
The Journal of Supercomputing, 23, 51–66, 2002
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Packet Spacing: An Enabling Mechanism
for Delivering Multimedia Content
in Computational Grids∗

ANNETTE C. FENG afeng@lanl.gov
APU C. KAPADIA akapadia@cs.uiuc.edu

Los Alamos National Laboratory, Los Alamos, NM 87545, and Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL 61801

WU-CHUN FENG feng@lanl.gov

Los Alamos National Laboratory, Los Alamos, NM 87545, and Department of Computer & Information
Science, The Ohio State University, Columbus, OH 43210

GENEVA G. BELFORD belford@cs.uiuc.edu

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract. Streaming multimedia with UDP has become increasingly popular over distributed systems
like the Internet. Scientific applications that stream multimedia include remote computational steering
of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does
not possess a self-regulating, congestion-control mechanism; and most best-effort traffic is served by
congestion-controlled TCP. Consequently, UDP steals bandwidth from TCP such that TCP flows starve
for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of
UDP-based streaming will cause the Internet to collapse as it did in the mid-1980’s due to the use of
non-congestion-controlled TCP.

To address this problem, we introduce the counter-intuitive notion of inter-packet spacing with control
feedback to enable UDP-based applications to perform well in the next-generation Internet and compu-
tational grids. When compared with traditional UDP-based streaming, we illustrate that our approach
can reduce packet loss over 50% without adversely affecting delivered throughput.

Keywords: network protocol, multimedia, packet spacing, streaming, TCP, UDP, rate-adjusting conges-
tion control, computational grid, Access Grid

1. Introduction

TCP and UDP are the most widely-used transport protocols today, the TCP/IP
protocol suite being the de facto standard in the Internet-computing environment.
TCP enables reliable, bulk-data transfer; however, it is inappropriate for such tasks
as live video-on-demand and remote computational steering of visualization data in

∗This work was supported by the U.S. Dept. of Energy’s Laboratory-Directed Research & Development
Program and the U.S. Dept. of Energy’s Office of Science through Los Alamos National Laboratory
contract W-7405-ENG-36. Any opinions, findings, and conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of DOE or Los Alamos
National Laboratory. Los Alamos Unclassified Report (LA-UR) 01-0904.

52 FENG ET AL.

computational grids. Bulk-data transfer requires 100% reliable communication, and
hence, TCP. Video-on-demand and remote computational steering generally do not
require 100% reliability, therefore, TCP is overkill. For instance, if a video frame is
missing a small block of pixels due to a lost packet, the video application is better
off displaying the virtually complete frame and moving on to the next frame instead
of waiting for the re-transmission of the lost packet (which over the Internet could
easily take 100 ms).1 TCP, in this case, provides too much functionality because its
loss detection and re-transmission mechanisms, being tightly integrated with TCP’s
congestion-control mechanism, are inherent functions of the protocol.
UDP, on the other hand, provides no reliability guarantees. Specifically, it pro-

vides best-effort, end-to-end service without performing loss detection and packet
re-transmission and without performing congestion control. Because of this, UDP
obtains more bandwidth than TCP, albeit at the risk of suffering packet loss and
packet re-ordering, problems that can ultimately be addressed by the applica-
tions themselves. Therefore, multimedia applications such as RealPlayer [17� 18]
and scientific applications such as remote data visualization use UDP in order to
improve perceived performance. Because UDP does not self-regulate in response
to network congestion, these UDP-based applications gobble up available net-
work resources, stealing bandwidth away from well-behaved applications that use
congestion-controlled TCP. An application that blasts UDP packets into the net-
work can readily fill the buffers of an intermediate router, causing severe congestion
and packet loss. Since TCP-based applications slow down their sending rates in
response to congestion, these applications become starved for network resources as
the UDP-based applications continue to blast their packets unchecked into the net-
work and claim the bandwidth being made available to them. Even though sending
hosts can inject UDP packets as quickly as they are able, the throughput can suffer
dramatically due to heavy packet loss and increased delays as packets spend more
time waiting in queues within the network.
A simple observation reveals that adequate throughput can be attained by spacing

the packets apart instead of blasting them one right after the other into the network.
The next section reveals this insight. The notion of slowing down the sending rate
in order to achieve better throughput is certainly counter-intuitive; however, our
experiments show the viability and effectiveness of this approach.

1.1. Insight

Based on our recent work in network traffic characterization [7� 8� 24], we observed
significant packet loss even when the offered load was less than half of the available
network bandwidth. An analysis of our ns [1] simulations revealed that this behav-
ior was due to simultaneous bursts of traffic coming from client applications and
overflowing the buffer space in the bottleneck router. Metaphorically, this could be
viewed as what happens at a major highway interchange during rush hour where
everyone wants to go home simultaneously at 5:00 p.m., thus “overflowing” the high-
way interchange. To avoid such a situation, some people self-regulate themselves by
heading home at a different time, i.e., spacing themselves out from other people.

PACKET SPACING 53

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600

th
ro

ug
hp

ut
 (

M
bp

s)

interpkt delay (microsecs)

Figure 1. Delivered throughput to the receiver.

If we view vehicles as packets and the highway interchange as a router, then to
avoid buffer overflow and enhance throughput, packets should not be blasted onto
the network one after another. Instead, packets should be spaced out over time. To
test this hypothesis, we ran live wide-area network (WAN) tests between Los Alamos
National Laboratory (LANL), University of Illinois at Urbana-Champaign (UIUC),
and Ohio State University (OSU). These tests consisted of sending UDP packets
between LANL and either UIUC or OSU at different packet-spacing intervals. Fig-
ures 1 and 2 show the throughput and packet loss, respectively, of a representative
test between LANL and UIUC [6]. When the packet spacing is zero, e.g., today’s
UDP-based multimedia-streaming applications, the throughput is 62 Mb/s but with
a packet loss of almost 90%! With as little as 100 �s of spacing between packets,
the throughput remains the same, but the packet loss drops all the way down to
35%. And when the packet spacing is 50 �s, the throughput is actually higher than
when the packets are not spaced as in UDP-based multimedia streaming.
All curves from our other live WAN tests have the same general shape. That

is, the throughput initially increases when the amount of packet spacing increases
and then decreases exponentially as the amount of spacing increases further. The
packet-loss percentage immediately decreases in an exponential manner as packet
spacing increases.

1.2. Related work

Many transport protocols for the delivery of multimedia content certainly have been
proposed, among them being XTP, RAP, and HPF. The Xpress Transport Protocol
(XTP) [4] uses explicit rate control to combat congestion, however, the congestion-
control mechanism must be implemented within the network and not simply at the

54 FENG ET AL.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

pa
ck

et
 lo

ss

interpkt delay (microsecs)

Figure 2. Packet-loss percentage.

edges. Fluctuating round-trip times (RTTs) cause poor performance because of a
design feature whereby XTP enters a synchronizing handshake when a timer expires
while XTP awaits a response to a request for information on missing data [3].
Furthermore, because it is a complex protocol, XTP is meant to be implemented
in VLSI for performance reasons, so software implementations are too slow for
multimedia traffic [22].
The Rate Adaptation Protocol (RAP) [19] is a TCP-friendly protocol that

employs an “additive increase, multiplicative decrease” (AIMD) algorithm for rate
adjustment. RAP is intended for the transmission of delay-sensitive, semi-reliable,
rate-based applications which use layered-encoding of their data streams. RAP is
therefore not a general solution but specifically targets layered-encoded multime-
dia content which it uses to adjust its transmission rate by adjusting the number of
layers it sends.
The Heterogeneous Packet Flows (HPF) [12] protocol supports the delivery

of packets having differing QoS requirements within a single stream. Address-
ing a design flaw of TCP, HPF decouples congestion control from reliability and
uses a rate-based, AIMD approach to combat congestion. The problem with the
AIMD approach (also used by RAP) is that such an approach will not scale to
high-performance (or more precisely, high bandwidth-delay product) networks. For
example, when the window size is one, a linear increase is a 100% increase. When
the window size is 1000, a linear increase is a mere 0.1%. An absolute linear increase
in window size from 500 to 1000 (as during TCP’s congestion-avoidance phase) will
take 500 round-trip times to converge! More realistically, the situation is actually
much worse. If we assume a typical WAN with a high bandwidth-delay product, i.e.,
1 Gb/s WAN × 100 ms RTT = 100 Mb, then for an uncongested network, the ubiq-
uitously deployed TCP Reno continually increases its window size until it induces

PACKET SPACING 55

packet loss (i.e., just after 100 Mb) and then chops its window size in half (i.e.,
50 Mb). The re-convergence back to the “optimal window size” of 100 Mb using
TCP’s absolute linear increase takes much too long and results in lowered net-
work utilization. In this particular case, convergence can take as long as (100 Mb −
50 Mb)/(1500 B/RTT ∗ 8 b/B) = 4,168 RTTs or (4,168 RTTs ∗ 100 ms/RTT) =
416.8 seconds = 6.947 minutes!
In 1997, Mahdavi and Floyd [13] informally proposed the notion of equation-

based congestion control for unicast applications. While the AIMD algorithm found
in TCP backs off by cutting its sending rate in half in response to a single con-
gestion indication, equation-based congestion control uses a control equation that
more gradually and smoothly adapts its maximum rate because some real-time appli-
cations find that halving the sending rate is unnecessarily severe and can notice-
ably reduce the user-perceived quality [23]. Although the above work has given
rise to a significant amount of research on equation-based and other types of
congestion-control mechanisms [10� 16� 19− 21� 23], we still do not have any deploy-
able congestion-control mechanisms for best-effort streaming multimedia.
Previous work in packet spacing includes [2� 11]. In [11], Jain argues that rate-

control protocols for congestion control may not work without the cooperation of
intermediate routers because packets may get clumped together at the intermediate
routers anyway. This would result in larger bursts at the intermediate routers even
though the goal may have been to reduce the burstiness of the traffic. While this
may have been true a decade ago, we believe that the boom of the world-wide web
and other multimedia applications creates enough interleaving traffic to maintain
packet spacing between end hosts. We will substantiate this belief in Section 3.2.3.
Aggarwal et al. [2] study the effect of uniform packet spacing (or “pacing”) over

a round-trip time in TCP. While pacing results in better fairness, throughput, and
lower drop rates in some cases, the throughput is worse than regular TCP most
of the time because a paced-TCP is susceptible to synchronized losses and delays
congestion notification. In contrast, we focus on the effects of packet spacing over
UDP with control feedback rather than on TCP itself.
In general, our packet-spacing protocol differs from the above work in several

ways. First, rather than focusing primarily on being compatible or fair with TCP, our
rate-adjusting protocol addresses fairness while simultaneously delivering UDP-like
bandwidth. Second, we accomplish the above feat by introducing the counterintu-
itive notion of packet spacing.

2. Approach

Packet spacing refers to the delay introduced between two consecutive packets, as
shown in Figure 3. Here, ts is the amount of spacing between packets, and tx is the
transmission time for each packet. By introducing such a delay, bursts of packets can
be spaced out, resulting in fewer packet drops at intermediate routers and poten-
tially higher throughput at the end host, as shown back in Figure 1. Thus, packet
spacing can potentially be used as a mechanism to assist in congestion avoidance
and control.

56 FENG ET AL.

time

t t t
tt

x xx
s s

packet 1packet 2packet 3

Figure 3. Packet spacing.

Based on Figure 1, the ideal operating region of our packet-spacing mechanism
ranges from 50 �s to 500 �s. No packet spacing or packet spacing of less than 50 �s
results in very high packet loss with less delivered bandwidth than when the packet
spacing is 50 �s.
Depending on the application, the ideal packet-spacing range may be as small

as 100 �s to 200 �s in order to get UDP-like bandwidth but with significantly less
packet loss, e.g., at 200 �s, bandwidth is 50 Mb/s while packet loss is only 10%, or as
large as 400 �s to 500 �s to obtain TCP-like reliability but with higher throughput
than TCP. To exploit this counterintuitive finding, we develop an ad-hoc packet-
spacing protocol (PSP) to adjust the amount of packet spacing based on feedback
from the network.2

2.1. Ad-hoc packet-spacing protocol

In our ad-hoc packet-spacing protocol (PSP),3 the sender initially transmits packets
at the highest possible rate, i.e., no inter-packet spacing, and the receiver sends
acknowledgments every round-trip time (RTT) for the packets it receives. (This
RTT is the base propagation-delay time, not the dynamic RTT. To keep the protocol
simple, we did not experiment with dynamic RTTs.)
We calculate the base RTT by performing ping during connection set-up.4 After

the connection is established, the sender conveys the calculated RTT to the receiver
by including it within the header of each packet. Note that this is not required after
the first acknowledgment is received, but we have left this provision so that dynamic
RTTs can be used in the future. Each acknowledgment contains the number of
packets that were received in the previous RTT.
When the sender receives such acknowledgments, it compares the number of

packets sent, psent, in the previous RTT to the number of packets received, prcvd.
Based on the values of psent and prcvd, the sender adapts its packet spacing ps as
shown in Figure 4.

Figure 4. Ad-hoc packet-spacing protocol.

PACKET SPACING 57

Because our WAN experiments and simulations showed that the ideal packet
spacing occurred between 0 �s and 2000 �s, we chose an initial packet spacing
of 50 �s because (1) anything smaller generated significantly higher packet loss
with no benefit with respect to throughput and (2) finding the ideal packet spacing
within this range quickly would take no more than seven RTTs. Larger spacings
can be reached in only a few more RTTs because the packet spacing increases
exponentially.
The ps ← min�ps ∗ 2�RTT
 clause ensures that the maximum packet spacing is

one RTT. That is, at least one packet is sent every RTT.

2.2. Damped packet-spacing protocol

Due to the opposing packet-spacing decisions in our ad-hoc PSP, initial tests of
PSP resulted in large oscillations around the ideal sending rate. To address this
problem, we added the following heuristic to damp the oscillations: If a loss occurs
due to a deliberate decrease in the packet spacing (and consequently, increase in rate),
then the sender reverts to the previous packet-spacing value. Using this heuristic, the
sender makes significantly smaller oscillations around the ideal operating point,
resulting in a 10% increase in overall throughput. Thus, in this paper, we will present
experimental results for the damped PSP rather than the ad-hoc PSP.

2.3. Equation-based packet-spacing protocol

Although the purpose of the ad-hoc and damped PSPs is to demonstrate the benefits
of packet spacing, these protocols are point-specific solutions that apply only to
the tested topology shown in Figure 5. Furthermore, the halving of the sending
rate in the ad-hoc and damped PSPs in response to a single congestion indication
may be unnecessarily severe for real-time applications such as video and induces
bursty traffic behavior. To address these problems, we discuss a general solution
that adapts an equation-based, congestion-control mechanism [10] and incorporates
packet spacing.
An application that uses a congestion-control mechanism that is more aggressive

than TCP’s could unfairly limit TCP traffic from getting its fair share of band-
width [9] and vice versa. To achieve a proper balance, we select a formulation that
is based on the steady-state sending rate of TCP [15]:

T = s

R
√

2p
3 + tRTO

(
3
√

3p
8

)
p�1+ 32p2

This equation provides an upper bound on the sending rate T in bytes/sec, as a
function of the packet size s, round-trip time R, steady-state loss event rate p, and
the TCP retransmit timeout tRTO.
While setting the rate according to the above equation ensures TCP-friendliness

between the equation-based packet-spacing protocol and TCP, it will result in bursty

58 FENG ET AL.

traffic behavior because TCP itself is bursty in nature. Thus, we set the sending rate
not only based on the above equation but also on an exponentially weighted moving
average of the number of packets between loss events [10] in order to smooth out
changes in the sending rate.

3. Experiments

For our WAN simulations, we used ns-2, which is a network simulator developed
by the VINT group [1]. We refer to senders and receivers as agents, which follows
from the terminology used by ns-2.
Our packet-spacing agent (PSA) implements packet spacing without any

congestion-control feedback. Because the damped PSP outperforms the ad-hoc PSP,
we only implement and experiment with the former in a damped PSA. Lastly, our
equation-based PSA implements the equation-based PSP.

3.1. Network topology

Figure 5 shows the network topology that we used in our experiments. The k
nodes on the left (n1� n2� � � � � nk) simulate senders on a local-area Ethernet, trans-
mitting via a common gateway router (e.g., LAN/WAN gateway or nmiddle) to a
WAN backbone running at 155 Mb/s or OC-3; this topology models the LAN and
WAN at Los Alamos National Laboratory. All the receivers are aggregated into
the node nsink. The gateway router has a buffer size of 10 packets, 100-Mb/s Eth-
ernet links with 2-ms delays to the senders, and a 155-Mb/s link with 40-ms delay
to the receivers. This delay is typical of the delay found in a transcontinental WAN
connection.

n

n

n

n

3

2

1

k

nmiddle nsink

2 ms delay
100 Mb/s buffersize = 10 packets

40 ms delay
155 Mb/s

Figure 5. Topology for WAN simulations.

PACKET SPACING 59

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet–spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 6. Throughput for one of the 16 PSAs.

3.2. PSA simulations

Here we study the behavior of competing PSAs and PSAs competing with TCP
agents. Like Mo et al. [14] who compare TCP Reno and TCP Vegas using infinite
file transfers, we use infinite file transfers for the TCP connections as well. (For the
figures in this section, each data point in the simulation graphs represents the result
of a 500-s simulation for a particular packet-spacing interval.)

3.2.1. PSAs competing. In this set of experiments, we ran simulations with 2, 4, 8,
and 16 PSAs competing against each other, respectively. Figures 6 and 7 show the
results for the last case. The resulting behavior is similar to what we observed in
the actual WAN experiments (i.e., Figures 1 and 2). (Note that all the 16 competing
PSAs showed similar behavior.)
In Figures 6 and 7, the region of interest occurs between 0 �s and 1000 �s. With

a packet spacing of 0 �s, the sender throughput is 100 Mb/s while the receiver-
realized throughput is only a measly 10 Mb/s with a packet loss of 90%! As packet
spacing increases, the packet-loss percentage drops sharply, and the throughput
at the receiver actually increases to its maximum point at 1000 �s of inter-packet
spacing. This phenomenon is similar to what we found with our live WAN tests in
Figures 1 and 2.

3.2.2. PSAs competing with TCP agents. In these experiments, we ran simulations
with 1, 2, 4, 8, and 16 sender/receiver TCP pairs and an equal number of PSA pairs,
respectively. Figures 8 and 9 show the behavior of one particular PSA competing
with 15 other PSAs and 16 TCP connections. All other simulations resulted in
similar behavior. Again, we see that the behavior is strikingly similar to that seen in

60 FENG ET AL.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
packet–loss

packet–spacing, micro seconds

pa
ck

et
–l

os
s,

 %

Figure 7. Packet loss for one of 16 PSAs.

the actual WAN experiments. The optimal performance of the PSAs with respect to
throughput and packet loss occurs at 1000 �s to 1050 �s, i.e., throughput is 11 Mb/s
while packet loss is 0%.
Figures 10 and 11 show the throughput and packet loss, respectively, of a rep-

resentative TCP connection with its buffers tuned to the bandwidth-delay product.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packetspacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 8. Throughput for one PSA of 16 PSAs and 16 TCP connections.

PACKET SPACING 61

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
packet–loss

packet–spacing, micro seconds

pa
ck

et
–l

os
s,

 %

Figure 9. Packet loss for one PSA of 16 PSAs and 16 TCP connections.

These figures show that with sufficient spacing by the PSAs, a TCP connection can
consume its share of available bandwidth. For example, Figures 8 and 10 illustrate
that with 3000 �s of packet spacing, each PSA receiver and TCP receiver achieves
5 Mb/s of throughput.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100
Sender and receiver throughput

packet–spacing, micro seconds

th
ro

ug
hp

ut
, M

b/
s

sender
receiver

Figure 10. Throughput for one TCP of 16 TCP connections and 16 PSAs.

62 FENG ET AL.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
packet–loss

packet–spacing, micro seconds

pa
ck

et
–l

os
s,

 %

Figure 11. Packet loss for one TCP of 16 TCP connections and 16 PSAs.

3.2.3. PSA spacing at the receiver. Assuming that applications create enough inter-
leaving traffic to maintain packet spacing between communicating hosts rather than
getting clumped as claimed by [11], we recorded the inter-arrival time of packets at
one PSA receiver, using the same experimental set-up as described in Section 3.2.2.
The sending PSAs used a spacing of 1500 �s; the resulting inter-packet spacings at
the receiver averaged 1540�6 �s with a standard deviation of 64�75 �s.

3.3. Adaptive PSA simulations

First, we demonstrate how the damped PSAs try to find the ideal packet spacing
under varying network conditions. Next, we show how the equation-based PSAs
accomplish the same objectives as the damped PSAs, e.g., TCP-friendliness or fair-
ness, while simultaneously providing a smoother sending rate than the damped
PSAs. This smoother sending rate provides better support for time-sensitive appli-
cations such as video and audio streaming.

3.3.1. Damped PSAs competing. When two damped PSAs compete for bandwidth,
each damped PSA makes small oscillations around the ideal sending rate of 550
packets/RTT. Thus, each damped PSA gets its fair share of bandwidth. And even
when the damped PSAs are started at different times, the sending rates quickly
converge to 550 packets/RTT.

3.3.2. Damped PSAs competing with TCP. In this simulation, we ran 10 TCP con-
nections with infinite file transfers in the background and then added two damped

PACKET SPACING 63

0 20 40 60 80 100 120
0

100

200

300

400

500

600
DampedPSAs Adapting to Congestion

time, secs

pa
ck

et
s/

R
T

T
DampedPSA 1
DampedPSA 2
TCP 1

Figure 12. Two damped PSAs competing with ten TCPs.

PSAs to compete for bandwidth. Figure 12 shows that the damped PSAs respond
readily to congestion. And again, both damped PSAs have very similar sending rates.
However, the damped PSAs suffer from two problems. First, due to the “additive

increase/multiplicative decrease” nature of our damped PSP, each damped PSA sees
a significant rate change (i.e., halving of its sending rate) when a single congestion-
indication event occurs. And unfortunately, for real-time applications such as video
streaming, such a drastic change in sending rate is unnecessarily severe as it can
noticeably reduce the user-perceived quality [23]. Second, while the damped PSAs
are certainly “TCP-friendlier” that UDP packet blasting, the damped PSAs man-
age to claim approximately twice as much bandwidth as a representative TCP
connection.

3.3.3. Equation-based PSAs competing with TCP. Similar to the previous section,
we ran 10 TCP connections with infinite file transfers in the background and then
added two equation-based PSAs to compete for bandwidth. In stark contrast to
Figure 12, Figure 13 demonstrates that the equation-based PSAs produce a much
smoother and fairer sending rate that is appropriate for multimedia applications.
Furthermore, the packet-spaced sending rate of the equation-based PSAs is more
TCP-friendly than the that of the damped PSAs or standard UDP packet blasting.

4. Conclusion

Perhaps the most interesting result in this paper is that a receiver’s realizable
throughput actually increases (up to a point) even when the sender’s transmission
rate decreases. This result has dramatic implications on many of today’s multimedia

64 FENG ET AL.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

pa
ck

et
s/

R
T

T

time (secs)

Rate–based agents responding to congestion

Adaptive–PSA 1
Adaptive–PSA 2

TCP

Figure 13. Two equation-based PSAs competing with ten TCPs.

applications that blast packets onto the network as fast as possible, i.e., no packet
spacing. By slowing down the introduction of packets into the network, congestion
is alleviated at the intermediate routers; this, in turn, results in a net increase in
throughput. Thus, this work provides an incentive for multimedia provides not to
blast UDP packets indiscriminately into the network. In addition, it provides moti-
vation for the deployment of a packet-spaced protocol that can deliver UDP-like
performance yet still be responsive to competing connections, particularly for appli-
cations with multimedia streaming such as the Access Grid [5].
Our damped packet-spacing protocol (PSP) sends data near its “optimal” sending

rate by using a simple feedback mechanism that reports packet loss every RTT.
This mechanism in turn controls the amount of packet spacing. These initial results
demonstrate that by introducing packet spacing to a multimedia stream, packet loss
can be reduced dramatically while still maintaining decent (and relatively stable)
throughput for multimedia applications.
To address the burstiness of the damped PSP and its topology-specific congestion-

control algorithm, the equation-based PSP provides a more general mechanism for
congestion control. The equation-based PSP achieves fairness with TCP connections
and results in very low packet loss and a smoother rate that is more appropriate for
multimedia applications.
Future work includes examining the performance of the equation-based PSP with

different types of application traffic and over a live WAN. Of particular interest are
those applications that generate data in short bursts with relatively large intervals
between bursts. Based on the experimental results presented here, we expect that
the packet loss that would normally be induced by these bursts to be greatly reduced.

PACKET SPACING 65

Notes

1. If the required frame rate is 30 frames per second, then the interframe delay is only 33 ms. Therefore,
a re-transmission delay of 100 ms over the wide-area network is clearly unacceptable.

2. We note that at the present time, the feedback is only used for adjusting the packet spacing and that
no retransmissions are done at this time.

3. We refer to this protocol as being “ad-hoc” because it is a point-specific solution that only applies to
the tested topology and serves only to demonstrate the benefits of packet spacing. It is not a general
solution.

4. A more sophisticated mechanism could be developed to get a better estimate of the RTT. However,
for the purposes of our experiments, we only needed a value that was reasonable enough to provide
timely feedback.

References

1. ‘UCB/LBNL/VINT network simulator—ns (version 2)’. http://www.isi.edu/nsnam/vint/index.html.
2. A. Aggarwal, S. Savage, and T. Anderson. Understanding the performance of TCP pacing. In Pro-

ceedings of IEEE INFOCOM, 2000.
3. J. W. Atwood and G. C. K. Chung. Error control in the Xpress transfer protocol. In Proceedings of

18th Conference on Local Computer Networks, pp. 423–431, 1993.
4. Y. Baguette and A. Danthine. Comparison of TP4, TCP and XTP—Part 2: Data transfer mecha-

nisms. ETT, 3(5), 1992.
5. L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and T. Udeshi. Access grid: Immersive

group-to-group collaborative visualization. In Proceedings of the 4th International Immersive Projec-
tion Technology Workshop, 2000.

6. A. Feng, RAPID: Rate-adjusting protocol for internet delivery. Thesis proposal (in progress), Uni-
versity of Illinois at Urbana-Champaign, 2001.

7. W. Feng and P. Tinnakornsrisuphap. The adverse impact of the TCP congestion-control mechanism
in heterogeneous computing systems. In Proceedings of ICPP’00, 2000a.

8. W. Feng and P. Tinnakornsrisuphap. The failure of TCP in distributed computational grids. In Pro-
ceedings of SC’00, 2000b.

9. S. Floyd and K. Fall. Promoting the use of end-to-end congestion control. IEEE/ACM Transactions
on Networking, 1999.

10. S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for unicast
applications. In Proc. of SIGCOMM, 2000.

11. R. Jain. Myths about congestion management in high speed networks. Internetworking: Research and
Experience, 29(2):101–113, 1992.

12. J. Li, S. Ha, and V. Bharghavan. HPF: A transport protocol for supporting heregeneous packet flows
in the Internet, 1999.

13. J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow control. Technical report, Note sent
to end2end-interest mailing list, 1997.

14. J. Mo, J. Walrand, and V. Anantharam. Analysis and comparison of TCP Reno and Vegas. In
Proceedings of IEEE INFOCOM, 1999.

15. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple model and its
empirical validation. In Proceedings of SIGCOMM’98, 1998.

16. J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model based TCP-friendly rate control protocol.
In Proceedings of NOSSDAV’99, 1999.

17. RealNetworks Inc. RBNTM (Real Broadcast Network) White Paper. Available at http://
www.real.com/solutions/-rbn/whitepaper.html, 1999a.

18. RealNetworks Inc. RealVideo Technical White Paper. Available at http://www.real.com/devzone/
library/whitepapers/-overview.html, 1999b.

19. R. Rejaie, M. Handley, and D. Estrin. An end-to-end rate-based congestion control mechanism for
real-time streams in the Internet. In Proceedings of INFOCOM’99, 1999.

66 FENG ET AL.

20. I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP emulation at receivers—Flow control for multimedia
streaming. Technical report, North Carolina State University, 2000.

21. D. Sisalem and H. Schulzrinne. The loss-delay based adjustment algorithm: A TCP-friendly adapta-
tion scheme. In Proceedings of NOSSDAV’98, 1998.

22. W. T. Strayer, S. Gray, and R. E. C. Jr. An object-oriented implementation of the Xpress transfer
protocol. In Multimedia: Advanced Teleservices and High-Speed Communication Architectures, 2nd
International Workshop (IWACA’94), pp. 387–400, 1994.

23. D. Tan and A. Zakhor. Real-time internet video using error resilient scalable compression and
TCP-friendly transport protocol. IEEE Transactions on Multimedia, 1999.

24. P. Tinnakornsrisuphap, W. Feng, and I. Philp. On the burstiness of the TCP congestion-control
mechanism in a distributed computing system. In Proceedings of ICDCS’00, 2000.

