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Abstract 
Ubiquitous computing is poised to revolutionize the 

way we compute and interact with each other. However, 
unless privacy concerns are taken into account early in 
the design process, we will end up creating a very effec-
tive distributed surveillance system, which would be a 
dream come true for electronic stalkers and “big broth-
ers.” We present a protocol, which preserves the privacy 
of users and keeps their communication anonymous.  In 
effect, we create a “mist” that conceals users from the 
system and other users. Yet, users will still be able to en-
joy seamless interaction with services and other entities 
that wander within the ubiquitous computing environment.  

Keywords 
Ubiquitous computing, privacy, Mist Routers, anony-

mous communication, authentication, security 

1. Introduction 
The major advances in distributed systems and mobile 

computing have converged to enhance global interconnec-
tivity. This has fueled the idea of ubiquitous computing 
and active information spaces where users can access ser-
vices, run programs, utilize resources, and harvest comput-
ing power anytime and anywhere. This new generation of 
ubiquitous computing enables the delivery of integrated 
services and multimedia-enabled applications that are no 
longer bound by time or location barriers. Ubiquitous 
computing promotes the proliferation of embedded de-
vices, smart gadgets, sensors and actuators. These devices 
will be everywhere, performing regular tasks, providing 
new functionality, extending the reach of traditional com-
puting to physical spaces, and allowing users to interact 
seamlessly with the surrounding environment. 

Physical spaces augmented with sensors and actuators 
that can locate users, detect their presence, and track their 

whereabouts will be commonplace in this new and exciting 
computing paradigm. These sensors will play a major role 
in bridging the virtual computing world with the physical 
world and boosting the productivity of users and the avail-
ability of computing resources.  However, these very fea-
tures could severely threaten the privacy of users. For in-
stance, the mentioned services can be exploited by intrud-
ers, malicious insiders, or even “curious” system adminis-
trators to track or electronically stalk particular users. Al-
though encryption provides confidentiality by hiding in-
formation flowing through communication channels from 
eavesdroppers (e.g., an insider or a system administrator), 
an eavesdropper can still gather the network addresses or 
physical locations of the communicating parties. The lack 
of privacy in today’s networks and distributed systems is 
well-documented  [10] [16]. Similar concerns arise for 
ubiquitous computing environments  [8]. While several 
approaches have tried to address these problems (see Sec-
tion 2) the solutions presented are either only concerned 
with anonymous web browsing or with trusted third parties 
that store the location information of users and only dis-
close it to authorized principals. 

In this paper we aim to design and implement a privacy 
protocol that allows users of a ubiquitous computing envi-
ronment to roam and communicate freely while preserving 
their privacy. The privacy protocol prevents insiders, sys-
tem administrators and even the system itself from track-
ing users and detecting their physical location. Yet, the 
system will enable users to communicate with other users 
and access computing resources in an authenticated man-
ner without disclosing the users’ physical locations or 
whereabouts. Further, users will be able to configure the 
level of privacy they wish to enjoy through the use of a 
user interface running on their mobile devices (e.g., mo-
bile phone, laptop, PDA). We plan to achieve this by al-
lowing the ubiquitous computing environment to maintain 
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sensors that can detect the presence of users in a room, but 
without the ability to positively identify the users. Com-
bined with our routing protocol, this creates a “mist” 
through which users can communicate privately. In our 
system, we introduce an overlay network in the form of a 
hierarchy of “Mist Routers” that perform “handle-based 
routing” to preserve privacy and hide information about 
the original source and the final destination. In short, we 
refer to this hierarchy as a “Mist Hierarchy.” The handle-
based routing combines hop-to-hop routing based on han-
dles with limited public-key cryptography to preserve pri-
vacy from eavesdroppers and traffic analyzers.  Positive 
authentication and registration of users can be achieved at 
a higher level in the hierarchy, making it harder to infer 
the user’s current location.  

Our privacy scheme is being deployed in Gaia. Gaia  [6] [11] [12] is a component-based operating system built 
on a reflective middleware layer. Gaia is being developed 
at the University of Illinois at Urbana-Champaign to pro-
vide an infrastructure in the form of core services over 
which active information spaces can be constructed. 
Through Gaia, a plethora of platforms, and hence devices, 
can be “Gaia enabled” by running the Gaia OS middle-
ware on top of the installed operating systems. The Gaia 
OS glues together all such devices and enables ubiquitous 
computing environments. 

Assumptions 
Privacy is a fuzzy term that is often overloaded to mean 

a large variety of things. Therefore, before proceeding any 
further, it is important to clarify the scope of user privacy 
that we strive to achieve in a ubiquitous computing envi-
ronment. Our goal is to achieve the following: 

1. Location privacy: Neither the system nor the users of 
the system will be able to know the exact physical lo-
cation of a user, unless that user decides to disclose 
such information or if another person physically sees 
that user at that location. 

2. Anonymous connections: If two parties decide to 
communicate with each other, then other users in the 
system will not know who the communicating parties 
are, unless one of the communicating endpoints de-
cides to disclose such information. 

3. Confidentiality: If both endpoints of a communication 
agree, they can make the content of their communica-
tion confidential, such that neither the system nor other 
users in the system can read the contents of the com-
munication. 

We assume that a Public Key Infrastructure (PKI) ex-
ists for users of the ubiquitous computing environment and 
for the Mist Routers in the system. However, we do not 
assume the existence of a third party that can be trusted to 

safely store sensitive information about users, like their 
physical location for instance. 

The remainder of this paper is divided as follows. Sec-
tion 2 talks about related work. Section 3 describes the 
details of the proposed system. Section 4 shows our im-
plementation. Section 5 gives pointers to future work. Fi-
nally, Section 6 concludes.  

2. Related Work 
In this section, we present some of the existing research 

that relate to our system. Compared to the amount of re-
search efforts directed towards ubiquitous computing, very 
little attention has been paid to the security aspects of 
ubiquitous computing so far. However, in this section, we 
will consider some of the approaches that attempt to 
achieve anonymity on the Internet. Some projects try to 
provide a way to hide a user’s identity while communicat-
ing over an open network while others try to provide a 
communication channel that is immune to traffic analysis, 
hence, providing anonymity from eavesdroppers. We de-
scribe some of the representative works in this section. 

In  [8], Marc Langheinrich warns us about the possibil-
ity of an Orwellian nightmare in which current ubiquitous 
computing research continues on without considering pri-
vacy protection in the system. He proceeds to describe the 
design principles of privacy-aware ubiquitous systems. 
Some of the principles proposed are yet to be implement-
able with current technology but the paper gives a good 
general guideline for privacy issues in ubiquitous comput-
ing systems. The crucial point of this paper is that unless 
you consider the privacy concerns since the initial stages 
of a ubiquitous system design, it is very likely to end up 
becoming a ubiquitous surveillance system. Our approach 
fits the spirit of this paper in the sense that we integrate the 
privacy concerns into the routing itself. 

Previous research on privacy and anonymity on the 
Internet can be classified into roughly two categories: user 
anonymity and anonymous communication. User anonym-
ity aims at providing the users anonymity while they are 
using the network by letting them hide their identity from 
the communicating peers. Research on anonymous com-
munication focuses on providing a communication channel 
that is immune to traffic analysis so that the communicat-
ing parties can be anonymous against the eavesdroppers. 

Anonymizer  [1] and SafeWeb  [15] are two user ano-
nymity solutions provided to World Wide Web users. 
Anonymizer is a centralized approach to hide the web us-
ers’ real identities from the web servers they access. Users 
can enjoy anonymity by rerouting their HTTP packets 
through the Anonymizer, which replaces the information 
in the packet headers so that the websites cannot infer the 
users’ identities. This approach has the problem of a cen-
tralized trusted entity. The Anonymizer site can track all 
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the anonymous user activities and is also a single point of 
failure.  

Crowds  [10] by Aviel Rubin et al. is one of the ap-
proaches on anonymous communication. A Crowd is a set 
of voluntarily cooperating hosts. Any message that re-
quires anonymity first channels into one of the Crowds 
hosts and then enters a loop until it finally gets out of the 
Crowd and arrives at the destination. Using statistical for-
warding decisions, Crowds can effectively hide the com-
munication pattern of a user. Another similar approach is 
Onion Routing  [9]. Users can use the deployed set of On-
ion routers in the Internet to achieve a level of privacy 
similar to that of Crowds. One difference, however, is that 
the Onion routers themselves form a ring and keep con-
stant TCP connections between the neighboring routers, 
constantly transmitting packets through the routes. Also, 
packets are encrypted with multiple keys to form an “on-
ion,” so none of the Onion routers forwarding the packets 
can discover both the source and the destination informa-
tion of the packet.  NetCamo  [7] is an approach to counter 
traffic analysis in real-time. NetCamo models the traffic 
patterns of nodes or networks and provide a real time re-
routing and padding to hide the communication pattern. 

All of these approaches do not authenticate users before 
allowing them to join or use the service. Anyone can use 
the service without revealing anything about himself or 
herself, which can become another problem when ex-
ploited by malicious users. Further, if a service requires 
user authentication, then this may threaten user anonymity, 
rendering the privacy protocols useless. In our system, 
however, users need to authenticate themselves first in the 
registration process in such a way that would neither 
threaten their communication anonymity nor would reveal 
their physical location, so we do not have such a problem. 

Zero Knowledge Systems’ Freedom.net product  [5] 
provides a bit of both directions. First, it uses Freedom 
servers scattered over the Internet just like in Crowds to 
hide their communication patterns. Also, Freedom.net us-
ers can install a client program in their end host and use a 
cryptographically protected pseudonym called ‘nym’ to 
connect to the Internet, doing telnet, ftp, web surfing and 
emailing. Freedom.net users need to authenticate them-
selves to the system before using the service1. Our ap-
proach achieves many of the features provided by Free-
dom.net service. Moreover, our Mist provides additional 
level of privacy by not revealing the user’s location even 
to his or her communicating peer.  

                                                           
1 Unfortunately, at the time of this writing, Zero Knowledge Systems 
stopped providing the Freedom.net service. This may show the market’s 
indifference towards privacy on the Internet, but we believe that privacy 
will be one of the key issues in accepting and deploying ubiquitous 
computing technologies. 

Another related research project is the Cricket location 
support system  [14]. In Cricket, beacons are deployed in 
the active information spaces to provide users with loca-
tion information. Cricket uses RF and ultrasound to pro-
vide an accurate estimation of user’s location. Since users 
just have to listen to the beacon messages to determine 
their location, users do not reveal any information about 
themselves to the environment, hence maintaining their 
privacy.  Although Cricket does not require users to reveal 
their identity, there are limitations on the actions users can 
do with the acquired location information if users do not 
transmit anything to the environment. Mist provides an 
authentication process so that users can authenticate them-
selves to the system and safely interact while still preserv-
ing their privacy. 

3. System Design 
In our system, Mist Routers are deployed in a hierar-

chical fashion. Users connect directly to one of the leaf 
level Mist Routers, which we call “Portals.” Through a 
Portal, a user (or the user’s device) sets up a “Mist Cir-
cuit” upwards in the hierarchy. A Mist Circuit is a handle-
based virtual circuit between the user and a special Mist 
Router, which we call a “Lighthouse.” Since the handles 
for the virtual circuit is set up on a hop-by-hop basis, 
unless enough Mist Routers in the path collude, none of 
the intermediate Mist Routers can deduce the two ends of 
the virtual circuit. A user uses Mist Circuits to contact one 
of the higher level Mist Routers who is willing to serve as 
a contact point for that user. This contact point will only 
have partial information on how to route to that user. We 
refer to this contact point as a “Mist Lighthouse” for that 
user.  

3.1 Mist Hierarchies 
Mist Routers are key elements in our system. They con-

ceal the identity and location of communicating parties by 
rerouting packets among themselves using hop-to-hop 
handle-based routing (which we describe in more details in 
Section 3.2). We envision that Mist Routers will be de-
ployed in hierarchical clusters organized along physical 
space divisions, called domains. The hierarchical organi-
zation of Mist Routers would enhance the system’s flexi-
bility and scalability, allowing it to be easily deployed 
over multiple domains.   

Initially, a Mist Hierarchy needs to be agreed upon and 
constructed between the different physical space domains 
that are willing to cooperate and provide privacy for users 
roaming in them.  Meeting this requirement should not be 
a problem; this is because many physical spaces are organ-
ized into hierarchies by nature (e.g. as illustrated in Figure 
1). Further, such hierarchies can be constructed dynami-
cally in a fashion similar to the way multicast protocols 
construct source-based trees  [4] or Core Based Trees 
(CBT), which builds a “shared tree” rooted at a core router 
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 [3]. Allowing these hierarchies to spread over multiple 
domains make it harder for corrupt Mist Routers to col-
lude. 

As illustrated in Figure 1, Mist Routers at the leaves of 
the hierarchy represent “Portals.” Portals are viewed as the 
gateways that bridge the virtual world to the physical one. 
In other words, they are connection points where users of 
an active information space can connect to the system.  
Portals are represented by a variety of hardware that can 
include a fixed workstation, a sensor, an access point for 
wireless devices, and an RF transceiver.  

The Portals in our system will be able to detect the 
presence of users in a room, but without the ability to posi-
tively identify them. In other words, the “smart” rooms 
will be able to detect the physical presence of one or more 
users. However, as far as the smart room and its Portals 
are concerned, the users are anonymous and not authenti-
cated as of yet. In this paper, we rely on existing discovery 
and location detection protocols to sense the existence of 
users in the room, like the location and discovery services 
that are available in Gaia OS  [12]. We also assume that the 
spaces supporting our privacy system would not contain 
surveillance cameras or voice recognition devices, other-
wise, users will have to take additional physical precau-
tions to protect their privacy, like wearing masks or stay-
ing silent!  

As previously indicated, the original objective of an ac-
tive information space is to allow seamless interactions 
between the various virtual and physical entities in the 
space. Therefore, there should be a mechanism over which 
these interactions can take place in spite of the existence 

of this mist that blurs the true identities of users and hide 
their physical locations. Therefore, to access the system, to 
communicate with others, and to use available resources 
while maintaining privacy, user Alice, say, has to register 
herself in the system as shown in Figure 2. The registration 
takes place through Alice’s mobile device (which can be a 
PDA, a mobile phone, or even a smart badge). The device 
talks directly to one of the available Portals in the sur-
rounding physical space. The mechanism involves desig-
nating a special Mist Router for every user of the system. 
This special Mist Router will be referred to as a “Light-
house” for that user. For example, a Lighthouse for Alice 
is a Mist Router that is an ancestor of the Portal that Alice 
is connecting to. Alice’s Lighthouse will have knowledge 
of her true identity as well as partial knowledge on how to 
route to Alice. However, it does not know the exact physi-
cal location of Alice. Whereas the Portal knows the exact 
physical location of Alice, but does not “realize” that this 
is actually Alice and does not know who Alice’s Light-
house is. Going back to the registration process illustrated 
in Figure 2, Alice’s device sends a registration request to 
the nearby Portal. The Portal will reply back with a list of 
its ancestral Mist Routers that exist at a higher level within 
the Mist Hierarchy and are willing to act as a Lighthouse 
for the user. A trusted third party can be used to vouch for 
the trustworthiness of some of these Mist Routers, particu-
larly the ones that exist near the root of the hierarchy, 
since these Mist Routers can be accessible from different 
spaces. This vouching process is similar to how certificate 
authorities vouch for other parties on the Internet. User 
Alice, through her PDA device, can customize the amount 
of privacy she wishes to enjoy by selecting a Mist Router 
at a suitable height in the hierarchy to be her Lighthouse. 
Selecting a Lighthouse is a tradeoff between performance 
and privacy. Choosing a Mist Router that is closer to the 
root of the hierarchy provides better privacy because less 
information is inferred about the actual physical location 
of Alice, and the extra rerouting provides better conceal-
ment. Whereas selecting Mist Routers closer to the Portal 
helps performance by limiting the number of reroutes but 
decreasing the level of privacy. To illustrate, in Figure 1, 
Alice decides to designate the Computer Science build-
ing’s Mist Router as her Lighthouse. This information 
implies that Alice is currently located somewhere in the 
Computer Science building. Bob, on the other hand, 
chooses the campus Mist Router as his Lighthouse. This 

. . .
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Figure 1: The Mist Hierarchy 
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Figure 2: Registering in the system 
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implies that he physically can be anywhere in campus. 
Ultimate privacy can be achieved when a user chooses the 
hierarchy’s root as its Lighthouse.  

Upon the selection of a suitable Lighthouse by Alice, 
we establish what we refer to as a “Mist Circuit” between 
Alice and the selected Mist Router. We discuss Mist Cir-
cuits in more detail in the Section 3.2. In any case, the 
Mist Circuit will make it possible for Alice’s Lighthouse 
to authenticate Alice while hiding her exact physical loca-
tion, and, at the same time, hiding her identity and her 
selected Lighthouse from the Portal she is connected to. 

We note here that if Alice is a highly-mobile user mov-
ing from one room to another while communicating, then 
prompting Alice repeatedly about selecting a Lighthouse 
goes against the original goals of ubiquitous computing. 
To solve this problem, Alice’s mobile device can be con-
figured to automatically “remember” the Mist Router that 
Alice selected as her Lighthouse. The device can then per-
form the registration process transparently without Alice’s 
intervention. However, when Alice moves into an area 
where the selected Lighthouse can no longer be accessed, 
only then Alice is warned and prompted to select another 
Lighthouse. A prioritized list of “preferred Lighthouses” 
can be stored in Alice’s mobile device, allowing Mist reg-
istration to take place transparently.  

3.2 Mist Circuits  
Mist Circuits employ hop-to-hop, handle-based routing 

to send data packets back and forth between the source 
and destination through the mist. Combining this routing 
with limited public-key encryption allows data packets to 
be successfully routed through the mist while providing a 
higher degree of privacy and concealment. This prevents 
intermediate nodes from recognizing the identities of the 
actual endpoints or their physical location. Recall that we 
establish a Mist Circuit between the user and its selected 
Lighthouse so that the user can reveal its true identity and 
authenticate it at the Lighthouse without disclosing physi-
cal location information. In this section we describe how a 
Mist Circuit is set up and used.  

We go back to the example of Alice registering in the 
system. Her Portal fulfills her request for registration by 
replying back with a list of ancestral Mist Routers that are 
willing to act as Lighthouses. The list returned contains 
two pieces of information for each Mist Router. Each entry 
will contain an ID that uniquely identifies the Mist Router 
and a digital certificate for that Mist Router. The digital 
certificate can be issued by some trusted third party. The 
certificate could contain information about the how “high” 
in the Mist Hierarchy the associated Mist Router is. In 
other words, the list is of the form: 

<Mist Router 1, Certificate 1>,  
<Mist Router 2, Certificate 2>, 
… 

User Alice selects a suitable Mist Router, which she 
does not disclose to the Portal. To establish a Mist Circuit, 
Alice generates a Mist Circuit establishment packet. The 
general format of Mist packets are illustrated in Figure 3. 
The ‘Handle ID’ field represents a handle that is unique 
per Mist Router that helps identify the next hop on the 
packet’s route. A value of 0 in this field indicates that no 
value is assigned yet. How the handle is used is described 
later in this section. The ‘direction’ field is a single bit that 
specifies whether the packet is going upwards (toward the 
Lighthouse) or downwards (toward the Portal) in the hier-
archy. The ‘packet type’ identifies the type of the packet, 
which tells the intermediate Mist Routers how they should 
handle the packet.  

Assuming that Alice selects the Mist Router ‘Z’ in 
Figure 4 as her Lighthouse, then Alice’s Mist Circuit es-
tablishment packet will contain ‘0’ for the handle ID and 
‘U’ in the direction field, indicating that this packet is go-
ing upwards. The type field will contain a value indicating 
that this is a Mist Circuit establishment packet. The pay-
load will consist of the Message M: 

M = E public_key_Z (Alice || TS || K 
session || TKN || PP)  

Where: 

|| stands for concatenation. 

Alice: Alice’s unique ID in the active information space 

TS: A timestamp to prevent replay attacks. 

Ksession: A random session key to encrypt further communi-
cation between the user and her or his Lighthouse. It is 
also used to add some additional randomness into the en-
crypted message. 

TKN: A token to be presented to the user’s lookup service. 
Details about the user’s lookup service and the contents of 
this token are given in Section 3.3. 

E k: Means encrypt using the key ‘k’. 

PP: A predetermined “fixed” phrase. In our current im-
plementation, we are using the string “Mist Circuit Estab-
lishment Message.” The use of this will be described be-
low. 

The actual payload is:  

Payload = M || SAlice (M),  

where SAlice (M) indicates Alice’s digital signature over M. 

The contents of the Mist Circuit establishment packet 
are shown in Figure 5. Alice then transmits this packet to 
her Portal, without informing the Portal of the selected 
Lighthouse.  Portals will maintain a table that is referred to 

Handle IDHandle ID Direction
(U/D)

Direction
(U/D)

Packet
Type

Packet
Type

32 bits 1 bit 7 bits Variable length

Payload
Size

Payload
Size PayloadPayload

16 bits
 

Figure 3: General format for Mist packets 
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as the “Presence Table.” Since the Portal detects nearby 
people without positively identifying them, whenever a 
new person is detected, he or she is entered into the Por-
tal’s presence table as an “anonymous” person. Addition-
ally, the Portal assigns for every user a handle ID that is 
unique within that table only. So in the scenario depicted 
in Figure 4, Alice is represented as “Anon-1” and is as-
signed a handle ID of 10, say. If other users exist in the 
same physical space and the Portal is able to communicate 
with them, then similarly, they will be entered into the 
presence table. The “link” field should contain a value that 
identifies the network link or port number over which the 
Portal can communicate with the corresponding user. We 
assume that if a Portal supports communication with more 
than one physically present user, then it should be able to 
recognize which user sent a particular packet.  Upon re-
ceipt of the Mist Circuit establishment packet from Alice, 
the Portal will replace the value in the packet’s handle ID 
field with the handle ID that was assigned to Alice in the 
presence table, which is 10 in the example shown. Next 
the Portal will transmit the modified packet “upward” to 
its parent Mist Router.  

From now on, upon receiving the circuit establishment 
packet every intermediate Mist Router will attempt to de-
crypt the encrypted portion of the payload using its private 
key. If the decryption fails, (the predetermined phrase can 
be used to indicate whether or not the decryption failed) 
then the Mist Router will infer that this packet is not meant 
for it. Instead, the packet has to be passed upward to its 
parent. Each Mist Router will maintain a “Mist Routing 
Table.” This table will associate handle IDs used over 
downward connections with handle IDs that will be used 
on the upward connection. Note that within the downward 
column of the Mist Routing Table, the combination of 
Handle ID and link ID is unique per Mist Router, whereas, 

within the upward column the han-
dle ID value is unique per Mist 
Router.  The current Mist Router 
does a quick lookup on its Mist 
Routing Table to see if it has an 
entry for the handle ID and the link 
over which it received the packet. If 
it does not, it creates one, and asso-
ciates an upward handle ID for it.  
The Mist Router then substitutes the 
value of the packet’s handle ID with 
the newly assigned value and passes 
the message to its parent. The proc-
ess is repeated for every intermedi-
ate Mist Router.  

On the other hand, if a Mist 
Router successfully decrypts the 
encrypted portion using its private 
key, then this indicates that the user 

actually chose the current Mist Router as his or her Light-
house. All Mist Routers that are willing to act as Light-
houses for users should maintain a ‘User Binding Table’ 
as shown in Figure 4.  The Mist Router can now authenti-
cate the user by verifying his or her signature and checking 
the freshness of the timestamp.  The handle ID and the 
downward link above which it was used will be stored in 
the User Binding Table, along with the actual ID of the 
user.  

Figure 4 shows the actual entries in the presence, rout-
ing and binding tables when user Alice registers and 
chooses ‘Z’ as her Lighthouse. The shaded entries in the 
figure represent Alice’s entries. In effect, this process has 
established a “circuit” over which Alice can communicate 
with her Lighthouse securely. Note that while Alice’s 
Lighthouse can infer that Alice exists somewhere in the 
hierarchy underneath Mist Router ‘Y’, the exact location 
cannot be determined unless enough Mist Routers agree to 
cooperate.  Therefore, the longer the path between Alice 
and her Lighthouse the more “private” her location be-
comes.  

To complete the Mist Circuit establishment, the Light-
house confirms the registration of Alice by sending back a 
reply packet. The format of this reply is shown in Figure 6.  
For the example shown, the handle ID will be set to 254, 
because this is the value bound to Alice. The packet 
should be sent downward (D). The packet type is set to 
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Figure 4: Mist Circuit setup 
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“MIST COMMUNICATION” which indicates that inter-
mediate Mist Routers should not attempt to decrypt the 
contents, rather, they should just route it to the next hop. 

Ksession is the session key between the Mist Router ‘Z’ 
and Alice that was transmitted through the Mist Circuit 
establishment packet. Note that to improve performance 
from this point on, we use symmetric encryption to 
achieve confidentiality between the user and the chosen 
Lighthouse. TS2 is a timestamp to prevent replays. This 
packet can now be routed back to Alice in a manner simi-
lar to what was described above.  Now Alice can commu-
nicate securely with her Lighthouse while preserving her 
privacy.  

Note that if an intermediate Mist Router goes down; its 
subtree will be disconnected from the rest of the Mist Hi-
erarchy. Since Mist Routers form an overlay network over 
the conventional network, this failure does not physically 
partition the network, and the Mist Hierarchy can be rees-
tablished. For example, the children of the failed Mist 
Router can be connected to its parent. We are currently 
investigating such algorithms for actively maintaining the 
Mist Hierarchy, and increasing its resilience to such fail-
ures.  

3.3 Locating Users 
Once the Mist Circuit-Setup has been completed, the 

Lighthouse Mist Router acts on behalf of the end-user. All 
communication with the user will take place through its 
Lighthouse, since only the Lighthouse knows how to route 
packets to the user. However, we first need to locate the 
current Lighthouse for a particular user. Only then can one 
communicate with the user. We present two approaches 
that would be suitable for performing lookups that return 
the location of the current Lighthouse based on the user’s 
name. Each approach involves the registration of <user, 
Lighthouse> pairs, and the lookup of <user, Lighthouse> 
pairs.  

3.3.1 LDAP Servers 
RFC 1777 describes the Lightweight Directory Access 

Protocol (LDAP). In essence, users can register attributes 
with LDAP servers, which can consequently be looked up 
with a subset of these attributes. Mist users will have a 
unique LDAP Distinguished Name (DN). Mist users can 
look up information about other Mist users either based on 
their DN’s, or on their attributes. For example, one could 
look up a user based on the last name and university, “Doe 
from University of Illinois.” Once a user has been located, 

the attribute corresponding to the current Lighthouse can 
be retrieved. 

3.3.2 Web Servers 
Another interesting technique would be to allow users 

to maintain their own webpages. These webpages can be 
updated by a CGI script, for example, to contain the cur-
rent Lighthouse’s location. Every time a Mist user regis-
ters with a Lighthouse, the Lighthouse will update the 
user’s webpage via the CGI interface with its identity. 
Now other Mist users can simply lookup the user’s web-
page for the current Lighthouse’s location. In such a 
scheme other Mist users will have to be aware of the other 
users’ webpage URLs.  

3.3.3 Security issues 
We would like to prevent malicious Lighthouses or at-

tackers from falsely registering users with them. To 
achieve this, the user constructs a special token (TKN) 
signed by the user’s private key. This token will contain a 
timestamp and the unique ID of the chosen Lighthouse. 
This token is propagated to the Lighthouse during the Mist 
Circuit setup as described in Section 3.2. Once the Mist 
Circuit has been established, the Lighthouse presents this 
token to the lookup service. For example, this can be pre-
sented to the LDAP server, or to the CGI script. In both 
cases, these updates will be secure, and cannot be forged 
or replayed by an attacker. If the timestamp has already 
been seen before, or if it has expired, the token will be 
discarded. Naturally, if the signature cannot be verified, 
the token is also discarded. The format of this token, TKN, 
is as follows:  

TKN = (User ID || Lighthouse ID || Timestamp || 
SUser(User ID || Lighthouse ID || timestamp) )  

This tells us that TKN contains the user ID (for exam-
ple, in LDAP we would use the user’s DN), the Light-
house ID (this could be the DNS name) and the timestamp 
are signed by the user’s private key. TKN contents do not 
need to be encrypted because the contents are already 
known by the Lighthouse anyway. Hence, only integrity of 
this message, not confidentiality, needs to be guaranteed. 

3.4 Mist Communication Setup 
Once we have located the Lighthouse for a particular 

user, we need to set up a communication channel through 
it. In our system we assume that both users in the commu-
nication setup have established their own Mist Circuits and 
are both registered with their respective Lighthouses. 
Communication will now take place through the two 
Lighthouses. We will use the notation LighthouseX to 
mean “Lighthouse of User X.” Let us say that Bob is try-
ing to initiate communication with Alice. Bob and Alice 
are registered with LighthouseBob and LighthouseAlice re-
spectively. 

254254 DD MIST
COMM.

MIST
COMM.

Payload size &
payload

Payload size &
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Payload = E   ("Success", TS  )
2K session  

Figure 6: Registration confirmation packet 
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Bob generates the following message for its Light-
house: 

MLighthouse = EKsession(COMM_SETUP || Alice’s ID or at-
tributes || TS) 

 Note that all messages in this section are actually the 
payload of Mist Communication packets. Since handles 
have been set up in both directions during the Mist Circuit 
Setup phase, this message will travel up to LighthouseBob. 
Note that intermediate Mist Routers are never aware of the 
user’s Lighthouse. When the message arrives at Light-
houseBob it is able to uniquely determine that the message 
is from Bob based on the arriving handle. It decrypts the 
message with session key KSession and determines from the 
COMM_SETUP message type that communication must 
be set up with Alice. If Alice’s ID is included then the 
lookup for LighthouseAlice is straightforward. However, if 
Bob specifies attributes, then LighthouseBob must perform 
a lookup based on these attributes. If a unique match for 
Alice is found based on these attributes, LighthouseBob can 
determine Alice’s ID. In both cases, Alice’s ID is used to 
lookup LighthouseAlice. The timestamp TS is used to pre-
vent replay attacks.  

LighthouseBob uses asymmetric key encryption with 
LighthouseAlice to determine LighthouseAlice’s handle for 
Alice. Since this is straightforward, we avoid the details of 
this communication. We will call this the destination han-
dle for Alice, or dest_handleAlice. In Figure 7, we can see 
that LighthouseBob determines dest_handleAlice = 254-C. 
LighthouseBob then generates a unique handle that Bob can 
use to address Alice. We will call this handle 
src_handleAlice. In Figure 7 src_handleAlice = 689. Light-
houseBob sets up a binding of the form <src_handleAlice, 
dest_handleAlice, LighthouseAlice>. In Figure 7 we can see 
the binding <689, 254-C, Y>. We call this a Mist Com-
munication Binding. All messages from Bob that 
arrive for src_handleAlice (689) will be tunneled 
to LighthouseAlice (Y) and indexed with 
dest_handleAlice (254-C). Similarly, Lighthouse-
Bob will supply the handle for Bob to Light-
houseAlice that will set up a binding of the form 
<src_handleBob, dest_handleBob, LighthouseBob> 
in the same way. In Figure 7 we can see this 
binding as <412, 100-A, X>. 

Once LighthouseBob and LighthouseAlice have 
setup their bindings, they need to inform Bob 
and Alice of the src_handles. LighthouseBob 
sends src_handleAlice to Bob in the following 
message:  

MHandle = EKsession(HANDLE_MSG || Alice’s 
ID || src_handleAlice || TS)  

In Figure 7 this message corresponds to “For Alice use 
689.” Similarly, LighthouseAlice sends src_handleBob to 
Alice. 

Now Bob can send LighthouseBob messages destined to 
Alice by simply using src_handleAlice (689), and Alice can 
send LighthouseAlice messages destined for Bob using 
src_handleBob (412). This is done to hide Alice’s identity 
from intermediate routers. These intermediate routers are 
hence unaware of both the endpoints of the communica-
tion. To communicate with Alice, Bob constructs mes-
sages of the following form, where ‘M’ is the message for 
Alice: 

MFor_Alice = (COMMUNICATION_MSG || 
src_handleAlice || M) 

This message will propagate upstream until it reaches 
LighthouseBob, which uses src_handleAlice (689) to deter-
mine LighthouseAlice (Y) and dest_handleAlice (254-C). 
Note that the Message passes in the clear, and the use of 
handles does not disclose the endpoints of the communica-
tion. Alice and Bob are now free to choose an end-to-end 
encryption scheme if desired. Using this method, there is 
no duplication of encryption by the Mist. Once Light-
houseAlice is determined, the Message M needs to be for-
warded to LighthouseAlice. LighthouseBob sends the follow-
ing message to LighthouseAlice. We use the subscript of 
“crossing” to suggest that the message is crossing over 
from one Lighthouse to another. 

MCrossing = (dest_handleAlice, M), e.g., (254-C, M) 

When LighthouseAlice receives this message, it uses this 
dest_handleAlice to route message M to Alice. Similarly, 
LighthouseAlice can route messages to Bob using: 

MCrossing = (dest_handleBob, M), e.g., (100-A, M) 

Note that these “crossing” messages between Light-

'X'
Lighthouse

of Bob

'X'
Lighthouse

of Bob

...

00
0

'Y'
Lighthouse

of Alice

'Y'
Lighthouse

of Alice

...

BobAlice

UserHandle
Handle ID Link

User  Binding Table

102 G Charlie
254 C Alice

233 G Elizah

UserHandle
Handle ID Link

User Binding Table

100 A Bob

LighthouseSource Dest.

Communication Binding

412 100-A X

For Bob
use 412

LighthouseSource Dest.

Communication Binding

689 254-C Y

For Alice
use 689

 
Figure 7: Mist communication setup 
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houses are not the Mist communication messages de-
scribed before. The Lighthouses use their own packet for-
mats to exchange the crossing messages. 

3.5 Security issues 
Here we discuss how the described scheme achieves lo-

cation privacy for Alice and Bob. We also present an en-
hancement that adds anonymity to Alice and Bob’s con-
nection.  

3.5.1 Privacy 
Note that LighthouseBob and LighthouseAlice are aware 

of the identities of the endpoints of the communication, 
but they are not aware of Alice and Bob’s locations. Hence 
the privacy of Alice and Bob is preserved. In addition, all 
intermediate routers are unaware of the endpoints of the 
communication, and hence cannot deduce the locations of 
Alice and Bob. In fact Alice and Bob can communicate 
anonymously with respect to all other routers, with the 
exception of the two Lighthouses. With respect to this 
communication, the Lighthouses are trusted entities, and 
hence fully anonymous connections are not provided. In 
the next section we describe how fully anonymous connec-
tions can be achieved. In what we have described so far, 
we achieve our goal of preserving Alice and Bob’s loca-
tion privacy from all intermediate routers, including the 
Lighthouses. The most important thing to note is that Alice 
cannot deduce Bob’s location, and Bob cannot deduce 
Alice’s location. Hence communication between Alice and 
Bob is privacy preserving.  

It is worth mentioning that if the user’s Portal colludes 
with the user’s Lighthouse, then the location and identity 
of the user may be compromised. However, note that the 
user’s Portal does not know which Lighthouse the user 
selected (and vice versa). Hence, for this to be practical, 
the Portal has to employ a trial-and-error approach to try 
to get accessible Lighthouses to collude and help in de-
crypting the initial packet that was received by the Portal 
from the user. Our system distributes the trust, and as-
sumes that such Lighthouses and Portals span various do-
mains, and collusion between such entities is not feasible.  

3.5.2 Anonymous connections 
As noted in the previous section, even though Alice and 

Bob have achieved location privacy, their connection is 
not anonymous to the Lighthouses. Ideally, we would have 
a situation where LighthouseBob does not know that Bob is 
exchanging messages with Alice, and where Light-
houseAlice does not know that Alice is exchanging mes-
sages with Bob. In such a case Alice and Bob can commu-
nicate with full location privacy and connection anonym-
ity, and the only information available to LighthouseBob is 
that Bob is communicating with “somebody,” and likewise 
LighthouseAlice knows only that Alice is communicating 

with “somebody.” We detail an enhancement to the proto-
col described above to achieve this. 

We first modify the message MLighthouse Bob sends to its 
Lighthouse to include an encrypted token with Alice’s ID. 
We will call this token TAlice,which is encrypted with the 
lookup server’s key (we assume this key to be well 
known). Hence LighthouseBob is not aware of the identity 
of Alice.  

MLighthouse = EKsession (COMM_SETUP || TAlice || TS) 

Next, LighthouseBob sends TAlice to the lookup server, 
which decrypts Alice’s ID and determines LighthouseAlice. 
The lookup server creates another token TLighthouseAlice, en-
crypted with LighthouseAlice’s key, which contains Alice’s 
identity. Now LighthouseBob uses this token instead of Al-
ice’s ID with LighthouseAlice to determine dest_handleAlice. 
The rest proceeds as before. Hence Bob can route packets 
to Alice without LighthouseBob knowing that the packets 
are for Alice. Similarly, LighthouseBob will provide 
src_handleBob to LighthouseAlice, but without disclosing 
Bob’s identity. Hence Alice has a reverse communication 
path in which LighthouseAlice does not know that Alice is 
communicating with Bob. Even if there are repeated com-
munication setups between Alice and Bob, the token (e.g., 
TAlice) will differ each time due to the inclusion of a time-
stamp. We mention this to emphasize that LighthouseBob 
cannot determine whether Bob is talking to the same per-
son as before, or not. At most, LighthouseBob knows that 
Bob is communicating with various people registered at 
the same Lighthouse. 

Note that if the two Lighthouses involved in the com-
munication collude, then the connection is no longer 
anonymous. Likewise, LighthouseBob can collude with the 
lookup service to determine Alice’s identity. However, we 
assume that this is not trivial. Ideally, a large number of 
Lighthouses spread over different domains will be avail-
able making it harder for two particular Lighthouses to 
collude. Further, recall that certificate authorities will 
vouch for the trustworthiness of a Lighthouse, and hence a 
paranoid user could pick a Lighthouse with stronger assur-
ances (higher in the hierarchy). Again, we are distributing 
the trust in Mist, rather than centering it at one particular 
place. 

4. Implementation 
We are incorporating Mist into the Gaia OS  [11]. We 

implement the Mist Hierarchy as an overlay network over 
TCP/IP. We implement Mist Routers, Portals, and Light-
houses as CORBA components to facilitate their integra-
tion into Gaia’s infrastructure. Current CORBA implemen-
tations are heavyweight and may not be appropriate for 
routing packets. This drawback is a serious obstacle for 
the wide-scale deployment of Mist Routers. Therefore, we 
are experimenting with the Universally Interoperable Core 
(UIC), which provides a lightweight, high-performance 
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implementation of basic CORBA services  [13]. In fact, 
UIC also allows for a lightweight implementation on small 
devices with limited resources. We can envision an envi-
ronment in which commodity devices can participate in 
Mist routing. We implement our own CORBA-based 
lookup service. A single certificate authority that issues 
certificates to users and Lighthouses is made available.  

To demonstrate Mist, we have implemented an instant 
messaging application in Java, which uses Mist to preserve 
users’ privacy. The application can be run on Java-enabled 
mobile devices. More details of Mist’s design and imple-
mentation can be found in sections 3, 4, and 5 of  [2]. 

5. Future Work 
We believe our protocol can be enhanced by optimizing 

the communication. For instance, turning our attention to 
Figure 1, we can see that all communication from Bob to 
Alice will first travel up the hierarchy to LighthouseBob, 
then to LighthouseAlice, and finally to Alice. Communica-
tion from Alice to Bob is similar. We can see that Alice 
and Bob pay the penalty of privacy in terms of extra 
“hops.” Ideally we would like to “short circuit” their 
communication to take the shortest path possible, while 
still maintaining location privacy and communication ano-
nymity. With respect to the hierarchy, the shortest path 
will go through a “lowest common ancestor” Mist Router 
with respect to Alice and Bob. We call this LighthouseLCA. 
We would like to redirect all communication between Al-
ice and Bob to go through LighthouseLCA, while maintain-
ing privacy and an anonymous connection. Finding suit-
able schemes for such an optimization of Mist communi-
cation is a subject of future research. However, we have 
outlined one possible approach in Section 6 of  [2]. 

6. Conclusion 
Ubiquitous computing is an emerging research area 

with great potential. However, without careful considera-
tion for user privacy from the ground up, there is a fair 
possibility of creating a ubiquitous ‘surveillance’ system 
instead. To avoid this undesirable future, we contend that 
the privacy and anonymity of users in ubiquitous comput-
ing environments should be considered seriously and care-
fully from the very beginning of the system design phase.  

In this paper we present a scheme to preserve privacy in 
ubiquitous computing environments. Our scheme meets 
the privacy objectives that we set forth, namely, location 
privacy, connection anonymity, and confidentiality. We 
describe how Mist Communication can achieve location 
privacy and connection anonymity through the use of Mist 
Circuits. The use of session keys in all phases guarantees 
the confidentiality of Mist messages. Finally, end-to-end 
communication between users in the Mist can be config-
ured to use any secure communication scheme desired. 

As a direct application of our approach to ubiquitous 
computing environments, we are currently incorporating 
the Mist system into the Gaia operating system. 
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