
Halo: High-Assurance Locate for Distributed Hash Tables

Apu Kapadia
Institute for Security Technology Studies

Dartmouth College
Hanover, NH 03755, USA

akapadia@cs.dartmouth.edu

Nikos Triandopoulos
Department of Computer Science

University of Aarhus
8200 Aarhus N, Denmark

nikos@daimi.au.dk

Abstract

We study the problem of reliably searching for re-
sources in untrusted peer-to-peer networks, where a
significant portion of the participating network nodes
may act maliciously to subvert the search process. We
present a new method called Halo for performing re-
dundant searches over a distributed hash table (DHT)
structure to achieve high integrity and availability levels
without affecting the storage and communication com-
plexities of the underlying DHT. Other schemes for re-
dundant searches have proposed new or modified DHTs
with increased storage requirements at nodes, requiring
modifications at all nodes in the network. In contrast,
Halo aims to serve as a middleware component, mak-
ing “black-box” calls of the underlying primitive search
operation to eventually provide a new composite search
operation of higher assurance. We apply this concept to
the popular and well-studied DHT Chord, and demon-
strate the efficiency and security of our approach though
analytical modeling and simulation-based analysis. For
example, we show that for 12% malicious nodes in the
network, a regular Chord operation fails 50–60% of
the time. In contrast, Halo reduces this failure rate to
1%. We show how our scheme lends itself to a recursive
version that can tolerate 22% malicious nodes with the
same level of success, while regular Chord fails 70–80%
of the time.

1 Introduction

Peer-to-peer (p2p) storage networks currently con-
stitute the most developed computing architecture for
implementing large-scale distributed data-management
systems. These networks realize a decentralized com-
puting infrastructure for dispersing data and comput-

ing resources among a large number of geographically-
distributed machines. PAST [8], CAN [25], CFS [5],
PIER [17], Kademlia [21], and OpenDHT [27] com-
prise a representative (and certainly not exhaustive) set
of p2p applications. Conceptually, in any p2p network a
resource (such as a file) is mapped to a unique participat-
ing peer, which is responsible for storing that resource.
The core functionality of any p2p network amounts to
efficiently locating resources in the p2p network. A dis-
tributed hash table (DHT) is a distributed data structure
that implements this very functionality: given a target
resource identifier, the locate operation returns an iden-
tifier (typically, the IP address) of the node responsible
for the target resource. Locating objects usually involves
a distributed search between a small subset of participat-
ing peers that share resource-allocation (or routing) in-
formation. Thus far, researchers have studied many as-
pects of this searching functionality—efficiency, search-
structure maintainability, fault tolerance, range-search
extensions, and load balancing to name a few.

Reliable searching in the face of attack. In this pa-
per, we study secure resource location in p2p networks,
trying to provide a practical solution to the fundamental
security problem related to searching over p2p networks:
how can one reliably locate resources in the presence of
malicious colluding network nodes? We assume a ran-
dom Byzantine model where a randomly selected sub-
set of nodes can perform arbitrarily malicious behavior
while participating in the distributed search process. For
instance, a coalition of malicious nodes could easily at-
tempt to redirect queries to a private p2p subnetwork that
runs in parallel with an aim to degrade the performance
or simply perform a denial-of-service attack. Moreover,
malicious nodes are motivated to subvert a locate opera-
tion, by reporting a false malicious “owner” of a file (or
other resource), rather than its true owner, thus drasti-

cally affecting the core storage functionality of the sys-
tem. In particular, such behavior not only affects the
integrity of data, since a malicious owner can falsify
data during the reporting phase, but also the availabil-
ity of data, since the false owner can also subvert the
storage phase by simply discarding the received new file
or disallowing future data retrievals (i.e., a file is prac-
tically “invisible” since it is erroneously stored in the
wrong network node). In general, the location process
in a p2p system defines an “ownership” relation between
shared resources and participating nodes. By subvert-
ing this process, therefore, the adversary can perform a
rich set of attacks on the integrity of the p2p system.
For instance, with malicious resource locations the ad-
versary can manage to alter the structure of the overlay
network and affect the system’s consistency, fairness, or
load-balance. Any secure searching method should not
only detect any possible attack, but more crucially, lo-
cate resources, effectively tolerating adversarial behav-
ior during the search process. While existing crypto-
graphic schemes [34] may be used to check the integrity
of data, we focus on the orthogonal problem of actually
locating the real data, whose integrity may then be veri-
fied cryptographically.

Solution: redundant searches to locate target. Fol-
lowing an algorithmic approach, we present an efficient
technique for secure searching in p2p networks that ex-
ploits the power of performing a small number of care-
fully selected redundant locate operations. The main
challenge with redundant searches is that due to the
inherent nature of routing within DHTs, multiple re-
dundant searches converge to visiting the same small
set of nodes “close” to the target node, thereby mak-
ing the redundant searches ineffective—since they may
all overlap with the same malicious node(s). To cir-
cumvent this limitation, much of the existing research
(such as with Cyclone [1] and Salsa [22]) has focused on
“disentangling” these searches by either modifying the
Chord [33] data structure or by proposing entirely new
DHTs to perform multiple disjoint redundant searches.
Unfortunately these new schemes come at the cost of
increased storage at each node in the network. The
problem with increased storage goes beyond actual stor-
age constraints—maintaining up-to-date routing infor-
mation to more nodes increases the complexity of main-
taining the DHT. Furthermore, these schemes require ei-
ther completely new DHTs or modifications at all the
nodes within the network, and therefore do not provide
an easily-applicable security solution for the plethora of
existing and fully developed DHTs.

Ideally, disjoint redundant searches should be imple-
mented in a DHT without changing any structural char-
acteristics or operational modes of the DHT, or affect-
ing its performance guarantees beyond the obvious over-
heads due to redundancy in the searches. We follow this
approach and provide a novel scheme to create disjoint
redundant searches in a DHT by modifying only the core
search algorithm of the DHT (essentially by repeatedly
using it) . The underlying idea is simple: we make the
observation that the target of a locate operation exists in
several routing tables of nodes distributed in the DHT.
We call these nodes “knuckles.”1 Instead of searching
for the actual target along several paths, we search for
the knuckles to get the correct answer for a locate op-
eration. By doing so, redundant searches are disentan-
gled without any modification to the underlying DHT—
the storage requirements remain the same, and in fact,
already-deployed nodes in a existing live p2p network
need no modifications. Nodes can choose to make use
of our algorithm to perform redundant searches while
using the rest of the network as a “black box.” We call
our technique High-Assurance LOcate (Halo).

We apply Halo for securing resource location in
Chord, which represents perhaps the most popular class
of DHTs. We theoretically analyze Halo for Chord,
proving its correctness, efficiency and practicality. We
present a simulation-based evaluation of Halo, confirm-
ing its performance analysis. We show that Halo is able
to tolerate up to 12% malicious nodes in a network of
10,000 nodes. The malicious nodes are able to subvert
only 1% of searches. In contrast, a regular locate oper-
ation in Chord fails 50–60% of the time with 12% col-
luding nodes. We also apply Halo recursively (to find
the knuckles of the knuckles), which is able to toler-
ate 22% colluding nodes with only 1% failed searches,
whereas Chord fails 70–80% of the time. Defending
against higher rates of collusion is impractical, mainly
because at those rates the true owner of an object is ma-
licious with a high probability, signaling more endemic
problems with the network.

Replicas vs. redundant searches. DHTs provide ba-
sic put-get functionality for storing and retrieving data
objects in a p2p network. It would be reasonable to
speculate that certain data-integrity guarantees can be
achieved by using redundancy at the put-get level of the
p2p system. For instance, a data file can intentionally be
stored in a small set of “randomly” selected nodes, with
the hope that at least one copy can be retrieved correctly,

1In Chord, a node’s routing table contains forward pointers to other
nodes, which are called fingers.

2

even under adversarial network behavior [15]. Unfortu-
nately, this approach is expensive in practice; in addi-
tion to downloading multiple copies of potentially large
files, the operations put and get are not atomic: they
are both realized by the underlying and most primitive
locate operation, and are themselves subject to redirec-
tion attacks. As a result a large number of replicas are
needed to guarantee integrity, further increasing the stor-
age demands of the network. Securing the locate oper-
ation, on the other hand, aims to solve the problem at
the lowest level of the hierarchy. In fact, a secure lo-
cate operation can significantly reduce the overheads of
a higher-level replica-based solution. Moreover, locate
operations constitute the main primitive for implement-
ing many other important operations in a DHT, like up-
dating routing information, joining and leaving the net-
work, and so on.

Paper contributions. Our contributions can be sum-
marized as follows:

1. We present a novel algorithmic approach called
Halo for performing high-assurance locate for re-
sources in p2p networks using redundancy.

2. By design, Halo makes use of the underlying net-
work as a “black box,” and thus does not increase
the storage requirements for nodes, and also makes
our solution easy to deploy or apply.

3. By providing both analytical models and
simulation-based results, we demonstrate the
effectiveness and practicality of Halo in Chord:
a few redundant searches suffice to significantly
improve the reliability of Chord’s functionality.

Paper structure. After preliminaries in Section 2, we
present our Halo construction for Chord and prove its
correctness in Section 3. In Section 4, we present an
analytical model of Halo and in Section 5 we present
an experimental evaluation. We present an overview of
related work in Section 6 and conclude in Section 7. The
Appendix includes additional simulation graphs.

2 Preliminaries

We start by describing basic concepts and introducing
some useful terminology for our solution.

2.1 Distributed Hash Tables (DHTs)

An overlay peer-to-peer (p2p) network is a network
structure imposed on a subset of machines from an un-
derlying larger computer network. The most elementary
p2p network structures have been designed for support-
ing the fundamental (and necessary for any practical ap-
plication) put-get functionality defined over keyed data
objects. Distributed hash tables (DHTs) is a class of
network structures and associated search protocols com-
prising these fundamental operations for storing in a p2p
network (at some network node) an object x under key
kx and later retrieving from the network (from the same
network node) object x using key kx. Any pair of ma-
chines can communicate directly if one of them is given
the network address of the other machine. Due to scal-
ability issues, complete network representation at each
participating peer is practically prohibited. Instead, net-
work nodes typically keep minimal structural (routing)
information about the p2p network by storing pointers
to a small set of carefully selected network nodes. Ac-
cordingly, the overlay network is defined by a graph that
specifies which machines are linked by these pointers,
and it should provide algorithms for storing and locating
data of interest in the overlay network.

Much of the functionality and the protocol properties
of any DHT depend on two important features: (1) the
network structure, i.e., the underlying graph represent-
ing direct network-connectivity capabilities, and (2) the
mapping of data objects to network nodes, i.e., a sys-
tematic way with which resources are associated with
network nodes for storage in the p2p system. To rigor-
ously define these two concepts and facilitate the imple-
mentation of such a network, both concepts are defined
by using a large, totally ordered logical ID space. Both
network nodes and data resources are first assigned (us-
ing a possibly probabilistic procedure) a logical ID in
this space; then, network connectivity and resource as-
sociation are deterministically defined by functions op-
erating and ranging over this logical ID space. Using
these functions, one can then define a deterministic pro-
cedure mapping data resources to network nodes storing
these resources. We call this operation locate: in partic-
ular, given a resource identifier x, operation locate(x)
returns the network node identifier that x is mapped to.
We say that locate(x) owns resource x.

More formally, let q = 2m be the size of the log-
ical ID space U , which can be considered identical to
the set Zq = {0, 1, 2, . . . , q − 1}, where the successor
relation is well defined using modular arithmetic. Let
N and R denote the finite sets of identifiers of the pos-

3

sible network’s nodes in the p2p system and, respec-
tively, of the data resources to be used in the system
(i.e., data objects that can be stored in the system). Typ-
ically, N can be the set of IP addresses and R any set
of keys under which objects are stored in the system.
Let N = {v1, v2, . . . , vn} ⊆ N be the set of existing
nodes in the system. Then, any DHT structure built for
N defines functions f , g, binary relations B, E and a
procedure locate such that:

1. f : N → U is a function mapping network nodes
to elements of the logical ID space.

2. g : R→ U is a function mapping data resources to
elements of the logical ID space.

3. B is a binary relation over U denoting resource
ownership. That is, (g(r), f(v)) ∈ B if and only
if resource r belongs in node v ∈ N (equivalently,
node v owns resource r). By definition, we require
that any resource belongs to a unique node. Note
that r is not necessarily a data object identifier (e.g.,
file name), but any abstract resource identifier in R
(e.g., identifying a computational resource).

4. E is a binary relation over U denoting direct rout-
ing capabilities in the p2p system such that directed
graph GN = (V,E) defines the underlying overlay
network of the p2p system. That is,

V = {u ∈ U : u = f(vi), vi ∈ N}

and (f(vi), f(vj)) ∈ E if and only if vi, vj ∈ N
and node vi contains routing information about
node vj .

5. locate is a (distributed) procedure that on input a
resource r and any node vi ∈ N , using (partially
only) graph G, returns the unique owner vr ∈ N of
r, i.e., node vr such that (g(r), f(vr)) ∈ B.

2.2 Chord

We now instantiate the above terminology for
Chord’s DHT [33]. The logical space is exactly Zq,
with q = 2160, a large set of integers conceptually or-
ganized in a ring, i.e., in a circular fashion where suc-
cessor logical IDs appear clockwise in the Chord ring.
(In particular, the successor of 2160−1 is 0.) Both func-
tions f and g are set to be the SHA-1 hash function, that
is, an efficient randomized function that is also believed
to be first and second pre-image resistant: it is compu-
tationally hard, given x, to come up with y satisfying

x = f(y) and also, given y, to come up with z %= y sat-
isfying f(y) = f(z).2 Thus, n network nodes identified
by their IP addresses, and all possible resources identi-
fied with unique keys, are mapped into the Chord ring
in an unpredictable, uniformly random, but consistent,
fashion.3

Relation B is defined using the successor relation in
the logical ring: node u that hashes to position z owns
all resources r that hash to positions in the ring for which
z is the immediate successor (in the clockwise direc-
tion). In other words, when mapped to the ring, the
n network nodes partition the ring to n chords; all re-
sources mapped to one such chord are owned by the
node mapped to the clockwise-largest end point of this
chord.

The underlying connectivity graph G is defined by
having each node in the network being “connected
with” (i.e., knowing direct routing information about)
O(log n) other network nodes, called finger nodes. This
exact set of routing information for network node v
mapped to position u ∈ Zq is defined as follows (see
Figure 1(a)). First, in a deterministic way, m = log q
finger positions in the ring are associated with u: these
are defined by considering successor positions of u us-
ing offsets of exponentially growing size, that is, posi-
tions u + 20, u + 21, . . . , u + 2m−1, m = log q. Then,
the network node v at position u stores in its routing ta-
ble the IP addresses of the network nodes owning these
m finger positions in the ring; in total, O(log n) distinct
IP addresses are stored, which actually correspond to
the owners of the O(log n) “most significant” positions
(i.e., the positions that correspond to the longest expo-
nential offsets).4 This exact set of finger nodes of v is a
random variable that depends on the original placement
of nodes on the logical ring. Additionally, each node v
knows its immediate successor node v′ in the ring (and
it can also know its predecessor node).

Finally, given this structure, the locate operation is
implemented by iteratively, or recursively, using the lo-
cal routing information for locating the best estimate of
the owner of the searched key, i.e., the closest finger
to the destination (see Figure 1(b)). That is, starting
from any initial node in the p2p network, when node
v is queried for ID k during the location search process,
node v directs the search to its finger node for which k

2These properties, and despite the recent attacks, make SHA-1 the
best candidate for implementing the random oracle model.

3This means that a participating peer has practically no control in
choosing its position in the ring, an important property, as we will see.

4In fact, routing tables store extra information that essentially maps
O(log n) continuous ranges (chords) in the logical space Zq to IP
addresses.

4

v1

v2

v3
v4

v6

v5

v7

v10

+1

+2

+4

+8

+16

v1 + 20: v
2

v1 + 21: v
2

v1 + 22: v
3

v1 + 23: v
4

v1 + 24: v
6

Finger Table

v8

v9

v1

v2

v3
v4

v6

v5

k

v7

v10

v8

v9

locate(k)

predecessor(k)

successor(k)

(a) (b)

Figure 1. Chord’s underlying graph and location search operation. (a) Each node maintains
O(log n) “fingers” to other nodes, where n is the total number of nodes in the network and
the distance between a node and its fingers increases exponentially. (b) Iteratively, the locate
operation locate for key k routes the search to the currently closest finger until the immediate
predecessor network node of k is reached. The predecessor returns its successor as the
successor network node for key k, that is, the owner of k. Because of the exponential distances
between fingers, a target is located in O(log n) steps.

is “clockwise-closest” from the finger node; this finger
can be easily found by accessing the local routing infor-
mation of v. Since fingers are organized in exponential
steps, each iteration of the search would on average re-
duce the search space by at least a factor of 0.5. Thus,
the locate operation takes on average O(log n) steps to
correctly find the owner of the searched key. Note that in
the real implementation of Chord, the locate operation
on a search key actually returns the predecessor node v
of k, and the real owner v′ of k is simply found by exe-
cuting the simple find successor operation on v.

For simplicity we often refer to node v mapped to
position u in the ring as simply node u; we use this con-
vention also for target, predecessor and successor nodes.

2.3 Threat model

Secure searching in p2p networks is a fundamental
concern, exactly because by definition no central ad-
ministration procedure or control mechanism is imple-
mented to govern the system functionality and verify
its integrity. Ensuring trustworthy system functionality,
therefore, heavily depends on reliable resource search-
ing. Because of their highly distributive nature, p2p
networks correspond to an inherently powerful threat
model: any participating network node or any coalition
of nodes can easily exhibit a malicious behavior and thus
not conform with the distributed protocol designed for

implementing the locate operation. Trivially, a node that
is accessed during the location search process can effec-
tively fail the search, by either stopping or maliciously
redirecting the search to an arbitrary or also malicious
node.

To capture the above threat, we consider that a con-
stant fraction c of the n network nodes in the p2p sys-
tem are controlled by an adversary and can thus act ma-
liciously. We adopt the random Byzantine adversarial
model. Each network node participates in the coali-
tion of malicious nodes with independent probability c,
0 < c < 1. This independent-probability assumption
is justified because in most p2p networks participating
nodes cannot control their locations in the logical ID
space, since these are usually determined by a crypto-
graphic hash function, and also because there is very
little choice in maliciously selecting the network-node
IDs, since IP addresses are generally difficult to be set
to a special target value. We note that in theory it is pos-
sible for a malicious node with access to a large range of
IP addresses to gain control of a resource. In a network
of a million nodes, for example, the adversary would
need to control approximately one million IP addresses
to become the owner of a particular ID space. We as-
sume that a set of colluders does not have access to a
large number of IP addresses and, therefore, can at best
be uniformly distributed over the logical ID space. We

5

impose no other assumption about the malicious coali-
tion. In particular, members of the adversarial coali-
tion are considered to have complete information; that
is, they share their individual routing information or any
other information they wish: specifically, they can have
complete knowledge of the underlying overlay network
structure.

Our threat model adopts the following worst-case at-
tack scenario, where the adversary’s goal is not simply
to redirect the search once to some arbitrary new loca-
tion, but instead to unsuccessfully terminate the search
at a node in the coalition. Since function f is public, any
querier searching for resource r knows the search key
k = f(r), i.e., the position in the ring that r maps to, the
adversary should falsify the search in the best possible
way that is unlikely to be detected by the victim querier.
Accordingly, any node v in the network that is contacted
during a location operation that searches for key k, re-
acts as follows: if v is not in the set of malicious nodes, it
runs the correct algorithm for redirecting the search; oth-
erwise, v immediately maliciously terminates the search
by redirecting to the clockwise-first (closest) malicious
node that succeeds the actual owner of target k. We
consider that the coalition of malicious nodes chooses
the clockwise left-most adversarial node in the ring that
succeeds the target to best foil detection. Notice that
our convention that this redirection occurs in an atomic
step is (i) feasible, because the adversary has complete
knowledge of the overlay network structure, and (ii) not
restrictive, because the adversary could simply perform
the same result by redirecting the search through nodes
in the coalition, i.e., pretending that a “normal” search
is executed.

2.4 Redundant searches in Chord

As we have described, our goal it to find solutions
for secure p2p searching that are practical and easy to
implement and at the same time make only black-box
use of the primitive locate operation. In particular, to
achieve these goals we wish to employ redundancy for
augmenting the search process in a way that provides
high-assurance results. That is, at the necessary cost of
increasing the searching complexity due to the redun-
dant searches, we aim at designing a redundant search
method such that the random positions of the coalition
are avoided and the target key is successfully located.
These searches would ideally “go through” different net-
work nodes, thus increasing the chances that at least
one, easily identifiable correct search exists for any ran-
dom data resource and any random subset of malicious
nodes. Using !-redundancy, that is, performing ! redun-

dant, different and independent searches, where ! is a
small integer, we can trade-off communication to bet-
ter tolerance against misdirection attacks. This trade-off
seems to have a good pay off: more and more band-
width is no longer a concern in high-speed networking
architectures; in particular, each search-related commu-
nication between nodes in a p2p network (e.g., Chord)
corresponds to exchanging only a constant number of
information (in practice, only a few bytes payload).

A naive approach for implementing !-redundancy
would be to simply perform ! different locate operations
for the given target starting from different (e.g., random)
initial nodes. Most classes of DHTs such as Chord,
however, share the following problem: the straightfor-
ward implementation of this approach fails due to the
fact that even randomly selected searches overlap in a
large set of neighboring network nodes (see, e.g., [22]).
It is thus very likely that all searches will go through the
same potentially malicious nodes, thus reducing the ben-
efits of performing redundant searches. In fact, we will
compare our approach to both the regular locate opera-
tion in Chord and the naive redundant approach.

3 High-Assurance LOcate (Halo) Protocol

In this section, we present a new approach for search-
ing in p2p networks that significantly eliminates the
problems due to malicious redirections in the resource-
location process. Our method uses !-redundancy, but—
crucially against the adversary’s success probability—it
does so in a more elaborate way that creates ! indepen-
dent searches that are disjoint with a high probability
and thus have very low correlated rates of failure. We
show that our searching method is a probabilistic al-
gorithm that searches in a p2p network of size n and
terminates with a claimed owner node that is correct
with a very high probability, specifically with probabil-
ity 1 − 0.25!, where ! ≤ c log n. We demonstrate our
technique focusing on Chord.

3.1 Halo applied to Chord

Given a search key k and parameterized by the de-
sired redundancy !, our searching technique, Halo, per-
forms a composite search over the underlying DHT to
realize ! disjoint and independent searches for k us-
ing only the primitive locate operation (provided by the
DHT). Halo relies on a very simple, yet powerful idea:
although the underlying routing graph in Chord is ac-
tually defined in a probabilistic manner, there is still a
strong deterministic component in it. Namely, finger

6

Algorithm 1 The HA locate Algorithm
Parameter: redundancy !;
Input: a search key k, a subset of known nodes f1, . . . , f!;
Output: an IP address, the owner of key k;

1: C = {} /*initialization of set of candidate knuckles
/*perform k knuckle locations

2: for i = 1 to ! do
3: ki ← k − 2m−i /*compute exponential offset.
4: pi ← locate(ki, fi) /*locate possible knuckle as predecessor of ki

5: ti ← get finger(SHA-1(pi), i)
/*test knuckle correctness

6: if k is clockwise closer from SHA-1(ti) than ki is then
7: pi ← get successor(ki) /*improve estimate of correct knuckle
8: ti ← get finger(SHA-1(pi), i)
9: end if

10: C ← C ∪ SHA-1(ti) /*add possible successor node in candidate list
11: end for
12: t ← ci ∈ C : ci is clockwise closest from k /*decide on the target owner
13: return t

nodes are defined by considering exponentially differ-
ent offsets in the logical ring. Our approach is to try to
exploit exactly this regularity in predicting a set of very
important nodes for a target node v (the owner of a given
resource): the nodes for which v is a finger node, or to
preserve the analogy, the knuckle nodes of v.

Why are knuckles of any importance? Exactly be-
cause these nodes contain direct routing information for
their finger nodes; therefore, the knuckle nodes of the
target node v of any search all contain v’s IP address in
their routing tables. By the symmetry between a finger
and a knuckle and by the routing properties of Chord, we
expect that any node in Chord has on average O(log n)
knuckles, all located in exponentially different distances
from that node. Accordingly, given a target resource
identifier r that maps to position (key) k = f(r) in the
ring and that is owned by target node v, if we could (de-
terministically) compute the O(log n) on average cor-
responding knuckle nodes of v, we could then directly
contact these knuckles and ask for the appropriate en-
try in their routing tables. Ideally, if no malicious nodes
are in place, these entries would all agree, being equal
to v. But, it may be the case that one or more knuckle
nodes are actually malicious, reporting incorrect routing
information. We can still correctly decide on the correct
target v, however, by simply choosing the node (IP ad-
dress) falling in the clockwise-minimum position in the
logical ring (with respect to the search key)—as long as
there exists at least one honest knuckle node, we guaran-
tee a correct search! To see why, recall that the malicious

coalition returns the first malicious successor node v∗ of
the key k. If the target v is not malicious, it would nec-
essarily be the case that f(v) < f(v∗) and at least one
honest knuckle would report v; otherwise, v is already
the correct but malicious owner of resource r. Note that
in this paper we assume that the Chord structure is con-
sistent if there is no malicious activity; for example, our
analysis does not capture routing-table inconsistencies
due to dynamism and transient effects.

But how can we find the knuckle nodes? The idea
here is quite intuitive: Halo uses the exponential steps
that define the fingers nodes but in reverse. In particular,
consider the case where we are searching for resource r,
mapped to key k = f(r), and the set Pk consisting of the
m = log q positions in the ring that clockwise-precede
k, that is, set Pk = {k − 20, k − 21, . . . , k − 2m−1} ,
m = log q. When searching for key k, Halo determinis-
tically computes the ! “most significant” positions in Pk,
that is, positions k−2m−1, k−2m−2, . . . , k−2m−!, as
keys to search for the knuckles of k. Our searching tech-
nique then uses the following heuristic: the i-th knuckle
node of v is approximated by the predecessor node (or
sometimes the successor) of position k − 2m−i. These
! candidate knuckle nodes can be found using our prim-
itive resource-ownership operation: the regular locate
operations applied for the ! computed “knuckle” posi-
tions. As we will discuss later, finding a correct knuckle
node will succeed with probability .75, under reason-
able assumptions for the Chord structure. The failure
probability depends on the original placement of the net-

7

work nodes on the Chord ring (through function g(·), the
SHA-1 function). Thus, overall our approach amounts
to successively (or in parallel, actually) locating these !
candidate knuckle nodes. These searches are easily seen
to be more widely distributed over the Chord ring, mak-
ing the effect of adversarial redirections less significant
for the correctness of the search operation.

Note that by the construction of Chord, the m = log q
positions in the ring that are defined by considering ex-
ponentially different offsets, are owned by O(log n) dis-
tinct candidate knuckles, which actually correspond to
the positions of the longest offsets. This is why Halo
searches exactly the ! most significant candidate knuck-
les. Also, because there are at most O(log n) candidate
knuckles per each target node, we already have an upper
bound on the redundancy parameter, i.e., ! ≤ c log n, for
some constant c. Furthermore, to ensure that each search
is disjoint, in general the searches are started from dif-
ferent finger nodes of the initiator node, again limiting
! to O(log n). Figure 2 demonstrates this approach for
! = 2.

Algorithm 1 presents our formalized high-assurance
search algorithm, HA locate, for locating resources in
Chord. We use the easy-to-implement (if not already
existing in a DHT implementation) get finger(u, i) op-
eration that returns the i-th finger (IP address) of the
network node mapped to position u (i-th entry of the
routing table of node v, u = g(v)). Parameterized by
the redundancy parameter !, algorithm HA locate takes
as input a key k (the position f(r) in the ring of a tar-
get resource r) and also ! known nodes in the p2p net-
work, which are used as starting points for the ! redun-
dant searches, and outputs the owner of k. The primitive
search operation locate takes two inputs: the search key
(ID in logical space) and the node (IP address) initiating
the search and outputs the predecessor (IP address) of
the owner of the key. We assume that locate returns the
predecessor node of a key because this is how it is im-
plemented in Chord (Chord performs a get successor(i)
operation on the predecessor to find the successor of a
key). To increase the effectiveness (disjointness) of the
! redundant searches, we initiate the knuckle searches
from distinct nodes. Note that ! ≤ log n, thus there
are always ! known nodes for any procedure executing
our high-assurance composite search: either a node in
the system is running the search in which case it already
knows O(log n) nodes in the network (the ones in its
routing table), or a node outside the network is running
the search in which case we can simply assume the ex-
istence of O(log n) default known nodes of the system
used for this purpose (in this case, the search can alterna-

tively be forwarded to a random network node). We also
use the primitive operations get successor(u) returning
the owner of position u (i.e., the IP address of the suc-
cessor node of position u). Finally, in our algorithm and
our analysis, we use the following (rather intuitive) no-
tation: (i) we say that position (or node) u1 is clockwise
closer from u than u2 is, if, when starting from u and
moving around the ring in the clockwise direction, we
meet u1 before u2; and (ii) we say that position u falls
between u1 and u2 in the clockwise direction, if, when
staring from u1 and moving clockwise we meet u be-
fore we meet u2 (or equivalently, if u is clockwise closer
from u1 than u2 is).

3.2 Correctness

In what follows we analyze Algorithm 1 for perform-
ing a high-assurance search over Chord, in terms of cor-
rectness and efficiency, and the improvement it provides
over regular Chord searches with respect to the disjoint-
ness of the redundant searches. Note that the security
properties of Halo rely solely on implementing exactly
these redundant searches in a way such that the set of ac-
cessed nodes is distributed as uniformly as possibly over
the set of participating nodes. Also note that to achieve
this uniformity of accessed nodes, Halo solely relies on
the prediction of the knuckle nodes of a given target.
Thus, in our analysis we focus on this knuckle predic-
tion and also we do not consider any malicious behavior
from the participating nodes. For our analysis we refer
to Figure 3.

Let k be the position of the target resource identifier
that we want to locate and s(k), p(k) be respectively its
successor and predecessor nodes. That is, s(k) is the
owner of k. Consider the i-th iteration of the algorithm,
where we seek the i-th knuckle of s(k). Let k′ be the
position corresponding to the i-th knuckle of k that is
computed deterministically using offset si = 2m−i (step
3 in the algorithm), and let p(k′), s(k′) be respectively
its predecessor and successor nodes. Let us examine
how well HA locate performs by using the heuristic that
the i-th knuckle node of k is what operation locate(k′)
returns, i.e., its predecessor p′(k). Recall that the i-th
knuckle node of k is a node that stores in the i-th posi-
tion in its routing table the owner node of k.

Let d1 be the distance in the logical ring between k
and p(k), d2 be the distance between k and s(k). Sim-
ilarly, let d′1, d′2 be the distances between k′ and p(k′)
and s(k′) respectively. We consider two cases: Case I.1:
if d1 > d′1, then p(k′) is indeed the i-th knuckle of
k (because p(k) falls between p(k′) and p(k′) + si in
the clockwise direction, making s(k) the i-th finger of

8

k

v

locate(k)

s(k)

knuckle2

knuckle1

finger2

k2

k1

finger1

locate(k1)

locate(k2)

Figure 2. The key k for the locate operation is used to compute knuckles keys k1 and k2.
Node v initiates two separate locate operations for k1 and k2 starting from fingers finger1 and
finger2. These redundant searches locate the knuckles knuckle1 and knuckle2, whose routing
tables contain the successor node and owner s(k) of k.

p(k′); see Figure 3(a)) and our heuristic is correct.
Otherwise, we have Case I.2, and the heuristic (ini-
tially) fails (because p(k′) is between p(k′)+si and k in
the clockwise direction, making the i-th finger of p(k′)
some node other than s(k); see Figure 3(b)). But, at
step 5 of the algorithm, we explicitly perform this test
and identify whether we have a successful prediction for
the i-th knuckle; indeed, we fail whenever d1 ≤ d′1, in
which case the i-th finger ti of p(k′) is certainly not the
owner of k, falling clockwise-before the k, which can be
tested as in step 5.

In steps 6 and 7, however,our algorithm tries to rec-
tify this false prediction, by trying the i-th finger of the
successor s(k′) of k′. This new prediction turns out to
be correct whenever d2 > d′2 (Case II.1). This is be-
cause, if d2 > d′2 then s(k′) + si is between k and s(k)
in the clockwise direction Otherwise, if d2 ≤ d′2, we
have Case II.2, and our i-knuckle prediction is incorrect.
But, as we prove next, this is an inherent property of the
underlying graph of Chord, not of our algorithm.

Proposition 1. If d1 ≤ d′1 and d2 ≤ d′2, then there does
not exist an i-th knuckle for the target node s(k). This
condition arises with probability 0.25.

Proof. (Sketch.) The i-th fingers of nodes p(k′) and
s(k′) are respectively p(k) or a node at a clockwise-
earlier position in the ring and a node at a clockwise-

later position than s(k). Since p(k′) and s(k′) are adja-
cent nodes, there cannot exist a node whose i-th finger is
s(k), since that node must be between p(k′) and s(k′).

Since nodes are uniformly distributed (and assum-
ing that all four nodes are distinct), the probability that
Case I.2 arises (d1 ≤ d′1) is 0.5 (comparing the lengths
of two randomly chosen segments). Applying the same
argument to Case II.1, we have that the probability that
both cases arise simultaneously is 0.25. Cases I.2 and
II.1 are independent because the distances d1, d′1, d2, d′2
are independent and identically distributed uniform ran-
dom variables.

Therefore, if, during the i-th iteration and for the
Chord p2p network, d1 ≤ d′1 and d2 ≤ d′2, then our
searching technique would not correctly predict the i-th
knuckle (because it simply does not exist). The proba-
bility with which the entire algorithm fails is, therefore,
0.25!, which arises when none of the ! predicted knuck-
les are found. We note that a high-assurance locate op-
eration as shown in this algorithm is used in conjunction
with a regular Chord locate operation, thereby ensuring
that Halo performs no worse than Chord.

Overall, at step 11 our algorithm computes and re-
turns the i-th finger of the predicted i-th knuckles of
the target node s(k) that is clockwise-closest to the tar-
get position k. As we have argued earlier, this guar-

9

k

s(k)

p(k) k'

s(k')

p(k')

d2

d1'

d2'

d1

k - 2m-i

k

s(k)

p(k)

k'

s(k')

p(k')

d2

d1'

d2'

d1

k - 2m-i

(a) (b)

k

s(k)

p(k)

k'

s(k')

p(k')

d2

d1'

d2'

d1

k - 2m-i

k

s(k)

p(k)

k'

s(k')

p(k')

d2

d1'

d2'

d1

k - 2m-i

(c) (d)

Figure 3. (a) Case I.1: p(k′) is the correct knuckle of s(k) if d1 > d′1. (b) Case I.2: p(k′) is not the
correct knuckle of s(k) if d1 ≤ d′1; then, try s(k′) instead and see case II. (c) Case II.1: s(k′) is the
correct knuckle of s(k) if d2 > d′2. (d) Case II.2: s(k′) is not the correct knuckle of s(k) if d2 ≤ d′2.

antees that our algorithm will return the correct target
node s(k) as long as there exists at least one successful
prediction for a knuckle of s(k) that is found through a
search path in the ring that does not intersect the mali-
cious coalition. Thus, our searching algorithm always
returns an output that with some high probability is cor-
rect. In the next section we analyze our algorithm and
estimate the (as we show small) failure probability of
our searching technique in the face of attack, showing
that Halo is indeed a high-assurance approach.

3.3 Recursive Halo

Algorithm 1 implements an !-redundant search over
a DHT by predicting and locating network nodes that
are likely to have direct routing information for the tar-
get node. In contrast to the straightforward approach

that performs ! location operations starting from differ-
ent nodes, our ! redundant searches have significant less
correlation and therefore can better tolerate adversarial
redirections. These ! searches themselves, however,
have a high rate of failure since they are based on a reg-
ular Chord locate operation.

Accordingly, we can extend our knuckle-based high-
assurance locate by applying Algorithm 1 recursively to
locate with high-assurance the candidate knuckle nodes.
That is, the idea is to replace at the step 4 in the algo-
rithm the operation pi ← locate(ki, fi) with operation
pi ← HA locate(ki, f1, . . . , f!2), where f1, . . . , f!2 are
the !2-most significant fingers of the node initiating
the search; !2 is the recursive-redundancy parameter.
With this approach, recursive Halo succeeds in locat-
ing the correct knuckles with higher probability than the
non-recursive version, since a knuckle is located using

10

HA locate instead of locate, leading to higher success
rates in finding the target node. In the next sections we
experimentally demonstrate the power of this idea for
degree-2 recursion by getting significantly better results
and achieving higher assurance. Note that although the
node calling our algorithm can contact O(log n) nodes
in total, these can be used more than once since for every
level of the recursion a search for a different target node
can be chosen.

3.4 Generalization

Although demonstrated for Chord, we believe that
our high-assurance knuckle-based searching techniques
can be generalized to other DHTs as long as the follow-
ing conditions are met:

1. The underlying graph representing sharing of direct
routing information between nodes allows the suc-
cessful prediction of the O(log n) knuckle nodes of
the target node. In Chord, the exponentially differ-
ent offsets for defining fingers allow this prediction.

2. The ownership relation is well-defined according
to some distance metric that allows successful and
secure selection of the correct target node from a set
of claimed target nodes. In Chord, the “clockwise
closest” relation is used.

3. Network nodes are mapped to the logical identifier
space in a random uniform-like way, i.e., it is in-
feasible for malicious colluders to control their lo-
cation in the logical identifier space. In Chord, the
use of SHA-1 ensures this property.

We believe that these properties, or similar prop-
erties that make our Halo technique applicable, are
satisfied by most DHTs, for instance, DHTs that use
the hypercube routing method (e.g., Pastry [28] and
Tapestry [36] using the technique in [24]), DHTs that
partition a d-dimensional space hierarchically into zones
(e.g., CAN [25]), or DHTs that use a tree-like hierarchy
(e.g., [21, 22]. In the future, we hope to demonstrate the
effectiveness of Halo for some of these DHTs.

3.5 Bootstrapping and Join/Leave operations

All dynamic operations for Chord (e.g., for joining
or leaving the network) employ the use of the prim-
itive locate operation. Accordingly, we can achieve
high-assurance dynamic operations by using our high-
assurance locate operation. The only requirement is that
a joining node runs the augmented join operation using

a predefined set of O(log n) publicly known and trusted
peer nodes. This condition is easy to achieve, since a
short list of such nodes can be made available, for in-
stance on a web page. These nodes are used only as
starting points for join and leave operations.

4 Analysis

We develop an analytical approximation of the ex-
pected failure rates for a regular Chord locate(k) op-
eration and its high-assurance counterpart. We will
show how this analytical approximation fits our sim-
ulation data closely. Recall that we have defined
locate(k) as the locate successor(k) operation (it re-
turns the owner node of k), although in the real Chord
implementation locate(k) is actually implemented using
the locate predecessor(k) operation (it returns the pre-
decessor of the owner) followed by the find successor
operation. In what follows we use this fact. HA locate
is our operation described in Algorithm 1; Halo search
with !-redundancy makes use of a regular Chord
locate successor(k) operation followed by HA locate
with redundancy parameter !− 1.

4.1 Chord

Let X = P [locate predecessor(k) fails], where X is
the probability with which a locate predecessor(k) op-
eration fails in regular Chord. The locate operation fails
if the successor returned by the locate operation is not
the true successor of k. X is a random variable because
this failure probability depends on the number of nodes
traversed during the locate operation, which is a ran-
dom variable. Let K be the number of nodes traversed
in a locate predecessor(k) operation. We know that
K is binomially distributed with parameters (log n, 1

2)
and has mean 1

2 log n. If c is the fraction of malicious
nodes in the network, then we have that a given node
is malicious with probability c (since nodes are mapped
onto the Chord ring randomly, adversaries cannot con-
trol their location in the logical ring). The probability
that all the nodes traversed by a locate predecessor(k)
operation are non-malicious is (1 − c)K , and therefore
the probability that at least one node is malicious is

X = 1− (1− c)K .

We approximate the expectation of this probability as
E[X] ≈ 1 − (1 − c) 1

2 log n. We observe (as in Artigas
et al. [1]) that E[X] is bounded by this approximation.
Since we assume that the target successor is not mali-
cious in our simulations (we aim to assess how many

11

potentially successful searches are subverted by mali-
cious nodes), E[X] is also the expected probability of
success of a locate successor(k) operation.

4.2 High-assurance search

Now, let Y = P [HA locate(k) fails], where
HA locate(k) involves one iteration of our proposed al-
gorithm. This operation succeeds if a regular Chord
locate predecessor(k′) succeeds for the knuckle p(k′)
with estimated key k′. However, this search will succeed
only if Case I.1 holds (see Figure 3(a) in Appendix 3.2).
Note that since nodes are uniformly distributed (and as-
suming that all four nodes are distinct), this probability
is 0.5 (comparing lengths of two randomly chosen seg-
ments). Now if Case I.2 applies (with probability 0.5),
then it is possible that the successor of this node s(k′)
is a knuckle for k. Applying the same argument to Case
II.1 (Figure 3(c) in Appendix 3.2), s(k′) will contain
s(k) with probability (1− c)0.5 (given that Case I.2 ap-
plies) since we must also have that s(k′) is not mali-
cious. This gives us the overall success probability of a
HA locate(k) operation as

(1− c)K(0.5 + 0.5(1− c)0.5)

and we have that

E[Y] ≈ 1−
{
(1− c)

1
2 log n(0.5 + (1− c)0.25)

}
.

Assuming that !− 1 redundant searches are disjoint,
the expected probability that !− 1 HA locate(k) opera-
tions fail is approximately

(
1−

{
(1− c)

1
2 log n(0.5 + (1− c)0.25)

})!−1
.

Since we perform one regular Chord search with !−1
HA locate(k) operations for a redundancy parameter of
!, we get an overall expected failure probability of our
Halo search with redundancy parameter ! is

E[Z] ≈
(
1−

{
(1−c)

1
2 log n(0.5+(1−c)0.25)

})!−1
E[X]

where Z is the probability that Halo search fails.
We describe our simulations in the next section, and

the interested reader may refer to Figures 6 and 7 in the
Appendix to observe the closeness of fit for this ana-
lytical model for a network of 1,000 and 10,000 nodes
respectively. In summary, the model fits the data fairly
accurately as long as the disjoint-path assumption holds
(making the events that the individual search paths fail
independent). For higher values of redundancy (7 for

1,000 nodes and 13 for 10,000 nodes), the probability
that two separate locate operations share a same node
increases, and our model underestimates the probability
of failure.

5 Experiments

We evaluate our approach for high-assurance search
in the context of Chord. We simulate various adversarial
environments, and show how different levels of redun-
dancy can be used to attain security in these situations.
First we describe our simulation setup, and then present
our simulation results.

5.1 Simulation setup

We built our own simulator for Chord using the Java
programming language. This simulator models routing
in Chord, including adversarial rerouting of locate re-
quests, and does not model network dynamics such as
join and leave operations. Our simulation takes the pa-
rameters 〈n, c, !1, !2, i, j〉 as input and does the follow-
ing:

It creates n nodes in the Chord network, and ran-
domly marks cn of these nodes as malicious. Routing
tables are constructed based on Chord’s algorithm, how-
ever, malicious nodes communicate within themselves
and subvert searches by reporting the closest malicious
predecessor for a search key instead of the closest legiti-
mate predecessor. The simulation instantiates i different
Chord networks, and within each network simulates j
random locate queries. Each locate query originates in a
randomly chosen start node, for a randomly chosen key
k such that both the start node and successor of k are
not malicious. Each Halo search is performed with re-
dundancy parameters !1 and !2. We vary the colluding
fraction c from 0 to 0.3. We believe that for values of
c > 0.3, real successors of keys are malicious with a
high probability (equal to c) and improving the success
rate of a potentially-successful search has little mean-
ing even if this failure rate is close to zero. We note
that Nambiar and Wright [22] use the same reasoning to
simulate failure rates for c ≤ 0.2.

Each point in our simulation graphs corresponds to
the average failure rate of searches across the i = 100
simulated Chord networks, where the failure probability
for each instantiation of a Chord network is the average
failure rate of j = 1000 searches. The error bars corre-
spond to one standard deviation.

12

5.2 Simulation results

In interpreting our results, we say that a search for
a key’s successor is secure if at most 1% of searches
for honest successors fail. As we will see, for varying
levels of malicious nodes, the level of redundancy can
be increased to provide the requisite security.

Figure 6 in the Appendix shows the performance of
Halo search and the closeness of fit of the predicted
probabilities for 1,000 nodes (Likewise, Figure 7 in the
Appendix for 10,000 nodes). The graphs show that Halo
search vastly outperforms Chord in locating nodes, and
is much better than the naive redundant search in Chord.
Depending on the level of security required, users can
pick the appropriate redundancy. For example, in a net-
work with 10,000 nodes, a redundancy of 3–5 may be
used for security against 0–5% colluders. A redundancy
of 7–13 could be used for security against 5–12% col-
luders. For these levels of redundancy the probability of
a failed search (assuming an honest target) is approxi-
mately 1%. Similar levels of security are obtained for
a network of 1,000 nodes, except that the redundancy is
limited to 10 redundant searches. Figures 4(a) and 4(b)
summarize the results for three different Halo searches
for 1,000 and 10,000 nodes respectively.

Next, we study the effect of recursive redundant
searches, and observe in Figures 5(a) and 5(b) that secu-
rity is achieved for much higher numbers of adversaries
in the network. In particular, recursive Halo search is
secure for up to 22% malicious nodes, with only 2–3%
searches failing for 25% colluding nodes.

5.3 Comparison with other approaches

It is certainly possible to get better results with more
storage at the nodes. More storage equates to shorter
search paths, and a lower probability that a search is
subverted by a malicious node. For example, Salsa [22]
divides n nodes into G groups. All nodes maintain infor-
mation about all other nodes in the same group, resulting
in n

G entries in the routing table. Furthermore, each node
maintains one contact for log G other groups, resulting
in O(n

G +log G) storage at each node. A search in Salsa
has length O(log G), which is considerably smaller than
O(log n). Therefore comparing Salsa with our scheme
would be unfair.

Similar to Salsa (although we note that Cyclone pre-
dates Salsa), Cyclone [1] subdivides a Chord network
into ! smaller networks, resulting in O(! + log n

!) stor-
age at each node, which results in much larger storage
than in our scheme (and more storage than in Salsa).

Search paths are of length O(log n
!), and therefore com-

parable to Salsa. Again, we do not believe that Cyclone
can be compared fairly with our scheme because of its
increased storage. In fact, our Halo search can be ap-
plied to each Chord subnetwork of Cyclone to further
improve Cyclone’s performance without impacting Cy-
clone’s storage requirements.

In short, we provide a novel technique to perform
redundant searches in Chord without requiring any ex-
tra storage at the nodes, and more specifically O(log n)
storage (lower than Salsa and Cyclone). Indeed, we
don’t require any changes in existing Chord nodes, and
our Halo search can be initiated by any nodes with the
augmented search algorithm, making use of existing
Chord constructs at the other nodes. As a result, the stor-
age complexity of Chord is not affected, and the length
of each redundant search remains O(log n).

6 Related Work

There is a large and growing literature on p2p over-
lay networks. One popular class of overlay networks
is that of distributed hash tables (DHTs). These struc-
tures make use of consistent hashing to efficiently sup-
port queries for exact matches with data keys. Exam-
ples of distributed hash tables include Chord [13, 33],
Koorde [18], Pastry [28], Scribe [29], Symphony [20],
and Tapestry [36] and others (e.g., [24, 25]), with Chord
being one of the most representative and most studied
DHTs. As an example of performance, Chord, in its
original form, supports queries using O(log n) messages
and O(log n) words of memory corresponding to the
O(log n) degree of the underlying graph. On top of
these DHTs many distributed systems have been built
that are supporting a wide-range of real-life applica-
tions (e.g., PAST [8], CAN [25], CFS [5], PIER [17],
OpenDHT [27]). Also, other p2p architectures with sim-
ilar efficiency provide more elaborate functionality over
p2p networks; for instance, skip-graphs [2] and their ex-
tensions, e.g., [16] and [14], support searches over or-
dered sets of resources.

A large set of security issues have been studied in
p2p systems and DHTs. General issues are considered
in [31, 35]. In Castro et al. [4] the first schemes for
battling adversarial behavior in routing are given. The
scheme used O(log n) messages per query in the ab-
sence of faulty behavior, and was resilient to limited ad-
versarial attacks. However, the scheme makes use of
an external certification authority (CA) to provide ver-
ifiable random ID values to network addresses. More-
over, the system was not robust to certain types of at-

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 1,000 nodes

Chord Regular
Halo 5
Halo 7

Halo 10

(a) Locate failure rate vs. colluding fraction for a 1,000 node network

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 10,000 nodes

Chord Regular
Halo 7

Halo 10
Halo 13

(b) Locate failure rate vs. colluding fraction for a 10,000 node network

Figure 4. Comparing various levels of redundancy for Halo searches. We can see that the
failure rates are negligible for up to 12% colluding nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 10xX redundant searches, 1,000 nodes

Chord Regular
Halo 10x1
Halo 10x3
Halo 10x7

Halo 10x10

(a) Locate failure rate vs. colluding fraction for a 1,000 node network

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 13xX redundant searches, 10,000 nodes

Chord Regular
Halo 13x1
Halo 13x3
Halo 13x5
Halo 13x9

Halo 13x13

(b) Locate failure rate vs. colluding fraction for a 10,000 node network

Figure 5. Comparing various levels of recursion for Halo searches. We can see that the failure
rates can be made negligible for up to 22% colluding nodes. Only 2–3% searches fail for 25%
colluding nodes, and 10% fail for 30% colluding nodes.

14

tacks by the adversary, in particular the Sybil attacks of
Douceur [7], in which the adversary acquires numerous
ID values which it uses to obtain a concentrated pres-
ence in one portion of the network.

With respect to routing and searching, numerous
DHTs have been shown to tolerate significant network-
node failures—random (e.g., [18, 25, 28, 32, 36]) or
malicious (e.g., [3, 9, 10, 19, 23, 30]). The structures
that deter adversarial behavior do so either by augment-
ing the DHT connectivity structure and communication
complexity of the routing algorithms by at least a log-
arithmic factor (e.g., [9, 10, 23, 30]) or by using as-
sumptions about external trusted parties (e.g., supervisor
in [19]). Other schemes (e.g., [3, 10]) achieve security
properties by forming suitably large and random blocks
of machines that take the place of each individual ma-
chine in the data structure. A majority-voting scheme
is then used to prevent faulty behavior from adversarial
nodes that are the minority. All of these majority-voting
schemes incur also an increase of at least a logarithmic
size in communication overhead.

With respect to data authentication and content in-
tegrity, most p2p systems (e.g., [5, 8, 24, 25, 27]) support
an elementary authentication service for retrieved data
using individual signatures on the stored data objects.
For the static case, storage authentication often involves
the so-called self-certified data [12], where large data
items (e.g., a file system) get partitioned into blocks,
which are stored as separate objects in the system and
are bound together using collision-resistant hashing in
some tree-like hierarchy, and where the root-block is
signed. For the dynamic case, a recent technique for
distributed data authentication [34] can be used, where
dynamic data sets stored in p2p networks can be effi-
ciently authenticated. Over any DHT and using only
the location search operation, a distributed version of
Merkle tree is realized, and using this in a network with
n nodes, it is showed how to efficiently authenticate con-
tent membership in a fully dynamic set of m data el-
ements in O(log n log m) time using O(m log m) stor-
age, with similar amortized complexities for supporting
insertions and deletions. This technique however can-
not be used to achieve authentication of routing infor-
mation, since routing information, in contrast to data re-
sources is collectively computed and cannot be signed
by a single entity. Finally, privacy and anonymity issues
(e.g., [11, 22, 26]) or other security issues (e.g., the Sybil
attack [6, 7]) related to p2p systems have been studied.
We have discussed Cyclone [1] and Salsa [22] in Sec-
tion 5.3.

7 Conclusion

We presented a novel scheme called Halo for per-
forming disjoint redundant searches in DHTs such
as Chord. Instead of performing multiple redundant
searches directed towards a target node, Halo searches
for the “knuckles” of the target node. These knuckles
contain the target node in their routing tables, and are
spread over the DHT such that searches for these knuck-
les are disjoint with high probability. We showed the
effectiveness of our approach by presenting both analyt-
ical models and a simulation-based evaluation of Halo.
We found that our scheme can significantly increase the
integrity of searches, by allowing only 1% of searches
to be subverted by up to 22% malicious colluding nodes
in the network.

As future work, we plan to further study our knuckle-
based high-assurance search, exploring its theoretical
bounds and the power of t-depth recursion, as well as
to apply our technique to other DHT structures.

Acknowledgments

This research program is primarily a part of the In-
stitute for Security Technology Studies, supported by
the U.S. Bureau of Justice Assistance under grant 2005-
DD-BX-1091, and by the Institute for Information In-
frastructure Protection (I3P) under an award from the
Science and Technology Directorate at the U.S. Depart-
ment of Homeland Security. Research was additionally
supported by the Center for Algorithmic Game Theory
at the University of Aarhus, Denmark, under an award
from the Carlsberg Foundation. The views and conclu-
sions in this paper do not necessarily reflect the views
of the sponsors. Simulations were performed on cluster
machines supported under NSF grant EIA-98-02068.

References

[1] M. S. Artigas, P. G. Lopez, J. P. Ahullo, and A. F. G.
Skarmeta. Cyclone: A novel design schema for hier-
archical dhts. In P2P ’05: Proceedings of the Fifth
IEEE International Conference on Peer-to-Peer Com-
puting (P2P’05), pages 49–56, Washington, DC, USA,
2005. IEEE Computer Society.

[2] J. Aspnes and G. Shah. Skip graphs. In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms, pages
384–393, 2003.

[3] B. Awerbuch and C. Scheideler. Towards a scalable and
robust dht. In SPAA ’06: Proceedings of the eighteenth
annual ACM symposium on Parallelism in algorithms

15

and architectures, pages 318–327, New York, NY, USA,
2006. ACM.

[4] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure routing for structured peer-to-peer
overlay networks. In Proceedings of Usenix Sympo-
sium of Operating Systems Design and Implementation
(OSDI), 2002.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS.
In Proceedings of 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Chateau Lake Louise,
Banff, Canada, Oct. 2001.

[6] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson. Sybil-resistant DHT routing. In Proceed-
ings of the 10th European Symposium On Research In
Computer Security, Milan, Italy, September 2005.

[7] J. R. Douceur. The sybil attack. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS
’02), pages 251–260, 2002.

[8] P. Druschel and A. Rowstron. Past: A large-scale, per-
sistent peer-to-peer storage utility. In HOTOS ’01: Pro-
ceedings of Eighth Workshop on Hot Topics in Operating
Systems, page 75, Washington, DC, USA, 2001. IEEE
Computer Society.

[9] A. Fiat and J. Saia. Censorship resistant peer-to-peer
content addressable networks. In Proceedings of Sym-
posium on Discrete Algorithms, 2002.

[10] A. Fiat, J. Saia, and M. Young. Making chord robust to
byzantine attacks. In Proceeding of European Sympo-
sium of Algorithms, pages 803–814, 2005.

[11] M. J. Freedman and R. Morris. Tarzan: a peer-to-peer
anonymizing network layer. In CCS ’02: Proceedings
of the 9th ACM conference on Computer and communi-
cations security, pages 193–206, New York, NY, USA,
2002. ACM Press.

[12] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and se-
cure distributed read-only file system. Computer Sys-
tems, 20(1):1–24, 2002.

[13] P. Ganesan and G. S. Manku. Optimal routing in Chord.
In Proceedings of 15th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 169–178, 2004.

[14] M. T. Goodrich, M. J. Nelson, and J. Z. Sun. The
rainbow skip graph: a fault-tolerant constant-degree dis-
tributed data structure. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 384–393, New York, NY, USA, 2006.
ACM Press.

[15] C. Harvesf and D. M. Blough. The effect of replica
placement on routing robustness in distributed hash ta-
bles. In P2P ’06: Proceedings of the Sixth IEEE Inter-
national Conference on Peer-to-Peer Computing, pages
57–6, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[16] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A scalable overlay network with
practical locality properties. In USENIX Symposium
on Internet Technologies and Systems, Lecture Notes in
Computer Science, 2003.

[17] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis,
T. Roscoe, S. Shenker, I. Stoica, and A. Yumerefendi.
The architecture of PIER: an internet-scale query pro-
cessor. In Proceedings of 2nd Conference on Innovative
Data Systems Research (CIDR), pages 28–43, 2005.

[18] F. Kaashoek and D. R. Karger. Koorde: A simple degree-
optimal distributed hash table. In Proceedings of 2nd
International Workshop on Peer-to-Peer Systems, 2003.

[19] K. Kothapalli and C. Scheideler. Supervised peer-to-
peer systems. In Proceedings of 2005 International Sym-
posium on Parallel Architectures, Algorithms, and Net-
works (I-SPAN), 2005.

[20] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed hashing in a small world. In Proceedings of
4th USENIX Symposium on Internet Technologies and
Systems, pages 127–140, 2003.

[21] P. Maymounkov and D. Mazires. Kademlia: A peer-
to-peer information system based on the xor metric. In
Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS ’02), pages 53–65, Mar. 2002.

[22] A. Nambiar and M. Wright. Salsa: a structured approach
to large-scale anonymity. In CCS ’06: Proceedings of
the 13th ACM conference on Computer and communica-
tions security, pages 17–26, New York, NY, USA, 2006.
ACM Press.

[23] M. Naor and U. Wieder. Novel architectures for p2p
applications: The continuous-discrete approach. ACM
Trans. Algorithms, 3(3):34, 2007.

[24] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Access-
ing nearby copies of replicated objects in a distributed
environment. In Proceedings of ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320,
June 1997.

[25] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of SIGCOMM, pages 161–172, 2001.

[26] M. Rennhard and B. Plattner. Practical anonymity for
the masses with MorphMix. In Proceedings of Financial
Cryptography, 2004.

[27] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Rat-
nasamy, S. Shenker, I. Stoica, and H. Yu. OpenDHT: A
public DHT service and its uses. In Proceedings of 2005
ACM SIGCOMM Conference, pages 73–84, 2005.

[28] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-
to-peer systems. Lecture Notes in Computer Science,
2218:329, 2001.

[29] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and
P. Druschel. SCRIBE: The design of a large-scale event
notification infrastructure. In Networked Group Commu-
nication, pages 30–43, 2001.

[30] J. Saia, A. Fiat, S. D. Gribble, A. R. Karlin, and
S. Saroiu. Dynamically fault-tolerant content address-
able networks. In IPTPS ’01: Revised Papers from the
First International Workshop on Peer-to-Peer Systems,
pages 270–279, London, UK, 2002. Springer-Verlag.

16

[31] E. Sit and R. Morris. Security considerations for peer-to-
peer distributed hash tables. In Proceedings of Interna-
tional Workshop on P2P Systems, pages 261–269, 2002.

[32] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup ser-
vice for internet applications. In Proceedings of 2001
ACM SIGCOMM Conference, pages 149–160, 2001.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of SIG-
COMM ’01, pages 149–160, San Diego, California, Au-
gust 2001.

[34] R. Tamassia and N. Triandopoulos. Efficient content au-
thentication in peer-to-peer networks. In Proceedings
of Applied Cryptography and Network Security, pages
354–372, 2007.

[35] D. S. Wallach. A survey of peer-to-peer security issues.
In Proceedings of International Symposium on Software
Security, 2002.

[36] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. Kubiatowicz. Tapestry: A resilient global-
scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 22(1):41–53, Jan-
uary 2004.

A Additional figures

Please refer to the next page.

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 3 redundant searches, 1000 nodes

Model Chord Regular
Chord Regular

Redundant 3
Halo 3

Model Halo 3

(a) Comparing failure rates for redundancy = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 4 redundant searches, 1000 nodes

Model Chord Regular
Chord Regular

Redundant 4
Halo 4

Model Halo 4

(b) Comparing failure rates for redundancy = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 5 redundant searches, 1000 nodes

Model Chord Regular
Chord Regular

Redundant 5
Halo 5

Model Halo 5

(c) Comparing failure rates for redundancy = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 7 redundant searches, 1000 nodes

Model Chord Regular
Chord Regular

Redundant 7
Halo 7

Model Halo 7

(d) Comparing failure rates for redundancy = 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 10 redundant searches, 1000 nodes

Model Chord Regular
Chord Regular
Redundant 10

Halo 10
Model Halo 10

(e) Comparing failure rates for redundancy = 10

Figure 6. Locate failure rates vs. colluding fraction for various levels of redundancy in a network
of 1,000 nodes. These graphs also show the closeness of fit for the analytical models for Chord
and Halo. Furthermore, we can see that Halo search outperforms the naive redundant search
for the same level of redundancy.

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 3 redundant searches, 10000 nodes

Model Chord Regular
Chord Regular

Redundant 3
Halo 3

Model Halo 3

(a) Comparing failure rates for redundancy = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 4 redundant searches, 10000 nodes

Model Chord Regular
Chord Regular

Redundant 4
Halo 4

Model Halo 4

(b) Comparing failure rates for redundancy = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 5 redundant searches, 10000 nodes

Model Chord Regular
Chord Regular

Redundant 5
Halo 5

Model Halo 5

(c) Comparing failure rates for redundancy = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 7 redundant searches, 10000 nodes

Model Chord Regular
Chord Regular

Redundant 7
Halo 7

Model Halo 7

(d) Comparing failure rates for redundancy = 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 10 redundant searches, 10000 nodes

Model Chord Regular
Chord Regular
Redundant 10

Halo 10
Model Halo 10

(e) Comparing failure rates for redundancy = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Lo
ca

te
 fa

ilu
re

 ra
te

Colluding fraction

Locate failure rate vs. colluding fraction. 13 redundant searches, 10000 nodes

Model Chord Regular
Chord Regular
Redundant 13

Halo 13
Model Halo 13

(f) Comparing failure rates for redundancy = 13

Figure 7. Locate failure rates vs. colluding fraction for various levels of redundancy in a network
of 10,000 nodes. These graphs also show the closeness of fit for the analytical models for Chord
and Halo. Furthermore, we can see that Halo search outperforms the naive redundant search
for the same level of redundancy.

19

