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Abstract
Smart voice assistants that rely on automatic speech recognition
(ASR) are widely used by people for multiple reasons. These
devices, however, feature “always on” microphones that enable
sensitive and private user information to be maliciously or in-
advertently collected. In this paper, we develop an end-to-end
approach that generates utterance-specific perturbations that ob-
scure a set of words that have been deemed sensitive. In partic-
ular, spoken digits, which may be contained in credit card or
social security numbers, have been chosen as the words that an
ASR system should not be able to recognize, though all other
words should be recognized accordingly. Our approach con-
sists of a self-supervised learning feature extractor and U-Net
style network for generating noise perturbations. The proposed
approach shows promising performance that will help address
privacy concerns, without affecting the main functionality of an
ASR model.
Index Terms: audio privacy, automatic speech recognition,
deep neural networks, self-supervised learning

1. Introduction
In 2019, more than 3 billion smart voice assistants, such as
the Amazon Echo, Google Home, and Apple Homepod, were
in use.1 This number is anticipated to rise to 8 billion by
2023. These intelligent devices contain voice assistants, such
as Amazon Alexa, Google Now and Apple Siri, which use auto-
matic speech recognition (ASR) to execute spoken commands.
These devices offer many conveniences, including controlling
other smart devices, performing online shopping and sharing
information with family and friends. Unfortunately, the conve-
niences also introduce privacy and security concerns [1].

The ‘always on’ mode of the smart devices indicates that
the devices are constantly receiving voice information from the
target user, and those in the vicinity of the device. This func-
tionality raises privacy concerns for users where false posi-
tives can cause unauthorized conversations to be uploaded to
the cloud [1] or malicious attackers can gain access to pri-
vate conversations [2]. Furthermore, the newly developed ‘con-
versation’ mode may cause conversations from unintended by-
standers to be erroneously collected, stored and processed. This
threat is exacerbated by the fact that most ASR systems are de-
signed with deep neural networks (DNNs) [3, 4, 5], which have
been shown to be vulnerable to adversarial attacks [6, 7]. Unlike
cameras, microphones are not obscured by covering, so other
“tangible” defense measures are needed to preserve privacy [8].

Different approaches have been developed to preserve
speech privacy. Carlini and Wagner [9] apply an iterative
Fast Gradient Sign Method (FGSM) [10] that uses an itera-

1https://voicebot.ai/2019/12/31/the-decade-of-voice-assistant-
revolution/

tive optimization approach to find a perturbation that causes
the ASR system to output a desired transcription that differs
from the true one in the audio signal. The approach by Qin
et al. [11] generates a human-imperceptible perturbation that
can be played over loudspeakers in real environments. Xu et
al. propose a high-performance adaptive security enhancement
solution called HASP [12], which generates adversarial noise
that maximizes the word error rate (WER). These approaches,
in general, find a desired perturbation by solving a complex
iterative optimization problem, which updates the input sig-
nal directly using the gradient from the back-propagation pro-
cess. This technique does have a significant disadvantage in
that the inference step is computationally expensive. Alterna-
tively, Chen et al. [13] create a wearable device that generates
ultrasonic jamming signals. Although this approach is effective,
unfortunately it requires highly-specialized equipment, so it is
not yet a feasible approach for most users.

Many approaches have been developed to address the high
computational costs of optimization-based approaches. Pour-
saeed et al. proposed a generative adversarial perturbation
framework applied in the image domain [14]. The technique
uses both U-Net and ResNet based generators to learn the per-
turbation from the input image in a computationally efficient
manner. Likewise, Xiao et al. use a generative adversarial net-
work (GAN)-based approach with a generator to produce a de-
sired perturbation and a discriminator to classify the real and
fake samples [15]. In the audio domain, Wang et al. [16] use a
1D convolutional based U-Net approach to generate adversarial
noise and a fully convolutional discriminator to limit the pertur-
bation’s amplitude. The same authors also propose an adversar-
ial generation network [17] for keyword spotting, where it uses
a conditional GAN based approach. These approaches have
improved performance and computational efficiency, however,
they all operate at the single word level and have not been de-
signed for more natural speech where sensitive words are con-
tained within longer utterances, such as phrases or sentences.

In this paper, we develop an approach that generates ad-
versarial noise for a given speech waveform. Unlike prior ap-
proaches, our goal is not to render the ASR model completely
ineffective, where it cannot recognize any spoken words. Rather
our goal is to enable selective word recognition, where words
that have been deemed sensitive are not recognized by the ASR
model. All other words (e.g., non-sensitive words) should still
be recognized correctly, which enables continual usage of the
device. This is accomplished by additively injecting the gen-
erated noise perturbation into the speech waveform. This is a
simulated white-box approach that requires access to an ASR
system and where the noise is injected digitally in software.
This work serves as a proof-of-concept, but future efforts with
focus on real-world implementations. The resulting transcrip-
tion should contain all the non-sensitive words, but be devoid
of all possible sensitive words. We employ an encoder-decoder
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Figure 1: Model structure for proposed speech filter.

architecture that is given features that have been extracted from
a pre-trained self-supervised learning (SSL) model [18]. We
use the self-supervised representations because studies [19, 20]
have shown that these representations contain an abundance of
higher-level content that are more distinguishable than tradi-
tional hand-crafted features, such as the magnitude spectrogram
or mel-frequency cepstral coefficients (MFCCs). The SSL ap-
proach has also been pre-trained with a large unlabeled speech
corpus, which should help with generalization. The features are
then fed to a 2D convolutional U-Net to generate a desired per-
turbation. To the best of our knowledge, this is the first time that
SSL representations have been used to prevent sensitive words
from being recognized by an ASR model. This work differs
from our prior work [21], which used voice-conversion tech-
niques to generate specially-crafted babble noise that sounded
like the user. That approach masked all words in an utterance,
while our current approach performs selective masking.

2. Method
In this section, we first formulate the problem and provide de-
tails about the network architecture. Lastly, the evaluation met-
rics are introduced.

2.1. Problem formulation

We are first given an audio signal, x, a list of sensitive words,
w = [w1, w2....wn], an ASR system, f , and the original tran-
scription, y. The goal of the ASR system is to output the tran-
scription, given the audio signal (e.g., f(x) = y). In our case,
we want to generate a small perturbation, δ, that when added to
the audio signal, results in an adversarial example, x′ = x+ δ,
that when supplied to the ASR system, results in a transcrip-
tion that recognizes all words, except those that are contained
in w. In other words, we want f(x′) = y′, where y′ = y\{w}.
The problem can be formulated as an optimization problem that
minimizes the loss between the output of the ASR system, when
supplied with the adversarial example, and y′. This is depicted
in Eq. (1) below

minimize L(f(x+ δ), y′)
such that y′ = f(x)\{w} (1)

where L(·) is the loss function that calculates the distance be-
tween the desired transcription, y′, and the ASR-generated tran-
scription, f(x+ δ).

2.2. Model Structure

The model structure of the proposed approach is shown in Fig-
ure 1, which consists of three main components: feature extrac-
tion, E, the perturbation generator, G, and the ASR approach f .
The time-domain audio signal is first provided to the feature ex-
traction module that extracts high-level features. The extracted
high-level features are then fed into the generator, G, which pro-
duces a magnitude response for the desired noise perturbation,

δm. The magnitude spectrum for the adversarial example, x′
m,

is then generated from the element wise addition of the magni-
tude spectrogram of the audio signal and the perturbation. The
magnitude spectrogram, xm, is computed from the audio signal
using the short-time Fourier transform (STFT). The perturbed
audio signal can be expressed as:

x′
m = xm +G(E(xm)) (2)

The adversarial example is provided as the input to the ASR
system, f . esired transcript and the predicted transcript.

2.3. Feature Extraction

We use a pre-trained self-supervised learning (SSL) frame-
work during the feature extraction stage, where we follow the
wav2vec approach from [18]. The pre-trained model (e.g.
‘wav2vec large’) and the code can be found on FAIRSEQ’s of-
ficial GitHub page.2 Wav2vec consists of an encoder network
and a context network. The encoder network has five convolu-
tional layers and it generates a compressed latent representation.
The context network has nine convolutional layers and it com-
bines the latent representations into a contextualized tensor. We
use the contextualized tensor as our SSL feature. The model is
trained with a noise contrastive binary classification loss, which
distinguishes a latent representation from other distractor repre-
sentations, so that the model can train in a unsupervised manner
using a large unlabeled dataset.

Experimental results show that the speech representations
obtained using wav2vec perform better than traditional features
(e.g., STFT, MFCC,...) on a frame-level phoneme classifica-
tion task and that they significantly improve ASR performance
[18]. It is believed that the extracted features contain more con-
tent information that will allow the generator to produce noise
perturbations that obscure the recognition of sensitive words,
while also not impacting the ability of the ASR model to rec-
ognize non-sensitive words. We experimented with fine-tuning
the network with our data, but our results were consistent with
a recent study [22] that showed that SSL representations can
be used directly without fine-tuning on different speech related
tasks.

2.4. Generator

Figure 2 shows the architecture of our proposed generator net-
work that produces the noise perturbation. The network con-
sists of a U-Net based encoder-decoder structure that further
processes the 2D features extracted by the pre-trained wav2vec
model. This framework has proven to be effective in many
audio related tasks, including speech enhancement [23], audio
source separation [24] and voice conversion [25].

In our implementation, the encoder contains eight 2D-
convolutional layers (see the left half of Figure 2). Each 2D-
convolution layer is followed by a batch normalization (BN)
layer and a leaky ReLU activation function. The output after
each convolutional layer is downsampled by a factor of 128.
The latent representation from the encoder is then fed into an
8-layer decoder (see the right half of Figure 2). Each layer from
the decoder contains a 2D transposed convolution that is fol-
lowed by batch normalization and ReLU activations. The last
decoder layer uses a hyperbolic tangent (Tanh) activation that
restricts the magnitude of the perturbation to a low level. A
dropout layer is included in the first three decoder layers to pre-
vent overfitting.

2https://github.com/pytorch/fairseq/blob/main/examples/wav2vec
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Figure 2: A depiction of the generator network.

Figure 3: Skip Convolution Block.

Unlike the traditional U-Net that directly concatenates the
encoder outputs to the decoder output at each level, we use the
skip convolution technique that was first proposed in SkipCon-
vNet [26] for dereverberation. The skip convolution block helps
to fill the semantic gap between the low-level encoder outputs
and the high-level decoder outputs, which increases the learning
capability of the generator. The structure for each skip convolu-
tion block is shown in Figure 3. More specifically, the encoder
outputs are fed into a leaky ReLU layer and then a 2D convo-
lutional layer. The output from the convolutional layer is then
added element-wise to the original input and concatenated to the
corresponding decoder layer after batch normalization. Fewer
skip convolution blocks are used in the lower (or bottom) levels
of the encoder since the semantic gap is smaller there [26].

2.5. ASR systems

We choose two different end-to-end ASR models to test the
robustness of our proposed approach. DeepSpeech2 [27] is a
state-of-the-art recurrent neural network (RNN) based approach
that is composed of 3 convolutional layers, 7 recurrent layers
and 1 fully connect layer. The second model is the low-rank
transformer (LRT) ASR approach [4] that uses a lightweight
transformer to significantly reduce inference time. LRT has 4
transformer-encoder layers, which are constructed with 8-head
low-rank attention layers and low-rank feed forward layers.

Both ASR models are held frozen during training, but the
gradient is used during the backpropagation process to update

the weights in the generator. The normalized mag-spectrogram
is provided as the input to both models. We use the connec-
tionist temporal classification (CTC) loss [28] to train both
ASR approaches [29, 30]. The final loss L is expressed as:
L = Ex[CTC(f(x+ δ), y′)].

2.6. Evaluation method

We propose two novel evaluation metrics for this task. The first
is the manipulation rate (MR), which is the ratio of the number
of correctly removed sensitive words and the total number of
sensitive words in an utterance:

MR =
#{Removed sensitive words }

#{Total sensitive words} (3)

The removed sensitive words indicates the number of desired
words in the word list, w, that have been correctly misclassi-
fied. The manipulation rate shows the success rate of fooling
the ASR system and filtering the sensitive words from the tran-
scription. A higher manipulation rate indicates more desired
words are filtered. Other words in the utterance, however, may
be negatively affected during the perturbation process. There-
fore, we propose a second evaluation metric, which we term the
preservation rate (PR):

PR =
#{Remaining non-sensitive words }

#{Total non-sensitive words} (4)

The preservation rate indicates how many of the non-sensitive
words are correctly recognized, and hence not disturbed by the
perturbation. A higher preservation rate is desired, as it indi-
cates that non-sensitive words are correctly recognized by the
ASR model.

3. Experiments and Results
We use the Librispeech corpus [31] as the data source for the
clean speech data, x. The corpus contains 982 hours of read
English speech. All of the signals have a 16 kHz sampling rate.
Spoken digits from one to nine are selected as the sensitive
words that should not be recognized by the ASR approaches.
We use all the signals that are between 3 to 10.2 seconds long
that contain digits. All the signals are zero padded to lengths of
10.2 seconds (or 163400 samples) for convenience. The result-
ing training dataset for DeepSpeech2 contains 7050 files with
a total of 8472 spoken digits. The validation set contains 413
files with 476 spoken digits in total, while the testing set has
371 signals with 413 spoken digits in total (see Table 1). Deep-
Speech2 is pretrained from the Librispeech corpus and achieves
a 9.919% average word error rate (WER) on the Librispeech
clean speech testing set. For the LRT ASR system, the training
set contains 7934 spoken digits from 6689 files. The valida-
tion set contains 392 files with 446 spoken digits. The test-
ing set has 336 signals with 378 spoken digits in total. The
LRT ASR model is also pre-trained on the Librispeech corpus
and achieves a 14.2% average WER on the corresponding test-
ing data. The detailed digits distribution for each ASR system
is shown in Table 1. Note that the ground truth transcription
is generated by supplying the noise-free signal to each ASR
model, since we wanted to ensure that the ASR model initially
recognizes sensitive words. This is why the counts are different
for each implementation.

The spectrogram of the speech signal is computed using a
1024-dimensional FFT, a window size of 1024, and a 160-point
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Deep Speech2 LRT
Data Distribution Results Data Distribution Results

Training Validation Test Proposed Baseline Training Validation Test Proposed Baseline
one 4071 252 230 216 159 3865 238 211 196 142
two 1659 105 67 64 48 1486 96 62 54 42

three 840 51 44 35 22 832 50 48 36 18
four 488 30 16 13 10 490 31 18 16 11
five 462 13 21 15 8 430 10 15 13 10
six 368 13 13 11 8 316 11 10 8 6

seven 236 4 8 6 5 188 4 7 3 2
eight 193 5 8 6 3 189 3 5 2 2
nine 155 3 6 3 1 138 3 2 1 0
Total 8472 476 413 369 264 7934 446 378 329 233

Table 1: The data distribution of the spoken digits, along with the per-digit performance of the proposed (SSL features) and baseline
(STFT features) approaches for the two ASR models. The results show the number of sensitive words that were not recognized, so
higher numbers are better.

hop size, where this hop size is selected to aid dimension match-
ing. The magnitude spectrum is computed, mean-variance nor-
malized and truncated to match the dimensions of the perturba-
tion that is generated.

The 2-D convolutional layers of our encoder use a kernel
size of 3 × 3 and a stride of 2, while the decoder uses kernel
size of 2 × 2 and a stride of 2. The convolution layers in the
skip convolutions block have a kernel size of 3× 3 and a stride
of 1. The leaky ReLU activation has a 0.2 negative slope. The
dropout rate is a 0.3. We use the Nesterov momentum based
stochastic gradient descent (SGD) optimizer with a learning rate
of 5e-4 to train the generator. A 1e-5 L2 penalty is added to the
weight decay to prevent the model from overfitting.

3.1. Results

Fig 4 shows the experimental results for our proposed approach
(SSL features) along with a baseline model (STFT features).
The baseline model uses the magnitude spectrogram as the in-
put to the generator. This allows us to quantify the impact of
the SSL features. The results of our proposed approach are
promising according to both ASR models. The manipulation
rate of our proposed approach reaches 89.35% and 87.04% for
Deepspeech2 and LRT models, respectively, which indicates
that the spoken digits are unrecognizable due to the injection
of the noise perturbation. For the baseline system, the STFT
features result in 63.92% and 61.64% MRs for the respective
ASR systems, which indicates that SSL features help produce
more distinguishable noise perturbations for sensitive words.

While the approach successfully renders the desired words
unnoticeable, we still want non-sensitive words to be cor-
rectly recognized. By using SSL features, the preservation rate
reaches 71.15% and 71.2%, while the STFT features result in
preservation rates of 57.71% and 62.36%, on the respective
ASR models. These results show that our proposed end-to-end
model performs promisingly well at removing desired words
from a given utterance, while keeping other words the same on
two differently structured ASR models.

Table 1 also shows the number of sensitive words that were
not recognized, as a function of each spoken digit, for the Deep-
Speech2 and LRT ASR models. Most of the spoken “one” and
“two” digits are not recognized. Other digits, such as “three”
have lower manipulation rates than others. In Table 1, we can
find that there are less samples for higher digits. However, our

Figure 4: The speech filter result for utterance level input

proposed model still learns well and successfully manipulates
many of these digits.

4. Discussion and Conclusion
The proposed approach generates a specific perturbation and
then injects it into the signal to prevent a white-box ASR system
from recognizing sensitive words. The approach is robust and
has promising results (MR ≥ 87% and PR ≥ 70%), where the
noise does not obscure non-sensitive words. The experiments
are limited in certain ways, so below we briefly discuss future
research directions.

Over-the-air injection. For now, all the experiments
are conducted in simulated environments, where the noise-
perturbation is mathematically added to the speech. One future
direction is to play the noise over a loudspeaker for injection.
It could make the defense mechanism stronger and harder to
detect.

Universal adversarial defense. The proposed defense
mechanism in this paper aims to inject a specific perturbation
digitally to a given signal which brings limited real word feasi-
bility. A universal perturbation may increase the effectiveness
of this defense. Universal adversarial defense indicates that a
single perturbation can be used on all of the signals, while still
filtering all desired words. The inference time can be further
decreased to make it a real-time defense.
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