTPs that can identify (or link)
users, and therefore current accumulator-based solutions do
not suffice. We need a solution in which pseudonyms are not
added or removed from the accumulators.

Our use of accumulators. PEREA uses accumulators as
a blacklist in a novel way. Instead of presenting an en-
crypted pseudonym during authentication, the user presents
a ticket, which is an unlinkable “one-show” token generated
by the user. These tickets give users the desired unlinkabil-
ity across authentications. Simply putting a ticket into the
accumulator, however, does not revoke users because users
can produce any number of new tickets (unlike systems in
which users have unique pseudonyms). PEREA solves this
problem by making the user also prove in zero knowledge
that the last K tickets he/she presented are not in the ac-
cumulator. What follows is a high-level description of how
PEREA implements this functionality.

2.2 Overview of our construction
In PEREA, users register with a service provider (SP) and

obtain a credential for anonymous authentication at that
SP. The credential consists of various initialized elements
and datastructures. Figure 1 is a pictorial representation
of how these datastructures are used in authentication as
described in this section. All elements within the dashed
box belong to the user and are proved in zero knowledge to
the SP. Arrows represent the flow of information during the
current authentication, and dashed arrows represent the flow
of information in preparation for the next authentication.

Authentication. As part of the authentication process,
users provide the SP with a ticket tK . Users maintain a
queue of the past K authentication tickets t0, . . . , tK−1 in
addition to the current ticket tK , and the SP maintains a
blacklist of tickets belonging to misbehaving users. The user
proves to the SP that the current ticket tK is valid, and
that none of the previous tickets in the queue are on the
SP’s blacklist. If authentication succeeds, the user generates
a new blind ticket tK+1 for the next authentication, and
constructs a new queue by dropping t0 and appending tK+1.
Once a user’s ticket has been added to the blacklist within
the revocation window, the user can no longer authenticate
and acquire new tickets for subsequent authentications.

Proving that the user is not revoked. The SP stores its
blacklist in the form of an accumulator V (as will be ex-
plained later, the blacklist is also stored and communicated
as a list). Since the SP should not be able to link any of
the user’s previous transactions, the user must prove that
his/her queue of previous tickets t0, . . . , tK−1 has not been
revoked without disclosing those tickets. This proof is done
in zero knowledge, in which the user generates for each ticket

non-membership witness
update

Sign

Commit

t0

w0 w1 w2 ... wK-1

t1 t2 ... tK-1 tK

t1 t2 ... tK-1 tK tK+1

tK

Blacklist

...

...

...

C

σ

wK

Compute
Witness

RNG

σ′

(1)
(2)

(3)

(4b)

(4a)

(5)

(6a)

(6b)

(7a)
(8a)

(8b)

(7b)

Figure 1: (1) User Alice obtains the SP’s Blacklist
and (2) updates her list of witnesses (w0, . . . , wK−1)
for the tickets (t0, . . . , tK−1) in her queue. (3) Alice
generates ticket tK+1 for use in the next authenti-
cation and constructs the new queue (t1, . . . , tK+1).
(4) Alice generates a commitment C of the new
queue, and sends C and tK to the SP. (5) Alice
proves the integrity of her datastructures in zero
knowledge, and that C and tK are well formed. If
the proof succeeds, (6) the SP generates a new sig-
nature σ for C, and computes a witness wK for ticket
tK , and (7) sends these items to the user, who (8) re-
freshes her list of witnesses and stores the new queue
for subsequent authentication.

ti a witness wi, which attests that ticket ti has not been“ac-
cumulated” in the accumulator (representing the blacklist).
While the user must download the blacklist (O(L))4 to gen-
erate these witnesses, the accumulator-based proof sent to
the SP is of size O(K) and verification takes time O(K).

Proving the integrity of the queue. The SP needs the user
to prove that none of the user’s most recent K tickets has
been revoked. A user could circumvent revocation by fab-
ricating a queue with an incorrect set of K tickets. The
SP therefore needs to verify the integrity of the queue, i.e.,
the queue contains the correct sequence of the most recently
used K tickets. Again, this proof must be performed in zero
knowledge because disclosing a queue (of tickets) to the SP
immediately links the user’s previous actions. To prove the
integrity of the queue, the user makes use of a signature
obtained from the SP in the previous authentication. Like-
wise, the user must now obtain a new signature for use in
the next authentication. The user provides the SP with a
commitment (a blinded queue) of the new queue, along with
the current authentication ticket tK . If authentication suc-
ceeds, the server generates a signature of this commitment
and sends it back to the user. During the user’s subsequent
authentication, the user can prove the integrity of the new

4As we note in Section 5, blacklists in PEREA are approxi-
mately 14% the size of blacklists in BLAC.

queue in zero knowledge by using the new signature as part
of the zero knowledge protocol.

Now that we have described the various aspects of our
construction, we refer the reader to Figure 1 for the actual
sequence of actions during authentication.

2.3 Security Goals
We now describe the security properties of PEREA. Here

we give informal descriptions and refer the interested reader
to Appendix A for a formal definition of these properties.

PEREA must have the basic property of misauthentica-
tion resistance, i.e., no unregistered user should be able to
authenticate. PEREA must also support revocability, i.e.,
users blacklisted within the revocation window should not
be able to authenticate successfully. Furthermore, any coali-
tion of revoked and/or unregistered users should not be able
to authenticate successfully.

The anonymity property requires that SPs should not be
able to identify authenticating users within the anonymity
set of registered users and their authenticated connections
should be unlinkable. The SP should be able to infer only
whether the authenticating user is revoked or not. We also
require identity-escrow freeness, i.e., there should exist no
TTP that can infer the identity or pseudonym of a user
behind an authentication.

Backward unlinkability [3] requires that upon revocation,
all the user’s past authentications should remain anonymous
and unlinkable. Revocation auditability requires that users
should be able to check their revocation status before per-
forming any actions at the SP. This property avoids the
situation when a malicious SP recognizes a user as being
revoked without the user being aware of his or her reduced
privacy.

3. BUILDING BLOCKS
We now outline the various cryptographic primitives that

we use to realize PEREA.

3.1 Preliminaries

Notation and intractability assumptions.
If S is a set, then |S| denotes its cardinality and a ∈R

S means that a is an element picked from S uniformly at
random. If `, δ are integers, we denote by [`, δ] the set {`, `+
1, . . . , δ}, by Λ` the set [0, 2`+1−1], i.e., the set of integers of
size at most ` bits, by Π` the set {e ∈ Λ`|e is prime}, and by
∆(`, δ) the set [2`−1, 2`−1+2δ−1]. A safe prime is a prime p
such that p−1

2
is also prime. An `-bit safe-prime product is a

product of two b `
2
c-bit safe primes. If N is an integer, then

QRN is the set of quadratic residues modulo N and φ(N) is
the Euler’s totient of N . If A(·) is a (possibly probabilistic)
algorithm, then we write a ← A(·) or A(·) → a to mean
that a is the output of an execution of A(·). Finally, a

.
= b

defines a to be b.
The security of PEREA relies on the Strong RSA Assump-

tion [5, 18] and the Decisional Diffie-Hellman (DDH) As-
sumption over the quadratic residues modulo a safe-prime
product. Let N be a random λ-bit safe prime product.
The Strong RSA Assumption says that there exists no
PPT algorithm which, on input N and u ∈ Z∗

N , returns
e > 1 and v such that ve = u mod N , with non-negligible
probability (in λ). The DDH Assumption over QRN says
that there exists no PPT algorithm which, on input of a

quadruple (g, ga, gb, gc) ∈ QR4
N , where a, b ∈R Z|QRN |, and

c ∈R Z|QRN | or c = ab with equal probability, correctly dis-
tinguishes which is the case with probability non-negligibly
(in λ) greater than 1/2.

ZKPoK protocols.
In a Zero-Knowledge Proof-of-Knowledge (ZKPoK) proto-

col [20], a prover convinces a verifier that some statement is
true without the verifier learning anything except the truth
of the statement. In many existing anonymous credential
systems, a client uses some variants of ZKPoK protocols
to prove to a server her possession of a credential during
an authentication without revealing the credential. PEREA
makes use of ZKPoK protocols.

We follow the notation introduced by Camenisch and
Stadler [14]. For example, PK {(x) : y = gx} denotes a
ZKPoK protocol that proves the knowledge of an integer
x such that y = gx holds, where g generates a group in
which discrete logarithms are hard to compute.

3.2 Tickets and queues
In PEREA, a user picks a ticket uniformly at random from

the set Π`t , where `t = 166. As there are at least 2160 tickets
in this set,5 two tickets picked uniformly at random collide
with probability at most 2−80, because of the birthday para-
dox. We set the ticket domain to be T .

= [−2`T +1, 2`T −1],
where `T = 330.6

A queue of size k is a sequence of k tickets. The domain
of all k-sized queues is thus Qk

.
= T k. A queue supports the

enqueuing (Enq) and dequeuing (Deq) operations in the usual
sense. We denote by Q[i] the i-th least recently enqueued
ticket in Q, with i = 0 being the least recent (oldest). In
PEREA, all queues are of size (K +1), where K is the revo-
cation window as explained before. We therefore sometimes
abbreviate their domain QK+1 as simply Q.

3.3 Proving that a user is not revoked

3.3.1 An accumulator scheme for tickets
PEREA makes use of universal dynamic accumulators

(UDAs) recently introduced by Li et al. [23]. Compared
to conventional dynamic accumulators (DAs), UDAs addi-
tionally allow for an efficient zero-knowledge proof of non-
membership. Specifically, for any input x (within some do-
main) that has not been accumulated into an accumulator
value V, anyone can prove to anyone else that this is indeed
the case, without revealing x, in time independent of the
number of inputs already accumulated into V. In PEREA,
the SPs blacklist users by accumulating their tickets into
UDAs.

The following describes a construction of UDAs we
adapted from the one due to Li et al. The differences are
mostly at the presentation level; we make notational changes
and retain only the functionality needed by PEREA. We call
the modified scheme TicketAcc.
Key generation On input security parameter paramacc =

`N, choose an `N-bit safe-prime product N = pq uni-

5This follows from a result due to Dusart [17]: if π(x) is
the number of distinct primes less than x, then π(x) >

x
ln x

`
1 + 0.992

ln x

´
for all x > 598.

6Note that T) Π`t . This allows a user in PEREA who
knows a ticket in Π`t to efficiently prove in zero knowledge
to the SP that she knows some ticket in T .

formly at random, pick g ∈R QRN, and output the
accumulator private key skacc = φ(N) and public key
pkacc = (`N, N, g). pkacc is an implicit input to all the
algorithms below.
We have chosen `N = 1024 as required by the security
of the scheme and so that tickets can be accumulated.7

Accumulating tickets Accumulating ticket t ∈ T to an
accumulator value V can be computed as:

Accumulate(V, t)→ V′ .
= Vt mod N. (1)

Let ST = {t1, t2, . . . , tL} ⊂ T . We overload

Accumulate(V,ST) (2)

to mean the repetitive invocation of Accumulate to ac-
cumulate tickets t1, t2, . . . , tL, one at a time. (The or-
der does not matter, due to quasi-commutativity [13].)
An accumulator value is initially g. The accumulator
value V resulted from accumulating ST is thus:

Accumulate(g, ST)→ V
.
= gt1t2···tL mod N. (3)

We abbreviate the above as Accumulate(ST).
Non-membership witnesses If V = Accumulate(ST) for

some ST ⊂ T and t ∈ T \ST , then there exists a non-
membership witness w in the form (a, d) ∈ Zb N

4 c
×

QRN for t w.r.t. V such that 1 = IsNonMember(t, V, w),
where

IsNonMember(t, V, (a, d))
.
=

1, if Va ≡ dtg,
0, otherwise.

(4)

As we will see soon (in Section 3.3.2), the witness w for
a ticket t w.r.t. an accumulated value V allows a prover
to convince a verifier that t was not accumulated in V,
without revealing t or w.
We sometimes simply call non-membership witnesses
“witnesses.”

Computation of non-membership witnesses If V =
Accumulate(ST) for some ST ⊂ T , then for any
t ∈ T \ST , one can compute, using knowledge of skacc,
a witness w = (a, d) for t w.r.t. V:

ComputeWitness(t, V, skacc)→ w (5)

so that 1 = IsNonMember(t, V, w). Please refer to [23,
§3.2] for how to find such a w.

Update of non-membership Witnesses Given witness
w such that 1 = IsNonMember(t, V, w), when V gets
updated to V′ via the accumulation of a new ticket
t′ ∈ T \{t} into it (i.e., V′ = Accumulate(V, t′)), any-
one can compute, without the knowledge of skacc, a
witness w′ for the same ticket t w.r.t. the updated ac-
cumulated value V′ (i.e., 1 = IsNonMember(t, V′, w′))
as:

UpdateWitness(w, t, V, t′)→ w′ (6)

Again, please refer to [23, §4.2] for details.
If t ∈ T \ST for some ST ⊂ T , we overload

UpdateWitness(w, t, V, ST) (7)

7The accumulator allows any input in the domain X .
= {x ∈

X ′|x is prime} to be accumulated, where X ′ = [0, 2`x) with
`x = b`N/2c − 2. Since `t = 166, the choice of `N = 1024
gives Π`t ⊂ X .

to denote the repetitive invocation of UpdateWitness
to update w for t when tickets in ST are accumulated
into V, one at a time, in any order.

The complexity of the operations in Equations 1, 4, 5
and 6 is O(1), i.e., independent of the number of tickets that
have been accumulated into V. The complexity of those in
Equations 2, 3 and 7 is thus O(|ST |).

3.3.2 Proof that a ticket is not accumulated
To prove in zero knowledge that the i-th least recently

enqueued ticket Q[i] in queue Q is not accumulated in an
accumulator value V, one can conduct

PK {(Q[i], w) : 1 = IsNonMember(Q[i], V, w)} (8)

using the knowledge of the corresponding witness w. The
construction of the above protocol and its security proof
have been given by Li et al. [23, §5]. The construction has
a complexity of O(1), i.e., independent of the number of
inputs that have been accumulated into V.

3.4 Proving the integrity of the queue

3.4.1 A protocol for queue signing
In PEREA, the SP signs user Alice’s queue during an au-

thentication so that next time when Alice tries to authenti-
cate, the server can be convinced of the queue’s integrity.

PEREA must use a signature scheme in which Alice can
request the SP for a signature on the queue and also later
prove to the SP her possession of a valid signature on
a queue, without revealing the queue and the signature.
Hence, a conventional digital-signature scheme would not
work.

For this purpose, we construct QueueSig, which is an
adaptation from the signature scheme for blocks of mes-
sages [12, §4] and the protocol for signing blocks of committed
values [12, §6.3], both due to Camenisch and Lysyanskaya.
Our adaptation is again at the presentation level: we think
of blocks of messages as queues of tickets, and present, with
notational changes, only those parts that are relevant to
PEREA.

As will become clear, QueueSig provides the skeleton for
both the Registration protocol and the Authentication pro-
tocol in PEREA. We now describe QueueSig.
Key generation On input security parameters paramsig =

(`N , `s, `e, `T , l, δr), the SP chooses an `N -bit safe-
prime product N = pq uniformly at random, and
b, c, g0, g1, . . . , gK ∈R QRN , and then outputs the
signature private key sksig = φ(N) and public key
pksig = (paramsig, N, b, c, (gi)

K
i=0). The SP keeps sksig

private and publishes pksig to the public. pksig is an
implicit input to the algorithms defined below.

Request for signature To request a signature on a com-
mitted queue Q = (ti)

K
i=0 ∈ Q, Alice picks r ∈R

∆(`N , δr), commits Q:

Commit(Q, r)→ C
.
= cr

KY
i=0

gti
i mod N, (9)

and then sends the commitment C to the SP.
Proof of correctness Alice (as the prover) then conducts

the following protocol with the SP (as the verifier) to

prove that the commitment was constructed correctly:

PK {(Q, r) : C = Commit(Q, r) ∧ Q ∈ Q ∧ r ∈ R} ,
(10)

where R .
= [0, 2`N). The SP proceeds only if the pro-

tocol succeeds.
Signing The SP signs and returns to Alice a signature σ̃

on C using its private key sksig:

Sign(C, sksig)→ σ̃
.
= (r′, e, v), (11)

where r′ ∈R Λ`s , e ∈R Π`e and v =“
bcr′

C
”1/e mod φ(N)

mod N .8

Finalizing Alice finalizes the signature σ̃ = (r′, e, v) on the
commitment C into a signature σ on her queue Q:

Finalize(σ̃, r)→ σ
.
= (r + r′, e, v). (12)

She proceeds only if the signature verifies, i.e.,
Verify(Q, σ) = 1, where

Verify(Q, σ) =

1, if ve ≡ bcs QK

i=0 gti
i ∧ e > 2`e−1,

0, otherwise.
(13)

This construction of the protocol has an O(K) computa-
tional complexity at — and an O(K) communication com-
plexity between — Alice and the SP. The security of the
protocol requires that (1) the signatures are unforgeable and
(2) the SP learns nothing (e.g., its content, and who owns
it) about the queue that it is signing. When `N ≥ 1024,

l ≥ 160, `e > `T + 2, `s = `N + `T + l and δr = b `N−1
ε
− lc

for some 1 < ε ∈ R, these properties can be proved to hold
under the Strong RSA assumption in virtually the same way
as Camenisch and Lysyanskaya proved theirs [12]. We have
chosen (`N , `s, `e, `T , l, δr)

.
= (1024, 1514, 333, 330, 160, 862).

3.4.2 Proof of knowledge of a signed queue
As alluded to earlier, Alice must prove to the SP the pos-

session of a valid signature issued by the SP for her queue,
without revealing the queue and the signature themselves.
The following protocol does exactly that:

PK {(Q, σ) : 1 = Verify(Q, σ) ∧ Q ∈ Q} (14)

A construction for the above protocol and its security proof
closely follow the one for the ZKPoK protocol for proving the
knowledge of a signature on blocks of committed values [12,
§6.3] and its security proof, respectively. We thus omit the
details. The construction has an O(K) computational com-
plexity at — and an O(K) communication complexity be-
tween — Alice and the SP.

3.4.3 Proof of relation between two queues
During a PEREA authentication, Alice updates her cur-

rent queue from Q′ to Q = Q′.Enq(t∗).Deq() for her use
during the next authentication, where t∗ is a new random
ticket. Alice must obtain the SP’s signature on this new
queue to convince the SP of its integrity during her next
authentication. On the other hand, the SP should only sign
Q if it is indeed correctly updated from Q′. The following
protocol allows Alice to convince the SP that this is indeed

8To allow for more efficient ZKPoK of a signature, the signer
should pick e from a slightly smaller range instead. We refer
the reader to [8, 12] for the details.

the case, without revealing the contents of either queue:

PK

`
Q′, Q, t

´
:

Q = Q′.Enq(t∗).Deq() ∧
Q′ ∈ Q ∧ t∗ ∈ T

ff
(15)

This protocol can be constructed as follows. Alice first
picks r0, r1 ∈R ∆(`N , δr) and commits both Q′ and Q ac-
cording to Eq. 9 and conducts the following protocol with
the SP (ranges omitted):

PK

8<:(r0, r1, (ti)
K+1
i=0) :

^
b=0,1

Cb ≡ crb

KY
i=0

g
ti+b

i

9=; , (16)

which can in turn be constructed using standard proto-
cols for proving relations among components of a discrete-
logarithm representation of a group of elements [10]. The
construction has an O(K) computational complexity at —
and an O(K) communication complexity between — Alice
and the SP.

4. CONSTRUCTION
We now provide a concise description of our construction,

making use of the building blocks presented in Section 3.

4.1 Server setup
The SP first decides on the size of the revocation window

K based on system requirements. As discussed in Section 1,
K will depend on the time it takes to identify misbehaviors,
and the expected rate of authentication among users. We
expect K to be small, e.g., K = 10.

On input parameters paramacc and paramsig as defined in
Section 3, the SP then generates a key pair (skacc, pkacc) for
TicketAcc and a key pair (sksig, pksig) for QueueSig accord-
ing to Section 3.3.1 and 3.4.1, respectively. The SP also picks
a prime t̂ ∈ Π`t , which is used to fill a user’s queue as the
default value during registration. The SP creates a server
private key serversk = (sksig, skacc), and then creates and
publishes a server public key serverpk = (K, pksig, pkacc, t̂).

Initially the SP’s blacklist BL is empty, i.e., BL = ∅. The
corresponding accumulator value is thus V = g. Addition-
ally, the SP maintains a ticket-list TL to record tickets that
it has seen for checking the freshness of tickets.

4.2 Registration
User Alice registers with the SP to obtain a credential for

PEREA authentication. Alice must be authenticated by the
SP to register.9 The registration protocol goes as follows.

1. (Request for credential.) Alice picks t∗ ∈R Π`t and
initializes her queue Q′ as

Q′ = (t̂, t̂, . . . , t̂, t̂, t∗) ∈ Q. (17)

Next, she picks r ∈R ∆(`N , δr) and commits Q′ as
C = Commit(Q′, r). She then sends commitment C to
the SP.

2. (Proof of correctness.) Alice (as the prover) conducts
the following protocol with the SP (as the verifier).

PK

8>><>>:
(Q′, r) :VK−1

i=0 t̂ = Q′[i] ∧
C = Commit(Q′, r) ∧

Q′ ∈ Q ∧ r ∈ R

9>>=>>; (18)

9How this authentication happens is application-dependent.
The SP may ask Alice to, e.g., present her driver’s license in
person, or register via a client-authenticated TLS session.

This protocol and hence its construction are similar
to the one in Eq. 10, except that Alice has to prove
additionally that the K least recent tickets in the queue
correspond to the default ticket t̂. The SP proceeds
only if this protocol terminates successfully.

3. (Credential issuing.) The SP signs a signature σ̃ on
C and computes a non-membership witness ŵ for t̂
w.r.t. its current blacklist BL′, i.e., it executes σ̃ ←
Sign(C, sksig) and ŵ ← ComputeWitness(t̂, V′, skacc),
where V′ = Accumulate(BL′). The SP returns
(σ′, ŵ, BL′, V′) to Alice.

4. (Credential finalizing.) Alice computes
σ′ ← Finalize(σ′, r) and proceeds only if
V′ = Accumulate(BL′), 1 = Verify(Q′, σ′) and
1 = IsNonMember(t̂, V′, ŵ). She stores her credential
cred as:

cred← (Q′, σ′, (w′
i)

K−1
i=0 , BL′, V′),

where wi = ŵ for all i = 0 to K − 1.

4.3 Authentication
We now describe the authentication protocol executed

between user Alice and the SP. Alice has previously reg-
istered with the SP and has hence obtained a credential,
although she may or may not have PEREA-authenticated
to the SP before. The protocol is executed over an SP-
authenticated channel, which can be established using, e.g.,
SSL/TLS based on the SP’s X.509 certificate.

Blacklist examination.
Alice first obtains from the SP the current version of its

blacklist BL. This is the version of the SP’s blacklist from
which the SP wants to be convinced that the connecting
user is absent, despite the fact that the blacklist might get
updated in the course of authentication. Alice then checks if
she is revoked, i.e., if one or more tickets in her ticket-queue
appear in BL. She proceeds if she is not revoked. She drops
the connection otherwise.

Denote by ∆BL
.
= BL\BL′, where BL′ is the SP’s blacklist

she last saw and saved in her credential. ∆BL is thus the set
of newly blacklisted tickets.10

Request for authentication.
Now that Alice knows that she has not been revoked, she

requests to authenticate. Alice picks t∗ ∈R Π`t and r ∈R

∆(`N , δr), and then computes

tK ← Q′[K]
Q ← Q′.Enq(t∗).Deq()
C ← Commit(Q, r)
V ← Accumulate(V′, ∆BL)

and, for i ∈ [0, K),

wi ← WitnessUpdate(w′
i, Q

′[i], V′, ∆BL). (19)

She sends (tK , C) to the SP. The SP proceeds only if tK is
fresh, i.e., tK 6∈ TL, and is a prime in Π`t . The SP then adds
tk to TL.

10We assume for now that SPs only add entries to their black-
lists, so that BL′ ⊆ BL always. We address “unblacklisting”
and blacklist manipulation in Section 6.

Proof of correctness.
Alice (as the prover) conducts the following ZKPoK pro-

tocol with the SP (as the verifier):

PK
n `

Q′, σ′, (wi)
K−1
i=0 , t∗, Q, r

´
:

tK = Q′[K] ∧
1 = Verify(Q′, σ′) ∧VK−1

i=0 1 = IsNonMember(Q′[i], V, wi) ∧
Q = Q′.Enq(t∗).Deq() ∧
C = Commit(Q′, r) ∧
Q′ ∈ Q ∧ t̃ ∈ T ∧ r ∈ R

o
(20)

The SP proceeds only if the ZKPoK verifies.
As explained earlier, the above protocol aims to convince

the SP that (1) the connecting user’s past K connections
have not been blacklisted, and (2) tK is a well-formed ticket
that the SP can later use to blacklist the user, and (3) C
is a well-formed commitment of the user’s next queue, a
signature on which allows the user to authenticate in her
next connection.

We have described in Section 3 how to construct proto-
cols for proving individual statements that appear in the
above protocol. Constructing the above protocol is thus
fairly straightforward: we put together all the individual
proofs, and make sure that the common secrets in them are
indeed the same, by using a suitable commitment scheme
such as the one we used to commit a queue, and stan-
dard techniques for proving relations among components of
discrete-logarithm representations of group elements [10].

Refreshment issuing.
The SP helps Alice refresh her credential as follows.

The SP first signs a signature σ̃ on the commitment
C, and computes a non-membership witness w∗ for t∗

w.r.t. V, i.e., it executes σ̃ ← Sign(Q, sksig) and wK ←
ComputeWitness(V, tK , skacc). The SP then sends (σ, w∗)
to Alice.

Credential refreshment.
Alice finalizes the signature σ, i.e., σ = Finalize(σ̃, Q, r),

and checks for correctness:

1
?
= Verify(Q, σ)

1
?
= IsNonMember(tK , V, wK)

She updates cred = 〈(Q′, σ′), (w′
i)

K−1
i=0 , (BL′, V′)〉 for her next

authentication as follows.

(Q′, σ′) ← (Q, σ)
(w′

0, w
′
1, . . . , w

′
K−2) ← (w′

1, w
′
2, . . . , w

′
K−1),

w′
K−1 ← wK

(BL′, V′) ← (BL, V)

Service Provision.
Following a successful authentication, the SP serves the

user and audits the user’s behavior. The SP stores tK along
with the auditing information for potential blacklisting in
the future.

4.4 Revocation
To attempt to revoke the user who provided tK , the SP

updates its blacklist as BL← BL∪{tK} and the Correspond-
ing accumulated value as V← AccumulatorAdd(V, tK).

Schemes
Privacy-Enhanced

Revocation?

Authentication Efficiency
Communication Computation

Downlink Uplink User (Check+Prove) Server
Accumulator-based [13, 24] No O(L) O(1) O(L) + O(∆L) O(1)

BLAC [26]/EPID [9] Yes O(L) O(L) O(L) + O(L) O(L)
PEREA (this paper) Yes O(L) O(K) O(L) + O(K∆L) O(K)

Table 1: PEREA provides enhanced privacy like BLAC and EPID do, but the server’s computation does not
grow with the blacklist size; PEREA is less efficient than Accumulators, but it has better privacy.

4.5 Rate limiting
Standard techniques exist to enforce rate limiting in

PEREA without eroding its guarantee on user privacy.
For instance, in k-times anonymous authentication (k-
TAA) [25], users remain anonymous and unlinkable (in an
identity-escrow-free way) so long as they authenticate within
the allowable rate, i.e., at most once per time period. On the
other hand, the SP can recognize and thus refuse connections
made by a user who has exceeded that rate, as authentica-
tion attempts by the same user within a single time period
are linkable by the SP. Alternatively, one can use periodic
n-times periodic anonymous authentication [11].

With rate limiting enforced, user Alice first authenticates
to the SP using one of the schemes suggested above, over an
SP-authenticated channel. If the authentication succeeds,
Alice then carries out a PEREA authentication over the
same channel. If this authentication also succeeds, the SP
serves Alice over the same channel. Alice should never try
to connect if she has reached the allowable authentication
rate.

4.6 Security analysis
Our PEREA construction has accountability and user pri-

vacy. We state the following theorem and sketch its proof
in Appendix B.)

Theorem 1. Our construction is secure under the Strong
RSA assumption and the DDH assumption over quadratic
residues modulo a safe-prime product.

5. PERFORMANCE EVALUATION
We now evaluate the performance of PEREA both ana-

lytically and empirically.

5.1 Complexity analysis
Table 1 summarizes the performance of PEREA in com-

parison with existing schemes. In both PEREA and
BLAC/EPID, the number of entries in the blacklist grows
with the number of misbehaviors L, which can be much
larger than the number of registered users. In schemes
based on dynamic accumulators, L is bounded from above
by the number of registered users. In PEREA users can
compute witnesses efficiently in O(∆L), where ∆L is the
size of ∆BL = BL\BL′, i.e., the difference between the current
blacklist and the previously observed blacklist. 11

During an authentication, PEREA requires only O(K)
computation at the server, as compared to O(L) in
BLAC/EPID. This computation is the main bottleneck in
the system, and is therefore the most relevant metric for
comparing the schemes. Accumulator-based approaches are
much faster (O(1)), but do not provide privacy-enhanced

11We discuss timing attacks in Section 6.

revocation. In all schemes, the computational complexity
at the user is the same — O(L) time to check (via sim-
ple bit-strings comparison) if the user has been blacklisted.
Generating the proofs takes O(L) time in BLAC/EPID, and
O(K∆L) in PEREA as each witness must be updated ∆L

times.
Downlink communication complexity is linear in the size

of the blacklist in all schemes. In PEREA, however, each en-
try is 166 bits, as compared to 1164 bits in BLAC. The traffic
from the SP to the user in PEREA is therefore only about
14% of that in BLAC. For example, for a blacklist of size 800,
users would need to download only 16.24 KB in PEREA, but
113.67 KB in BLAC. The uplink communication complexi-
ties are the same as the computational complexities at the
server: O(K) for PEREA, O(L) for BLAC/EPID, and O(1)
for dynamic accumulators.

Lastly, setup at the SP and the registration between the
SP and a user grow from O(1) in BLAC/EPID to O(K) in
PEREA, but these computations are infrequent. Revocation
for all schemes requires O(1) computation at the server.

5.2 Empirical evaluation
We have prototyped PEREA in C, making use of the

multi-precision integer arithmetics package in OpenSSL
(version 0.9.8g). Our prototype consists of several pieces: an
implementation of Li et al.’s Universal Accumulator scheme
(with necessary modifications), Camenisch and Lysyan-
skaya’s signature scheme and their protocol for proving a
signature on blocks of committed messages, as well as an
implementation of the ZKPoK protocol in Eq. 20.

Using our source code for BLAC, we compared its effi-
ciency with PEREA. Since our PEREA prototype is not
multi-threaded, we disabled multi-threading in BLAC’s code
for a fair comparison. We expect the efficiency of our pro-
totype to scale well with multi-threading, because most op-
erations that grow with K can be parallelized.

The test machine was a Lenovo T60 laptop with a 2.0
GHz Intel Core2 T7200 CPU and 1.5 GB of RAM running
Ubuntu 7.10 with GNU/Linux kernel 2.6.22. In our mea-
surements, we did not include the time taken to generate
random numbers because randomness generation introduces
too much noise in the timing measurements. We point out
that PEREA (and BLAC) need randomness mostly for the
user to compute various commitments, most of which can
be precomputed before the actual authentication.

Figure 2(a) shows the authentication time at the SP for
BLAC and PEREA for various blacklist sizes L. As ex-
pected, the time required for authentication increases lin-
early for BLAC and remains constant for PEREA. For
PEREA, when K = 5, the SP takes 0.05s per authenti-
cation on average; when K = 30, it takes 0.16s. Contrast
these numbers with 2.9s for BLAC when L = 800.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500 600 700 800

A
ut

he
nt

ic
at

io
n

tim
e

(s
ec

)

Blacklist size

Authentication time (sec) at the server vs. Blacklist size

BLAC
PEREA, K=30
PEREA, K=5

(a) The authentication time at the SP grows linearly with
blacklist size for BLAC. The error bars represent one
standard deviation. The authentication time for PEREA
is constant; the two horizontal bands represent one stan-
dard around the means.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800

A
ut

he
nt

ic
at

io
n

tim
e

(s
ec

)

Blacklist size

Authentication time (sec) at the user vs. Blacklist size

PEREA, K=15
PEREA, K=10
PEREA, K=5

BLAC

(b) The authentication time at the user grows linearly
for BLAC. K is a multiplicative factor for PEREA, and
authentication at the user is slower than BLAC.

Figure 2: We see that PEREA is efficient with au-
thentication at the SP, and outperforms BLAC. Au-
thentication at the user is slower than BLAC, but
acceptable for reasonable values of K.

Figure 2(b) shows the authentication time at the user.
BLAC is more efficient, but we point out that in PEREA
the computation at the user can be much less than the worst
case if ∆L is small. For example, if only 100 users have
been blacklisted since the user last authenticated, then for
K = 10, the authentication time for the user is 0.7s, com-
pared to the worst case of 5.9s for a blacklist of 800 entries.
Furthermore, we believe that users can tolerate several sec-
onds of authentication, and even for worst-case performance,
K = 10 represents a reasonable trade off.

6. DISCUSSION
Timing attacks. Our protocol includes an optimization

in which users need to perform computation only for the
new entries in the blacklist (See Eq. 19). An SP therefore
could link users’ connections if they are recent enough by
observing low latency during authentication. To counter
this attack, we require that users add a delay to make up for
the difference. Our protocol therefore does not improve the
delay perceived at the user, but spares users from performing

unnecessary computation. We also note that this delay does
not affect authentication throughput at the SP.

Choice of K. As we argued earlier, we believe that K = 10
represents a reasonable tradeoff between authentication la-
tency for the user, and the size of the revocation window.
If it takes a site like Wikipedia an hour to identify misbe-
haviors, users would be able to make an anonymous connec-
tion once every six minutes, a reasonable amount of time to
accommodate small edits. If, however, it takes a site like
Wikipedia a day to identify misbehaviors, K = 10 would
limit users to only 10 anonymous connections per day. Thus,
PEREA may not support frequent edits for longer periods
of detection, while other schemes such as BLAC and EPID
would support frequent, small edits within a day.

Concurrency. The ZKPoK protocol in Eq. 20 is not se-
cure against concurrent attacks [19] and must be executed
sequentially. PEREA’s authentication protocol hence con-
tains a critical section, in which the SP must wait until it
has received an authenticating user’s response before it chal-
lenges another authenticating user, potentially limiting the
SP’s authentication throughput. As indicated by our exper-
iments, the time spent in this critical section is dominated
by network latency (the computation at the user in the crit-
ical section is less than 1 ms in all experiments). The SP
can include a timeout for unresponsive client to maintain a
high authentication throughput. We hope to eliminate this
critical section in future work.

Gaming the blacklist. Since SPs can construct arbitrary
blacklists at any time (by adding and removing entries),
one may wonder if an SP can game the system by present-
ing crafted versions of the blacklist to authenticating users.
Since authentications are unlinkable in PEREA, and the SP
learns only whether the user is revoked, the modified black-
lists across authentications do not leak information. If an
SP, however, can link multiple authentications to a single
user by using external knowledge, the SP might be able to
narrow down which entry in the blacklist corresponds to that
user. We note that BLAC and EPID face the same issues.

Forgiving misbehaviors. We now describe briefly how
PEREA supports “unblacklisting.” To forgive the black-
listed user who provided ticket tK , the SP removes tK

from BL and updates the current accumulator value from
V to V1/xK mod φ(N) mod N. If unblacklisting is allowed in
PEREA, however, users must update their witnesses in O(L)
time (rather than the optimized O(∆L) time) during an au-
thentication (Eq. 19), even if only one ticket has been re-
moved since their last authentication.

7. CONCLUSION
We present PEREA, an anonymous authentication

scheme that supports privacy-enhanced revocation, where
anonymous users can be revoked without relying on
trusted third parties. Previous schemes supporting privacy-
enhanced revocation have required computation at the
server that is linear in the size of the blacklist. We intro-
duce the concept of a revocation window and show how the
server computation is reduced to be linear in the size of
the revocation window, and more importantly independent
of the size of the blacklist. Through analytical and exper-
imental validation, we show that for realistic parameters,
PEREA provides more efficient authentication at the server
than existing schemes.

8. ACKNOWLEDGMENTS
This work was supported in part by the Institute for Se-

curity Technology Studies, under Grant number 2005-DD-
BX-1091 awarded by the Bureau of Justice Assistance, and
the National Science Foundation, under grant CNS-0524695.
The views and conclusions do not necessarily represent those
of the sponsors.

9. REFERENCES
[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A

practical and provably secure coalition-resistant group
signature scheme. In CRYPTO, volume 1880 of LNCS,
pages 255–270. Springer, 2000.

[2] G. Ateniese, D. X. Song, and G. Tsudik.
Quasi-efficient revocation in group signatures. In
Financial Cryptography, volume 2357 of LNCS, pages
183–197. Springer, 2002.

[3] G. Ateniese and G. Tsudik. Some open issues and new
directions in group signatures. In FC ’99: Proceedings
of the Third International Conference on Financial
Cryptography, pages 196–211, London, UK, 1999.
Springer-Verlag.

[4] M. H. Au, S. S. M. Chow, and W. Susilo. Short
e-cash. In INDOCRYPT, volume 3797 of LNCS, pages
332–346. Springer, 2005.

[5] N. Barić and B. Pfitzmann. Collision-free
accumulators and fail-stop signature schemes without
trees. In EUROCRYPT, pages 480–494, 1997.

[6] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures. In CRYPTO, volume 3152 of LNCS, pages
41–55. Springer, 2004.

[7] D. Boneh and H. Shacham. Group signatures with
verifier-local revocation. In ACM CCS, pages 168–177.
ACM, 2004.

[8] F. Boudot. Efficient proofs that a committed number
lies in an interval. In EUROCRYPT, pages 431–444,
2000.

[9] E. Brickell and J. Li. Enhanced Privacy ID: A Direct
Anonymous Attestation Scheme with Enhanced
Revocation Capabilities. In WPES ’07: Proceedings of
the 2007 ACM Workshop on Privacy in Electronic
Society, pages 21–30, New York, NY, USA, 2007.
ACM.

[10] J. Camenisch. Group Signature Schemes and Payment
Systems Based on the Discrete Logarithm Problem.
PhD thesis, ETH Zurich, 1998. Reprint as vol. 2 of
ETH Series in Information Security and
Cryptography, ISBN 3-89649-286-1, Hartung-Gorre
Verlag, Konstanz, 1998.

[11] J. Camenisch, S. Hohenberger, M. Kohlweiss,
A. Lysyanskaya, and M. Meyerovich. How to win the
clonewars: efficient periodic n-times anonymous
authentication. In ACM CCS, pages 201–210. ACM,
2006.

[12] J. Camenisch and A. Lysyanskaya. A Signature
Scheme with Efficient Protocols. In SCN, volume 2576
of LNCS, pages 268–289. Springer, 2002.

[13] J. Camenisch and A. Lysyanskaya. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. In CRYPTO, volume 2442 of
LNCS, pages 61–76. Springer, 2002.

[14] J. Camenisch and M. Stadler. Efficient group
signature schemes for large groups (extended
abstract). In CRYPTO, volume 1294 of LNCS, pages
410–424. Springer, 1997.

[15] D. Chaum and E. van Heyst. Group signatures. In
EUROCRYPT, pages 257–265, 1991.

[16] I. Damg̊ard. Efficient concurrent zero-knowledge in the
auxiliary string model. In EUROCRYPT, pages
418–430, 2000.

[17] P. Dusart. The kth prime is greater than
k(ln k + ln ln k − 1) for k ≥ 2. Mathematics of
Computation, 68:411–415, 1999.

[18] E. Fujisaki and T. Okamoto. Statistical zero
knowledge protocols to prove modular polynomial
relations. In CRYPTO, volume 1294 of LNCS, pages
16–30. Springer, 1997.

[19] O. Goldreich and H. Krawczyk. On the composition of
zero-knowledge proof systems. SIAM J. Comput.,
25(1):169–192, 1996.

[20] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

[21] P. C. Johnson, A. Kapadia, P. P. Tsang, and S. W.
Smith. Nymble: Anonymous ip-address blocking. In
Privacy Enhancing Technologies, volume 4776 of
LNCS, pages 113–133. Springer, 2007.

[22] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable
signatures. In EUROCRYPT, volume 3027 of LNCS,
pages 571–589. Springer, 2004.

[23] J. Li, N. Li, and R. Xue. Universal accumulators with
efficient nonmembership proofs. In ACNS, volume
4521 of LNCS, pages 253–269. Springer, 2007.

[24] L. Nguyen. Accumulators from bilinear pairings and
applications. In CT-RSA, volume 3376 of LNCS,
pages 275–292. Springer, 2005.

[25] I. Teranishi, J. Furukawa, and K. Sako. k-times
anonymous authentication (extended abstract). In
ASIACRYPT, volume 3329 of LNCS, pages 308–322.
Springer, 2004.

[26] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
Blacklistable anonymous credentials: blocking
misbehaving users without TTPs. In ACM CCS, pages
72–81. ACM, 2007.

APPENDIX
A. FORMAL SECURITY DEFINITIONS

We formally define the security notions as games played
between the adversary A and the challenger C. A’s ca-
pabilities are modeled as arbitrary and adaptive, but non-
interleaving accesses to various oracles, which together share
a private state state that contains counters m, n and a, and
sets UP ,UA,UB ,AA, which are initialized to 0 and ∅, respec-
tively. Here we define the oracles.

• P-Reg allows A to register an honest user with the
honest SP. Upon invocation, the oracle increments n by
1, simulates the registration protocol between an honest
user and the honest SP, appends 〈n, transn, credn〉 to
state, where transn is the resulting protocol transcript
and credn is the resulting user credential, adds n to UP

and returns (transn, n) to A. The user is indexed by n.

• A-Reg (resp. B-Reg) allows A to register a corrupt
(resp. honest) user with the honest (resp. corrupt) SP.
Upon invocation, the oracle increments n by 1, plays
the role of the SP (resp. a user) and interacts with
A in the registration protocol, appends 〈n, transn,⊥〉
(resp. 〈n,⊥, credn〉) to state, where transn is the pro-
tocol transcript (resp. credn is the credential issued to
the user by A), adds n to UA (resp. UB) and returns n
to A. The user is indexed by n.
• Corrupt-U(i) allows A to corrupt an honest user. On

input i, the oracle removes i from UB or UP , adds i to
UA, and returns credi to A.
• P-Auth(i) allowsA to eavesdrop an authentication run

between an honest user and an honest SP. On input i)
such that i ∈ UP ∪ UB , the oracle increments a by
1, simulates (using credi) the authentication protocol
between honest user i and honest SP, appends 〈πa, a〉
to state, where πa is the resulting protocol transcript,
and returns (πa, a) to A.
• A-Auth (resp. B-Auth(i)) allows a corrupt user (resp.

SP) to be authenticated by an honest SP (resp. user).
The oracle increments a by 1, plays the role of the SP
(resp. user i to be authenticated by the SP, for input
i ∈ UB ∪ UP) and interacts with A in the authentica-
tion protocol, adds a toAA in case of A-Auth, appends
〈πa, a〉 to state, where πa is the resulting protocol tran-
script, and returns a to A.
• Add-To-BL(k) allows A to influence an honest SP to

think that an authenticated session involves a misbe-
havior. On input k ≤ a, the oracle adds the ticket
τk = Extract(πk) to the SP’s blacklist.
• Remove-From-BL(τ) allows A to influence an honest

SP to think that an authenticated session does not in-
volve a misbehavior. On input τ such that τ is in the
SP’s blacklist, the oracle removes τ from that blacklist.

A.1 Accountability
Setup Phase. C takes a sufficiently large security parame-

ter and generates spk and ssk. spk is given to A.
Probing Phase. A is allowed to issue queries to all the

oracles except B-Reg.
End Game Phase. A outputs j ∈ SP . A wins the game

if both of the following are true: (1)
There exists a sub-sequence S of the sequence of
all oracle queries in the same order as they were
made, where S = 〈a1 := A-Auth,Add-To-BL(a1),
a2 := A-Auth,Add-To-BL(a2), . . ., ak :=
A-Auth,Add-To-BL(ak), ak+1 := A-Auth(j)〉, such
that ax ∈ AA for all x = 1 to k, and in between
ai := A-Auth and Add-To-BL(ai), there are less than
K A-Authqueries. (2) k ≥ |UA|+QR, where QR is the
number of Remove-From-BL(j, Extract(πai)) queries
such that i ∈ {1, . . . , k}.

A.2 User privacy
Setup Phase. C takes a sufficiently large security parame-

ter and generates spk and ssk, which are given to A.
Probing Phase. A is allowed to issue queries to all the

oracles except P-Reg and A-Reg. Oracle queries can
be interleaved and/or span the Challenge Phase and
Probing Phase 2.

Challenge Phase. A outputs i0, i1 ∈ UB . C then flips a
fair coin b ∈ {0, 1}. A queries P-Auth(⊥) if the SP is

honest and B-Auth(⊥) otherwise, without specifying
i. C answers the query assuming ib.

Probing Phase 2. A is allowed to issue queries as in the
Probing Phase, except that queries to Corrupt-U(i0)
or Corrupt-U(i1) are not allowed.

End Game Phase. A outputs a guess bit b′. A wins if
b = b′ and has never invoked Add-To-BL(k) such that
πk is an authentication transcript from user i0 or i1.

B. PROOF OF THEOREM 1 (SKETCH)

Accountability.
Suppose there exists a PPT adversary A which can win

in game Accountability with non-negligible probability, we
show how to construct a PPT simulator C that can forge a
CL signature [12]. C is given access to a signing oracle OCL

Sign

and its goal is to output a new message-signature pair of
the CL signature. C uses the public key of the CL signature
to set up the parameter of PEREA. For each registration
request (indexed by request i) due to a malicious user, C
invokes OCL

Sign to obtain a CL signature σCL
i . With σCL

i , C
is able to provide the correct response. For each authentica-
tion request (indexed by request j) due to a malicious user,
C conducts a rewind simulation to extract the underlying CL
signature σ̂CL

j . Due to the soundness property of the proto-

col, σ̂CL
j must be a valid CL signature. Other oracle queries

related to honest users can be handled in a straightforward
fashion, as C is in possession of the user secret. Due to the
zero-knowledge property of the PoK protocols, C is able to
simulate the related transaction from honest users. In the
end-game phase, A has issued k + 1 A-Auth Oracle query
and Add-To-BL oracle query. Due to the setting of the game
(and the soundness of the proof of knowledge protocol in au-
thentication request), at least one of the signatures σ̂CL

j is

different from all σCL
i . C wins the game because it has ob-

tained a new CL signature that is not the output of OCL
Sign.

Since CL signature is unforgeable under the Strong RSA
assumption, our system possesses Accountability under the
same assumption.

User privacy.
The PoK protocols in user registration and authentica-

tion can be constructed to be general zero-knowledge proof-
of-knowledge protocols with zero-knowledgeness and sound-
ness under the Strong RSA and the DDH assumptions using
standard technique [16]. It is obvious that all components
presented to the server but ticket t∗ do not reveal any infor-
mation about the underlying user. For instance, the com-
mitment scheme is statistically hiding and reveal nothing
about the content committed. It remains to argue that t∗

presented during the authentication protocol does not reveal
any information for the server to link different transactions.
Observe that each t∗ appears in plain once only and it only
appears in a commitment for other transactions. Due to the
hiding property of the commitment scheme, for any t∗ there
exists an opening that matches any commitments in previous
transactions. Hence, PEREA possesses user privacy, as im-
plied by the zero-knowledge property of the instantiation of
the protocols and the hiding property of the commitment,
which are in turn implied by the Strong RSA assumption
and the DDH assumption.

	Introduction
	Overview
	Accumulators
	Overview of our construction
	Security Goals

	Building Blocks
	Preliminaries
	Tickets and queues
	Proving that a user is not revoked
	An accumulator scheme for tickets
	Proof that a ticket is not accumulated

	Proving the integrity of the queue
	A protocol for queue signing
	Proof of knowledge of a signed queue
	Proof of relation between two queues

	Construction
	Server setup
	Registration
	Authentication
	Revocation
	Rate limiting
	Security analysis

	Performance Evaluation
	Complexity analysis
	Empirical evaluation

	Discussion
	Conclusion
	Acknowledgments
	References
	Formal Security Definitions
	Accountability
	User privacy

	Proof of Theorem 1 (Sketch)

