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HESTIA , a programmable middleware solution implemented as a network of middleboxes, 
secures critical information services in large-scale ubiquitous computing environments. This 
programmable, distributed, object-oriented framework enables the integration of security, 
privacy, and reliability mechanisms in service-access interfaces and implementations.

Ubiquitous environments organize networked computer devices into a distributed system that 
cooperates and coordinates its activities with its users. Soon ubiquitous computing will extend 
beyond the boundaries of prototype experiments and encompass larger areas, enabling smart 
buildings, campuses, and fleets.1 However, security, privacy, and fault tolerance are major 
hurdles for wide-scale deployment of the technology.

Today's users expect computing and information systems to be available even under attack, to 
perform their tasks in a timely manner, and to consistently provide accurate results. The problem 
of securing critical cyber infrastructure is more difficult in smart buildings. In such cases, the 
CCI must bind networks, processors, and devices with policies, mechanisms, protocols, and 
services to offer survivable and secure operations while providing better management and finer 
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integration between heterogeneous components. Yet, a secure CCI for smart buildings is 
essential because many of the building's services surveillance systems; heating, ventilation, 
and air conditioning; lights; door locks; and so on are critical to supporting its inhabitants.

We propose the Heterogeneous Survivable Trusted Information-Assurance Architecture, a 
middleware solution that provides a secure layer for CCIs such as smart buildings and other 
large-scale ubiquitous computing environments. HESTIA offers distributed deployment of 
mechanisms, such as access control, anonymity, replication, load balancing, auditing, and 
intrusion detection. (The "Related Work" sidebar discusses other middleware platforms.) We've 
begun implementing HESTIA in a smart building at the University of Illinois at Urbana-
Champaign called the Seibel Center. The Siebel Center showcases state-of-the-art computing 
and communications infrastructure in its offices, meeting rooms, and classrooms. Digital locks; 
heating, cooling, and lighting controllers; video cameras; and other digital sensors and actuators 
pervade the building and are accessible through a private network. We're developing several 
services for controlling different functionality in this smart building, including locking and 
unlocking doors; controlling lights; and configuring heating, ventilation, and air conditioning 
systems. We're also developing applications that use the smart building environment as a whole

for example, services that unlock doors and turn on lights automatically for disabled persons 
moving in the environment. Once this implementation is complete, we hope to extend our work 
to allow the implementation of HESTIA in other smart buildings as well as environments that 
include multiple buildings or nontraditional structures (for example, aircraft carriers).

Example: Door-lock access at the Seibel Center

To illustrate HESTIA 's role in the Seibel Center smart building, we present the following 
example. Faculty, students, and visitors need reliable access to the computing, communication, 
and information services they're authorized to use. The building must also be secure against 
accidental software or hardware failures and against malicious attacks. Because the Siebel 
Center is an open academic environment, draconian access controls are not feasible; however, 
the building CCI's security and survivability is a key consideration. Moreover, the building's 
heterogeneous components and subsystems must be integrated to enhance interoperability.

All the doors in our building have e-locks, which open to authenticated, authorized users with 
swipe cards. These swipe cards rely on a networked lock server. The swipe-card detector sends a 
message over the network that causes a lookup in a door-lock access database associated with 
the lock server. If the system authorizes the user, the door opens in response to a reply message 
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from this server. We're extending this mechanism to provide additional services. For example, to 
assist people with disabilities, we'll offer UbiSense location technology (www.ubisense.net). 
UbiSense employs special tags that transmit ultrawide radio bands. The tags can be associated 
with particular users. Tag detectors can detect the presence and location of a user within six 
inches of the user's actual location. Some of the building's services can use the UbiSense system 
to identify and authorize disabled users waiting to enter a door and to open the door through the 
door-lock mechanisms. 

The door-lock server is thus an important CCI service. It's also a single point of failure, so it can 
be the target of various attacks. Therefore, because all messages transmitted between the swipe-
card detector and the door-lock server are in plain text, the HESTIA layer must provide the 
required encryption support to protect the confidentiality of the information exchanged and to 
preserve user privacy. Additionally, access to the door-lock service itself must be fault tolerant. 
Moreover, HESTIA must balance the load dynamically when requests become a bottleneck to 
server access. Finally, to prevent denial-of-service (DoS) attacks, no client in this system should 
know where the server is located. 

Architecture

Figure 1 gives an overview of HESTIA integrated in our smart building. HESTIA partitions the 
network into a service domain and an application domain. Network-level firewalls and network 
address translation (NAT) boxes enforce this partitioning at the HESTIA layer's perimeter.
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Figure 1. Overview of HESTIA integrated in our smart building. 
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The service domain provides users and services with a set of mechanisms for fault tolerance, 
quality of service, and privacy through a network of middleboxes. A middlebox is a node 
containing an instantiation of security, privacy, and load-balancing mechanisms. Middleboxes 
provide a programmable, distributed-object interface so that service owners and administrators 
can exercise fine-grained control over network service use, deployment, management, and 
control. Middleboxes also provide appropriate filtering mechanisms to enforce customizable 
anonymity, confidentiality, and privacy concerns. The middleboxes network acts as a cluster of 
reconfigurable computing and communication nodes to integrate security, privacy, and reliability 
in the service domain.

Because a smart-building environment is dynamic and context aware, it must accommodate 
many factors, such as context information, role hierarchies, security policies, building plans, risk 
factors, and service dependencies. Managing all these factors individually is difficult. Therefore, 
the service domain contains a knowledge base and an inference engine. The knowledge base is a 
repository for context information, role hierarchies, security policies, and so on. The inference 
engine uses information in the knowledge base to compose requirements. It also composes 
mechanisms to satisfy those requirements, generates service graphs, and applies the necessary 
policy decisions (access control, privacy, and so on) to the service graphs. Additionally, the 
inference engine must generate auditing mechanisms, and intrusion detection monitoring for 
detecting malicious activity. Figure 2 illustrates how HESTIA employs user and service policies 
to derive the appropriate security mechanisms.

Service domain 
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Figure 2. Deriving security mechanisms from requirements and policies in HESTIA . 

HESTIA extensively uses role-based access control, typically tying resource access to user roles 
and contextual information. The inference engine also contains a secure feedback component. 
When HESTIA denies a user access to a resource, the system must provide that user with useful 
feedback on how to gain access for example, whether to simply return later or to obtain 
additional credentials. However, unconstrained feedback might reveal too much information 
about the system's policies. Therefore, we use Know,2 a mechanism for providing useful 
feedback while honoring the privacy of the system's policies. Such a component is important in a 
ubiquitous environment, where many users can interact with a plethora of devices.
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In the application domain, the HESTIA discovery protocol exposes building services as 
application service interfaces of middlebox proxies mapped across routers and firewalls (see 
Figure 2). The application domain gives users on the basis of their roles, for example an 
abstraction of what services are available and a set of interfaces to interact with the service 
domain. The application domain also gives users discovery and lookup services.

Application domain services (discovery, lookup, and so on) are also subject to security 
constraints, so users can view and access them according to their roles. For example, access to 
the door-lock service in our smart building is available through the service domain via a proxy 
that runs on a middlebox. This service then appears in discovery and lookup services in the 
application domain. After discovering the door-lock service proxy's location, users can interact 
with the proxy in the service domain. Other services in the Siebel Center will include sensor-
controlled heating and cooling, sprinkler systems, a location service that tracks user movements 
while respecting their privacy, and so on.

Middlebox service protection layers

All the services in our smart building need suitable protection mechanisms. The network of 
middleboxes provides such mechanisms, including load balancing, fault tolerance, anonymity, 
quality, and secure services. A specific layer in our middleware provides each of these services.

Load balancing

This layer distributes service processes among participating middleboxes according to some 
probability distribution function. The load-balancing service's main goal is to ensure that no 
middlebox becomes overloaded. The load balancer gets a resource requirement profile for each 
service that the system is to host. This information should include CPU, disk space, and 
bandwidth requirements. At this layer, process migration occurs when it's necessary to distribute 
the middleboxes' load. Service migration must occur securely. For example, a service such as 
Kerberos that stores private keys might require a secure transfer to another middlebox. 
Furthermore, a mobile Internet Protocol approach can maintain access to migrated proxies for 
connected users. The middlebox that the proxy migrates from forwards messages to the proxy's 
new home.

Addressing. When a middlebox hosts a service, the load balancer receives a pseudonym for 

Application domain 
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that service. It then creates an object reference for it. Next, the load balancer registers the object 
reference and the pseudonym with the name space. To resolve a service, a user presents the 
pseudonym to the name server, which returns the corresponding object reference, or handle, to 
the user.

Denial-of-service protection. Through load distribution, middleboxes can handle larger 
aggregate loads, thus increasing the network's DoS resilience. Additionally, services can specify 
usage constraints as part of their requirements. This layer maintains the aggregate load for a 
service's proxies and keeps it within the maximum allowable load, thereby preventing DoS 
attacks on the actual service. For example, because users heavily use the door-lock service in our 
building, its proxies could attract a considerable amount of load. In such cases, the load-
balancing layer could migrate proxies to ensure that no middlebox is overloaded. Furthermore, if 
someone tries to overload the service by making repeated requests for access, the load-balancing 
layer ensures that the aggregate request bandwidth to the door-lock database remains within 
acceptable thresholds.

Fault tolerance 

Although HESTIA could provide basic fault tolerance for services (through replication, for 
example), this layer maintains service availability by replicating the proxies for a service. If 
proxies are attacked (for example, a DoS attack), this layer can instantiate new proxies for the 
service on the middleboxes. HESTIA deploys services along with replication requirements for 
their proxies. The system can replicate proxies for quick recovery using active or passive 
replication mechanisms. Active replication maintains the replica in the same state as the original 
proxy. Passive replication uses periodic checkpointing of consistent states. For example, the 
door-lock service can deploy several proxies through the load-balancing layer. This makes this 
service accessible through several proxies, increasing its availability and fault tolerance. If a 
proxy fails, its active (or passive) replica can act as a substitute. The fault tolerance service could 
require more sophisticated fault-tolerant middlebox access schemes.

Anonymity 

This layer obfuscates the identity and location of the client, the middleboxes, or both. The Onion 
Routing,3 Crowds,4 and Mist5 routing concepts at this layer provide anonymity. In our solution, 
which we based on Mist, users or services establish routes through middleboxes while keeping 
their locations private. Handles maintain forward and reverse paths for packets and establish a 
route though middleboxes. Each router knows only the previous and next hops. These routes 
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eventually end at some middlebox, which serves as a point of communication for the entity. Mist 
calls this middlebox the lighthouse for that entity. Mist directs traffic for an entity to its 
lighthouse, which then forwards the data down the established path. Because communication 
occurs through lighthouses, an entity's actual location remains hidden. Hence, the anonymity 
layer services decouple the users' identity from their location, giving them location privacy or 
location anonymity. Users can optionally choose to not reveal their identities, thereby achieving 
location and identity anonymity.

The anonymity layer provides anonymity services for both users and services.

Anonymity for users. Because users must constantly interact with services in ubiquitous 
computing environments, a system could feasibly track a user's movements. For example, a 
service administrator could mine service logs and infer user locations. Providing anonymity to 
users ensures that their locations remain secret while still letting them interact with services 
through their lighthouses.

Anonymity for services. Although it's possible to deploy critical services through 
middleboxes, we prefer to keep these service locations private. This prevents malicious parties 
and even insiders from identifying the specific machines on which to mount attacks. Such 
attacks could cripple the targeted service. Hence the middleboxes' anonymity layer provides this 
functionality. For example, the ubiquitous environment might store extensive information 
pertaining to users. This information might include personal data and usage statistics of users. 
Storing such data threatens user privacy. Another way to make data storage anonymous is to 
keep it at undisclosed locations. Although data is accessible through the service's lighthouse, that 
data's location remains unknown. This prevents malicious parties from denying access to data, 
because once again they don't know on which machines to mount their attacks. Furthermore, the 
fault tolerance layer can replicate data to increase its availability and make it more resilient to 
DoS attacks.

Thus, continuing with our example, the anonymity layer could keep the location of the door-lock 
service secret. This is important because the door-lock service is crucial to a building's 
operation, and exposing this service's location would make the building vulnerable to attackers.

Quality 

This layer gives users an interface for specifying the level of quality they wish to receive. Users 
can specify quality based on data transmission metrics or quality of service (QoS) for 
example, delay, bandwidth, or packet loss rates. Users can also specify quality based on a client's 
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required level of security or quality of protection (QoP) in terms of confidentiality, integrity, 
anonymity, and so on. For example, services can request higher grade encryption and 
authentication for users connecting with the service. Users can request routes from the QoS layer 
with QoP requirements (such as bandwidth distribution), which are immune to traffic analysis. 
The door-lock service, for example, can demand a certain level of authentication (QoP) for 
access to the locks. It can also request QoS parameters such as low latency for quick response 
times.

Secure services 

This layer uses middleboxes to provide access control, confidentiality, and integrity for services. 
Services can upload access policies into this layer. These access policies, along with system 
policies, could then control access to the services. The door-lock service could request the use of 
encryption and signatures to ensure the privacy and integrity of messages to the service.

Functionally, the middlebox network in Figure 2 acts as a cluster of reconfigurable computing 
and communication nodes. Clients can access services in our system only through the HESTIA 
layer. Servers create and install proxies on the middlebox network either proactively or 
reactively in response to client requests. These proxies provide a restricted view of service 
interfaces, corresponding to the requesting clients' authorizations. They can also implement the 
server's logic and dynamically offload the server's computations. The proxies also act as filters to 
enforce confidentiality and privacy concerns. In addition, the system can replicate these proxies 
for load balancing and fault tolerance, or it can form a customized network of them to provide 
QoS or virtual-private-network-style routing. The policy specifications drive the instantiation of 
proxy objects on middleboxes, and the inference engine can compose different functional and 
nonfunctional requirements to create customized service objects on demand. By defining the 
interfaces and rules for composition correctly, we can let the inference engine compose different 
protocols and functions using standard object composition techniques to provide differentiated 
services.

Our architecture's proxy objects are not persistent, and they maintain little global state 
information. Ideally, we'd like to migrate and restart proxies on any middlebox in our network 
with little overhead, but proxies can't be migrated to heavily loaded middleboxes. Therefore, we 
carefully designed the proxies to implement soft-state protocols. Even when a proxy is attacked 
and compromised, the damage is contained, and a new proxy can easily restart on a different 
middlebox. Proxies have little knowledge of other services and systems. This design aspect lets 
us build truly survivable network services which can continue to provide service guarantees 
and degrade gracefully under attack atop existing best-effort network service models.
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Implementation

We've implemented the network of middleboxes as an overlay network over the Transmission 
Control Protocol and Internet Protocol. We choose Prolog to act as an inference engine. We use 
CORBA as the major backbone for communication in our distributed system (www.corba.org). 
CORBA offers several services that are instrumental in implementing some of the needed 
functionality, including support for atomic transaction, persistent objects, and platform 
independence. Many CORBA implementations are heavyweight and might not be appropriate 
for implementing an overlay network. So, we're experimenting with the Universally 
Interoperable Core (UIC), which provides a lightweight, high-performance CORBA 
implementation.6 Every layer in our architecture has a broker that provides a CORBA Interface 
Definition Language interface so that services and users can access that layer's functionality.

Conclusion

HESTIA will open new frontiers in the design, development, and deployment of trusted CCI for 
buildings. The unique middlebox architecture's programmable, distributed, object-oriented 
framework is inherently survivable. HESTIA will significantly affect the adoption of CCI in 
buildings as diverse as hospitals, airports, offices, laboratories, and power plants. It will 
demonstrate that it's possible to deploy smart-building services without compromising privacy or 
critical safety, security, or survivability properties. It will also encourage new industries to build 
applications that exploit smart buildings. These might include ubiquitous services for users with 
disabilities; safety and rescue operations; sophisticated antitheft approaches; personal safety 
applications; communication, collaboration, and education services; and passenger information 
subsystems.
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Related Work

Several middleware platforms for distributed programming introduce metaprogramming 
extensions that provide functionality similar to middleboxes. CORBA provides portable 
interceptors,1 which let developers extend and control the object request broker's behavior. 
However, interceptors have limited capabilities and can reside only on the client and server 
sides, whereas we envision middleboxes to run on intermediate machines.

Java RMI introduced remote-method-invocation stubs for distributed objects.2 A stub is a remote 
reference to a distributed object that merely forwards all method calls to the target object.

Jini,3 and some CORBA implementations such as TAO (The Adaptive Communication 
Environment Object Request Broker),4 support smart proxies. A smart proxy resembles a stub, 
but it can provide additional features such as results caching, failover, and custom protocols to 
communicate back to the target object.
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Microsoft .NET Remoting supports constructs (RealProxy and TransparentProxy) similar to a 
smart proxy.5 Middleboxes also provide functionality similar to smart proxies. However, unlike 
typical smart-proxy frameworks, which create one proxy per client, HESTIA supports many-to-
many relationships between clients and middleboxes on the one hand, and between services and 
middleboxes on the other. For example, a middlebox can forward a client's request to one of 
many active services to achieve load balancing. For fault tolerance, HESTIA lets users 
dynamically create middleboxes on the fly, and it supports dynamic bindings between 
middleboxes and services as they become available. Furthermore, several mediators might be 
necessary to provide sufficient services. For example, anonymity might require communication 
channels to traverse several middleboxes in sequence to provide a better level of concealment. 
HESTIA 's network of middleboxes, along with its ability to dynamically replicate proxies, 
fulfills this need for multiple mediators.
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