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Abstract

With Hidden Credentials Alice can send policy-
encrypted data to Bob in such a way that he can decrypt the
data only with the right combination of credentials. Alice
gains no knowledge of Bob’s credentials in the process, and
hence the name “Hidden Credentials.” Research on Hidden
Credential systems has focused on messages sent to single
recipients, where the sender needs to know the recipient’s
pseudonym beforehand, and on Hidden Policies, where Bob
learns as little information as possible about Alice’s pol-
icy for decrypting the message. Current schemes provide
weak policy privacy — with non-interactive schemes, the
recipient can learn parts of the policy, and with interac-
tive schemes based on secure multiparty computation, a
user can try different sets of credentials as input to gain
knowledge of the policy after repeated decryption attempts.
Furthermore, existing schemes do not support policies with
negations efficiently. For example, a policy stating “Bob
is not a student” is hard to enforce since Bob can simply
withhold, or not use, his student credential.

We propose a system called PEAPOD (Privacy-
Enhanced Attribute-based Publishing Of Data) that pro-
vides the following properties: (1) Users can securely pub-
lish data protected by attribute-based policies to multiple
possible recipients without requiring interaction between
senders and receivers. This is achieved by using a semi-
trusted server. (2) The plaintext message and the policy
are completely hidden from the server. (3) Any recipient,
intended or not, learns no other information about a mes-
sage’s policy beyond the number of clauses in policy that
were satisfied. Furthermore the recipient is forced to use
all of his or her issued credentials for decryption, and there-
fore cannot mount inference attacks by trying to decrypt the

∗This research was supported in part by the NSF, under grant CNS-
0524695, and the Bureau of Justice Assistance, under grant 2005-DD-BX-
1091. The views and conclusions do not necessarily reflect the views of
the sponsors.

message with different subsets of credentials. (4) Lastly,
since recipients are forced to use all their credentials for
decryption, PEAPOD efficiently supports non-monotonic
boolean policies by allowing senders to include negations
in their policies.

1. Introduction

Hidden Credentials [20, 9] were first proposed to facil-
itate trustworthy interaction between strangers in open en-
vironments. Using these schemes, Alice encrypts data to a
specific individual Bob using an attribute-based policy such
as “Bob is a Student or Professor.” Bob can
then decrypt this data if and only if he has the correct com-
bination of credentials to satisfy Alice’s policy. Since Bob
decrypts the message without revealing the result to Alice,
Alice gains no knowledge of Bob’s credentials (hence the
name “Hidden Credentials”). Hidden Credentials preserve
Bob’s privacy since he may consider many of his attributes
to be sensitive information and would like to hide them
from Alice. Current schemes [9, 15] also try to limit what
Bob can learn about Alice’s policy. There could be sev-
eral reasons for this — Alice may want to prevent users
from “gaming” the system, i.e., changing their behavior to
gain access to a message, or inferring which messages are
important based on their policies. For example, attackers
might focus their energy on trying to decrypt messages for
CIA agents if the policy is public knowledge. In some situ-
ations Alice’s policy may reveal private information about
herself, in which case she would like to protect her pri-
vacy against both intended and non-intended recipients of
the message. Ideally, even if Bob is able to decrypt the mes-
sage (i.e., he is an “intended recipient”), he should not learn
anything about the structure of the policy or which of his
credentials were necessary for decryption. Providing pol-
icy privacy against intended recipients, however, has proven



to be difficult. Current non-interactive schemes [20, 9]
achieve partial policy privacy since Bob can learn informa-
tion about sub-expressions of the policy that he satisfies.
Bob is able to learn all the “satisfying sets” (where each
satisfying set is a set of credentials that satisfies the policy)
that are subsets of his credentials. To close this gap, Frikken
et al. [15] propose an interactive scheme where each party
learns only whether Bob satisfied the policy, and whatever
can be inferred from that. If Bob decrypts a message by try-
ing different combinations of credentials, however, he can
still infer which credentials were necessary for decryption
over several repeated decryption attempts. Similarly, other
approaches in trust negotiation [37, 35, 38, 36, 39] such as
oblivious attribute certificates (OACerts) [24] suffer from
the same drawbacks. Ideally, a system with Hidden Poli-
cies should prevent Bob from inferring information about
the policy over repeated decryption attempts.

Another drawback of previous approaches is that the
sender Alice needs to know the identity (or pseudonym) of
the recipient before sending the message, i.e., each message
has a single intended recipient. In this paper, we propose
a new problem in Hidden Credential systems — securely
publishing policy-encrypted data to multiple possible re-
cipients using Hidden Credentials and Hidden Policies, i.e.,
Alice should be able to securely publish messages that can
be decrypted by anybody with the correct set of attributes.
Consider the following motivating example in the context
of a bulletin-board service.

Matchmaking example: Alice maintains a public pro-
file on the bulletin-board service. She also maintains a pro-
tected profile containing more personal information such as
her photograph, birth date, etc. She would like to share this
information only with people who satisfy her criteria for a
perfect partner and therefore encrypts it with her criteria as
the policy. Alice, however, would like to keep her criteria
secret. There are a couple of good reasons for this. The
criteria may be embarrassing to Alice, e.g., she might be
looking for a partner that also has a particular disease or dis-
order, or maybe she simply does not want suitors to game
the system by looking at her preferences and pretending to
fit the description. If Bob is interested in Alice based on
her public profile, he can attempt to decrypt her protected
profile. Bob is able to view this information if only if he
satisfies her policy, and in the process does not learn Al-
ice’s criteria (i.e., her policy remains hidden) beyond what
he can infer from the fact that he satisfies her policy. Al-
ice, on the other hand, does not learn whether Bob tried to
access her profile or not, let alone whether the decryption
was successful. Bob’s credentials, therefore, remain hidden
from Alice.1

1If Bob chooses to inform Alice that he was able to view her protected
profile, then Alice can infer that he possesses credentials that satisfy her
policy. Such attacks are outside the scope of this paper, and have been
addressed in the context of trust negotiation [20].

It is not obvious how current Hidden Credential sys-
tems can be modified to support multiple possible recipi-
ents. For example, previous research [20, 9, 15] has fo-
cused on single recipients by relying on Identity-Based En-
cryption (IBE) [8]. A trusted Private Key Generator (PKG)
can issue a private key (credential) to Bob that corresponds
to the public key (attribute) “Bob is a student.” If
Alice encrypts data to Bob using this public key, then Bob
will be able to decrypt it if and only if he is a student. If
Alice would like the data to be decryptable by any student,
more sophisticated group-key management is needed. For
example, an IBE-based scheme could require Alice to use
the public key “Student” for encryption, and a shared
private key among all students. This is undesirable be-
cause the compromise of a shared group key requires a
new private key to be deployed to all students.2 Other re-
lated approaches include “Key-Policy Attribute-Based En-
cryption (KP-ABE)” [17, 31], where attributes are asso-
ciated with ciphertexts and keys encode decryption poli-
cies based on the data’s attributes. For example, Alice
can supply Bob with a key to decrypt only her data with
the attributes “music video AND Metallica.” Following
the terminology in [17], we focus on “Ciphertext-Policy
Attribute-Based Encryption (CP-ABE),” where attributes
are associated with users, and policies are encoded in the
ciphertexts based on users’ attributes. Since KP-ABE and
CP-ABE address different problems, we do not discuss KP-
ABE in the remainder of the paper.

We provide a non-interactive solution that avoids
shared private keys and call our system Privacy-Enhanced
Attribute-based Publishing Of Data (PEAPOD). As a
building-block, PEAPOD uses a modified version of Khu-
rana et al.’s Secure E-mail List Service (SELS) [23], which
is a proxy encryption scheme [6] for encrypting messages
to the subscribers of an email list. Briefly, when a mes-
sage is sent to the list, SELS allows the “list server” to re-
encrypt messages to the list’s subscribers without access to
the plaintext. Re-encryption ensures that each recipient can
use his or her unique decryption key, thereby eliminating
the need for shared keys. We show how Alice can encrypt
data with attribute-based policies to multiple possible re-
cipients by building a system on top of SELS, where the
possession of a particular attribute corresponds to the user’s
membership in a SELS list for that attribute. Each attribute
is associated with a public encryption key, and users possess
unique decryption keys (“credentials”) for their correspond-

2Furthermore, in an IBE-based scheme a compromised key would
require rekeying all attribute keys since all private keys are generated
from a unique secret. This is because the public-key for “Student”
remains unchanged, and generating a new private key for “Student”
amounts to changing the unique secret. A less drastic alternative would
be to append version numbers to attributes (e.g., “Student.v1” and
“Student.v2”). However, this would require a mechanism for users
to acquire the current version numbers of attributes, which could be cum-
bersome.



ing attributes.
While such an approach solves the problem of encrypt-

ing messages to multiple possible recipients without the
need for shared private keys, it is not clear how the pri-
vacy of the policies can be maintained against the proxy
encryption server and the recipients. PEAPOD makes use
of homomorphic encryption [30] to contribute several in-
teresting properties that are absent from previous schemes.
Our system provides “clausal policy privacy” against all re-
cipients, intended or not. That is, assuming a disjunctive
normal form policy (a disjunction of conjunctive clauses),
Bob learns no information other than the number of clauses
in Alice’s policy that he satisfies.3 Even for the clauses
that he does satisfy, he gains no knowledge of which of his
attributes were used to satisfy those clauses. This is possi-
ble because our system forces the recipient Bob to use all
his credentials for decrypting a message. We contrast this
with the best known non-interactive scheme [9], where Bob
learns the entire set of attributes for a clause that he satisfies.
Furthermore, in PEAPOD, Bob cannot try to decrypt the
message with different subsets of his credentials. We con-
trast this with the best known interactive scheme [15] where
Bob can still mount inference attacks with subsets of his
credentials by making repeated attempts. Finally, unlike ex-
isting hidden credential and trust negotiation schemes, our
system efficiently supports non-monotonic boolean poli-
cies, i.e., negations of attributes can be included in policies,
and policies can check for the absence of an issued cre-
dential. Bob, therefore, cannot withhold a credential that
he has been issued. Existing approaches suggest that users
can be issued explicit attributes such as not a student,
thereby supporting negations in policies. This approach,
however, comes at the cost of doubling the number of at-
tributes in the system. Furthermore, users in the system
must now be issued “negative credentials” for all the at-
tributes that they do not possess, leading to a much higher
computational burden for issuing and revoking attributes.
For example, in a university setting, if a new attribute is
a provost is added to the system, the negative creden-
tial is not a provost will have to be issued to many
thousands of users. In contrast, our scheme does not require
any extra attributes, and users maintain credentials for only
the attributes that they possess.

Contributions We motivate the need for a system that
supports attribute-based encryption of messages to multi-
ple possible recipients using Hidden Credentials and Hid-
den Policies. We present our system PEAPOD that makes
the following specific contributions:

1. Offline publishing to multiple recipients: PEAPOD
decouples the sending and receiving phases, and pub-
lishers do not need to interact with recipients or know

3and whatever can be inferred from that fact

their pseudonyms beforehand. Users are able to pub-
lish information to multiple recipients and shared de-
cryption keys are not used, which simplifies key man-
agement. Unlike other Hidden Credential systems,
PEAPOD makes use of a semi-trusted server as an
intermediary to achieve this property.

2. Message confidentiality and policy privacy:
PEAPOD provides message confidentiality based on
the sender’s policy, and clausal policy privacy against
recipients. Furthermore, the plaintext and the policy
are completely hidden from the server, even though
the server performs essential transformations on the
ciphertext for each recipient.

3. Non-monotonic boolean policies: Unlike other ap-
proaches, PEAPOD supports policies based on nega-
tions of attributes without the need for creating ex-
plicit attributes to represent negations. Our approach
leverages the server to ensure that users must use all
of their credentials for decryption, thereby preventing
users from withholding credentials.

2. Privacy-Enhanced Attribute-based Publish-
ing of Data

Departing from previous IBE-based approaches for Hid-
den Credential systems, PEAPOD uses proxy encryption
and splits the trusted duties of key-management between
a Server and a Certification Authority (CA). Messages
are “proxy-encrypted” under attribute-based policies using
public attribute-keys that are set up by these entities, and
are then deposited at the Server for later retrieval. We now
provide a brief overview of the cryptographic tools used in
PEAPOD, and formalize various notions of security that
our system must satisfy.

2.1. Preliminaries

Proxy encryption As mentioned earlier, we use
SELS [23] as a building block for our system. In SELS,
the sender encrypts an email message and sends it to the
list server. The list server plays the role of the proxy and
re-encrypts the encrypted email (without access to the
plaintext) for every subscriber in the list so that each sub-
scriber can decrypt the message with his or her own unique
private decryption key. Conventional proxy encryption
allows only single recipients because the decryption key is
known only to a single party.4 SELS gets around this limi-
tation by requiring the sum K of the proxy’s re-encryption
secret-key su for a subscriber u and that subscriber’s

4Of course, one could share that decryption key to allow group decryp-
tion. However, the difficulty of key management makes this approach very
unfavorable.
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Figure 1. A block diagram illustrating the basic operations of SELS [23] that we use in our protocol

decryption private-key xu to be the same in the underlying
Elgamal proxy encryption [21] for all subscribers. That is,
for all subscribers u, xu + su = K. This property allows
individual subscribers to decrypt messages with their own
decryption private keys for messages encrypted with the
list’s public key. Moreover, SELS splits the encryption step
of Elgamal proxy encryption into two operations, which
we denote as E and T respectively, as explained below.

Figure 1 illustrates how SELS works under our termi-
nology. The sender Elgamal-encrypts (E) a message m un-
der encryption public-key y, where y = gx for some group
generator g and secret key x, and sends the resulting ci-
phertext c = (A,B) = (gr,myr) to the list server, where
r is the randomness used. The list server transforms (T )
c into another ciphertext c′ = (A′, B′) = (A,BAs) using
its transformation secret-key s, where s = K − x. Note
that c′ is equivalent to the Elgamal encryption of m un-
der another encryption public key ỹ, where ỹ = ygs =
gx+s = gK . The list server re-encrypts (R) ciphertext
c′ using its re-encryption secret-keys s1 and s2 for sub-
scribers Alice and Bob into c′′1 and c′′2 respectively, where
c′′i = (A′′i , B

′′
i ) = (A′, B′/A′si). The server then sends

the resulting re-encrypted ciphertexts c′′1 and c′′2 to the cor-
responding users. Finally each of them decrypts (D) using
his or her decryption private-key (x1 for Alice and x2 for
Bob) to recover message m as B′′

i /A
′′
i

xi . As mentioned
earlier, the two steps R and D amount to the Elgamal de-
cryption under private key K.

To subscribe users to a list, SELS describes a protocol
where the list manager interacts with the list server in such
a way that K is not known to any single party. Therefore,
if the list manager or a subscribed user do not collude mali-
ciously with the list server, the list server is unable to obtain
K and thereby decrypt messages sent to the list. Further-
more, the list server cannot subscribe users to the list with-
out interacting with the list manager, which is responsible
for managing list membership.

Theorem 1 in [23] states that if Elgamal is secure
against chosen-plaintext attacks by any probabilistic poly-
time (PPT) adversary, then so is SELS. As we will see,
SELS can be adapted to construct PEAPOD for policies
that contain only a single attribute. It is not immediately
clear, however, how SELS can be used to support com-
plex policies based on boolean combinations of attributes,
and how to support policy privacy. To achieve its goals,
PEAPOD therefore also makes use of other tools such as
homomorphic encryption.

Homomorphic encryption An encryption scheme (K, E ,
D)5 is homomorphic if there exists an operation ⊗ on ci-
phertexts such that for any key pair (x, y) generated by K
and any messages m1,m2 in the message space M, we
have that Dx(Ey(m1) ⊗ Ey(m2)) = m1 ⊕ m2, where ⊕
is an operation on messages. In other words, ciphertexts
for m1 and m2 can be combined to obtain a ciphertext
for m1 ⊕ m2 without access to m1 and m2. More gen-
erally, the homomorphic property allows meaningful ma-
nipulation of ciphertexts without the knowledge of the un-
derlying plaintexts. Applications of homomorphic encryp-
tion include electronic voting [19, 18, 2], electronic auc-
tions [1, 34, 25, 11], Mix-nets [12, 16], and verifiable en-
cryption [28].

Elgamal encryption is one example of homomorphic
encryption. Consider ci = Ey(mi) = (gri ,miy

ri) =
(Ai, Bi) for i = 1, 2. Define ⊗ as (A1, B1) ⊗
(A2, B2) 7→ (A1 · A2, B1 · B2). Then Dx(c1 ⊗ c2) =
Dx(gr1+r2 ,m1m2y

r1+r2) = m1 ·m2. Paillier’s cryptosys-
tem [27] is another example.

Policies and attributes In PEAPOD, policies are non-
monotonic boolean formulae in disjunctive normal form

5K, E ,D are the key generation, encryption, and decryption algorithms
respectively



(DNF), i.e. disjunctions (“ORs”) of one or more clauses,
which are in turn conjunctions (“ANDs”) of one or more
literals, where a literal is either an attribute or its negation.
We argue that most policies are naturally DNF in form as
senders usually have a few classes of intended recipients in
mind (a disjunction of clauses), where each class is defined
by a set of attributes (a clause).

To simplify the description of our system, we repre-
sent a clause within a policy using the symbols X, ×
and ∗, which denote respectively attributes in the system
that are “required” (the X-attributes), “forbidden” (the ×-
attributes) and “irrelevant” (the ∗-attributes). For exam-
ple, if we reconsider the matchmaking example mentioned
earlier and imagine the scenario in which there are alto-
gether five attributes in the system: {male, college
graduate, age in 30’s, smoker, pet lover},
then the clause “male ∧ age in 30’s ∧ ¬smoker”
is represented by 〈X, ∗,X,×, ∗〉. Any clause in a non-
monotonic boolean expression can be represented by such
a tuple, which indicates the nature of each attribute in
the clause (required, forbidden, or irrelevant). Recall that
policies are a disjunction of multiple clauses. For ex-
ample, the policy “(male ∧ age in 30’s) ∨ (male
∧ ¬smoker)” would be represented by a set of the two
clauses: {〈X, ∗,X, ∗, ∗〉, 〈X, ∗, ∗,×, ∗〉}.

We say that an attribute set A satisfies a policy P =
{C1, C2, . . . , Cn}, if there exists a clauseCi ∈ P for which
A contains all the X-attributes and does not contain any of
the ×-attributes in Ci. When we say a user Bob satisfies a
policy, we mean the attribute set possessed by Bob satisfies
the policy.

2.2. Security Notions

As hinted in Section 1, designing a system for publishing
data with both policy privacy and credential privacy faces a
number of security challenges. To rigorously reason about
the security of PEAPOD, we need to formalize various se-
curity notions. Definitions 1 and 3 provide ideal security
models for confidentiality and policy privacy under which
PEAPOD is immune to adaptive chosen ciphertext attacks
and user coalition attacks (where users collude by “pooling
in” their credentials). Our construction is based on Elgamal
encryption, and therefore is not immune to adaptive cho-
sen ciphertext attacks. Moreover, our scheme provides se-
curity against only restricted versions of coalition attacks.
Definitions 2 and 5 describe the models under which our
construction of PEAPOD is secure.

Confidentiality Ideally, when given a ciphertext de-
posited at or retrieved from the server, individual entities
(including the Server) other than the intended recipients
specified by the associated policy should not be able to
learn anything about the underlying plaintext message (ex-

cept perhaps its size). Such a guarantee should hold even
if users who are not intended recipients collude arbitrarily.
Moreover, when attempting to break the confidentiality, an
adversary should be given the chance to study the decryp-
tion of arbitrary retrieved ciphertexts. Formally speaking,
we define the confidentiality of PEAPOD as follows.

Definition 1 (C-IND-CCA2-UCA) A PEAPOD system
has Ciphertext Indistinguishability against Adaptive Cho-
sen Ciphertext Attack and User Coalition Attack (C-IND-
CCA2-UCA) if no PPT adversary A can win the follow-
ing game against the challenger C with probability non-
negligibly greater than 1/2.

1. (Setup Phase.) C sets up the PEAPOD system and
makes all public parameters such as the attributes in
the system available to A.

2. (Probing Phase I.)Amay corrupt the Server if no user
has been corrupted, thereby learning its secrets and
acting on behalf of it. If the Server has not been cor-
rupted, then A has the ability to arbitrarily and adap-
tively: (a) register a new honest user into the system,6

(b) corrupt an honest user, thereby learning his or her
secrets and acting on behalf of him or her, (c) make de-
posit and retrieval requests to the Server, and (d) ask
honest users for decrypting any retrieved ciphertexts.

3. (Challenge Phase.) At some point, A outputs two
messages M0,M1 of equal length and a policy P ∗ of
his choice under the following restriction:

Restriction 1: None of the corrupted users satisfies
the policy P ∗ throughout the game.

Then C flips a fair coin b ∈R {0, 1} and encrypts mes-
sage Mb under policy P ∗ according to the sender’s
encryption algorithm. The resulting ciphertext C∗ is
returned to A.

4. (Probing Phase II.) A may do whatever he is allowed
to in Probing Phase I, except that (a) Restriction 1 ap-
plies, and (b) A may not ask any honest user for de-
crypting C∗.

5. (End-Game Phase.) Eventually A outputs his guess
b̃ ∈ {0, 1} on b. A wins if and only if b̃ = b.

�

The above definition of confidentiality is based on the
well-known IND-CCA2 security model for conventional
encryption schemes. It captures coalition resistance be-
cause the adversary is allowed to corrupt an arbitrary set of
users as long as none of them satisfies the challenge policy.

6A also gets to decides the set of attributes possessed by the user being
registered. For simplicity, we assume a user immediately acquires all the
credentials for his or her attributes upon registration.



This models the real-world attack scenario when a coalition
of users who individually do not satisfy the policy tries to
“pool in” their credentials and gain knowledge about the
message.

The PEAPOD system we propose has a weaker form of
coalition-resistance, since some coalitions of users can pool
in their credentials and decrypt the message. We say that a
coalition of users “collectively satisfies policy P ” if there
exists a subset of users in the coalition such that the union
A of their attributes satisfies the policy. In our construction,
a coalition of users can decrypt a message with policy P
only if they collectively satisfy the policy P . The following
definition captures the confidentiality our system provides,
which is secure against chosen plaintext attack and the re-
stricted form of coalition attack just mentioned.

Definition 2 (C-IND-CPA-RUCA) PEAPOD has Ci-
phertext Indistinguishability against Chosen Plaintext
Attack and Restricted User Coalition Attack (C-IND-CPA-
RUCA) if no PPT adversaryA can win the following game
against the challenger C with probability non-negligibly
greater than 1/2.

The game is the same as that in Definition 1, except that
(1) Ability 2(d) is removed, i.e., A may not ask any honest
users for decrypting any retrieved ciphertext, and (2) Re-
striction 1 is modified as:
Restriction 1′: None of the coalitions of corrupted users
collectively satisfies the policy P ∗ throughout the game.

�

Policy-privacy Policy privacy hides the policies under
which messages are encrypted from both the server and the
recipients. Ideally, the server or any recipient Bob (intended
or not) should not be able to gain any knowledge of the
policy except that Bob knows whether he satisfies the pol-
icy. As with confidentiality, ideally no coalition of users
(who individually do not satisfy the policy) should be able
to gain any knowledge about the policy (except perhaps its
maximum size). This notion of policy privacy is captured
formally by the following definition.

Definition 3 (P-IND-CCA2-UCA) A PEAPOD system
has Policy Indistinguishability against Adaptive Chosen Ci-
phertext Attack and User Coalition Attack (P-IND-CCA2-
UCA) if no PPT adversary can win the following game
against the challenger C with probability non-negligibly
greater than 1/2.

1. (Game Setup.) Same as that in Definition 1.

2. (Probing Phase I.) Same as that in Definition 1.

3. (Challenge Phase.) At some point, A sends to C
a message M∗ and two valid policies P0, P1 of his
choice under the following restriction:

Restriction 2: Either all corrupted users satisfy none
of the policies P0 and P1 or they all satisfy both poli-
cies throughout the game.

Then C flips a fair coin b ∈R {0, 1} and encrypts the
messageM∗ under policy Pb according to the sender’s
encryption algorithm. The resulting ciphertext C∗ is
returned to A.

4. (Probing Phase II.) A may do whatever he is allowed
to in Probing Phase I, except that (a) the Restriction
2 applies, and (b) A may not ask any honest user for
decrypting C∗.

5. (End Game.) Same as that in Definition 1.

�

We now introduce a weaker form of policy privacy,
which we call clausal policy privacy. We believe that other
constructions of PEAPOD, may be able to provide clausal
policy privacy at best, and therefore emphasize this weaker
intermediate model before we describe the security model
for our construction in Definition 5. It is weaker because
an intended recipient is able to infer information more than
merely whether he or she satisfies the policy. Precisely, that
piece of extra information is the number of clauses a re-
cipient satisfies. This makes two policies with a different
number of satisfying clauses distinguishable by an intended
recipient. Hence policy indistinguishability is only among
those policies with the same number of satisfying clauses.
The following is a formal definition of this notion.

Definition 4 (C-P-IND-CCA2-UCA) A PEAPOD system
has Clausal Policy Indistinguishability against Adaptive
Chosen Ciphertext Attack and User Coalition Attack (C-
P-IND-CCA2-UCA) if no PPT adversary can win the fol-
lowing game against the challenger C with probability non-
negligibly greater than 1/2.

The game is the same as that in Definition 3, except that
Restriction 2 is modified as:
Restriction 2′: All corrupted users satisfy the same number
of clauses in both policies P0 and P1 throughout the game.
�

In our construction, an individual recipient of a message
cannot gain any knowledge about the policy other than the
number of clauses that he or she satisfies and whatever can
be inferred from that fact. Therefore our construction pro-
vides clausal policy privacy if the users do not collude. We
do not, however, provide coalition resistance for policy pri-
vacy. This is because we try to provide policy privacy even
when the message can be decrypted. Recall that in some
cases coalitions of users can pool in their credentials to de-
crypt ciphertexts. In that case, the coalition will be able to
gain knowledge about the policy. Our construction, there-
fore, is secure under the following (non-CCA2 and non-
coalition-resistant) model.



Definition 5 (C-P-IND-CPA) A PEAPOD system has
Clausal Policy Indistinguishability against Chosen Plain-
text Attack (C-P-IND-CPA) if no PPT adversary can win
the following game against the challenger C with probabil-
ity non-negligibly greater than 1/2.

The game is the same as that in Definition 4, except that
the adversary A (1) may not ask any honest users for de-
crypting any retrieved ciphertext, and (2) may corrupt at
most 1 honest user. �

We discuss the implications of coalition and inference
attacks on confidentiality and policy privacy in Section 4.

Credential privacy Credential privacy protects the pri-
vacy of the recipient from the sender. Specifically, creden-
tial privacy hides from the sender the credentials that the
recipient possesses and thus uses when attempting to de-
crypt the sender’s encrypted messages, even if the sender is
able to observe the system. More formally, what can be ob-
served by a sender (or a coalition of senders) constitutes to
the protocol view of the sender (or the coalition), which in-
cludes secrets, inputs and randomness of the sender (or the
coalition) during the executions of the encryption algorithm
and the deposit protocol, protocol transcripts of all deposit
and retrieval protocol runs. A PEAPOD system has cre-
dential privacy if given any protocol view of the system, an
adversary cannot decide non-negligibly better than random
guessing if a recipient has a certain attribute for any recipi-
ent and attribute in the system.

Achieving credential privacy is generally a big challenge
for interactive schemes such as policy-based access control.
Trust negotiation allows users to specify “release policies”
that explicitly allow certain credentials to be “leaked” [15].
Nevertheless, credential privacy comes as a natural guaran-
tee in PEAPOD due to the existence of a server as an in-
termediary. In particular, the offline nature of message de-
livery from the sender to the recipient through an interme-
diate server ensures that the sender never directly interacts
with recipients. In fact, the sender of an encrypted mes-
sage might never know who has attempted to decrypt the
message.

3. Our Construction

For simplicity, we describe the construction of
PEAPOD in stages. First we show that it is straightfor-
ward to construct PEAPOD using an adapted version of
SELS as a building block if only single-attribute policies
are allowed. Then, we demonstrate a construction that sup-
ports policies based on a conjunction of attributes and their
negations (a conjunctive clause). Finally, we describe how
complex policies in the form of a disjunction of conjunctive
clauses can also be supported. In the remainder of the paper

we will use the terms “conjunctive clauses” and “clauses”
interchangeably.

3.1. PEAPOD for single-attribute policies

Earlier in this paper we reviewed how SELS achieves
its goal of securely sending email messages to a list of sub-
scribers. If we think of a mailing list as the list of users who
possess a certain attribute, then SELS can immediately be
used to securely disseminate data to users who possess that
attribute. Therefore, if all polices contain only a single at-
tribute, then all we need to do to construct PEAPOD is to
instantiate a SELS list for each of the attributes in the sys-
tem.

The list managers who manage list membership in these
SELS lists now collectively act like the Certification Au-
thority (CA) in PEAPOD, which is the entity responsible
for authenticating users according to their attributes before
giving out credentials to them. The list servers become
the PEAPOD Server which handles deposits of encrypted
messages. However, instead of actively broadcasting the
encrypted messages to the intended recipients as in SELS,
the PEAPOD Server waits for individual retrieval requests
from users in the system.

Now the SELS instantiation in Figure 1 can be thought
of as being associated with an attribute a and re-interpreted
as follows. Key y is the encryption public key for en-
crypting data under attribute a for deposit. Secret s is the
server’s transformation secret with respect to attribute a for
transforming ciphertexts before storage. Secrets sA, sB are
the re-encryption secrets the server keeps for re-encrypting
stored ciphertexts to Alice and Bob, the two users who pos-
sess attribute a, respectively. Secrets xA and xB are re-
spectively the decryption secrets of Alice and Bob that en-
able them to decrypt retrieved ciphertexts and recover the
plaintext message encrypted under the attribute a.

We call the above construction Simple-PEAPOD,
which supports only single-attribute policies by adapting
SELS in a rather straightforward fashion. We do not an-
alyze the security of Simple-PEAPOD as it is only an in-
termediate step towards our full construction. However, it is
easy to see that Simple-PEAPOD is confidential as the se-
curity of SELS implies an adversary who does not possess
an attribute cannot decrypt a ciphertext encrypted under that
attribute’s public key.

3.2. PEAPOD for single-clause policies

We now demonstrate how to construct a PEAPOD sys-
tem that supports policies that are conjunctions of attributes
and their negations (a single “conjunctive clause”). We
present the construction by walking through an example.
This example is generic enough to illustrate the actual con-
struction, which we refer to as Clausal-PEAPOD.



The example We continue with the matchmaking sce-
nario we have been using. Recall that there are five at-
tributes: {males, college graduates, in their
30’s, smokers, pet lovers} in the system. Let us
assume the criteria user Alice has for her perfect partner is
a “male in his 30’s who does not smoke.” Her policy is thus

〈X, ∗,X,×, ∗〉. (1)

Bob is a 32 year-old non-smoking gentleman who loves
pets and has no college degree. Bob thus satisfies Alice’s
criteria and hence her policy. In the following steps, Alice
encrypts and deposits at the server her protected profile (in
form of a message string) under her policy, which is then
retrieved and decrypted by Bob.

Encryption To leave a message M for her potential per-
fect partners, Alice encrypts M with a secure symmetric
encryption under key k ∈ Zp generated uniformly at ran-
dom. Let the resulting ciphertext beψ. Alice then randomly
picks a “sub-key” for each X-attribute in Eqn. (1) such
that the sub-keys multiply to k (mod p), i.e. k1, k3 ∈ Zp

such that k1k3 ≡ k(mod p). She also picks r4 ∈ Zp for
the ×-attribute uniformly at random. For the remaining ∗-
attributes, she picks the identity element 1. These result in
the tuple:

〈k1, 1, k3, r4, 1〉. (2)

The basic idea behind these values is that Bob will even-
tually receive the subset of values that correspond to his
attributes. As long as Bob does not possess any of the ×-
attributes, these values can be multiplied together to retrieve
the key – the 1’s corresponding to the ∗-attributes do not af-
fect the overall product thereby preserving the key, and the
random numbers for the ×-attribute will “destroy” the key
if used. What remains to be shown is how Bob is forced to
multiply all these values to maintain the requisite security
and privacy properties of the message and the policy.

To each entry in Eqn. (2), Alice applies the Elgamal en-
cryption algorithm E under the public key yi for the corre-
sponding attribute, resulting in tuple below,7 which is then
sent along with the ciphertext ψ to the server for deposit.

〈{k1}Ey1
, {1}Ey2

, {k3}Ey3
, {r4}Ey4

, {1}Ey5
〉. (3)

Deposit Upon receiving the tuple in Eqn. (3) and ψ
from Alice, the server applies the transformation func-
tion T on the entries in Eqn. (3) using the transforma-
tion secrets for the corresponding attributes, thereby ob-
taining 〈{{k1}Ey1

}Ts1
, {{1}Ey2

}Ts2
, {{k3}Ey3

}Ts3
, {{r4}Ey4

}Ts4
,

{{1}Ey5
}Ts5
〉, which, as explained earlier, is equivalent to the

Elgamal encryptions of entries in Eqn. (2) under ỹi’s, i.e.

〈{k1}Eỹ1
, {1}Eỹ2

, {k3}Eỹ3
, {r4}Eỹ4

, {1}Eỹ5
〉. (4)

7We adopt the notation of {x}Ak to mean the output of a (possibly
randomized) algorithm A under key k when given the input x.

The server stores in its database the tuple in Eqn. (4) along
with ψ.

Retrieval Now Bob comes to the server and asks for the
ciphertext Alice just deposited. The server reads the tuple in
Eqn. (4) from its database and then operates on it as follows.
It first strips off the entries that correspond to the attributes
Bob does not have (the second and fourth in this case),8

resulting in the tuple

〈{k1}Eỹ1
, {k3}Eỹ3

, {1}Eỹ5
〉. (5)

For each of the entries in Eqn. (5), the server randomly
picks a blinding factor from Zp, such that the product
of these factors equals 1 (mod p), i.e. b1, b3, b5 ∈ Zp

such that b1b3b5 ≡ 1(mod p). The server then ap-
plies Elgamal encryption E on these blinding factors un-
der the corresponding public keys ỹi’s, resulting in the tu-
ple 〈{b1}Eỹ1

, {b3}Eỹ3
, {b5}Eỹ5

〉, which is then “homomorphi-
cally” multiplied into Eqn. (5) in a pairwise fashion, giving
rise to:

〈{k1}Eỹ1
⊗{b1}Eỹ1

, {k3}Eỹ3
⊗{b3}Eỹ3

, {1}Eỹ5
⊗{b5}Eỹ5

〉, (6)

which is equivalent to:

〈{k1b1}Eỹ1
, {k3b3}Eỹ3

, {b5}Eỹ5
〉. (7)

These blinding factors ensure that the receiver is forced to
multiply all values, and does not have access to any of the
individual values. Finally, the server uses its re-encryption
secret-keys for Bob (s1,B , s3,B and s5,B) and re-encrypts
the ciphertexts into the tuple below, which is sent9 to Bob
along with the ciphertext ψ:

〈{{k1b1}Eỹ1
}Rs1,B

, {{k3b3}Eỹ3
}Rs3,B

, {{b5}Eỹ5
}Rs5,B

〉. (8)

Decryption Now Bob uses his decryption secret-keys
(x1,B , x3,B and x5,B) to decrypt the entries in Eqn. (8) in
order to get the tuple:

〈k1b1, k3b3, b5〉 (9)

Bob multiplies all the entries in Eqn. (9) together, which
gives him back k, the symmetric key for decrypting the ci-
phertext ψ, thus enabling him to recover the original mes-
sage M . Note that if Bob was actually a smoker and thus
possessed a forbidden attribute, Eqn (9) would look like
〈k1b

′
1, k3b

′
3, r4b

′
4, b

′
5〉. The existence of r4 would make it

impossible for Bob to recover k.
8The server knows the set of attributes every user in the system has as

it is involved in the procedure during which a user obtains a credential for
an attribute from the CA. For details, consult [23].

9The size of the overall ciphertext leaks information on the number of
attributes Bob possesses. To cope with this, we assume that the Server
packs the overall ciphertext into a fixed size with bogus sub-ciphertexts of
which the bogusness is only identifiable by Bob.



We assume the existence of a mechanism for the users
in the system to tell if they satisfy the policies associated
with the ciphertexts and thus have correctly decrypted those
ciphertexts.10

We state without proof that Clausal-PEAPOD is con-
fidential in the C-IND-CPA-RUCA model, enjoys policy
privacy in the C-P-IND-CPA model, and also guarantees
credential privacy. The proofs can easily be inferred as spe-
cial cases from the theorems for our full construction of
PEAPOD, which supports complex policies.

3.3. Complete version of PEAPOD

PEAPOD for a single conjunctive clause can be gen-
eralized to support complex policies that contain more than
one clause (interpreted as a disjunction of multiple conjunc-
tive clauses). To recover an encrypted message, it suffices
to reconstruct the associated symmetric key k. The sender
can encrypt the message for each of the clauses in a com-
plex policy, such that the same k is used for each clause.
Note that for each clause, new sub-keys are generated for
k. In this way, anyone who satisfies at least one clause will
be able to recover k, and thus the encrypted message.

However, care must be taken in order not to leak (too
much) information about the policy. First, if a ciphertext
contains only those legitimate clauses in the policy, anyone
would be able to tell how many clauses are there in the pol-
icy that was used in the encryption. To keep the actual size
of the policy secret, one could pad the policy with “bogus”
clauses so that ciphertexts will always be of the same size,
irrespective of the actual size of the policy. This can eas-
ily be done by assuming a random symmetric key k′ 6= k
in the bogus clauses. We assume that the system picks a
parameter n, which is the maximum number of clauses for
each policy, and requires that all ciphertexts deposited have
policies padded to n clauses.

The sender should also compute a random permutation
of the original clauses and the bogus ones (call this a “shuf-
fle”). This makes the recipients learn only the number of
clauses they satisfy. All the remaining clauses may or may
not be legitimate clauses. For example, if the clauses were
not shuffled and Bob satisfied only the third clause, then
Bob would know for sure that the first and second clauses
are not bogus clauses and hence the policy contains at least
three clauses. If the clauses are shuffled, however, Bob can-
not infer whether the first and second clauses are bogus and
only knows that there is at least one clause in the policy.

We call such a construction Full-PEAPOD.

Security theorems We now list the security theorems for
Full-PEAPOD. Their proofs can be found in the Appendix.

10For example, we can require the senders to first encode the plaintext
messages, such as padding them with a string of zeros at the front.

Theorem 1 (Confidentiality) If the DDH assumption
holds for Z∗

p, then Full-PEAPOD has Ciphertext Indistin-
guishability against Chosen Plaintext Attack and Restricted
User Coalition Attack (C-IND-CPA-RUCA).

Theorem 2 (Policy privacy) If the DDH assumption holds
for Z∗

p, then Full-PEAPOD has Clausal Policy Indistin-
guishability against Chosen Plaintext Attack (C-P-IND-
CPA).

Theorem 3 (Credential privacy) If the DDH assumption
holds for Z∗

p, then PEAPOD has Credential Indistin-
guishability.

4. Discussion

Trust relationships In PEAPOD, the procedure for dis-
tributing credentials is split between the CA and the Server,
and each credential for a user is generated with the hon-
est cooperation between these two entities. This trust as-
sumption is similar to that of SELS since our system uses a
modified version of SELS as a building block. Neither the
Server nor the CA can decrypt messages intended for a par-
ticular recipient. If they collude, however, the credentials
of each recipient can be computed and the Server can de-
crypt all messages in the system and infer their policies. We
observe that in current approaches for Hidden Credentials
based on IBE, the PKG already has the ability to decrypt
all the messages in the system. PEAPOD splits this trusted
functionality between the CA and the Server and therefore
the security of published messages (e.g., at a bulletin-board)
with respect to the trusted entities is at least as good as that
in previous schemes. We now examine what damage a cor-
rupt CA or Server can do individually.

A corrupt CA by itself cannot decrypt messages in the
system without having the correct credentials. Therefore, a
CA can simply issue unlimited credentials to itself. How-
ever, we assume that the Server does not collude with the
CA and will only allow legitimate users in the system (ver-
ified using, e.g., PKI [3]) to obtain the credential for an
attribute. Therefore, the CA cannot pose as a user in the
system. The policy privacy with respect to the CA is main-
tained under these circumstances, which can only be broken
with the help of a malicious Server.

Analogous to a corrupt CA, a corrupt Server cannot de-
crypt any messages without having the correct credentials.
The Server cannot issue itself any credentials since this re-
quires the cooperation of the CA, which we assume does
not collude with the Server. Nonetheless, the server can
be malicious when serving retrieval requests by not follow-
ing the algorithm, causing ciphertexts to be decrypted into
“garbage” even by intended recipients. In this kind of de-
nial of service attack (DoS), a recipient who cannot decrypt
a ciphertext has no way to tell if he or she does not satisfy



the associated policy, the server is malicious, or the sender
encrypted garbage. An interesting area for future work is
to devise a protocol that will detect a misbehaving Server
and let the receiver determine whether he or she satisfied
the policy.

Our system provides policy privacy with respect to the
Server and clausal policy-indistinguishability for all recip-
ients. If the Server and recipient collude, however, both
the recipient and the Server can learn the policy of the
sender. Therefore, some amount of trust must be placed
in the Server to not collude with users. One option is to
involve the CA in the protocol so that cooperation with the
CA would also be needed to break policy privacy. Involving
the CA, however, raises issues such as performance, offline
vs. online CAs, and so on.

Inference attacks on policy privacy We now examine
the implications of the information that a recipient Bob
learns about the policy. As discussed earlier, if Bob satisfies
` ≥ 0 clauses, he can infer only that the policy is one among
a set of policies for which he satisfies ` clauses. We call this
set Bob’s “inference set,” within which all policies are in-
distinguishable to Bob. Since Bob’s goal is to figure out the
exact nature of the ` clauses that he does satisfy, Bob can
focus on policies with ` clauses and try to infer what they
may be. We will refer to this set of policies as Bob’s “infer-
ence set restricted to ` clauses.” The size of the inference
set will vary for different receivers. In systems that support
only monotonic boolean formulae for policies, consider
the trivial example: Bob has only one credential “is a
smoker.” If he is able to decrypt the message, he can infer
that the policy contains the clause “is a smoker.” The
size of the inference set (restricted to the satisfied clause)
is 1. PEAPOD, however, provides much better guaran-
tees since it supports non-monotonic boolean policies. For
example, the inference set in PEAPOD would also in-
clude a vast number of other possibilities such as “not in
their 30’s,” “not a college graduate ∧ is
a smoker,” and so on.

Coalition attacks We now discuss some of the coalition
attacks where several recipients “pool in” their credentials.
As a first line of defense, users cannot simply share the
pieces of their key shares together since they are forced to
compute the product of shares over their entire set of at-
tributes. Therefore the simple pooling in of credentials will
not succeed in general. Consider the case when two col-
luding receivers obtain k1k2 and k2k3 respectively, and let
k = k1k2k3. In such as case k cannot be retrieved since the
individual pieces k1, k2 and k3 are not known to the collud-
ing users. In certain cases, however, these products can be
combined meaningfully. Say k = k1k2. Bob may possess
attribute a1 but not a2 and Charlie may possess attribute a2

but not a1. Bob will thus recover k1 and Charlie will re-

cover k2. They can collude to expose k. Therefore, even
though coalition attacks are not straightforward, PEAPOD
is not secure against coalition attacks in general. Further-
more, different recipients can compute the intersection of
their inference sets for a particular message and try to nar-
row down the set of possible policies for that message.

Sender and receiver anonymity In PEAPOD, any party
can retrieve from the Server ciphertexts for any user, say,
Bob. Confidentiality guarantees that only Bob can decrypt
the ciphertexts and therefore it does not matter if the Server
gives away the re-encrypted ciphertexts to anyone unau-
thenticated or even anonymous. As a consequence, any-
one could have retrieved Bob’s ciphertexts and this allows
Bob to deny that he requested the ciphertext. Therefore
PEAPOD supports a weak form of anonymity for receivers
called plausible deniability, which means that no user can
be implicated with overwhelming probability. A detailed
discussion on how receivers can protect their anonymity is
outside the scope of this paper, but in general users can
access the server using an anonymizing network such as
Tor [13]. This approach, however, opens up the possibility
of DoS attacks where malicious users can bog the Server
down with repeated requests for ciphertexts. Authentica-
tion of receivers can alleviate this problem, but most au-
thentication schemes will destroy the property of plausible
deniability. The system can employ deniable authentica-
tion [14, 22, 29, 26] to provide plausible deniability,11 while
maintaining DoS resistance. The server may also choose to
employ authentication only when it is under DoS attack,
and forego authentication under normal operation.

Senders can post messages anonymously to the Server,
and therefore the authenticity (the identity of the sender) of
messages cannot be guaranteed unless the sender digitally
signs the message. If the sender desires anonymity, he or
she may choose to use a group signature scheme [10, 4, 5] to
maintain anonymity (within the group) while guaranteeing
to the receiver that the message was signed by somebody in
the group.

Dynamism We assume a static set of attributes that re-
mains unchanged throughout the lifetime of the system. It
would be useful, however, to support the addition and re-
moval of attributes, both to the system, and to the individual
users’ attribute sets. While it is quite possible to adapt our
system to support dynamism without losing confidentiality,
maintaining policy privacy in a dynamic environment is not
straightforward. For example, a user who does not satisfy a
policy with respect to attribute set A might satisfy the same
policy after A has been updated to some different attribute
set A′. By studying the difference between A and A′, the

11With such an authentication scheme, the Server cannot prove to any
third party that Bob requested the ciphertext, even though the Server
knows that Bob requested it.



user can possibly infer the nature of some attributes in the
policy. One simple countermeasure would be to prevent
users from retrieving two versions of the same ciphertext
under different attribute sets. We plan to address the effects
of dynamism on policy privacy and suitable countermea-
sures in future work.

Efficiency It is worth looking at the message expansion
imposed by Full-PEAPOD as a consequence of achieving
the various desirable properties on top of sole confidential-
ity. Let m be the number of established attributes and n
be the maximum number of clauses in a policy. Also let
λ be the security parameter, which equals the bit-length of
the size of the group Z∗

p. Observe that a ciphertext has a
(2λmn)-bit space overhead in addition to the symmetric
encryption of the plaintext message. When the size of the
plaintext message is big enough, the expansion is insignif-
icant. For example, in the case when n = 8, m = 50 and
λ = 1024, the overhead is 100 kilobytes. Both deposit-
ing a ciphertext and retrieving a ciphertext have space and
time complexities ofO(mn) if we ignore the symmetric en-
cryption and decryption. In particular, when Bob retrieves
a message, the Server must perform O(mBn) operations,
where mB is the number of attributes that Bob has been
issued credentials for. In the worst case, mB = m and
the Server has to perform mn re-encryption and homomor-
phic encryption steps. We stress that Full-PEAPOD is very
scalable in terms of number of users in the system because
the time and space complexities of all algorithms are inde-
pendent of the number of users.

The main computational bottleneck is the ciphertext re-
trieval step at the Server. To handle a retrieval request, the
Server has to do 3 modular exponentiations and 4 modular
multiplications per attribute for each clause.12 On a reason-
ably fast server machine such as Sun Fire T2000 [33], this
step takes less than 0.1s if n = 8 and m = 50.13 Therefore,
the system can handle at least 600 message retrieval per
minute, which would be sufficient for organizational net-
works. For example, a college or a university could be eas-
ily serviced without noticeable delays. Furthermore, since
the retrieval operation is naturally parallelizable, Field Pro-
grammable Gate Arrays (FPGAs) can be used to signifi-
cantly reduce the amount of time for retrieving messages.
As FPGAs get faster and cheaper, one could fit several re-
encryption engines onto a single FPGA. For example, us-
ing current technology, one could fit seven 1024-bit exp.

12Specifically, 1 modular exponentiation (exp.) and 1 modular multi-
plication (mul.) for re-encryption, 2 exp. and 1 mul. for encrypting the
blinding factor and 2 mul. for homomorphic operation.

13This machine can do 17,023 1024-bit DSA-signing per second [32].
The 0.1s estimate is based on two assumptions: one DSA-signing takes
the same time as one exp.; and four mul. take the same time as one exp.
These are conservative assumptions and therefore the estimate is a loose
upper bound. In practice, one should be able to achieve much better per-
formance.

architecture due to Blum and Paar [7] in Xilinx’s Virtex-5
XC5VLX330.14

In future work we plan to address various tradeoffs be-
tween policy privacy and the system parameters to improve
scalability with respect to the number of attributes n in the
system. For example, users can pick a subset of attributes
within which the policies are private. This would reduce
the overhead, and yet still provide sufficient policy privacy
in systems with a large number of attributes.

5. Conclusions

We present PEAPOD, a system where publishers can
disseminate information securely to multiple possible re-
cipients using attribute-based policies. Unlike previous ap-
proaches that require online interaction or knowledge of
the recipient’s identity or pseudonym beforehand, in our
approach messages are securely deposited at a server for
offline retrieval by multiple possible recipients unknown
to the sender. Users can decrypt these messages if and
only if their credentials satisfy the publisher’s policy, and
the publisher does not gain any knowledge of the users
“Hidden Credentials.” Our system uses SELS as a build-
ing block to solve the problem of shared decryption keys
between users with the same attribute and extends this
technique with homomorphic encryption to provide mes-
sage confidentiality and clausal policy-indistinguishability
against all recipients, intended or not, and complete policy-
indistinguishability against the server. In the context of the
problem of securely publishing messages to multiple pos-
sible recipients, the policy privacy properties provided by
PEAPOD surpass those provided by all previously known
Hidden Credential schemes. Unlike previous approaches,
PEAPOD is also able to efficiently support non-monotonic
boolean policies, i.e., policies that contain negations of at-
tributes.
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A. Security Proofs

A.1. Lemmas

We need the following lemmas for the proof of
Full-PEAPOD’s confidentiality and policy privacy. The
implication of Lemma 1 with respect to Full-PEAPOD is
that if a randomness is added to the set of sub-keys of the
symmetric key and then the whole set is blinded, the knowl-
edge of such a set is useless in recovering the symmetric
key. The lemma can easily be generalized so that there
could be more than one randomness and they can be at ar-
bitrary positions. Lemma 2 says the blinding operation on
a tuple retains only the product of the entries, but individual
blinded values reveal nothing about the underlying values.
Recall that in Full-PEAPOD, the plaintext behind each of
the Elgamal ciphertexts is either a sub-key, a random value
or the identity element. With this lemma, these three types
of values are no longer distinguishable after blinding.

We write a $← S to mean that a is drawn from set S
using fresh coin-flips according to a uniform distribution.

Lemma 1 ∀m ∈ N, ∀x1, x2, . . . , xm ∈ Z∗
p, the random

variables X = (b1x1, b2x2, . . ., bmxm, (Πm
i=1bi)

−1r),

where b1, b2, . . . , bm, r
$← Z∗

p, and R = (r1 r2, . . ., rm,

rm+1), where r1, r2, . . . , rm+1
$← Z∗

p, have the same dis-
tribution.

Lemma 2 ∀m ∈ N, ∀x1, x2, . . . , xm+1 ∈ Z∗
p, the random

variablesX = (b1x1, b2x2, . . ., bmxm, (Πm
i=1bi)

−1xm+1),

where b1, b2, . . . , bm
$← Z∗

p, and R = (r1, r2, . . ., rm,

Πm+1
i=1 xi · (Πm

i=1)
−1ri), where r1, r2, . . . , rm

$← Z∗
p, have

the same distribution.

The proofs for both lemmas are straightforward and are
thus omitted.

A.2. Proofs

Proof 1 (Theorem 1) (Sketch.) Recall that a ciphertext re-
turned by the encryption algorithm executed by a sender

in Full-PEAPOD consists of the symmetric encryption ψ
of the plaintext message M under a randomly chosen key
k and an array of Elgamal encryption of either a sub-key,
a random value or the identity element. The Elgamal ci-
phertext at the i-th row and j-th column in the array is an
encryption under the public key of attribute j. The under-
lying plaintext is a sub-key, a random value or the identity
element if the j-th attribute is respectively a required, for-
bidden or irrelevant attribute for the i-th clause in the policy.

Now, assume there exists a PPT adversary A who can
tell which message among M0 and M1 was used in the en-
cryption that resulted in the challenge ciphertext C∗ with
probability non-negligibly greater than 1/2. The semantic
security of the symmetric encryption implies that A knows
the symmetric key k. The knowledge of k implies that there
is at least one clause in the challenge policy P ∗ such that
A knows the product of all the sub-keys for that clause. We
claim that this implies that A knows all the individual sub-
keys in the product for that clause. Such knowledge means
that A knows the set K∗ of Elgamal decryption keys to the
encryption of all those sub-keys, as otherwise Elgamal en-
cryption would not be IND-CPA secure, contradicting to
the assumption that the DDH problem is hard in Z∗

p.
We need to consider both cases when A corrupted the

Server and when A did not. In the former case, the model
requires that A did not corrupt any of the users. The Server
itself does not know any of the Elgamal decryption keys.
The Server knows all the transformation secret keys, but
without the help of the CA or any user in the system, the
transformation secret keys have statistical zero-knowledge
on any of the Elgamal decryption keys. This contradicts to
the fact that A knows K∗.

In the latter case, A might have corrupted some sub-
set of users. However, Restriction 1′ guarantees that any
coalition of corrupted users does not collectively satisfy the
challenge policy P ∗, which means that for any union of cor-
rupted users’ attribute set and any clause in P ∗, the union
does not satisfy the clause, which is so either because at
least one required attribute is missing from the union, or
one forbidden attribute is present in the union. The former
possibility contradicts to the fact that A knows K∗. The
latter possibility also contradicts to the very same fact, due
to Lemma 1.

Therefore, there does not exist a PPT adversary A who
can win the game with probability non-negligibly greater
than 1/2. Finally, we note that the above is only a proof
sketch. In a full proof, one would have to simulate the de-
posit and retrieval queries, which could be achieved by fol-
lowing the protocol specification. The contradiction could
be derived by embedding a DDH problem instance into one
of the array entries of Elgamal ciphertexts in the challenge
ciphertext. Such a challenge ciphertext can be simulated
correctly without the knowledge of sub-key behind that par-
ticular Elgamal ciphertext. �



Proof 2 (Theorem 2) (Sketch.) Observe that during en-
cryption, the policy affects only the array of plaintexts that
are to be Elgamal-encrypted. The symmetric encryption of
the message is totally independent of the policy. To prove
that Full-PEAPOD has Clausal Policy Indistinguishabil-
ity, it suffices to show the two ciphertexts resulted from
any message encrypted with two different policies with the
same number of satisfying clauses with respect to an adver-
sary are statistically indistinguishable, thereby leaving the
adversary no chance in making a correct guess on which
policy was used any better than pure guessing, i.e. it can’t
win with probability non-negligibly greater than 1/2.

Assume there exists a PPT adversary A who can win
the game with probability non-negligibly greater than 1/2.
Let’s first consider the possibility that A corrupted the
Server during the game. In such a case, A did not cor-
rupt any of the users or otherwise could not have won the
game. Since the server does not possess the decryption keys
of any of the attributes, all the Elgamal ciphertexts within a
deposited ciphertext have computational zero knowledge in
their underlying plaintexts, the knowledge of which is re-
quired to tell whether an attribute is required, forbidden or
irrelevant for each clause. Thus, a ciphertext deposited at
the server has zero knowledge in the policy under which it
was created, meaning that an adversary who corrupted the
server in order to attack policy privacy of Full-PEAPOD
cannot do any better then pure guessing which one of the
two challenge policies was used.

Therefore, A must have won without corrupting the
Server, in which case A might have corrupted up to one
honest user. If A did not corrupt any user, then by argu-
ments similar to the above, a ciphertext deposited at the
server has zero knowledge in the policy under which it was
created and thus A could only win with probability negli-
gibly greater than 1/2. The only possibility left is thus that
A corrupted exactly one honest user. Note that the game
specification implies that this single corrupted user satisfies
the same number of clauses in both challenge policies. The
following derives a contradiction.

The ciphertexts the adversary retrieves from the server
have all gone through the blinding step through the homo-
morphic operation on the individual Elgamal ciphertexts.
Lemma 2 implies that the decryption of any of these Elga-
mal ciphertexts could have been a sub-key, a random value
or the identity element before blinding and the adversary
has statistically zero knowledge to tell which is the case.
This means any attribute in any clause in the policy could
be a X-attribute, ×-attribute, or ∗-attribute. The only in-
formation a retrieved ciphertext carry is thus the product of
the plaintexts for each clause, which is either equal to the
symmetric key if the clause is satisfied by the adversary, or
a group element distributed over Z∗

p uniformly at random if
the clause is not satisfied by the adversary or if it is a bogus
one, due to Lemma 1. Finally, due to the uniformly ran-

dom shuffling executed at the encryption step, two polices
with the same number of satisfying clauses have the same
statistical distribution of the plaintext products. Therefore,
the two challenge policies are indistinguishable to A and
thus A could not have won the game with probability non-
negligibly greater than 1/2 in this case.

Combining all cases leads to the conclusion that there
does not exist a PPT adversary A who can win the game
with probability non-negligibly greater than 1/2. �

Proof 3 (Theorem 3) (Sketch.) As discussed,
Full-PEAPOD is an offline system in which a sender
only interacts once with the Server during a deposit and
the receiver only interacts once with the Server during
a retrieval. Receivers never contact with senders during
retrieval or decryption. The transcripts for retrieval
protocol runs consist of retrieved ciphertexts. The size
of the ciphertext retrieved by any user is independent of
the attribute set possessed by the user. Furthermore, by
arguments similar to the proof sketch for policy privacy,
the IND-CPA security of Elgamal encryption implies that
the sender who does not have any credentials to decrypt
a retrieved ciphertext is unable to learn non-negligible
information from the Elgamal ciphertexts about their
underlying plaintexts. The result follows. �


