
Routing Through the Mist:
Privacy Preserving Communication

in Ubiquitous Computing Environments

Jalal Al-Muhtadi* Roy Campbell∇ Apu Kapadia† M. Dennis Mickunas∇ Seung Yi
Department of Computer Science,

University of Illinois at Urbana-Champaign,
{almuhtad, rhc, akapadia, mickunas, seungyi}@uiuc.edu

* Jalal Al-Muhtadi is funded by a grant from the National Science Foundation, NSF CCR 0086094 ITR.
∇ These authors are supported by grants from the National Science Foundation, NSF CCR 00-86094 ITR, NSF EIA 98-70736, NSF EIA 99-72884 EQ, and

NSF CCR 00-86094.
† Apu Kapadia is funded by the Department of Energy High Performance Computer Science Fellowship through Los Alamos National Laboratory, Law-

rence Livermore National Laboratory, and Sandia National Laboratories.

Abstract
Ubiquitous computing is poised to revolutionize the

way we compute and interact with each other. However,
unless privacy concerns are taken into account early in
the design process, we will end up creating a very effec-
tive distributed surveillance system, which would be a
dream come true for electronic stalkers and “big broth-
ers.” We present a protocol, which preserves the privacy
of users and keeps their communication anonymous. In
effect, we create a “mist” that conceals users from the
system and other users. Yet, users will still be able to en-
joy seamless interaction with services and other entities
that wander within the ubiquitous computing environment.

Keywords
Ubiquitous computing, privacy, Mist Routers, anony-

mous communication, authentication, security

1. Introduction
The major advances in distributed systems and mobile

computing have converged to enhance global interconnec-
tivity. This has fueled the idea of ubiquitous computing
and active information spaces where users can access ser-
vices, run programs, utilize resources, and harvest comput-
ing power anytime and anywhere. This new generation of
ubiquitous computing enables the delivery of integrated
services and multimedia-enabled applications that are no
longer bound by time or location barriers. Ubiquitous
computing promotes the proliferation of embedded de-
vices, smart gadgets, sensors and actuators. These devices
will be everywhere, performing regular tasks, providing
new functionality, extending the reach of traditional com-
puting to physical spaces, and allowing users to interact
seamlessly with the surrounding environment.

Physical spaces augmented with sensors and actuators
that can locate users, detect their presence, and track their

whereabouts will be commonplace in this new and exciting
computing paradigm. These sensors will play a major role
in bridging the virtual computing world with the physical
world and boosting the productivity of users and the avail-
ability of computing resources. However, these very fea-
tures could severely threaten the privacy of users. For in-
stance, the mentioned services can be exploited by intrud-
ers, malicious insiders, or even “curious” system adminis-
trators to track or electronically stalk particular users. Al-
though encryption provides confidentiality by hiding in-
formation flowing through communication channels from
eavesdroppers (e.g., an insider or a system administrator),
an eavesdropper can still gather the network addresses or
physical locations of the communicating parties. The lack
of privacy in today’s networks and distributed systems is
well-documented [10] [16]. Similar concerns arise for
ubiquitous computing environments [8]. While several
approaches have tried to address these problems (see Sec-
tion 2) the solutions presented are either only concerned
with anonymous web browsing or with trusted third parties
that store the location information of users and only dis-
close it to authorized principals.

In this paper we aim to design and implement a privacy
protocol that allows users of a ubiquitous computing envi-
ronment to roam and communicate freely while preserving
their privacy. The privacy protocol prevents insiders, sys-
tem administrators and even the system itself from track-
ing users and detecting their physical location. Yet, the
system will enable users to communicate with other users
and access computing resources in an authenticated man-
ner without disclosing the users’ physical locations or
whereabouts. Further, users will be able to configure the
level of privacy they wish to enjoy through the use of a
user interface running on their mobile devices (e.g., mo-
bile phone, laptop, PDA). We plan to achieve this by al-
lowing the ubiquitous computing environment to maintain

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

sensors that can detect the presence of users in a room, but
without the ability to positively identify the users. Com-
bined with our routing protocol, this creates a “mist”
through which users can communicate privately. In our
system, we introduce an overlay network in the form of a
hierarchy of “Mist Routers” that perform “handle-based
routing” to preserve privacy and hide information about
the original source and the final destination. In short, we
refer to this hierarchy as a “Mist Hierarchy.” The handle-
based routing combines hop-to-hop routing based on han-
dles with limited public-key cryptography to preserve pri-
vacy from eavesdroppers and traffic analyzers. Positive
authentication and registration of users can be achieved at
a higher level in the hierarchy, making it harder to infer
the user’s current location.

Our privacy scheme is being deployed in Gaia. Gaia [6] [11] [12] is a component-based operating system built
on a reflective middleware layer. Gaia is being developed
at the University of Illinois at Urbana-Champaign to pro-
vide an infrastructure in the form of core services over
which active information spaces can be constructed.
Through Gaia, a plethora of platforms, and hence devices,
can be “Gaia enabled” by running the Gaia OS middle-
ware on top of the installed operating systems. The Gaia
OS glues together all such devices and enables ubiquitous
computing environments.

Assumptions
Privacy is a fuzzy term that is often overloaded to mean

a large variety of things. Therefore, before proceeding any
further, it is important to clarify the scope of user privacy
that we strive to achieve in a ubiquitous computing envi-
ronment. Our goal is to achieve the following:

1. Location privacy: Neither the system nor the users of
the system will be able to know the exact physical lo-
cation of a user, unless that user decides to disclose
such information or if another person physically sees
that user at that location.

2. Anonymous connections: If two parties decide to
communicate with each other, then other users in the
system will not know who the communicating parties
are, unless one of the communicating endpoints de-
cides to disclose such information.

3. Confidentiality: If both endpoints of a communication
agree, they can make the content of their communica-
tion confidential, such that neither the system nor other
users in the system can read the contents of the com-
munication.

We assume that a Public Key Infrastructure (PKI) ex-
ists for users of the ubiquitous computing environment and
for the Mist Routers in the system. However, we do not
assume the existence of a third party that can be trusted to

safely store sensitive information about users, like their
physical location for instance.

The remainder of this paper is divided as follows. Sec-
tion 2 talks about related work. Section 3 describes the
details of the proposed system. Section 4 shows our im-
plementation. Section 5 gives pointers to future work. Fi-
nally, Section 6 concludes.

2. Related Work
In this section, we present some of the existing research

that relate to our system. Compared to the amount of re-
search efforts directed towards ubiquitous computing, very
little attention has been paid to the security aspects of
ubiquitous computing so far. However, in this section, we
will consider some of the approaches that attempt to
achieve anonymity on the Internet. Some projects try to
provide a way to hide a user’s identity while communicat-
ing over an open network while others try to provide a
communication channel that is immune to traffic analysis,
hence, providing anonymity from eavesdroppers. We de-
scribe some of the representative works in this section.

In [8], Marc Langheinrich warns us about the possibil-
ity of an Orwellian nightmare in which current ubiquitous
computing research continues on without considering pri-
vacy protection in the system. He proceeds to describe the
design principles of privacy-aware ubiquitous systems.
Some of the principles proposed are yet to be implement-
able with current technology but the paper gives a good
general guideline for privacy issues in ubiquitous comput-
ing systems. The crucial point of this paper is that unless
you consider the privacy concerns since the initial stages
of a ubiquitous system design, it is very likely to end up
becoming a ubiquitous surveillance system. Our approach
fits the spirit of this paper in the sense that we integrate the
privacy concerns into the routing itself.

Previous research on privacy and anonymity on the
Internet can be classified into roughly two categories: user
anonymity and anonymous communication. User anonym-
ity aims at providing the users anonymity while they are
using the network by letting them hide their identity from
the communicating peers. Research on anonymous com-
munication focuses on providing a communication channel
that is immune to traffic analysis so that the communicat-
ing parties can be anonymous against the eavesdroppers.

Anonymizer [1] and SafeWeb [15] are two user ano-
nymity solutions provided to World Wide Web users.
Anonymizer is a centralized approach to hide the web us-
ers’ real identities from the web servers they access. Users
can enjoy anonymity by rerouting their HTTP packets
through the Anonymizer, which replaces the information
in the packet headers so that the websites cannot infer the
users’ identities. This approach has the problem of a cen-
tralized trusted entity. The Anonymizer site can track all

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

the anonymous user activities and is also a single point of
failure.

Crowds [10] by Aviel Rubin et al. is one of the ap-
proaches on anonymous communication. A Crowd is a set
of voluntarily cooperating hosts. Any message that re-
quires anonymity first channels into one of the Crowds
hosts and then enters a loop until it finally gets out of the
Crowd and arrives at the destination. Using statistical for-
warding decisions, Crowds can effectively hide the com-
munication pattern of a user. Another similar approach is
Onion Routing [9]. Users can use the deployed set of On-
ion routers in the Internet to achieve a level of privacy
similar to that of Crowds. One difference, however, is that
the Onion routers themselves form a ring and keep con-
stant TCP connections between the neighboring routers,
constantly transmitting packets through the routes. Also,
packets are encrypted with multiple keys to form an “on-
ion,” so none of the Onion routers forwarding the packets
can discover both the source and the destination informa-
tion of the packet. NetCamo [7] is an approach to counter
traffic analysis in real-time. NetCamo models the traffic
patterns of nodes or networks and provide a real time re-
routing and padding to hide the communication pattern.

All of these approaches do not authenticate users before
allowing them to join or use the service. Anyone can use
the service without revealing anything about himself or
herself, which can become another problem when ex-
ploited by malicious users. Further, if a service requires
user authentication, then this may threaten user anonymity,
rendering the privacy protocols useless. In our system,
however, users need to authenticate themselves first in the
registration process in such a way that would neither
threaten their communication anonymity nor would reveal
their physical location, so we do not have such a problem.

Zero Knowledge Systems’ Freedom.net product [5]
provides a bit of both directions. First, it uses Freedom
servers scattered over the Internet just like in Crowds to
hide their communication patterns. Also, Freedom.net us-
ers can install a client program in their end host and use a
cryptographically protected pseudonym called ‘nym’ to
connect to the Internet, doing telnet, ftp, web surfing and
emailing. Freedom.net users need to authenticate them-
selves to the system before using the service1. Our ap-
proach achieves many of the features provided by Free-
dom.net service. Moreover, our Mist provides additional
level of privacy by not revealing the user’s location even
to his or her communicating peer.

1 Unfortunately, at the time of this writing, Zero Knowledge Systems
stopped providing the Freedom.net service. This may show the market’s
indifference towards privacy on the Internet, but we believe that privacy
will be one of the key issues in accepting and deploying ubiquitous
computing technologies.

Another related research project is the Cricket location
support system [14]. In Cricket, beacons are deployed in
the active information spaces to provide users with loca-
tion information. Cricket uses RF and ultrasound to pro-
vide an accurate estimation of user’s location. Since users
just have to listen to the beacon messages to determine
their location, users do not reveal any information about
themselves to the environment, hence maintaining their
privacy. Although Cricket does not require users to reveal
their identity, there are limitations on the actions users can
do with the acquired location information if users do not
transmit anything to the environment. Mist provides an
authentication process so that users can authenticate them-
selves to the system and safely interact while still preserv-
ing their privacy.

3. System Design
In our system, Mist Routers are deployed in a hierar-

chical fashion. Users connect directly to one of the leaf
level Mist Routers, which we call “Portals.” Through a
Portal, a user (or the user’s device) sets up a “Mist Cir-
cuit” upwards in the hierarchy. A Mist Circuit is a handle-
based virtual circuit between the user and a special Mist
Router, which we call a “Lighthouse.” Since the handles
for the virtual circuit is set up on a hop-by-hop basis,
unless enough Mist Routers in the path collude, none of
the intermediate Mist Routers can deduce the two ends of
the virtual circuit. A user uses Mist Circuits to contact one
of the higher level Mist Routers who is willing to serve as
a contact point for that user. This contact point will only
have partial information on how to route to that user. We
refer to this contact point as a “Mist Lighthouse” for that
user.

3.1 Mist Hierarchies
Mist Routers are key elements in our system. They con-

ceal the identity and location of communicating parties by
rerouting packets among themselves using hop-to-hop
handle-based routing (which we describe in more details in
Section 3.2). We envision that Mist Routers will be de-
ployed in hierarchical clusters organized along physical
space divisions, called domains. The hierarchical organi-
zation of Mist Routers would enhance the system’s flexi-
bility and scalability, allowing it to be easily deployed
over multiple domains.

Initially, a Mist Hierarchy needs to be agreed upon and
constructed between the different physical space domains
that are willing to cooperate and provide privacy for users
roaming in them. Meeting this requirement should not be
a problem; this is because many physical spaces are organ-
ized into hierarchies by nature (e.g. as illustrated in Figure
1). Further, such hierarchies can be constructed dynami-
cally in a fashion similar to the way multicast protocols
construct source-based trees [4] or Core Based Trees
(CBT), which builds a “shared tree” rooted at a core router

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

 [3]. Allowing these hierarchies to spread over multiple
domains make it harder for corrupt Mist Routers to col-
lude.

As illustrated in Figure 1, Mist Routers at the leaves of
the hierarchy represent “Portals.” Portals are viewed as the
gateways that bridge the virtual world to the physical one.
In other words, they are connection points where users of
an active information space can connect to the system.
Portals are represented by a variety of hardware that can
include a fixed workstation, a sensor, an access point for
wireless devices, and an RF transceiver.

The Portals in our system will be able to detect the
presence of users in a room, but without the ability to posi-
tively identify them. In other words, the “smart” rooms
will be able to detect the physical presence of one or more
users. However, as far as the smart room and its Portals
are concerned, the users are anonymous and not authenti-
cated as of yet. In this paper, we rely on existing discovery
and location detection protocols to sense the existence of
users in the room, like the location and discovery services
that are available in Gaia OS [12]. We also assume that the
spaces supporting our privacy system would not contain
surveillance cameras or voice recognition devices, other-
wise, users will have to take additional physical precau-
tions to protect their privacy, like wearing masks or stay-
ing silent!

As previously indicated, the original objective of an ac-
tive information space is to allow seamless interactions
between the various virtual and physical entities in the
space. Therefore, there should be a mechanism over which
these interactions can take place in spite of the existence

of this mist that blurs the true identities of users and hide
their physical locations. Therefore, to access the system, to
communicate with others, and to use available resources
while maintaining privacy, user Alice, say, has to register
herself in the system as shown in Figure 2. The registration
takes place through Alice’s mobile device (which can be a
PDA, a mobile phone, or even a smart badge). The device
talks directly to one of the available Portals in the sur-
rounding physical space. The mechanism involves desig-
nating a special Mist Router for every user of the system.
This special Mist Router will be referred to as a “Light-
house” for that user. For example, a Lighthouse for Alice
is a Mist Router that is an ancestor of the Portal that Alice
is connecting to. Alice’s Lighthouse will have knowledge
of her true identity as well as partial knowledge on how to
route to Alice. However, it does not know the exact physi-
cal location of Alice. Whereas the Portal knows the exact
physical location of Alice, but does not “realize” that this
is actually Alice and does not know who Alice’s Light-
house is. Going back to the registration process illustrated
in Figure 2, Alice’s device sends a registration request to
the nearby Portal. The Portal will reply back with a list of
its ancestral Mist Routers that exist at a higher level within
the Mist Hierarchy and are willing to act as a Lighthouse
for the user. A trusted third party can be used to vouch for
the trustworthiness of some of these Mist Routers, particu-
larly the ones that exist near the root of the hierarchy,
since these Mist Routers can be accessible from different
spaces. This vouching process is similar to how certificate
authorities vouch for other parties on the Internet. User
Alice, through her PDA device, can customize the amount
of privacy she wishes to enjoy by selecting a Mist Router
at a suitable height in the hierarchy to be her Lighthouse.
Selecting a Lighthouse is a tradeoff between performance
and privacy. Choosing a Mist Router that is closer to the
root of the hierarchy provides better privacy because less
information is inferred about the actual physical location
of Alice, and the extra rerouting provides better conceal-
ment. Whereas selecting Mist Routers closer to the Portal
helps performance by limiting the number of reroutes but
decreasing the level of privacy. To illustrate, in Figure 1,
Alice decides to designate the Computer Science build-
ing’s Mist Router as her Lighthouse. This information
implies that Alice is currently located somewhere in the
Computer Science building. Bob, on the other hand,
chooses the campus Mist Router as his Lighthouse. This

. . .

PP
PPPP

PPPP00
0

PP
Leaf Mist Routers
(Portals)

Mist Routers

Room 301 Room 302 Room 355 Room 356

Bob
Alice

. . .
3rd Floor's
 Mist Router

CS Building's
Mist Router. . .

Campus
Mist Router

Bob's
Lighthouse

Alice's
Lighthouse

......

Figure 1: The Mist Hierarchy

Portal

Request for
Registration

List of Mist Routers

Mist Hierarchy

Token for selecting
Alice's Lighthouse

Alice

Confirmation

Figure 2: Registering in the system

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

implies that he physically can be anywhere in campus.
Ultimate privacy can be achieved when a user chooses the
hierarchy’s root as its Lighthouse.

Upon the selection of a suitable Lighthouse by Alice,
we establish what we refer to as a “Mist Circuit” between
Alice and the selected Mist Router. We discuss Mist Cir-
cuits in more detail in the Section 3.2. In any case, the
Mist Circuit will make it possible for Alice’s Lighthouse
to authenticate Alice while hiding her exact physical loca-
tion, and, at the same time, hiding her identity and her
selected Lighthouse from the Portal she is connected to.

We note here that if Alice is a highly-mobile user mov-
ing from one room to another while communicating, then
prompting Alice repeatedly about selecting a Lighthouse
goes against the original goals of ubiquitous computing.
To solve this problem, Alice’s mobile device can be con-
figured to automatically “remember” the Mist Router that
Alice selected as her Lighthouse. The device can then per-
form the registration process transparently without Alice’s
intervention. However, when Alice moves into an area
where the selected Lighthouse can no longer be accessed,
only then Alice is warned and prompted to select another
Lighthouse. A prioritized list of “preferred Lighthouses”
can be stored in Alice’s mobile device, allowing Mist reg-
istration to take place transparently.

3.2 Mist Circuits
Mist Circuits employ hop-to-hop, handle-based routing

to send data packets back and forth between the source
and destination through the mist. Combining this routing
with limited public-key encryption allows data packets to
be successfully routed through the mist while providing a
higher degree of privacy and concealment. This prevents
intermediate nodes from recognizing the identities of the
actual endpoints or their physical location. Recall that we
establish a Mist Circuit between the user and its selected
Lighthouse so that the user can reveal its true identity and
authenticate it at the Lighthouse without disclosing physi-
cal location information. In this section we describe how a
Mist Circuit is set up and used.

We go back to the example of Alice registering in the
system. Her Portal fulfills her request for registration by
replying back with a list of ancestral Mist Routers that are
willing to act as Lighthouses. The list returned contains
two pieces of information for each Mist Router. Each entry
will contain an ID that uniquely identifies the Mist Router
and a digital certificate for that Mist Router. The digital
certificate can be issued by some trusted third party. The
certificate could contain information about the how “high”
in the Mist Hierarchy the associated Mist Router is. In
other words, the list is of the form:

<Mist Router 1, Certificate 1>,
<Mist Router 2, Certificate 2>,
…

User Alice selects a suitable Mist Router, which she
does not disclose to the Portal. To establish a Mist Circuit,
Alice generates a Mist Circuit establishment packet. The
general format of Mist packets are illustrated in Figure 3.
The ‘Handle ID’ field represents a handle that is unique
per Mist Router that helps identify the next hop on the
packet’s route. A value of 0 in this field indicates that no
value is assigned yet. How the handle is used is described
later in this section. The ‘direction’ field is a single bit that
specifies whether the packet is going upwards (toward the
Lighthouse) or downwards (toward the Portal) in the hier-
archy. The ‘packet type’ identifies the type of the packet,
which tells the intermediate Mist Routers how they should
handle the packet.

Assuming that Alice selects the Mist Router ‘Z’ in
Figure 4 as her Lighthouse, then Alice’s Mist Circuit es-
tablishment packet will contain ‘0’ for the handle ID and
‘U’ in the direction field, indicating that this packet is go-
ing upwards. The type field will contain a value indicating
that this is a Mist Circuit establishment packet. The pay-
load will consist of the Message M:

M = E public_key_Z (Alice || TS || K
session || TKN || PP)

Where:

|| stands for concatenation.

Alice: Alice’s unique ID in the active information space

TS: A timestamp to prevent replay attacks.

Ksession: A random session key to encrypt further communi-
cation between the user and her or his Lighthouse. It is
also used to add some additional randomness into the en-
crypted message.

TKN: A token to be presented to the user’s lookup service.
Details about the user’s lookup service and the contents of
this token are given in Section 3.3.

E k: Means encrypt using the key ‘k’.

PP: A predetermined “fixed” phrase. In our current im-
plementation, we are using the string “Mist Circuit Estab-
lishment Message.” The use of this will be described be-
low.

The actual payload is:

Payload = M || SAlice (M),

where SAlice (M) indicates Alice’s digital signature over M.

The contents of the Mist Circuit establishment packet
are shown in Figure 5. Alice then transmits this packet to
her Portal, without informing the Portal of the selected
Lighthouse. Portals will maintain a table that is referred to

Handle IDHandle ID Direction
(U/D)

Direction
(U/D)

Packet
Type

Packet
Type

32 bits 1 bit 7 bits Variable length

Payload
Size

Payload
Size PayloadPayload

16 bits

Figure 3: General format for Mist packets

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

as the “Presence Table.” Since the Portal detects nearby
people without positively identifying them, whenever a
new person is detected, he or she is entered into the Por-
tal’s presence table as an “anonymous” person. Addition-
ally, the Portal assigns for every user a handle ID that is
unique within that table only. So in the scenario depicted
in Figure 4, Alice is represented as “Anon-1” and is as-
signed a handle ID of 10, say. If other users exist in the
same physical space and the Portal is able to communicate
with them, then similarly, they will be entered into the
presence table. The “link” field should contain a value that
identifies the network link or port number over which the
Portal can communicate with the corresponding user. We
assume that if a Portal supports communication with more
than one physically present user, then it should be able to
recognize which user sent a particular packet. Upon re-
ceipt of the Mist Circuit establishment packet from Alice,
the Portal will replace the value in the packet’s handle ID
field with the handle ID that was assigned to Alice in the
presence table, which is 10 in the example shown. Next
the Portal will transmit the modified packet “upward” to
its parent Mist Router.

From now on, upon receiving the circuit establishment
packet every intermediate Mist Router will attempt to de-
crypt the encrypted portion of the payload using its private
key. If the decryption fails, (the predetermined phrase can
be used to indicate whether or not the decryption failed)
then the Mist Router will infer that this packet is not meant
for it. Instead, the packet has to be passed upward to its
parent. Each Mist Router will maintain a “Mist Routing
Table.” This table will associate handle IDs used over
downward connections with handle IDs that will be used
on the upward connection. Note that within the downward
column of the Mist Routing Table, the combination of
Handle ID and link ID is unique per Mist Router, whereas,

within the upward column the han-
dle ID value is unique per Mist
Router. The current Mist Router
does a quick lookup on its Mist
Routing Table to see if it has an
entry for the handle ID and the link
over which it received the packet. If
it does not, it creates one, and asso-
ciates an upward handle ID for it.
The Mist Router then substitutes the
value of the packet’s handle ID with
the newly assigned value and passes
the message to its parent. The proc-
ess is repeated for every intermedi-
ate Mist Router.

On the other hand, if a Mist
Router successfully decrypts the
encrypted portion using its private
key, then this indicates that the user

actually chose the current Mist Router as his or her Light-
house. All Mist Routers that are willing to act as Light-
houses for users should maintain a ‘User Binding Table’
as shown in Figure 4. The Mist Router can now authenti-
cate the user by verifying his or her signature and checking
the freshness of the timestamp. The handle ID and the
downward link above which it was used will be stored in
the User Binding Table, along with the actual ID of the
user.

Figure 4 shows the actual entries in the presence, rout-
ing and binding tables when user Alice registers and
chooses ‘Z’ as her Lighthouse. The shaded entries in the
figure represent Alice’s entries. In effect, this process has
established a “circuit” over which Alice can communicate
with her Lighthouse securely. Note that while Alice’s
Lighthouse can infer that Alice exists somewhere in the
hierarchy underneath Mist Router ‘Y’, the exact location
cannot be determined unless enough Mist Routers agree to
cooperate. Therefore, the longer the path between Alice
and her Lighthouse the more “private” her location be-
comes.

To complete the Mist Circuit establishment, the Light-
house confirms the registration of Alice by sending back a
reply packet. The format of this reply is shown in Figure 6.
For the example shown, the handle ID will be set to 254,
because this is the value bound to Alice. The packet
should be sent downward (D). The packet type is set to

PPPP

YY

ZZ

WWXX VV

...

...

......

Alice's
Lighthouse

Lin
k A

Link CLi
nk

 B

Li
nk

 A

Link B

Li
nk

 C

Link G

UpwardDownward

Handle IDHandle ID Link

Alice

UpwardDownward

Handle IDName Link

UpwardDownward

Handle IDHandle ID Link

Anon-2 -- 12

Anon-1 -- 10

10 A 127

12 A 230

17 B 225

127 A 254

301 C 211

20 B 212

Mist Routing Table

Mist Routing Table

Portal's Presence Table

User
Downward

Handle ID Link

User Binding Table

102 G Charlie

254 C Alice

233 G Elizah

...

12 B 225

Figure 4: Mist Circuit setup

00 UU MIST
CIRCUIT

EST.

MIST
CIRCUIT

EST.
Payload size &

payload

Payload size &
payload

M = E (Alice || TS || K || TKN || PP)

Payload = M || S (M)
public key of Z session

Alice

Figure 5: Alice's Mist Circuit establishment packet

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

“MIST COMMUNICATION” which indicates that inter-
mediate Mist Routers should not attempt to decrypt the
contents, rather, they should just route it to the next hop.

Ksession is the session key between the Mist Router ‘Z’
and Alice that was transmitted through the Mist Circuit
establishment packet. Note that to improve performance
from this point on, we use symmetric encryption to
achieve confidentiality between the user and the chosen
Lighthouse. TS2 is a timestamp to prevent replays. This
packet can now be routed back to Alice in a manner simi-
lar to what was described above. Now Alice can commu-
nicate securely with her Lighthouse while preserving her
privacy.

Note that if an intermediate Mist Router goes down; its
subtree will be disconnected from the rest of the Mist Hi-
erarchy. Since Mist Routers form an overlay network over
the conventional network, this failure does not physically
partition the network, and the Mist Hierarchy can be rees-
tablished. For example, the children of the failed Mist
Router can be connected to its parent. We are currently
investigating such algorithms for actively maintaining the
Mist Hierarchy, and increasing its resilience to such fail-
ures.

3.3 Locating Users
Once the Mist Circuit-Setup has been completed, the

Lighthouse Mist Router acts on behalf of the end-user. All
communication with the user will take place through its
Lighthouse, since only the Lighthouse knows how to route
packets to the user. However, we first need to locate the
current Lighthouse for a particular user. Only then can one
communicate with the user. We present two approaches
that would be suitable for performing lookups that return
the location of the current Lighthouse based on the user’s
name. Each approach involves the registration of <user,
Lighthouse> pairs, and the lookup of <user, Lighthouse>
pairs.

3.3.1 LDAP Servers
RFC 1777 describes the Lightweight Directory Access

Protocol (LDAP). In essence, users can register attributes
with LDAP servers, which can consequently be looked up
with a subset of these attributes. Mist users will have a
unique LDAP Distinguished Name (DN). Mist users can
look up information about other Mist users either based on
their DN’s, or on their attributes. For example, one could
look up a user based on the last name and university, “Doe
from University of Illinois.” Once a user has been located,

the attribute corresponding to the current Lighthouse can
be retrieved.

3.3.2 Web Servers
Another interesting technique would be to allow users

to maintain their own webpages. These webpages can be
updated by a CGI script, for example, to contain the cur-
rent Lighthouse’s location. Every time a Mist user regis-
ters with a Lighthouse, the Lighthouse will update the
user’s webpage via the CGI interface with its identity.
Now other Mist users can simply lookup the user’s web-
page for the current Lighthouse’s location. In such a
scheme other Mist users will have to be aware of the other
users’ webpage URLs.

3.3.3 Security issues
We would like to prevent malicious Lighthouses or at-

tackers from falsely registering users with them. To
achieve this, the user constructs a special token (TKN)
signed by the user’s private key. This token will contain a
timestamp and the unique ID of the chosen Lighthouse.
This token is propagated to the Lighthouse during the Mist
Circuit setup as described in Section 3.2. Once the Mist
Circuit has been established, the Lighthouse presents this
token to the lookup service. For example, this can be pre-
sented to the LDAP server, or to the CGI script. In both
cases, these updates will be secure, and cannot be forged
or replayed by an attacker. If the timestamp has already
been seen before, or if it has expired, the token will be
discarded. Naturally, if the signature cannot be verified,
the token is also discarded. The format of this token, TKN,
is as follows:

TKN = (User ID || Lighthouse ID || Timestamp ||
SUser(User ID || Lighthouse ID || timestamp))

This tells us that TKN contains the user ID (for exam-
ple, in LDAP we would use the user’s DN), the Light-
house ID (this could be the DNS name) and the timestamp
are signed by the user’s private key. TKN contents do not
need to be encrypted because the contents are already
known by the Lighthouse anyway. Hence, only integrity of
this message, not confidentiality, needs to be guaranteed.

3.4 Mist Communication Setup
Once we have located the Lighthouse for a particular

user, we need to set up a communication channel through
it. In our system we assume that both users in the commu-
nication setup have established their own Mist Circuits and
are both registered with their respective Lighthouses.
Communication will now take place through the two
Lighthouses. We will use the notation LighthouseX to
mean “Lighthouse of User X.” Let us say that Bob is try-
ing to initiate communication with Alice. Bob and Alice
are registered with LighthouseBob and LighthouseAlice re-
spectively.

254254 DD MIST
COMM.

MIST
COMM.

Payload size &
payload

Payload size &
payload

Payload = E ("Success", TS)
2K session

Figure 6: Registration confirmation packet

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Bob generates the following message for its Light-
house:

MLighthouse = EKsession(COMM_SETUP || Alice’s ID or at-
tributes || TS)

 Note that all messages in this section are actually the
payload of Mist Communication packets. Since handles
have been set up in both directions during the Mist Circuit
Setup phase, this message will travel up to LighthouseBob.
Note that intermediate Mist Routers are never aware of the
user’s Lighthouse. When the message arrives at Light-
houseBob it is able to uniquely determine that the message
is from Bob based on the arriving handle. It decrypts the
message with session key KSession and determines from the
COMM_SETUP message type that communication must
be set up with Alice. If Alice’s ID is included then the
lookup for LighthouseAlice is straightforward. However, if
Bob specifies attributes, then LighthouseBob must perform
a lookup based on these attributes. If a unique match for
Alice is found based on these attributes, LighthouseBob can
determine Alice’s ID. In both cases, Alice’s ID is used to
lookup LighthouseAlice. The timestamp TS is used to pre-
vent replay attacks.

LighthouseBob uses asymmetric key encryption with
LighthouseAlice to determine LighthouseAlice’s handle for
Alice. Since this is straightforward, we avoid the details of
this communication. We will call this the destination han-
dle for Alice, or dest_handleAlice. In Figure 7, we can see
that LighthouseBob determines dest_handleAlice = 254-C.
LighthouseBob then generates a unique handle that Bob can
use to address Alice. We will call this handle
src_handleAlice. In Figure 7 src_handleAlice = 689. Light-
houseBob sets up a binding of the form <src_handleAlice,
dest_handleAlice, LighthouseAlice>. In Figure 7 we can see
the binding <689, 254-C, Y>. We call this a Mist Com-
munication Binding. All messages from Bob that
arrive for src_handleAlice (689) will be tunneled
to LighthouseAlice (Y) and indexed with
dest_handleAlice (254-C). Similarly, Lighthouse-
Bob will supply the handle for Bob to Light-
houseAlice that will set up a binding of the form
<src_handleBob, dest_handleBob, LighthouseBob>
in the same way. In Figure 7 we can see this
binding as <412, 100-A, X>.

Once LighthouseBob and LighthouseAlice have
setup their bindings, they need to inform Bob
and Alice of the src_handles. LighthouseBob
sends src_handleAlice to Bob in the following
message:

MHandle = EKsession(HANDLE_MSG || Alice’s
ID || src_handleAlice || TS)

In Figure 7 this message corresponds to “For Alice use
689.” Similarly, LighthouseAlice sends src_handleBob to
Alice.

Now Bob can send LighthouseBob messages destined to
Alice by simply using src_handleAlice (689), and Alice can
send LighthouseAlice messages destined for Bob using
src_handleBob (412). This is done to hide Alice’s identity
from intermediate routers. These intermediate routers are
hence unaware of both the endpoints of the communica-
tion. To communicate with Alice, Bob constructs mes-
sages of the following form, where ‘M’ is the message for
Alice:

MFor_Alice = (COMMUNICATION_MSG ||
src_handleAlice || M)

This message will propagate upstream until it reaches
LighthouseBob, which uses src_handleAlice (689) to deter-
mine LighthouseAlice (Y) and dest_handleAlice (254-C).
Note that the Message passes in the clear, and the use of
handles does not disclose the endpoints of the communica-
tion. Alice and Bob are now free to choose an end-to-end
encryption scheme if desired. Using this method, there is
no duplication of encryption by the Mist. Once Light-
houseAlice is determined, the Message M needs to be for-
warded to LighthouseAlice. LighthouseBob sends the follow-
ing message to LighthouseAlice. We use the subscript of
“crossing” to suggest that the message is crossing over
from one Lighthouse to another.

MCrossing = (dest_handleAlice, M), e.g., (254-C, M)

When LighthouseAlice receives this message, it uses this
dest_handleAlice to route message M to Alice. Similarly,
LighthouseAlice can route messages to Bob using:

MCrossing = (dest_handleBob, M), e.g., (100-A, M)

Note that these “crossing” messages between Light-

'X'
Lighthouse

of Bob

'X'
Lighthouse

of Bob

...

00
0

'Y'
Lighthouse

of Alice

'Y'
Lighthouse

of Alice

...

BobAlice

UserHandle
Handle ID Link

User Binding Table

102 G Charlie
254 C Alice

233 G Elizah

UserHandle
Handle ID Link

User Binding Table

100 A Bob

LighthouseSource Dest.

Communication Binding

412 100-A X

For Bob
use 412

LighthouseSource Dest.

Communication Binding

689 254-C Y

For Alice
use 689

Figure 7: Mist communication setup

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

houses are not the Mist communication messages de-
scribed before. The Lighthouses use their own packet for-
mats to exchange the crossing messages.

3.5 Security issues
Here we discuss how the described scheme achieves lo-

cation privacy for Alice and Bob. We also present an en-
hancement that adds anonymity to Alice and Bob’s con-
nection.

3.5.1 Privacy
Note that LighthouseBob and LighthouseAlice are aware

of the identities of the endpoints of the communication,
but they are not aware of Alice and Bob’s locations. Hence
the privacy of Alice and Bob is preserved. In addition, all
intermediate routers are unaware of the endpoints of the
communication, and hence cannot deduce the locations of
Alice and Bob. In fact Alice and Bob can communicate
anonymously with respect to all other routers, with the
exception of the two Lighthouses. With respect to this
communication, the Lighthouses are trusted entities, and
hence fully anonymous connections are not provided. In
the next section we describe how fully anonymous connec-
tions can be achieved. In what we have described so far,
we achieve our goal of preserving Alice and Bob’s loca-
tion privacy from all intermediate routers, including the
Lighthouses. The most important thing to note is that Alice
cannot deduce Bob’s location, and Bob cannot deduce
Alice’s location. Hence communication between Alice and
Bob is privacy preserving.

It is worth mentioning that if the user’s Portal colludes
with the user’s Lighthouse, then the location and identity
of the user may be compromised. However, note that the
user’s Portal does not know which Lighthouse the user
selected (and vice versa). Hence, for this to be practical,
the Portal has to employ a trial-and-error approach to try
to get accessible Lighthouses to collude and help in de-
crypting the initial packet that was received by the Portal
from the user. Our system distributes the trust, and as-
sumes that such Lighthouses and Portals span various do-
mains, and collusion between such entities is not feasible.

3.5.2 Anonymous connections
As noted in the previous section, even though Alice and

Bob have achieved location privacy, their connection is
not anonymous to the Lighthouses. Ideally, we would have
a situation where LighthouseBob does not know that Bob is
exchanging messages with Alice, and where Light-
houseAlice does not know that Alice is exchanging mes-
sages with Bob. In such a case Alice and Bob can commu-
nicate with full location privacy and connection anonym-
ity, and the only information available to LighthouseBob is
that Bob is communicating with “somebody,” and likewise
LighthouseAlice knows only that Alice is communicating

with “somebody.” We detail an enhancement to the proto-
col described above to achieve this.

We first modify the message MLighthouse Bob sends to its
Lighthouse to include an encrypted token with Alice’s ID.
We will call this token TAlice,which is encrypted with the
lookup server’s key (we assume this key to be well
known). Hence LighthouseBob is not aware of the identity
of Alice.

MLighthouse = EKsession (COMM_SETUP || TAlice || TS)

Next, LighthouseBob sends TAlice to the lookup server,
which decrypts Alice’s ID and determines LighthouseAlice.
The lookup server creates another token TLighthouseAlice, en-
crypted with LighthouseAlice’s key, which contains Alice’s
identity. Now LighthouseBob uses this token instead of Al-
ice’s ID with LighthouseAlice to determine dest_handleAlice.
The rest proceeds as before. Hence Bob can route packets
to Alice without LighthouseBob knowing that the packets
are for Alice. Similarly, LighthouseBob will provide
src_handleBob to LighthouseAlice, but without disclosing
Bob’s identity. Hence Alice has a reverse communication
path in which LighthouseAlice does not know that Alice is
communicating with Bob. Even if there are repeated com-
munication setups between Alice and Bob, the token (e.g.,
TAlice) will differ each time due to the inclusion of a time-
stamp. We mention this to emphasize that LighthouseBob
cannot determine whether Bob is talking to the same per-
son as before, or not. At most, LighthouseBob knows that
Bob is communicating with various people registered at
the same Lighthouse.

Note that if the two Lighthouses involved in the com-
munication collude, then the connection is no longer
anonymous. Likewise, LighthouseBob can collude with the
lookup service to determine Alice’s identity. However, we
assume that this is not trivial. Ideally, a large number of
Lighthouses spread over different domains will be avail-
able making it harder for two particular Lighthouses to
collude. Further, recall that certificate authorities will
vouch for the trustworthiness of a Lighthouse, and hence a
paranoid user could pick a Lighthouse with stronger assur-
ances (higher in the hierarchy). Again, we are distributing
the trust in Mist, rather than centering it at one particular
place.

4. Implementation
We are incorporating Mist into the Gaia OS [11]. We

implement the Mist Hierarchy as an overlay network over
TCP/IP. We implement Mist Routers, Portals, and Light-
houses as CORBA components to facilitate their integra-
tion into Gaia’s infrastructure. Current CORBA implemen-
tations are heavyweight and may not be appropriate for
routing packets. This drawback is a serious obstacle for
the wide-scale deployment of Mist Routers. Therefore, we
are experimenting with the Universally Interoperable Core
(UIC), which provides a lightweight, high-performance

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

implementation of basic CORBA services [13]. In fact,
UIC also allows for a lightweight implementation on small
devices with limited resources. We can envision an envi-
ronment in which commodity devices can participate in
Mist routing. We implement our own CORBA-based
lookup service. A single certificate authority that issues
certificates to users and Lighthouses is made available.

To demonstrate Mist, we have implemented an instant
messaging application in Java, which uses Mist to preserve
users’ privacy. The application can be run on Java-enabled
mobile devices. More details of Mist’s design and imple-
mentation can be found in sections 3, 4, and 5 of [2].

5. Future Work
We believe our protocol can be enhanced by optimizing

the communication. For instance, turning our attention to
Figure 1, we can see that all communication from Bob to
Alice will first travel up the hierarchy to LighthouseBob,
then to LighthouseAlice, and finally to Alice. Communica-
tion from Alice to Bob is similar. We can see that Alice
and Bob pay the penalty of privacy in terms of extra
“hops.” Ideally we would like to “short circuit” their
communication to take the shortest path possible, while
still maintaining location privacy and communication ano-
nymity. With respect to the hierarchy, the shortest path
will go through a “lowest common ancestor” Mist Router
with respect to Alice and Bob. We call this LighthouseLCA.
We would like to redirect all communication between Al-
ice and Bob to go through LighthouseLCA, while maintain-
ing privacy and an anonymous connection. Finding suit-
able schemes for such an optimization of Mist communi-
cation is a subject of future research. However, we have
outlined one possible approach in Section 6 of [2].

6. Conclusion
Ubiquitous computing is an emerging research area

with great potential. However, without careful considera-
tion for user privacy from the ground up, there is a fair
possibility of creating a ubiquitous ‘surveillance’ system
instead. To avoid this undesirable future, we contend that
the privacy and anonymity of users in ubiquitous comput-
ing environments should be considered seriously and care-
fully from the very beginning of the system design phase.

In this paper we present a scheme to preserve privacy in
ubiquitous computing environments. Our scheme meets
the privacy objectives that we set forth, namely, location
privacy, connection anonymity, and confidentiality. We
describe how Mist Communication can achieve location
privacy and connection anonymity through the use of Mist
Circuits. The use of session keys in all phases guarantees
the confidentiality of Mist messages. Finally, end-to-end
communication between users in the Mist can be config-
ured to use any secure communication scheme desired.

As a direct application of our approach to ubiquitous
computing environments, we are currently incorporating
the Mist system into the Gaia operating system.

7. Acknowledgement
The authors would like to thank Prasad Naldurg for his

useful insights.

8. References
[1] Anonymizer, http://www.anonymizer.com
[2] J. Al-Muhtadi, R. Campbell, A. Kapadia, M. D. Mickunas,

and S. Yi, “Routing through the Mist: Design and Imple-
mentation,” UIUC Technical Report UIUCDCS-R-2002-
2267, March 2002.

[3] T. Ballardie, P. Francis and J. Crowcroft, “Core Based
Trees (CBT), An Architecture for Scalable Inter-Domain
Multicast Routing,” ACM SIGCOMM, 1993.

[4] Y.K. Dalal and R.M. Metcalfe, “Reverse Path Forwarding
of Broadcast Packets,” Communications of the ACM,
21:1040-1048, December 1978.

[5] Freedom.net, http://www.freedom.net
[6] The Gaia Homepage,

http://choices.cs.uiuc.edu/ActiveSpaces/index.html
[7] Y. Guan, C. Li, D. Xuan, R. Bettati, and Wei Zhao, “Pre-

venting Traffic Analysis for Real-Time Communication
Networks,” Proceedings of The IEEE Military Communica-
tion Conference (MILCOM) '99, November 1999.

[8] M. Langheinrich, “Privacy by Design – Principles of Pri-
vacy-Aware Ubiquitous Systems,” ACM UbiComp 2001,
Atlanta, GA, 2001.

[9] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous
Connections and Onion Routing,” IEEE Journal on Se-
lected Areas in Communication, Special Issue on Copyright
and Privacy Protection, 1998.

[10] M. Reiter and A. D. Rubin, “Crowds: Anonymity for Web
Transactions,” ACM Transactions on Information and Sys-
tem Security (TISSEC) Volume 1, Issue 1, November 1998.

[11] M. Roman and R. Campbell, “GAIA: Enabling Active
Spaces,” 9th ACM SIGOPS European Workshop, Septem-
ber 17th-20th, 2000, Kolding, Denmark.

[12] M. Roman, C. Hess, A. Ranganathan, P. Madhavarapu, B.
Borthakur, P. Viswanathan, R. Cerqueira, R. Campbell, and
M. D. Mickunas, “GaiaOS: An Infrastructure for Active
Spaces,” Technical Report UIUCDCS-R-2001-2224 UILU-
ENG-2001-1731, University of Illinois at Urbana-
Champaign, 2001.

[13] M. Roman, F. Kon and R. H. Campbell, “Reflective Mid-
dleware: From Your Desk to Your Hand,” IEEE Distrib-
uted Systems Online Journal, Special Issue on Reflective
Middleware, July 2001

[14] N. Priyantha, Anit Chakraborty, and Hari Balakrishnan,
“The Cricket Location-Support System,” Proceedings of the
Sixth Annual International Conference on Mobile Comput-
ing and Networking (ACM MOBICOM), Boston, MA, Au-
gust 2000.

[15] SafeWeb, http://www.safeweb.com
[16] J. Schwartz, “As Big PC Brother Watches, Users Encounter

Frustration,” The New York Times, September 5, 2001.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

