
c© 2005 by Apu Chandrasen Kapadia. All rights reserved.

MODELS FOR PRIVACY IN UBIQUITOUS COMPUTING
ENVIRONMENTS

BY

APU CHANDRASEN KAPADIA

B.S., University of Illinois at Urbana-Champaign, 1998
M.S., University of Illinois at Urbana-Champaign, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

Abstract

This thesis addresses the discretionary privacy demands of users in heterogeneous
distributed systems such as ubiquitous computing environments. Because of the
physical proximity and pervasiveness of personal devices, sensors, actuators, and
other devices and services, ubiquitous computing environments need a powerful
infrastructure for coordinating accesses to these resources. However, this infras-
tructure makes it easy for malicious administrators to gain access to private infor-
mation of users. We present models for privacy of a user’s communication, unlink-
ability of a user’s accesses, and authorized policy feedback that is both useful and
privacy preserving. Our models expose the potential threats to a user’s privacy,
and allow users to express their individual and differing privacy demands based
on these threats. We show how a user’s privacy policies can be efficiently satisfied
under our models.

For secure and private communication, we present a model for trustworthy rout-
ing, with a policy specification language that is computationally efficient to en-
force. We show how quantitative trust models can be used to find trustworthy
paths of communication and explore various semantic models of trust. For the
unlinkability of a user’s accesses to services in a ubiquitous computing environ-
ment, we present a model based on access control and decentralized enforcement
of policy constraints. We prove that our solution is secure, and show how security
can be maintained by trading off precision for evolving protection state. Lastly, we
present a model called Know for providing feedback regarding access control deci-
sions to users. This model aims to make ubiquitous computing environments more
usable and secure, while honoring the privacy of other users in the system. Admin-
istrators can specify meta-policies to tailor feedback to individual users based on
perceived threat to the policy’s contents.

iii

To my parents
Who valued my education

Above all else

iv

Acknowledgments

I would like to thank the many people who have helped me during my career as a
“professional student.”

My advisor, Roy H. Campbell, for taking me under his wing while I was a young
undergraduate student and stimulating my interest in research. For countless hours
of memorable and thought-provoking discussions, and for his never-ending flow
of ideas. And lastly, for always giving me the freedom to explore new and exciting
research directions of my choosing.

The Department of Energy and the people at Krell for granting me the four year
High-Performance Computer Science Fellowship, supported by Los Alamos Na-
tional Laboratory, Lawrence Livermore National Laboratory, and Sandia National
Laboratories. This fellowship funded my work on several interesting research
projects and I am truly grateful for their support.

My committee members. Mahesh Viswanathan, who helped me refine and en-
hance my proposed models. Marianne Winslett and William H. Sanders for their
insightful suggestions and feedback.

Anda Ohlsson for her invaluable help with administrative issues.

Chandra Chekuri, John Fischer, Sariel Har-Peled, Viraj Kumar, Kevin Milans, Shri-
pad Thite, and Erin Wolf for helping me with several theoretical aspects of my
thesis. Eyal Amir, Jodie Boyer, Susan Hinrichs, Kiran Lakkaraju, Adam Lee, Suvda
Myagmar, Vasin Punyakanok, Anand Ranganathan, Nick Rizzolo, Cigdem Sengul,
Samarth Swarup, and Dav Zimak for their helpful suggestions. Vijay Gupta, for his
early advice on classes and graduate school. Wu-chun Feng, for mentoring me over
two summer internships at Los Alamos National Laboratory, and for introducing
me to networking research and the mountains of New Mexico and Colorado.

Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane, and Seung Yi, my dear
friends and colleagues at the Systems Software Research Group for endless hours
of animated and enriching discussions.

My wife, Phoebe Wolfskill, for her support and encouragement through all the
phases of graduate school, for pampering me during the final months leading up

v

to my defense, and for her immense love that is far beyond what I had ever hoped
for.

My father, Sen Kapadia, for emphasizing values and aesthetics that have shaped
my personality, for his enthusiasm for higher education that has carried me this
far, and for his sense of humor that has taught me to enjoy life without a “sense of
tumor.”

My mother, Asha Kapadia, for her deep involvement in my education, for her un-
conditional and abundant love, for her selfless generosity to me and others, and for
her undying support for anything I have ever wished to achieve or accomplish.

vi

Table of Contents

List of Figures . x

List of Abbreviations . xi

1 Introduction . 1

2 Background and Related Work . 5
2.1 Ubiquitous computing . 5

2.1.1 Smart spaces . 5
2.1.2 Meta-operating system . 6
2.1.3 Context . 6
2.1.4 Infrastructure . 7

2.2 Privacy . 7
2.2.1 Anonymity . 7
2.2.2 Unlinkability . 8
2.2.3 Unobservability . 8
2.2.4 Pseudonymity . 9
2.2.5 Confidentiality . 9
2.2.6 Degree of anonymity . 10
2.2.7 Threat . 10

2.3 Protocols for communication privacy 11
2.3.1 Crowds . 11
2.3.2 Mixes . 12
2.3.3 Onion . 12
2.3.4 Other protocols . 13

2.4 Mist . 13
2.4.1 Location privacy . 13
2.4.2 Lighthouses . 13
2.4.3 Hierarchy of routers . 14
2.4.4 A distributed approach . 15

2.5 Trustworthy computing . 15
2.6 Unlinkability of access transactions . 17
2.7 Policy protection . 19

3 Problem Statement and Thesis . 21
3.1 Problem statement . 21
3.2 Thesis . 21

3.2.1 Communication privacy and trustworthy routing 22
3.2.2 Audit-log unlinkability . 23

vii

3.2.3 Privacy-preserving feedback 23
3.3 Success criteria . 24

4 Routing with Confidence . 26
4.1 Policy Based Networking . 26
4.2 Approach . 27
4.3 Overview . 27
4.4 Assumptions . 28
4.5 Solution technique . 29

4.5.1 Attributes . 30
4.5.2 Trust negotiation . 31
4.5.3 Routing model . 32

4.6 Path specification . 33
4.6.1 Global or invariance properties 35
4.6.2 Response properties . 35
4.6.3 Link and precedence properties 35
4.6.4 Adding variables . 36
4.6.5 Policy language . 37
4.6.6 Graph transformation . 39

4.7 Trust model . 40
4.7.1 Trusted paths . 41
4.7.2 Multiplicative combiners . 42
4.7.3 Additive combiners . 44
4.7.4 Weakest link . 45
4.7.5 Average combiners . 45
4.7.6 Minimum variance . 47
4.7.7 Approximation . 48
4.7.8 Measurement . 48

4.8 Multiple combiners . 48
4.8.1 Unifying multiple attributes . 49
4.8.2 Visit k distinct nodes . 50
4.8.3 Scoped minimum average cost 56
4.8.4 Dealing with hardness . 58

4.9 Applications . 59
4.9.1 High performance and military environments 59
4.9.2 Ubiquitous computing . 60
4.9.3 Peer-to-peer overlay networks 61

4.10 Summary . 61

5 Unlinkability through Access Control . 63
5.1 Introduction . 63
5.2 Architecture . 67
5.3 Approach . 69

5.3.1 Notation . 71
5.3.2 Audit Flow Graph . 71
5.3.3 Session Graph . 75
5.3.4 Specifying discretionary policies 77
5.3.5 Generating and enforcing policy constraints 77

viii

5.3.6 Open-ended sessions . 79
5.3.7 Mandatory audit flows . 80

5.4 Security under weak tranquility . 81
5.5 Summary . 84

6 Know Why Your Access Was Denied . 86
6.1 Introduction . 86
6.2 Background . 89
6.3 Architecture . 91

6.3.1 Cost functions . 96
6.3.2 Meta-policies . 98
6.3.3 A useful cost function . 99

6.4 Implementation . 100
6.4.1 Evaluation . 100

6.5 Discussion . 104
6.6 Summary . 107

7 Conclusions . 109
7.1 Conclusions . 109
7.2 Summary of contributions . 110
7.3 Future Research . 112

References . 114

Author’s Biography . 123

ix

List of Figures

4.1 Architecture Overview . 29
4.2 Military network example . 62

5.1 System Architecture . 67
5.2 Session Graph . 72
5.3 AURA Graph example . 74

6.1 Example OBDDs for a ∨ (b ∧ c) . 90
6.2 Policy for Example 1 . 92
6.3 OBDDs for the examples . 94
6.4 Policy for Example 2 . 95
6.5 Example policy used for evaluation . 102

x

List of Abbreviations

API Application Programming Interface

BGP Border Gateway Protocol

CA Certificate Authority

CLTL Constraint Linear Temporal Logic

COI Conflict of Interest

CORBA Common Object Request Broker Architecture

DAC Discretionary Access Control

DHCP Dynamic Host Configuration Protocol

DoS Denial of Service

DDoS Distributed Denial of Service

FTA Fault Tree Analysis

ID Identity

IDS Intrusion Detection System

IOI Item of Interest

IW Inference Web

LTL Linear Temporal Logic

MAC Mandatory Access Control

MLS Multi Level Security

MPLS Multiprotocol Label Switching

NAT Network Address Translator

OBDD Ordered Binary Decision Diagram

PBN Policy Based Network/Networking

PDA Personal Digital Assistant

PDP Policy Decision Point

PEP Policy Enforcement Point

xi

PKI Public Key Infrastructure

PNS Policy Negotiation Server

PRA Permission Role Assignment

QoP Quality of Protection

QoS Quality of Service

RBAC Role-Based Access Control

RFID Radio Frequency Identification

SCC Strongly Connected Component

SoD Separation of Duty

URA User Role Assignment

VPN Virtual Private Network

xii

1 Introduction

This thesis addresses the discretionary security and privacy demands of users in
heterogeneous distributed systems such as ubiquitous computing environments. The
goal of ubiquitous computing is to blend the computational or virtual environment
into the everyday physical environment and to provide a mechanism for the seam-
less interaction between the human and the ubiquitous computing environment.
Because of the physical proximity and pervasiveness of heterogeneous personal
devices, sensors, actuators, and other devices and services, ubiquitous computing
environments need a powerful infrastructure for coordinating accesses to these re-
sources.

Gaia [RHC+02], a part of the Active Spaces project at the University of Illinois, is
a “meta” operating system that provides application developers with a uniform
middleware abstraction to the ubiquitous computing environment. In addition,
Gaia provides infrastructure services for naming and context, security services
such as authentication, and access control [SNC02]. This provides a new paradigm
of application programming. For example, sensors and actuators can detect and
respond to contextual information such as a user’s location in the environment,
allowing the system to automatically configure the space to the user’s preferences.

While ubiquitous computing systems are designed to boost the productivity of its
users, the high level of coordination and control in the environment poses a threat
to the privacy of its users. For example, the system can be used to track a user’s
movements throughout the ubiquitous computing environment, exposing the loca-
tion privacy of its users. Furthermore, various services store audit-log information,
which can be correlated to further expose the privacy of a user’s system usage pat-
terns. The recently built Siebel Center for Computer Science at the University of
Illinois is an example of a ubiquitous computing environment, where the physical
security of spaces is provided by electronic card readers, lights are controlled by
motion sensors, doors are fitted with sensors to register “open” and “close” events,
video cameras monitor public spaces, and so on. It is easy to see the privacy impli-
cations of such a system, which in effect is a distributed surveillance system if the
right precautions are not taken. To provide users with privacy, proper care must
be taken with the storage and dissemination of audit information. Furthermore,

1

since ubiquitous computing environments such as Siebel Center are controlled by
a single organization, care must be taken so that individual administrators in the
organization cannot expose the privacy of the system’s users.

We address the problem of user privacy in ubiquitous environments at three lev-
els: location privacy and trustworthy communication, unlinkability of access trans-
actions, and policy protection for access control feedback. In earlier work, we
proposed a routing infrastructure for ubiquitous computing environments called
Mist [AMCK+02] to provide users with location privacy. Using Mist a user can
access services in the ubiquitous computing environment through a remote proxy
called a Lighthouse. Lighthouses were arranged in a hierarchy such that the Light-
house chosen represented a tradeoff between the granularity of location privacy
and the latency of communication. Mist was the first comprehensive system built
for ubiquitous computing environments that addressed location privacy. In our
efforts to improve Mist by replacing the static hierarchy of Lighthouses with a dis-
tributed network of heterogeneous routing elements, we realized that applying
anonymous routing solutions such as Crowds [RR98] and Onion [RSG98] were in-
adequate within an organizational setting. While these solutions may be effective
in widely distributed environments such as the Internet where routers can be as-
sumed to be independent entities, at the scale of an organization they fail to provide
protection against administrators who may have access to several, if not all, routers
participating in the anonymizing network. At such scales, trust relationships must
be exposed to users.

Our main observation was that routing elements in a heterogeneous network will
have several attributes such as domain ID, administrator, physical security, OS
version, and attack history. In Chapter 4 we present a trustworthy communica-
tion model that allows users to specify richer privacy requirements than the one-
dimensional (quantitative) anonymity provided by other solutions. This provides
users with more flexibility for their individual privacy demands based on per-
ceived threat. For example, a user may choose to exclude routers from a particular
domain, include only those routers with certified high physical security, exclude
intermediate wireless links, and optimize paths based on quantitative metrics of
trust, which we call “confidence.” One of the main contributions of this thesis is
a formal model that includes a representation of the network elements and their
attributes, a language for specifying qualitative discretionary privacy policies of
communication paths, a quantitative model for representing threat or trust, and
efficient algorithms for computing paths based on these qualitative and quantita-
tive specifications. We call this model “Routing with Confidence” and explore the
boundaries of what demands are feasible for trustworthy routing and show that

2

several demands of interest are computationally hard. We contribute several NP-
hardness results in this regard.

The next aspect of privacy that we look at is the unlinkability of access transactions
by users in a ubiquitous computing environment. Using our model of secure rout-
ing, a user can be confident about the privacy of his or her individual accesses to
services. However, anonymizing and secure routing protocols are not sufficient for
providing “unlinkability.” Using timing information, for example, multiple anony-
mous accesses to various services can be linked to the same user, even if the user’s
identity is unknown. Suitable semantic analysis of the linked transactions could
be used to expose the actual identity of the user. In Chapter 5 we present a model
for achieving unlinkability through access control. Unlike other approaches based
on cryptography or traditional separation of duty policies, we address the problem
of restricting access to related audit logs or their replicas without requiring express
coordination between the distributed audit log databases. These audit logs may
require the storage of linkable information, and cryptographic mechanisms would
be too restrictive or cumbersome. We evaluate our approach by proving security
and precision properties of our access control model and show how versioning can
be used to trade precision for evolution in protection state. We also evaluate the
computational complexity of our approach.

Finally, in Chapter 6 we address privacy-preserving feedback about access con-
trol policies. At various points in ubiquitous computing environments, and our
proposed models, users must present credentials to the system to gain access to
resources. However, access control in ubiquitous computing environments is es-
pecially tricky because policies include contextual information. Having access to
resources depends not only on the user’s set of credentials, but also on context
variables in the system such as temperature, and the presence of other users in
the room. In such a system, it becomes necessary to provide users with feedback
if access to a resource is denied. This promotes a more usable system, leading to
stronger overall security. However, giving unrestricted feedback to users about
system security policies can adversely affect the privacy of other users in the sys-
tem. For example, telling a malicious outsider that only members of the CIA may
use a particular room violates the privacy of CIA operatives. Providing users with
useful and authorized feedback on access control decisions has not been addressed
in the past. Our framework called Know, uses “meta-policies” to control feedback
based on the user’s credentials, and cost functions to rate feedback based on how
useful it is to the user. We evaluate two specific cost functions and the complexity
of our approach.

In summary, this thesis addresses the privacy demands of users in ubiquitous com-

3

puting environments by providing qualitative and quantitative models that allow
users and administrators to tune privacy parameters within the system based on
perceived threat.

4

2 Background and Related Work

In this chapter we present background material on ubiquitous computing envi-
ronments and privacy terminology. We then address related work in security and
privacy aware routing protocols, unlinkability, and policy protection.

2.1 Ubiquitous computing

The goal of ubiquitous computing is to blend the computational or virtual envi-
ronment into the everyday physical environment and to provide a mechanism for
the seamless interaction between the human and the ubiquitous computing envi-
ronment thereby boosting the productivity of its users. Because of the physical
proximity and pervasiveness of heterogeneous personal devices, sensors, actua-
tors, and other devices and services, ubiquitous computing is also referred to as
pervasive computing. Ubiquitous computing is a broad concept, encompassing mo-
bile phone applications interacting with various services over the phone network,
the use of personal digital assistants (PDAs) at supermarkets to get information
about products advertised through RFID, smart spaces or smart rooms that feature
space applications to cater to users or collaborative groups, and so on.

The Active Spaces project at the University of Illinois is an example of smart spaces
in ubiquitous computing [RHC+02]. This thesis focuses on ubiquitous comput-
ing environments of this nature. Other examples of such environments include
MIT’s Project Oxygen [oxy], Carnegie Melon University’s Project Aura [GSSS02],
and Stanford’s Interactive Workspaces Project [JFW02b]. We now present the rel-
evant properties of these ubiquitous computing environments (with specific refer-
ences to Gaia), which we will broadly refer to as smart spaces.

2.1.1 Smart spaces

We focus on ubiquitous computing environments that aim to provide a software in-
frastructure for managing devices, sensors, actuators, and other services for physi-
cally bounded regions such as offices, homes, and conference rooms. Smart spaces

5

are ubiquitous computing “habitats” meant to aid users in a tightly-knit physical
and virtual environment. We will refer to smart spaces as “active spaces.”

Likewise, we focus on organizational settings, where a “smart building” such as
the Siebel Center for Computer Science at the University of Illinois is a federation
of active spaces, also referred to as “super spaces” [AMCRC04].

2.1.2 Meta-operating system

Since active and super spaces are composed of heterogeneous services and devices
(including embedded devices) with various operating systems, a uniform middle-
ware abstraction enables the seamless integration of such devices and services.
Gaia OS [RHC+02] is an example of a middleware “meta-operating system,” which
can be installed on a multitude of devices and their operating systems, and allows
their integration into the active space. Like a traditional operating system for a
single computer, Gaia allows application developers to view an active space as a
single programmable entity with uniform APIs (Application Programming Inter-
faces).

Gaia manages resources within an active space and provides services for naming,
location, context, event management, service discovery, and a context-aware file
system.

2.1.3 Context

Central to the idea of ubiquitous computing is the use of contextual information
to drive applications. For example, the current activity in the room can offer hints
to applications, which can tune their behavior to the specific events in the active
space. Location information can be used to detect users in an active space, and sen-
sors can detect temperature changes. Gaia can use this context to react to changes
in the environment, and ultimately react to the needs of its users.

One of the key issues that we discuss in this thesis relates to access control policies
based on context variables. Such access control policies offer new challenges in
ubiquitous computing environments, where access depends on context in addition
to credentials.

6

2.1.4 Infrastructure

Ubiquitous computing environments feature a meta-operating system along with
several infrastructure services. In an organization, applications can assume a uni-
form abstraction for communication, coordination, access control, and data stor-
age. In terms of security, applications can specify quality of protection for commu-
nication, security policies can be uniformly enforced across the organization, and it
is assumed that security can be tightly managed in such a distributed setting. This
thesis provides models for security in such environments. In contrast, traditional
distributed systems such as organizational networks cannot rely on a common set
of security protocols in an organization. For example, different research groups in
a department manage their own local networks, which are part of the larger de-
partmental network. Attaching security policies to data is not sufficient for access
control since other machines on the network are not guaranteed to enforce these
policies. Active or super spaces give us the ability to control resource accesses
throughout the organization, while retaining local control for individual space ad-
ministrators. We will build upon and rely on this infrastructure in the models we
propose.

2.2 Privacy

There are several notions of privacy in computing environments. We now intro-
duce the standard properties of privacy and their definitions as stated in [P+04],
which includes detailed explanations of each property. Consider a communica-
tion network with the set of senders S, receivers R, and messages M . Senders and
receivers have locations in L.

2.2.1 Anonymity

Definition 1. Anonymity is the state of being not identifiable within a set of subjects, the
anonymity set.

The type of anonymity depends on the particular situation.

Sender Anonymity: A sender s ∈ S may be anonymous within the set of potential
senders S.

Receiver Anonymity: A receiver r ∈ R may be anonymous within the set of potential
receivers R.

7

We introduce the notion of location anonymity or location privacy.

Location Anonymity: The location of a subject (sender or receiver) is anonymous
within the set of potential locations L. We also refer to this property as Location
Privacy.

2.2.2 Unlinkability

Definition 2. Unlinkability of two or more “Items of Interest (IOIs)” (e.g., subjects,
messages, events, actions, etc.) means that within this system, these items are no more and
no less related than they were related considering a-priori knowledge.

For example, anonymity can be defined in terms of unlinkability. Here the IOIs are
messages and subjects.

Sender Anonymity: A particular message m is not linkable to any sender, and that
to a particular sender s, no message is linkable.

Receiver Anonymity: A particular message m is not linkable to any receiver, and that
to a particular receiver s, no message is linkable.

Location Anonymity: Neither the identity of a particular subject, nor any message
can be linkable with the location of the subject.

Sender-receiver unlinkability: If two parties a and b are communicating with each
other, then it cannot be deduced that a and b are communicating with each other.
This is also referred to as “anonymous connections” in the literature.

2.2.3 Unobservability

Definition 3. Unobservability is the state of IOIs being indistinguishable from any IOI
at all.

This implies that messages are not discernible from random noise.

Sender Unobservability: It is not noticeable whether any sender within the unobserv-
ability set S sends.

Receiver Unobservability: It is not noticeable whether any receiver within the unob-
servability set S receives.

We discuss several protocols that provide anonymity and location privacy for sub-
jects. However, sufficiently powerful attackers may be able to observe when a par-
ticular sender is sending messages. Likewise, if the attacker can observe a receiver

8

receiving messages, the timing correlation might expose the fact that a sender and
receiver are communicating with each other, exposing their privacy. To hide the
fact that the senders and receivers are sending and receiving messages at all is usu-
ally accomplished by additional cover traffic, also called dummy traffic. If all senders
and receivers send messages (legitimate traffic and cover traffic) at regular inter-
vals, the attackers are not able to distinguish legitimate messages from dummy
messages. Such approaches add the unobservability property to anonymous rout-
ing mechanisms.

2.2.4 Pseudonymity

Definition 4. Being pseudonymous is the state of using a pseudonym as the identity.
Pseudonymity is the use of pseudonyms as IDs.

Pseudonyms are identifiers of subjects. For example, Alice may use the pseudonym
“WonderWoman” and hence Alice’s true identity is not readily identifiable within
the system.

Pseudonymity is used in systems where users are given a limited form of anonymity
by keeping their actions and pseudonym linkable to their identity. For example,
if WonderWoman accesses two different resources, the audit logs can be used to
link these two accesses. Furthermore, Alice’s true identity can be linked to her
pseudonym in cases of system abuse or legal subpoenas. Hence pseudonymity
is an important means to offering privacy to users, yet retaining some degree of
accountability of its users’ actions.

Examples of pseudonymity include email addresses issued by companies such as
Hotmail [hot], which require a credit card to establish an email account (pseudonym).
In case of abuse, the user can be held accountable for his/her actions.

In addition to these four properties defined in [P+04], we now discuss the more
traditional notion of confidentiality of personal information.

2.2.5 Confidentiality

In security, confidentiality refers to the concealment of information or resources [Bis03].
For example, a company may want to protect trade secrets from its competitors, or
a group of users may want to work on a document that cannot be read by people
outside the group. Gaining such confidentiality for information can be achieved in
a variety of ways. A security policy specifies the confidentiality requirements, and

9

suitable mechanisms such as access control or cryptography can be used to ensure
the confidentiality of data.

In the context of privacy, users are interested in concealing personal information
such as their social security number, credit card information, location information,
and what resources they can access. A ubiquitous computing environment is per-
vasive by definition and personal information about users is gathered throughout
the environment. Proper care must be taken to maintain the privacy of the user by
keeping personal information confidential.

2.2.6 Degree of anonymity

Reiter et al. [RR98] introduce terms that address the degree of anonymity between
sender-unobservability and provably exposed, i.e., when a sender is known to be
the originator. For example, the definitions presented for unlinkability assume a
stronger notion of anonymity, where two IOIs are “no more or no less” related
than they were a-priori. However, this notion of indistinguishability may be too
strong. In certain cases, it may be sufficient to create “reasonable doubt” about
the IOIs. Along these lines, Reiter et al. use the following terminology for sender-
anonymity: beyond suspicion means that the sender is no more likely to be the sender
of an observed message than any other sender in S. In other words, the probability
that any s ∈ S is the sender is 1

|S| . Probable innocence is when a sender s appears to
be no more likely to be the originator than to not be the originator. In other words,
the probability that s is the sender is less than 1

2 . And finally possible innocence
refers to the case when there is a non-trivial probability that a sender s is not the
originator.

2.2.7 Threat

Definition 5. A threat is a potential violation of a user’s privacy.

For example, the fact that administrators can access Alice’s personal information
is a threat to her privacy with respect to confidentiality. Administrators that can
piece together router logs to expose Alice’s communication path is a threat to her
anonymity. These threats do not have to be realized since they are potential viola-
tions of privacy. Actual violations are called attacks. In this thesis, we will present
models that allow users to specify privacy policies based on their own perceived
threats in the system. Indeed, Alice may consider an unfriendly administrator Eve
to be a threat to her privacy, but Charlie, who is Eve’s close friend, may not. Hence,
in the remainder of this thesis, it is important to keep in mind that each user will

10

have different notions of threats to their privacy, and adequate models are needed
to express such threats, and prevent attacks on a user’s privacy.

2.3 Protocols for communication privacy

While very little attention has been paid to communication privacy in ubiquitous
computing environments, there has been a substantial amount of research on anony-
mous communication for the Internet. These protocols aim to provide sender-
anonymity, and some approaches also attempt to provide sender-unobservability
through cover traffic. We discuss some of the important work in Internet anony-
mous routing such as Crowds [RR98], Mix networks [Cha81] and Onion [RSG98]
routing, and then introduce Mist [AMCK+02], which we developed at the Univer-
sity of Illinois specifically for location privacy in ubiquitous computing environ-
ments.

2.3.1 Crowds

Even though Crowds [RR98] was originally designed for the anonymity of web
transactions, the underlying principle is applicable to anonymous routing in gen-
eral. Consider the set of senders S, also referred to as a “crowd.” Messages orig-
inating from a sender s are forwarded randomly within the crowd and eventu-
ally forwarded to the receiver. From the receiver’s point of view, each sender is
equally likely to be the originator of the message, giving the sender a high degree
of anonymity, i.e., the sender-anonymity is “beyond suspicion.”

In Crowds, each participant is called a jondo. The originator of a message picks
a jondo from the crowd (possibly itself) and forwards the request to the selected
jondo. At each stage, the request is propagated within the crowd with probabil-
ity p or sent directly to the server (receiver) with probability 1 − p. The parameter
p is assumed to be constant within the crowd, and influences the average path
length between the sender and receiver. Using this simple forwarding scheme, one
can show that senders have sender-anonymity beyond suspicion with respect to
the receivers. Furthermore, Reiter et al. show that the sender has probable in-
nocence against malicious collaborating jondos for sufficiently large crowd sizes.
This is proved using the parameter c, which is the fraction of compromised nodes
in the crowd. As we will argue later, this assumption may be reasonable in widely
dispersed crowds where routers can be assumed to be independent entities, but
does not necessarily hold for crowds in smaller geographic locations, e.g., within a
building.

11

2.3.2 Mixes

Chaum [Cha81] proposed an anonymous remailing scheme based on the concept
of “mixing.” Mail relays in the Mix network would receive emails, and reorder
outgoing emails to break the association between incoming and outgoing emails.
This was meant to foil traffic analysis by adversaries observing traffic entering and
leaving the mail relays. Email messages were encrypted several times to encode
the path of remailers. We discuss this technique in more detail in the next section
on onion routing. The main contribution of Mix networks was to provide a scheme
for sender-anonymity that aimed to resist traffic analysis.

2.3.3 Onion

Reed et al. [RSG98] describe an onion routing system meant to establish two-way
anonymous communication channels. An “onion packet” contains a message using
several layers of encryption. Each router that receives an onion packet can decrypt
(or “peel off”) the outermost layer of encryption, yielding the identity of the next
router in the path chosen by the sender, and an onion packet to be forwarded to
the next router containing the rest of the path. The main idea is that each router
only knows the previous and next routers of a communication path, providing
an anonymous connection between the sender and receiver. Onion routing is an
important building block for establishing secure routes of communication since
the routers along the path are oblivious to the sending and receiving parties.

Camenisch and Lysyanskaya [CL05] give a formal description of onion routing and
provide a provably secure scheme for onion routing. They provide a scheme that
satisfies the following properties:

Onion-correctness: If an onion packet is formed correctly and if the correct routers
process it in the correct order, then the correct message is received by the last router.

Onion-integrity: Even for an onion created by an adversary, the path is of length at
most N , where N is a well-known parameter in the network.

Onion-security: This property intuitively states that consecutive adversarial routers
must eventually deliver a valid onion to an honest router along the path if there is
one, and not learn the contents of the message. Otherwise, if there are no honest
routers along the path, then the receiver is also adversarial, and the adversarial
routers are assumed to have access to the message.

Based on these properties, Camenisch and Lysyanskaya provide an onion rout-
ing scheme that satisfies these properties. We will assume a secure onion routing

12

scheme in the rest of this thesis.

2.3.4 Other protocols

The approaches we presented above were application layer solutions. For exam-
ple, Chaum’s Mixes addressed email services and Crowds addressed web transac-
tions, Tarzan [FM02], however, proposed a system at the IP-layer such that anony-
mous senders could interact with any Internet related service. Routing through
the Tarzan network terminated at a NAT (network address translator) to bridge
between Tarzan routers and regular Internet hosts. Tarzan includes an efficient
cover traffic scheme to prevent traffic analysis, and is a peer-to-peer approach like
Crowds. Systems such as Onion and Chaum’s Mixes suffer from the drawback that
the first node contacted in the anonymizing network knows the originator of the
message, by virtue of the originator not being part of the anonymizing network.
Assuming a peer-to-peer environment solves this problem.

2.4 Mist

The protocols mentioned above were mainly focused towards providing sender
and/or receiver anonymity. It is assumed that the parties communicating want
to do so anonymously without revealing their identities, where the location and
identity of the person were considered “synonymous.”

2.4.1 Location privacy

The main contribution of Mist [AMCK+02], developed at the University of Illinois,
was to recognize and separate the two pieces of identity. In ubiquitous environ-
ments, users want to interact with services and other users with their disclosed
identities, e.g., Alice and Bob, and are mainly concerned about their location pri-
vacy. Hence a system is required whereby users are available (or reachable) for
communication in the system while their locations are hidden. How can one pro-
vide such a service to its users? The following research on Mist was conducted in
collaboration with Jalal Al-Muhtadi, Prasad Naldurg, Luke St. Clair, and Seung Yi.

2.4.2 Lighthouses

To solve the location privacy problem and allow users to be reachable for com-
munication, Mist introduced the concept of Lighthouses that served as communica-

13

tion points for users. This is similar in concept to the NAT endpoints in Tarzan.
For example, Alice can register with a Lighthouse through an anonymous channel
and make herself available for communication “in the mist.” When Bob wants
to contact Alice, Bob can communicate with her through her Lighthouse. Like
with Onion, each Mist Router along the path from Alice to her Lighthouse only
knows the previous and next hops. Hence, Alice’s Lighthouse can route traffic to
Alice without knowing her location. In effect, Alice chooses not to have sender-
anonymity, but instead location anonymity (or location privacy). Note that Alice
can choose not to disclose her name, and and use a pseudonym to register with
her Lighthouse. In this case, Alice will have pseudonymity in addition to location
privacy.

2.4.3 Hierarchy of routers

Mist Routers are arranged in a hierarchy based on geographic location. For ex-
ample, Mist Routers corresponding to rooms will be the leaves of the routing tree,
with floor Mist Routers one level higher, followed by departmental routers, and
so on. A user Alice registers with a leaf Mist Router (a Portal). With the use of
a carefully constructed packet, Alice can register with a Lighthouse “above” her
Portal. Depending on her privacy needs, she can register with a Lighthouse higher
or lower in the hierarchy, giving her more or less privacy respectively. In effect,
Alice can pick the granularity of the geographic region in which her location is
advertised. However, registering with a Lighthouse higher in the hierarchy will
mean more hops of communication and higher latency in her routing, trading off
communication efficiency for privacy.

The advantages of this approach are that the hierarchy is a simple and intuitive rep-
resentation of spaces within a ubiquitous environment. Maintaining this hierarchy
does not require special algorithms to maintain connectivity since the hierarchy is
static. However, this also means that the routing infrastructure is not resilient to
node or link failures, which can break the hierarchy and hence the routing proto-
col. Furthermore, all users who pick a certain region, e.g., First Floor, will impose a
bottleneck at the First Floor Lighthouse. Lastly, Portals are inherently aware of the
initiators of communication and can collude with Lighthouses to link the identity
and location of a user.

14

2.4.4 A distributed approach

To tackle these problems, we proposed a distributed version of Mist. The main idea
was to retain the idea of Lighthouses and to use an Onion like approach for select-
ing routers in the path to the Lighthouse corresponding to a geographic region. We
assume that every participant is aware of the pool of available routers and their
geographic locations. Furthermore, using a peer-to-peer approach solves the prob-
lem of forcing users to connect through portals. To give an example in the Internet
setting, a user that wants to be hidden in the state of Illinois can pick routers that
are within Illinois, whereas a user that wants a higher level of privacy can choose
routers within the United States of America. The understanding is that a higher
level of privacy will result in higher communication latencies, thus trading latency
for privacy. There are several assumptions here: what if the routers selected within
the United States of America are all within the city of Urbana? It is possible to have
much less privacy than originally intended. This influences path selection. Picking
routers uniformly at random from a set of routers is not sufficient. Now consider
ubiquitous environments such as smart buildings. Picking five routers on the same
floor may be scattered widely at the floor level, but might still be administered
by the same person. Users should be able to constrain router selection and avoid
certain routers if those routers are not “trusted.” What should the user base trust
on? What language can the user use to specify properties of paths? Are paths that
satisfy such properties feasible to calculate? These are the questions that inspired
our work in Chapter 4, which addresses the topic of “routing with confidence.”

2.5 Trustworthy computing

“Trust” relates to the degree to which a user believes a certain property to be true.
In security, we are interested in security properties such as resilience to attack –
“can I trust this system to be virus-free?” or certificate validation – Alice may trust
Bob’s digital certificate of identity issued by Verisign [ver], but not one issued by
some other user Charlie. As defined in [Bis03], an entity is trustworthy if there is
sufficient credible evidence leading one to believe that the system will meet a set of
given requirements. Trust is a measure of trustworthiness, relying on the evidence
provided.

If trust is a numerical measure of trustworthiness, deeming a system as trustworthy
may be based on a threshold of some trust value, or simply the system with the
highest trust value is deemed to be most trustworthy. In this thesis we refer to this
quantitative notion of trust as “confidence” or “diffidence” as the case may be. In

15

some cases it is useful to measure positive attributes of trust, e.g., reputation based
systems. We refer to these positive measures as “confidence.” Likewise, it is also
useful to collect negative reports on behavior, e.g., intrusion detection reports. We
refer to these values as “diffidence” values. We will refer to the trustworthiness of
a route as its “Quality of Protection (QoP).”

We now discuss some general approaches towards trustworthy networking. Yi
et al. [YNK01] propose the notion of secure routing for ad-hoc military environ-
ments. While their work focused on ad-hoc wireless routing environments and the
specific credentials of the users and group key management, we present a gener-
alized model based on different types of attributes of users and routers, and trust
assumptions between these entities. For example, Yi et al. propose a mechanism
whereby a certain group of individuals can encrypt data with the group key and
avoid communicating through nodes outside the group. We present a generalized
approach in which route selection can depend on several attributes and mathemat-
ical relations on links and routers. While Yi et al. perform route selection using
broadcast messages, in our approach communication endpoints are given a graph
of the network, and can compute routes based on policies that are not revealed to
routers, even when the routers are part of the communication path. Finally, our
model also incorporates a quantitative measure of trustworthiness of routes that
are complementary to the qualitative routing policies based on attributes.

It is also worthwhile to address some of the research in multimedia, which attempts
to find paths that satisfy “Quality of Service (QoS)” requirements, much like find-
ing trustworthy routes with high QoP. Routing schemes have been proposed for
some discretionary requirements such as bandwidth and latency. Resilient Over-
lay Networks (RON) [ABKM01] have been proposed to discover higher bandwidth
(or lower latency) routes on the Internet by attempting to circumvent the standard
underlying BGP policies. Selfish Routing [QYZS03] examines the effects of non-
cooperative routing on the overall performance of the network and proposes algo-
rithms that minimize the cost of selfish routing. Salsano and Veltri [SV02] describe
a method to incorporate RSVP [ZDE+93] in Policy Based Networks (PBN), where
clients can specify QoS demands for their route. Constraint Based Routing (CBR)
in Multiprotocol Label Switching (MPLS) [J+02] allows clients to specify certain
constraints (again, concentrating on QoS). The network then computes paths for
the clients based on these constraints.

We address discretionary security requirements of users that desire a higher Qual-
ity of Protection (QoP) rather than a higher Quality of Service (QoS). Moreover,
clients do not have the ability to keep their policies private in the QoS protocols,
and must be disclosed to the network for admission control. We present a model

16

that keeps the user’s privacy policies secret from the routers.

Trust depends on the property in question. One of our motivating factors was
privacy protocols such as Crowds and Onion mentioned earlier. Users may be
interested in setting up routes that preserve their privacy, in terms of location
anonymity or identity anonymity. A user may desire a trustworthy route that is
likely to preserve the user’s anonymity. Our model enables users to set up routes
through routers in a way that does not compromise their privacy, leveraging on
our experience with Mist. Users can specify trust attributes to avoid certain nodes
and prefer some routes over others, rather than relying on the system to make
anonymous routing decisions. This system resembles Onion routing, except that
we address the route selection phase, which is done prior to route setup. As with
Mist, this route will be used to connect to a Lighthouse and facilitate location pri-
vacy in ubiquitous computing environments, which allows users to be reachable
through their Lighthouses.

2.6 Unlinkability of access transactions

Private access to services in a ubiquitous computing environment goes beyond
anonymity. A user may want to ensure that multiple audit log records cannot be
collectively analyzed to “link” the user’s transactions together. A user may want
this to be true even when anonymity is not required, so that an administrator can-
not learn the user’s access patterns. We now present related research in the con-
text of ensuring unlinkability across different access transactions within a session.
Research on unlinkability in the past has mostly focused on cryptographic mecha-
nisms for anonymous authorization.

We first examine different cryptographic techniques that allow a user to disclose
only those attributes that are strictly necessary for a given access transaction. One
of the first proposals in this direction is the work by Brands [Bra00], where he
proposes a certificate system that gives a user control over what is known about the
attributes of his or her certificate (or authorizations), and can prove their possession
using zero-knowledge protocols. However, with this scheme a user who presents
the same certificate twice can be linked across his or her sessions with the same
server, even though the attributes are still hidden.

Other researchers have explored the construction of credential systems that satisfy
the multi-show property whereby the owner of a certificate can construct two or
more credentials with the same attributes that are unlinkable[Ver01; PV03]. The
construction of anonymous credentials presented by Chaum in [CE86] relies on in-

17

teraction with a trusted third party for unlinkability. Camenisch, Lysyanskaya et
al. [CL01; LRSW99] extend this unlinkability based on computational zero-knowledge
proofs, and the credential system proposed in [PV03] defines what the authors call
Chameleon certificates that provide a user complete control over the amount of
information revealed as well as computational zero-knowledge proofs for unlink-
ability of credentials, provided these credentials can be encoded as linear Boolean
formulas.

In Chapter 5 we argue that preserving unlinkability across access transactions us-
ing anonymous credentials can be hard to achieve. One of the issues with anony-
mous credentials is that although the identity of a user is not revealed by engaging
in multiple access transactions, the list of attributes revealed at the end of the access
negotiation can be logged by the server, along with timing information. Multiple
transactions can be semantically correlated using this information. Furthermore, a
system may not be able to support anonymous access transactions if required by
law, or simply if accountability is desired.

As explained in Section 5.1, the unlinkability problem we define differs from tradi-
tional Separation of Duty (SoD) problem of preventing a single user from perform-
ing different actions on the same object [SZ97]. In our problem, we want to prevent
an unauthorized user from accessing different audit records associated with differ-
ent information flows initiated by a single user. This is similar to conflict of interest
classes of information in Chinese Wall [BN89] policies. However, it is not feasible
to impose centralized control or history based approaches to different objects and
their replicas like with Chinese Wall policies or dynamic SoD. We see a decentral-
ized approach to enforce unlinkability.

In their discussion on different types of SoD constraints for RBAC, Simon and
Zurko [SZ97] distinguish between three types of SoD constraints : static, dynamic,
and operational. Given a set of static SoD constraints, policy conformance reduces
to checking if the roles involved have disjoint memberships so that no single per-
son has access to all operations in a workflow.

With respect to enforcing dynamic SoD constraints, Sandhu’s work on Transaction
Control Expressions (TCE [San98]) shows how dynamic SoD constraints can be
enforced adequately using history if the information about each transaction is an-
notated with the object itself. Simon and Zurko argue that such history is essential
to enforce general SoD constraints. Gligor et al. [GGF98] formalize the relation-
ship between SoD and RBAC and show how RBAC is not sufficient to enforce all
types of SoD properties, especially dynamic SoD constraints. More recently, Li et
al. [LBT04] show how directly enforcing static SoD policies is intractable, let alone

18

dynamic SoD policies, and show how statically mutually exclusive roles can be
engineered to enforce these constraints on a best-effort basis.

In the context of our unlinkability problem, annotating audit records in different
databases with history information does not provide us a mechanism to enforce un-
linkability as these data objects are independent and local history cannot be used to
enforce global constraints. Minsky [Min04] proposes a decentralized approach for
enforcing Chinese-Wall policies by processing accesses by an agent or a group of
agents, and enforcing the Chinese-Wall policies locally, instead of a centralize ref-
erence monitor. However, the problem with such an approach is that some entity
must maintain a history of accesses by the person or group. Instead, our proposed
solution annotates different audit records with authorizations to enforce unlinka-
bility in a decentralized setting, where each access can be allowed or disallowed
based on a local decision without maintaining history.

In terms of detecting semantic conflicts that can be exploited by a user to correlate
different types of audit records and expose the privacy of a user, a number of data
mining techniques that explicitly represent knowledge can prove to be useful. Re-
searchers have examined how to use data mining techniques to correlate logs in the
context of intrusion detection to detect attacks [LS98; UJ03]. We believe that some
of these techniques can be extended to look for unlinkability conflicts at the seman-
tic level. As mentioned in Section 5.2, our framework examines the unlinkability
problem at the level of authorizations to access audit flows. Analysis of whether
two flows are linkable semantically can be leveraged to improve the precision of
enforcement of unlinkability policies.

Finally, Hong [Hon05] presents the Confab toolkit for creating privacy aware appli-
cations. Policies can be attached to data to restrict the flow of private information
in the system. Our work on unlinkability can augment the Confab framework by
generating unlinkability policies for sensitive data in addition to simple confiden-
tiality policies.

2.7 Policy protection

Finally, in Chapter 6 we address the issue of providing feedback about access con-
trol policies to users that are denied access to resources. We are not aware of any
work that addresses the issue of providing useful feedback to users, while protect-
ing the privacy of other users (i.e., what they can access) in the system.

Policy hashing [KHJ03] has been proposed to protect the policies for a firewall from

19

less trustworthy enforcement points. This prevents intruders from reading sensi-
tive policies on compromised enforcement points. Feedback to end-users is not a
consideration. Access control systems for Web publishing [BDS01] provide more
information about the policy if conditions needs to be changed for access. How-
ever, policy protection is not addressed. Trust negotiation protocols [BS02; WL04;
YWS03] address the problem of protecting the confidentiality of credentials of both
parties involved in a session. At each stage, both parties must satisfy each oth-
ers policies to proceed with the negotiation. Know can augment these systems at
each stage of trust negotiation by providing useful feedback. With respect to sup-
pressing feedback options, Bonatti et al. [BS02] protect the server’s state by filtering
policy feedback. Such techniques can also be applied to Know, which protects the
server’s policies. Policy protection in [BS02] is achieved by progressively revealing
more requirements depending on credentials revealed by the user.

20

3 Problem Statement and Thesis

Ubiquitous computing poses several new challenges for the privacy of its users.
Users can seamlessly interact with a plethora of devices in a pervasive physical
and virtual environment. Accesses to services and devices are controlled by a
meta-operating system such as Gaia [Gai]. Some of these devices are sensors and
actuators which can detect and respond to contextual information such as a user’s
location in the environment. While such functionality is designed to boost the pro-
ductivity of users, this very design can be used to track users’ movements through
the ubiquitous environment. Users should be given the flexibility to specify pri-
vacy policies for their communication based on their perceived threat to privacy.
Furthermore, various services store audit-log information, which can be correlated
to further expose the privacy of users’ system usage patterns. In effect, the envi-
ronment becomes a distributed surveillance system, and proper care must be taken
with the storage and dissemination of audit information. Users must be given
the option to fine tune their privacy parameters in the system based on perceived
threat, and be given suitable feedback about security decisions.

3.1 Problem statement

Ubiquitous computing has made it easier for an organization to track users’ move-
ments, communication, and accesses to services, thereby posing a threat to the
privacy of its users. The privacy requirements of users in ubiquitous computing
environments have not been adequately researched and sound models are needed
to allow users to control and optimize their privacy requirements in such environ-
ments based on their individual perceived threats.

3.2 Thesis

The privacy demands of users in ubiquitous computing environments can be satisfied through
the synergy of theoretical security models to expose potential threats to users, expressive
policy specification languages based on qualitative and quantitative properties to express a

21

user’s perceived threat, and efficient algorithms for enforcing privacy policies based on these
models and specifications.

This thesis addresses the following privacy issues:

3.2.1 Communication privacy and trustworthy routing

In Section 2.3 we discussed various protocols that aim to provide communication
privacy properties such as sender/receiver anonymity and anonymous connec-
tions. The main drawback with such approaches is that they assume a uniform
attack model, and treat all nodes equally. The user does not have the power to re-
strict or prefer nodes in the network based on trust relationships. Protocols such as
Crowds [RR98] prove statistical anonymity, which has more credence in a widely
distributed setting. Furthermore, these services focus on sender anonymity. These
limitations, along with the lack of an infrastructure to separate identity from loca-
tion, inspired us to develop Mist [AMCK+02], a protocol for location privacy. Using
Mist, users can access services with their regular system identities while keeping
their locations hidden from these services. Our main contribution was to provide
users with the facility to choose varying granularities for their advertised locations,
trading communication efficiency for location privacy.

While various anonymous routing systems, including Mist, can be used to achieve
location privacy, as argued above, users must be given the additional power to
specify qualitative and quantitative constraints for their communication in more
restricted settings such as within an organization. This will improve the ’‘quality
of protection” (QoP) or trustworthiness of their routes used for location privacy.
For example, all routers may be under the control of a single administrator. Pro-
viding an appropriate model that allows users to express discretionary security
and privacy policies for trustworthy routing will allow users to communicate pri-
vately in environments that have traditionally specified network security policies
of a mandatory nature. Since each individual has his or her own notion of pri-
vacy, a model for such a system should allow users to specify a rich set of privacy
policies based on their own perceived threat, while keeping the algorithms to satisfy
these policies efficient. Indeed a user may demand a path that is a solution to an
NP-hard problem. Hence it is important to identify and study what models and
policy languages allow for efficient trustworthy routing.

We present the results of our research in Chapter 4.

22

3.2.2 Audit-log unlinkability

After using suitable location privacy and secure routing mechanisms to hide the
identity and/or location of a user, audit information of that user’s accesses to var-
ious services is stored across various databases. It is possible for other users such
as system administrators to correlate transaction information, including timing,
across audit logs to expose identity, location, transaction history, and other sen-
sitive attributes of a user. In Section 2.6 we discussed several approaches to this
problem. Cryptographic approaches such as anonymous credentials suffer from
the problem that audit records might still contain semantic information (e.g., tim-
ing) that allows the linking of records. Cryptographic approaches are not sufficient
protection against these attacks. Traditional policies for separation of duty (SoD)
apply to accesses to a single object. While it is easy to satisfy SoD constraints for
a single object, it is difficult to regulate accesses to related objects and their replicas
without history based approaches as with Chinese Wall [BN89] policies. Decentral-
ized approaches for ensuring unlinkability of such records are needed, along with
an analysis of the security properties provided by such models. Since each user will
have different privacy requirements, the model must allow users to specify unlink-
ability polices based on their perceived threat to unlinkability. In this thesis we
explore an approach based on access control for regulating access to audit records
based on negotiated policies, and explore the properties that can be guaranteed by
our model.

We present the results of our work in Chapter 5.

3.2.3 Privacy-preserving feedback

In Section 2.7 we discuss several techniques to hide policy authorizations. How-
ever, these approaches do not address the issue of providing users with useful feed-
back on access control decisions. In most cases, revealing policies is considered to
be a security breach because this reveals too much information to the denied user,
who is potentially malicious. Furthermore, access denials imply that users do not
have sufficient credentials to access the resources. Ubiquitous computing environ-
ments add more challenges by basing system policy on contextual information.
Access control decisions no longer depend on credentials alone. To avoid the con-
fusion and frustration of users who could access resources previously (e.g., “just
an hour ago”), a system of feedback is needed for its users. Furthermore, there are
privacy implications of revealing too much information about the system’s policies
to its users. For example, a professor’s permission set might be kept secret from

23

students. Hence, a model for feedback should also include some form of policy
protection to maintain the confidentiality of sensitive access permissions.

We present our model Know in Chapter 6, which addresses the issue of useful feed-
back and policy protection in ubiquitous computing environments.

3.3 Success criteria

I propose the following broad criteria for evaluating the thesis:

1. Does this thesis advance the state of the art for privacy models in ubiquitous
computing environments?

2. Are the models proposed expressive enough?

3. Are the models proposed computationally efficient?

4. Do the models empower users and administrators to fine tune discretionary
and mandatory privacy parameters in ubiquitous computing environments?

For each specific model, I propose the following criteria:

1. Trustworthy routing

(a) Does the proposed model capture the diversity of trust relationships in
the network?

(b) Does the proposed model allow for expressive routing policies based on
these relationships and perceived threat?

(c) Is the policy language computationally easy to satisfy?

(d) Can these models also support quantitative representations of trust?

(e) Does the thesis evaluate feasible and infeasible representations of trust?

(f) Can the model find solutions to both the qualitative and quantitative
privacy policies efficiently?

2. Unlinkability

(a) Does the proposed model capture the flow of audit information in a
ubiquitous computing environment?

(b) Can linkability conflicts be identified efficiently?

(c) Does the proposed model allow users to restrict linkability of their pri-
vate audit information based on perceived threat?

24

(d) Is the solution decentralized and efficient to enforce?

(e) Does the thesis prove the security of its proposed model?

3. Feedback and policy protection

(a) Does the proposed model allow administrators to fine tune feedback
disclosure? Are these methods expressive enough?

(b) Does the proposed model allow for useful feedback? What are the ap-
proaches for providing users with relevant feedback?

(c) Can feedback be computed easily? What techniques are used, and what
are their advantages?

(d) Does the proposed model make access control in ubiquitous computing
environments more usable?

25

4 Routing with Confidence

In Chapter 3 we argued that unlike traditional approaches for communication pri-
vacy in the Internet, trust relationships need to be considered for communication
privacy. In this chapter we present our model for trustworthy routing, which al-
lows users to specify discretionary privacy policies based on their perceived threat.
Trust relationships are exposed to the user in terms of attributes of links and routers.
We begin this chapter with a brief overview of policy based networking (PBN),
which we assume to be part of the ubiquitous computing environment.

4.1 Policy Based Networking

With the advent of policy based networking, network administrators now have
the ability to specify, administer, and enforce an organization’s network-access and
utilization policies more effectively. PBN has traditionally focused on which users
have access to what resources in a network [SL02]. A PBN framework uses band-
width management, traffic-flow management, firewalling, caching, and other rout-
ing protocol and network security solutions such as IPSec, VPNs, etc., to provide
differentiated services to groups of users in a dedicated network.

For most part, the policies in a PBN refer to mandatory access control (MAC) and
utilization policies that the network, as a system, applies to its users. The PBN
architecture [WSS+01] organizes different network objects such as resources and
services into different object roles, and defines a policy as a relationship between
these object roles and different user groups. For example, traffic from certain groups
of users can be treated preferentially, or access to certain network resources can
be restricted to users belonging to a specific group. In addition, policies can be
defined based on the attributes of the traffic itself—e.g., music file transfers or other
application specific packets can be bandwidth-limited. PBN Policies are stored in a
(possibly distributed) policy repository and enforced at Policy Enforcement Points
(PEPs) on firewalls, routers and switches, etc. using a wide variety of mechanisms
such as access control, filtering, and queue management.

The PBN framework has greatly simplified the management and administration of

26

organizational network security policies. We extend this framework that incorpo-
rates a user’s privacy expectations and preferences, with the existing mandatory
network policies, to influence the path chosen by a user’s traffic within this setting.
Our motivation stems from the observation that the discretionary privacy demands
of users have been largely ignored in any formulation of PBN policies, and for
communication privacy in general.

Our initial work on trustworthy routing was published in [KNC04].

4.2 Approach

We introduce a model of the network as a labeled state-transition diagram, and
use a subset of Constraint Linear Temporal Logic (CLTL) [DD02] based on integer
periodicity constraints for discretionary policy specification. These formulas are
based on attributes of entities in the network, which may be qualitative or quan-
titative. This approach allows us to specify qualitative communication path prop-
erties based on quantitative attributes, and explore algorithms to discover routes
that satisfy users’ policies. For example, a user may demand a path that visits only
physically secure routers (a qualitative demand) with fewer than 15 intrusion re-
ports (a quantitative demand) in the previous week. We incorporate a threat/trust
model to rate routes based on their overall confidence levels. For example, attributes
of routers maybe be true with a certain degree of confidence. The combination of
these approaches allows users to set up routes of high confidence that satisfy their
discretionary policies. We show how our policy language can be efficiently inter-
preted over the network model and be combined with shortest path algorithms
for certain models of confidence. As described in Section 2.5, confidence or diffi-
dence is a measure of trust for a node. The Quality of Protection (QoP) refers to the
trustworthiness of a route. In Section 4.7 we define path-confidence, a measure of
QoP.

4.3 Overview

Our proposed framework explicitly models static and dynamic trust attributes of
both users and network objects and effectively captures the changing trust relation-
ships between them as the system evolves over time. To illustrate, consider a user
who may want to avoid certain routers based on the knowledge that the routers
may be compromised because they are running outdated software with known se-
curity holes. The system administrator may not have installed the latest patch, or

27

the patch may not be available. Note that the user’s demands in this situation do
not violate the mandatory system policy in any way. While a user would be depen-
dent on the administrator in a traditional PBN, in our proposed model, a user can
encode this requirement and discover a path dynamically, consisting of routers that
do not have this vulnerability, and use only these routers until the vulnerability is
patched.

Other examples of a user’s discretionary policies in this setting include the ability
to exclude routers that belong to an administrative domain that the user does not
trust, or exclude routers that are dropping an unacceptable fraction of packets, and
so on. A point to note here is that some attributes of both the user and the network
object are dynamic, in the sense that they may change over time. We list different
types of attributes of both user groups and network objects and classify them ac-
cording to whether they are inherent, consensus based, or need to be inferred by
the user in some way. This extends the traditional notion of “Quality of Service” to
what we refer to broadly as the “Quality of Protection” (QoP) [CLM+00; YNK02]
of a network route. We explore the issue of trust management and describe what
entities we need to enable certification and validation of dynamic trust attributes.

In order to capture the effect of dynamically changing trust relationships on the
quality of routes our model can discover, we introduce a quantitative measure
called confidence. Using this metric, we describe different functions to combine
meaningfully the confidence values of individual links along a route quantita-
tively, presenting what we believe is a novel computational model of trust rela-
tionships. Confidence values also capture threat by changing the confidence levels
in response to exposed threats and vulnerabilities. We show how we can efficiently
compute routes that maximize the confidence a user can expect given the current
threat model and trust relationships. We explore these issues in the context of
three representative environments—a military network, a ubiquitous computing
scenario, and a peer-to-peer network.

We envision a network in which users operate under the overall network MAC
policy, but have the flexibility to apply dynamic trust attributes and relationships
for improved security and privacy guarantees of their communication.

4.4 Assumptions

We assume a network for a ubiquitous computing environment in a single admin-
istrative domain such as a corporate or private network. Since these networks are
effectively isolated from the Internet at large, they provide adequate support to en-

28

OS Version = latest

id: Router 1

admin = John Doe

Attributes for router
points
access

Routers

3

2

1

u

u

u

Disk

High
Speed

Figure 4.1: Architecture Overview

force cohesive administrative and management policies across the network. This
allows for the use of policy based networking and specialized protocols for “high-
confidence”communication within the organization. We assume that attackers can
actively drop, modify, or inject packets into the network we assume the use of end-
to-end encryption to detect such activity. We assume a suitable Public Key Infras-
tructure (PKI) and centralized or distributed trust authority for issuing certificates
for attributes.

4.5 Solution technique

In this section, we present a high-level architectural view of our proposed model
consisting of different network elements. Similar to traditional PBNs, our network
includes a policy database, PEPs, and PDPs. Within our network we also have
the ability to certify different static and dynamic attributes of users and network
objects, through the means of a centralized or distributed trust authority.

As shown in Figure 4.1, users connect to our routing infrastructure through access
points. Services can be connected to access points as shown, or certain services
may be available at the routing nodes itself (e.g., discovery services that are part of
the routing infrastructure). Based on the certified attributes that the user chooses
to disclose to the authenticating system (for privacy reasons the user may only
disclose a subset of their current attributes), the user is presented with a snapshot
of our system consisting of different network elements, including routers, links and
servers. Note that this snapshot is a restricted view of the network, reflecting what
resources a user is authorized to use based on the user’s disclosed credentials 1,

1We use credentials and attributes interchangeably since attributes are certified and are presented

29

according to the mandatory access policies of the organization.

The user hence possesses a logical view of the routers, their attributes, and their
connectivity. When a user wishes to communicate with another entity on the net-
work, he or she looks up the access point of the destination and computes a route
to that access point. Within this view of the network, our framework allows the
user to restrict their preferences for services and routes even further, in accordance
with their discretionary demands. In the next few subsections we describe how
each part of this process works, along with the trust negotiation and bootstrapping
that occurs in the system. We begin with how attributes can be certified in our
proposed system.

4.5.1 Attributes

Our first result was to define three types of attributes to capture both the static
and dynamic nature of evolving trust relationships in our system—inherent at-
tributes, consensus-based attributes and inferred attributes. Routers are associated with
attribute-value pairs. As we show later, these attributes help us quantify the trust
relationships in the system by associating them with a quantitative measure of
“confidence.”

Inherent attributes: These attributes are relatively static characteristics of an entity,
which can be certified by a Certificate Authority (CA). Examples of inherent user
attributes are identity, role, age, and gender. Inherent router attributes can include
physical location, administrative authority, physical security, clearance level, and
firewall security. A CA that can create attribute certificates and distribute them
to users and routers. For example, users can use these attributes to set up routes
through routers that are physically secure and that belong to a certain trusted ad-
ministrative entity.

Consensus-based attributes: These attributes relate to the behavior of an entity with
respect with other entities in the system. For example, routers in the network can
vouch for the integrity of neighboring routers if they appear to be routing packets
correctly. A compromised router may stop forwarding packets, and neighboring
routers would degrade their trust in that router with respect to packet delivery.
Users can therefore use these dynamic attributes to set up routes through routers
that have been routing packets reliably on a need-to-use basis. Routers may decide
that a certain user is not honoring routing policies and exclude that user from fu-
ture negotiations. For example, the user may be running a transfer protocol that

as credentials

30

does not have any congestion control mechanism (e.g., non TCP-friendly multi-
media flows). Hence routers may or may not vouch for a user’s behavior, which
would hurt the user’s ability to set up future routes. This encourages good behav-
ior of both users and routers within the network. Since these certificates are issued
for the current behavior of a router or a user, it is impractical to have the CA issue
such certificates.

Therefore, we need a robust and efficient protocol where routers and users can
generate, agree, and distribute these relatively dynamic attributes. Since users and
routers, especially compromised ones, can lie about these attributes, we suggest
the use COCA [ZSvR02], an online certification authority that uses threshold cryp-
tography to issue these certificates. The basic idea is that at least k out of n routers
would need to agree on an attribute to issue a certificate for that attribute. COCA
comes with built-in intrusion tolerance for Byzantine failures, and is reasonably
efficient.

Inferred attributes: While entities in the network may have inherent or consensus-
based attributes, users may have reasons not to trust certain routers, and likewise,
certain routers may not trust certain users. For example a user might infer (through
probes for example) that certain routers are running outdated versions of software
with a known vulnerability. This is an indicator that the router may be compro-
mised and is not trustworthy. Hence a user may want to avoid such routers. Since
these are attributes that the user assigns to routers (or vice versa), these attributes
are local to the entity making the inference. No certification is required for such
attributes. Other examples include latest patches, daemons running, past behavior
observed by the user, etc.

In the next subsection, we briefly explore how to accommodate for a user’s privacy
preferences.

4.5.2 Trust negotiation

In our system, we would like to honor the privacy of users. A user would like to re-
veal only those attribute certificates that are absolutely necessary to accomplish the
user’s goals. For example, a user may want to use the network as a Student, with-
out revealing the actual identity. Since the logical view of the network depends on
the credentials of the user, this view is restricted based on the attributes the user re-
veals to the network. Moreover, when a user demands consensus-based attributes
of routers, the router may first demand that user present credentials appropriate to
that demand. For example the router may disclose routing statistics only to users

31

with a high level of security clearance (high-priority users). This suggests the use of
trust negotiation protocols such as those proposed by Yu et al.[YWS03]. Such pro-
tocols can be effectively used to bootstrap trust between users and routers based
on inherent and consensus based attributes.

In Chapter 6 we present Know, a model for providing users with authorized feed-
back for aiding usability in the authorization process. If a user is not satisfied with
the authorized logical view of the network based on the current credentials, the sys-
tem can inform the user which credentials might help gain access to other routers.

4.5.3 Routing model

Our next result formalizes the routing model and describes how users can specify
their discretionary policies based on attributes of routers in the organization. As
explained before, users can obtain a map of the network that they are authorized
to view according to the organizational mandatory policy at startup. This map lists
all the routers, and links, and labels each router with the set of static attributes that
are valid on that router. Users can negotiate a larger map with the system using
Know which is described in Chapter 6. Users are allowed to update this map with
dynamic attributes at any point in time.

We model our network as a labeled state-transition diagram similar to Kripke struc-
tures used in model checking [CGP00]. Formally, a Kripke structure is the tuple
M = 〈S, S0, R, L〉, where S is a set of states, S0 is the set of initial or start states,
R ⊆ S × S is a transition relation between states, and L : S → P(AP) is a labeling
function where P(AP) is the power set of atomic propositions AP . Given a state
s ∈ S, L(s) is the set of atomic propositions that are true in s.

In the case of attribute-based routing, the set of routers corresponds to the set of
states S in the model. If two routers s1, s2 are connected then (s1, s2), (s2, s1) ∈ R

since we assume symmetric links. Each relation in R corresponds to the connectiv-
ity between routers. The set of attributes at each router can be viewed as atomic
propositions (or truth valued statements) about attributes in that that state. There-
fore the set AP is the set of all possible attribute-value pairs in our system. For ex-
ample, the attribute-value pair a = 〈OSVersion, 4 .0 〉 is an atomic proposition that
is true for routers with this specific attribute-value pair, i.e., OS Version 4.0. Without
loss of generality, we will refer to attribute-value pairs as atomic propositions. In
our previous example, the attribute-value pair 〈OSVersion, 4 .0 〉 is represented as
the atomic proposition a. Note, this set is finite in our model. The set of start states
S0 are specified by the user. We present our full network model in Section 4.6.4

32

after introducing link attributes and variables.

The user can now define their discretionary policies as path characteristics using
temporal logic formulas that can be interpreted over what is called a computation
tree of a Kripke structure. Formally, an infinite computation tree is obtained by
unwinding the state-transition graph by starting with a fixed start state and apply-
ing all transitions from that state to other states in the model, and so on. For our
purposes, we only consider finite computations, or in other words, finite paths.

Different types of temporal logic have been studied extensively in the past [CGP00]
to describe properties of these infinite computation trees. We believe that the most
useful logic for our case is Constraint Linear Temporal Logic (CLTL), which is used
specify characteristics of paths in this tree. In addition to standard LTL, our pro-
posed fragment of CLTL can express quantitative properties of paths. We do not
define the syntax and semantics of LTL as it is well known, but explain how we can
use it with quantitative constraints to specify properties in the next section.

One of our motivations for using this formalism is the availability of automatic
tools that can compute efficiently whether there exists a path in our model that
satisfies the constraints imposed by the LTL formula. This process is called model
checking. In general, a model checker provides a counter-example (if one exists)
to a property specified by the user. Specifying the negation of a desired property
yields a path (counter-example) with the desired property. Model checkers can be
modified to return more than one counter example to yield all paths that satisfy
a specific type of LTL formula [SJW02]. While this approach can be computation-
ally expensive, in the next section we show how we can adapt this technique to a
computationally inexpensive subset of CLTL and highlight specific characteristics
of our problem that make it particularly scalable.

Link attributes

We augment this model to also represent link attributes. We overload the defini-
tion of L to include the function L : S × S → 2AP maps a link (u, v) to its set of
attributes L(u, v). The resulting model is now a labeled state-transition diagram
with a labeling function over nodes and edges.

4.6 Path specification

LTL formulas are a powerful way for users to express qualitative path require-
ments. As explained in the previous section, model checkers can be used to gener-

33

ate multiple paths, when they exist, that satisfy these constraints between a source
access point and a destination access point in our model. Model checking algo-
rithms for LTL formulas in general have time complexity O(|M |2O(|f |)), where |f |
is the size of the LTL formula.

In addition to exponential dependence on |f |, traditional model checking can also
be encumbered by large state spaces (large |M |). Some systems with simple high
level specifications may result in a “state space explosion.” For example, a state
transition occurs in a Kripke model when the truth values of the atomic proposi-
tions in that state change. As a result, computation trees that represent all possible
behaviors of the system by enumerating states and transitions for all combinations
of changes of these values can become very large. Unlike such systems, the state
space explosion problem is not a concern for us since |M | is the size of the network.

In our case, the attribute certificates are fixed for a particular view of the network.
We do not model the changing values of these attributes as different states for each
router. Hence our approach is an “online” approach where we represent the current
state of routers in the network as opposed to all possible states each router can be
in at any given time. The transitions can only occur between routers that have links
between them in the real network we are modeling. Therefore, we can limit the size
of our model |M | by number of routers, links, and attributes in our network, and
we are only limited by the complexity of algorithms for verifying LTL formulas.

While the overall complexity is low for smaller LTL formulas, finding paths sat-
isfying longer LTL formulas can easily become prohibitively expensive because of
the 2O(|f |)) term. Since we augment this model with quantitative confidence met-
rics, finding paths of highest confidence that satisfy the LTL formula becomes even
more challenging and instead we focus on a fragment of Constraint LTL for which
the complexity of finding satisfying paths is linear in |f |. In addition, CLTL al-
lows users to specify policies using quantitative variables. In effect, our model will
reduce to running shortest path algorithms on a directed graph of size |M | after
some inexpensive transformations on the graph. We present our policy language
in Section 4.6.5

Manna and Pnueli [MP92] define three useful classes of properties of paths that
can be represented as temporal logic formulas—Invariance, Response, and Prece-
dence. Invariance properties are true in every state in a path. These properties are
useful to model user constraints such as “Route through nodes that support IPSec
only”. Response properties are useful to model quantitative properties of bidirec-
tional paths, e.g., in terms of round trip latency or available bandwidth. Precedence
properties capture the causal relationships between properties along a path. We ex-

34

plore these properties in turn and show they can be specified in LTL. We present
the use of CLTL in Section 4.6.5 where we discuss quantitative representations of
trust.

4.6.1 Global or invariance properties

Consider LTL formulas of the form G p. G is the “globally” operator which means
that in all states and links along the path, proposition p must evaluate to true. We
restrict p to propositional formulas — users specify boolean formulas with respect
to the attributes. The user requires that p must hold at each individual router or
link. The algorithm for computing paths that satisfies G p first eliminates all nodes
and links from the graph (state-transition diagram) where p does not hold. This
solely depends on attributes at each router or link, and attributes at one router or
link do not affect the satisfiability of p at another. The graph that we are left with
represents the routers that the user is willing to route through.

4.6.2 Response properties

These properties are of the form G(p→ Fq) where F is the “finally” operator. The
formula asserts that it is always true on our path that if proposition p is satisfied
at any node, eventually proposition q will be satisfied. This property is useful to
specify bounded-response and causal relationships between attributes. Quantita-
tive versions of these properties (obtained by augmenting both the model and the
temporal logic carefully with time variables as in [AH92]) can be used to specify
path latencies and bandwidth constraints. We examine causal relationships of at-
tributes with respect to precedence properties as described next.

4.6.3 Link and precedence properties

Next, we look at the case when certain attributes along the path must occur in a
specific order at routers. For example, the user may want to set up a path that goes
through routers in a non-decreasing order of classification levels. Once a packet en-
ters a router with high level of security, it must not pass through a node with lower
security. Consider the case when routers append sensitive information to packets.
If the packet is at a certain router, it can never contain previous data from a higher
clearance router, and hence there is no information leakage. The user can specify
an attribute ordering p1, . . . , pn, where exactly one of these is true at every router.

35

If pi and pj occur along a path, it must be the case that pi occurred before pj . In tra-
ditional LTL with only router attributes, this would be specified with the formula:
¬

∨
i>j F(pi → Fpj). We show how this can be represented as a global property

on links. We define the “Global Link Operator” Gl p, where p is a propositional
formula applied only to links. Consequently, we replace the previous G global
operator with Gr , which applies to properties of routers. For Gl we allow past
and next P and X operators for specifying relationships between the endpoints of
a link. Hence we focus on the class of precedence properties that can be expressed
as link constraints, which allow the comparison of attributes of routers incident on
that link. We call these “one-hop precedence properties” since these precedence
relations only include comparisons between neighboring routers. For example, the
property Gl (Pa → Xb) means that all links that originate from a router with at-
tribute a must end in a router with property b. The precedence property mentioned
above can be expressed as the global link property Gl (

∧
i Ppi → ∨j≥iXpj).

Given this specification, we can remove all edges from the graph that violate the
attribute ordering. Consider an edge (s1, s2). If i > j, and pi ∈ L(s1), pj ∈ L(s2),
then we remove the edge (s1, s2) from the graph. Hence no path in the resulting
graph can violate the precedence specified by the user. Moreover, any valid path
that satisfies the precedence property in the original graph also exists in the result-
ing graph, and these paths are exactly those in the original graph that satisfy the
precedence property.

Note that the user can specify global and one-hop precedence properties simul-
taneously. These properties on the graph described above are commutative since
they involve removing individual links and/or nodes. Given global, and/or one-
hop precedence requirements specified by the user, we combine the resulting graph
with the trust model described next to find paths of highest “confidence.”

4.6.4 Adding variables

It is clear from the preceding examples that expressing precedence properties can
be cumbersome. Consider the attribute-value pairs 〈SecurityLevel, 5〉 and 〈SecurityLevel, 4〉.
Instead of treating this as two separate attributes, it help to treat “Security Level” as
a variable that takes on different values in different states (or nodes). When these
values are real numbers, we allow users to treat attributes as variables and specify
arithmetic operations on these variables. Let S be the security level of a router. The
precedence example in Section 4.6.3 can be written as Gl (PS ≤ XS). This simply
states that for every link (u, v), the security level of v must be at least the security
level of u. Allowing comparisons of attributes greatly simplifies the specification

36

of precedence relations and global properties such as Gr 4 ≤ S ≤ 6 (“only visit
routers with security levels 4, 5, or 6”). We also use the notation S(si) to denote the
value of variable S in state si.

We discuss the use of arithmetic comparisons of attributes in more detail in Sec-
tion 4.7, where we allow comparisons of trust values for properties between routers.

We now summarize our network model:

AP : set of atomic propositions

VAR : set of variables

M = 〈S, S0, R, L, σ〉

S : set of routers

S0 : source router

R ⊆ S × S : set of links

L : S → P(AP)

L : R→ P(AP)

σ : S ×VAR→ R

σ : R×VAR→ R

The labeling function L maps a router (or link) to the set of atomic propositions that
are true for that router (or link). The valuation function σ maps a router (or link)
and a variable to the value of that variable at the router (or link). For simplicity, we
will refer to the valuation of x at a router si as σi(x).

4.6.5 Policy language

We summarize the policy language for specifying path properties. This is a frag-
ment of LTL with variables, and constraints on these variables. These variables take
different values in different states. We refer to the variables as VAR = {x1, x2, . . .}
VAR takes real values in R.

We define the constraint system C = {R, R1, . . . , Rn}, where R is the domain of
real numbers, each Ri is a relation of arity ai, such that Ri : Rai → {True, False}.
An atomic C constraint over a set of finite variables is of the form Ri(w1, . . . , wai),
where each wi is either a variable or a real-valued constant.

Mathematical equalities and inequalities are examples of constraints. For example,
x1 ∼ c and x1 ∼ x2 ⊕ c where ∼∈ {<,>,=}, ⊕ ∈ {+,−,×,÷}, and c ∈ R, are valid

37

C constraints.

Let v : VAR→ R be a map or valuation of the variables. We also define v to include
the identity map over R, in particular v(r) = r for any r ∈ R. The interpretation of
these constraints is as follows.

v |= Ri(w1, . . . , wai)⇔ Ri(v(w1), . . . , v(wai))

We now define a fragment of CLTL(C), i.e., CLTL based on constraint system C.
We will call this “policy language” L. We distinguish between two kinds of C con-
straints: cl is a constraint defined with respect to links and cr is defined for routers.
cl and cr are relations over variable values at a particular link or router, and ad-
ditionally, variables in cl may be prefixed with P or X to refer to the values of
variables at the incident routers. We will define the semantics of such constraints
after presenting the grammar for L:

a ∈ AP

P ::= Gr Φ | Gl Ψ | Gr Φ ∧Gl Ψ

Φ ::= cr | a | Φ ∨ Φ | Φ ∧ Φ | ¬Φ

Ψ ::= cl | a | Pa | Xa | Ψ ∨Ψ | Ψ ∧Ψ | ¬Ψ

Let π = 〈s1, . . . , sn〉 be a path in the labeled state-transition diagram M . This
path represents both routers and links. In particular s1, s3, . . . , sn are routers, and
s2, s4, . . . , sn−1 are the links (s1, s3), (s3, s5), . . . , (sn−2, sn). Let σ = σ1, . . . , σn be the
sequence of valuations of variables corresponding to routers and links s1, . . . , sn in
π. Let Sr be the set of routers in π and Sl be the set of links in π. A discretionary de-
mand by a user includes the policy P and the source and destination pair s, t. The
path must be an s, t-path that satisfies P . We define the satisfiability relation for a
policy P and path π in labeled state-transition diagram M inductively as follows.

38

M,π |= Gr Φ ∧Gl Ψ⇔M,π |= Gr Φ ∧M,π |= Gl Ψ

M,π |= Gr Φ⇔ ∀si ∈ Sr,M, πi |= Φ

M,π |= Gl Ψ⇔ ∀si ∈ Sl,M, πi |= Ψ

M,πi |= ¬Φ⇔M,πi 6|= Φ

M,πi |= Φ1 ∨ Φ2 ⇔M,πi |= Φ1 ∨M,πi |= Φ2

M,πi |= Φ1 ∧ Φ2 ⇔M,πi |= Φ1 ∧M,πi |= Φ2

M,πi |= a⇔ a ∈ L(si)

M,πi |= Pa⇔ a ∈ L(si−1)

M,πi |= Xa⇔ a ∈ L(si+1)

M,πi |= cr ⇔ σi |= cr

M,πi |= cl ⇔ [. . . , wj ← σi(wj),Pwk ← σi−1(wk),Xwl ← σi+1(wl), . . .] |= cl

In other words, policies can specify router policies Gr Φ, link policies Gl Ψ, or both.
Router policies are boolean combinations of atomic propositions and constraints
that must be true at each individual router along a path. Link policies are boolean
combinations of atomic propositions, and constraints that must be true at each in-
dividual link along a path. Constraints on links can include variables from the
incident routers, allowing the user to specify “one-hop precedence properties.” We
now give some simple examples of our policy language.

Let x represent the number of DoS attacks a node has suffered in the past 24 hours.
Let y be the width of cable shielding in mm for links in the network. Let z represent
the security level. Let v be the number of virus attacks in the past 24 hours. The
policy Gr (x < 10∧v ≤ x)

∧
Gl (y > 5∧Pz ≤ Xz) states that the path must contain

routers with at most 10 DoS attacks and the number of virus attacks don’t exceed
the DoS attacks, links with at least 5mm shielding, and the order of security levels
of routers must be non-decreasing.

4.6.6 Graph transformation

Each atomic constraint (node or precedence constraint) can be evaluated to true or
false for a router or link as the case may be. Hence these constraints are atomic con-
straints that evaluate to true or false and can be used in boolean expressions with
other atomic propositions. Each router of link policy p specified as Gr p or Gl p

39

evaluates to true or false for the node in question. Routers and links, for which the
policies evaluate to false, are removed from the graph. Any path from node s to t in
this modified graph will satisfy the overall path policy. In the following section, we
will discuss the use of shortest path algorithms to accommodate various quantita-
tive trust models. Our choice of policy language is deliberate, since path automata
(such as regular expressions) are not compatible with shortest path algorithms for
QoP. This stems from the fact that unlike in QoS, where visiting a node twice incurs
the latency cost twice, this is not true for QoP. Visiting a node with 5 virus attacks
twice only increases the total virus attacks for the path by 5 only once. Since QoP
is computed over sets of nodes visited, policy languages involving cross-product
automata for satisfiability are not compatible with shortest path algorithms, which
may yield paths visiting the same node twice. Our policy language makes trans-
formations on the graph, resulting in subgraph of the network, which can be used
with shortest path algorithms for computing QoP, without such problems.

4.7 Trust model

Once a user transforms the graph (as described above) of the network satisfying
the attribute requirements, the user would like to set up a route to a destination. A
naı̈ve solution would be to obtain the shortest path (in terms of hops) to the desti-
nation. However, if the network is under attack, some paths are more trustworthy
than others. For example, it may be known that there are intruders in the system
with physical access to machines. One would like to degrade trust in routers that
have lower physical security. It might be known that certain machines have been
compromised without knowing the specific machines. In such a case, users may
degrade trust for machines run by certain administrators, or for those machines
that are running out of date software. Furthermore, certain attributes of routers
may be more trustworthy than others. The user may be confident that a router is
in a particular domain, but may not be that confident about the router’s physical
security after a possible break in.

Our next result integrates this notion of threat into the graph-based formalism we
proposed so far. We propose a quantitative measure of this interplay between
threat and trust as the confidence a user has in a router. Users can assign confi-
dence levels to attributes of routers. After specifying the qualitative route proper-
ties, users can now choose to optimize their routes based on one or more of their
attributes of interest.

As defined below, each attribute a for a router r (or link (u, v)) is augmented with a

40

confidence value cr(a) (cu,v(a)), which can be integer or real valued. We explore the
various semantic interpretations of this confidence value and how overall “path-
confidence” can be calculated.
Definition 6. Given a router s ∈ S with attributes L(s), a user’s confidence function
C : S×AP → R returns the confidence level for an attribute at a router. We abbreviate
the confidence level C(s, a) of a at router s as cs(a). Similarly we expand the definition
to include confidence levels of links. The function C : S × S × AP → R returns the
confidence level for an attribute at a router. We abbreviate the confidence level C(u, v, a)
of a at link (u, v) as cu,v(a).

The exact nature of this confidence function will depend on the nature of attributes
and how these levels can be composed to compute the confidence value of a path,
by combining confidence values of different routers in the path meaningfully. For
example, confidence values can represent the probability with which the attribute-
value pair is true or not. It can also represent the number of incidents reported
by an intrusion detection system or positive reports submitted by users. In each
case these confidence levels must be combined meaningfully to reflect overall path
confidence, which we describe in the next section. We discuss how we can compute
paths of high overall confidence based on confidence levels of attributes of routers
along the path.

4.7.1 Trusted paths

We refer to any simple (no repeated vertices) path from router a to router b as an
a, b-path. Similarly an a, b-walk is a path from a to b that may repeat vertices and
edges. We assume that the user/sender is connected through access point a, and
that the destination is either b or a user whose access point is b. In either case we
treat a and b as the endpoints of communication.

We now define the path-confidence of an attribute.
Definition 7. The path confidence Cπ(a) for an attribute a along an u, v-path π is ob-
tained by applying a combiner function K(c1(a), . . . , cn(a)) that takes all the confidence
levels ci(a) of the n nodes si along the path π from u to v (s1 = u, sn = v), and returns a
single confidence value for the path inR.

We assume that a combiner function is applied with respect to a single attribute,
and omit the “(a)” part in Cπ(a) and ci(a) above for clarity. Users may also want
to optimize over the values of variables. For example, let D be the number of DoS
attacks a router has suffered within a certain time window. The user may want to
find a path that minimizes the sum total of D along a path.

41

Definition 8. The path confidence Cπ(D) for an attribute variable D along an u, v-path
π is obtained by applying a combiner function K(D(s1), . . . , D(sn)) that takes all the
variable values D(si) of the n nodes si along the path π from u to v (s1 = u, sn = v), and
returns a single confidence value for the path inR.

In Section 4.8 we discuss how a user can optimize path-confidence for multiple
attributes (multiple combiners). We also assume that if confidence levels are also
associated with link attributes, links are subdivided to include a node that rep-
resents the link. Hence all confidence levels will be associated with nodes in the
graph, which allows us to use shortest path algorithms in a consistent manner.

We now explore different combiner functions and how they apply to different mod-
els of trust. To illustrate, consider the concept of “weakest link.” There may be
routers that are highly vulnerable, and it is extremely likely that they will be cho-
sen for attack. The path confidence in this case can be defined as the minimum of all
confidence values of routers along the path. Here K(c1, . . . , cn) = min{c1, . . . , cn}.
So when a user needs to pick a path based on its combined confidence value, he or
she can avoid paths with low path confidence.

Also consider the following example. A user may conclude that the DoS vulnera-
bility of a router is proportional to the number of incoming links. Hence the user
would like a path that minimizes the average sum of incoming links over all routers
along a path, but also does not include any nodes with very high connectivity. The
user can first eliminate routers with incoming links beyond a certain threshold and
then minimize the average. In this case the user can also use a second order statistic
such as variance to decide which path has the best “Quality of Protection” for the
given scenario.

First we focus on the multiplicative combiner. A multiplicative measure of path
confidence can be used to model various properties of interest to a user: high
probability of success of delivery, high probability of no information leakage, high
probability that routers along a path will not collude, etc. This model assumes that
events at each router are independent and their success probabilities can therefore
be multiplied to calculate overall success probability for the path. In the next sub-
section, we explore this in some detail and describe efficient algorithms to compute
path confidence values using a multiplicative combiner function.

4.7.2 Multiplicative combiners

We now present our results for multiplicative combiners. We consider the case
when K(c1, . . . , cn) = c1 . . . cn, the product of confidence levels of nodes along a

42

path. This multiplicative model of path confidence we focus on in this subsec-
tion, applies to confidence levels that were computed independently along a path.
In this model, a user assigns confidence levels based on the probability of “good
things happening” at each node. Assuming independence, the probability of the
desired property being true along the entire path is simply the product of all the
confidence levels. We now present an efficient method for computing paths of high
path confidence under the multiplicative model.

The main idea behind computing paths of high confidence is that by applying the
correct weights to edges in a network connectivity graph, we can use shortest path
algorithms (that use additive weights) to find paths with highest overall confidence
(based on multiplicative weights).

Consider the directed graph G that represents the connectivity of routers specified
by the labeled state-transition diagram M . As mentioned earlier, links with con-
fidence levels can be subdivided to include a node that represents that link. For
each s ∈ S, we now assign − ln(cs) to be the weight of all incoming edges to s, i.e.,
{(u, s) ∈ R : u ∈ S}. Note that all weights are non-negative since confidence lev-
els are in the range [0, 1]. We now have a weighted directed graph G. Consider a
source node a and a destination node b.
Lemma 1. Let s be the sum of weights on the a, b-path π in G. The path confidence Cπ of
π is equal to e−s.

Proof. Let c1, . . . , cn be the confidence levels of all the nodes in π except a. Cπ =
c1c2 . . . cn since ca = 1. Now s =

∑n
i=1− ln(ci) = −

∑n
i=1 ln(ci) = − ln(c1c2 . . . cn).

Hence e−s = eln(c1c2...cn) = c1c2 . . . cn = Cπ.

Note that if for there exists a ci = 0, then the path confidence is 0. Moreover, s =∞
since − ln(0) = ∞ and e−s = 0, so there is no discrepancy for confidence levels of
0. Essentially, any path which includes a node of 0 confidence will not be chosen
by the user.

Lemma 2. For any two a, b-paths π1, π2 with total weights w1, w2, we have w1 ≤ w2 if
and only if Cπ1 ≥ Cπ2 .

Proof. From Lemma 1 we have that w1 ≤ w2 ⇔ −w1 ≥ −w2 ⇔ e−w1 ≥ e−w2 ⇔
Cπ1 ≥ Cπ2 .

Theorem 1. The k-shortest a, b-paths in G correspond to the k a, b-paths of highest path
confidence in G.

Proof. This follows from Lemma 2 since if we order all the a, b-paths in G in in-
creasing order of weight, they are ordered in decreasing order of path confidence.

43

Since all edge weights are non-negative, Theorem 1 allows us to apply k-shortest
simple (loopless) path algorithms to find cycle-free paths of highest confidence.
For example, Dijkstra’s algorithm is the special case when k = 1 and will yield a
path with maximum path confidence. Several algorithms have been proposed for
obtaining the k shortest simple paths in a directed graph. The best known worst
case time complexity of these algorithms is O(kn(m+nlogn)) [Yen71; Yen72]. Her-
shberger et al. [HMS03] propose an algorithm that provides a Θ(n) improvement
in most cases. For small k (for example, the user may want the 3 highest confidence
paths) these algorithms are efficient for all practical purposes. Hershberger et al.
[HMS03] provide results of their algorithm for large graphs (e.g., 5000 nodes, 12000
edges) based on real GIS (Geographic Information Services) data for road networks
in the United States.

In addition to the models we present in this section, we argue that the ability to
specify both threat and trust relationships using a combined metric is extremely
powerful. We plan to study how these values can vary over time, using sensitivity
analysis, stochastic analysis and other techniques. In the next section, we present
three example scenarios that showcase the benefits of our new framework.

4.7.3 Additive combiners

We consider the case when K(c1, . . . , cn) = c1 + . . . + cn, the sum of confidence
levels of nodes along a path. Finding simple paths of highest path-confidence is
NP-hard. For example, the Hamiltonian Path problem can be reduced to finding
the longest path in a graph with uniform edge-weights, and then verifying whether
it is a Hamiltonian path or not.

Hence we look at the problem, where we attempt to minimize the confidence val-
ues. For better intuition, we refer to these as diffidence values, and correspondingly
refer to path-confidence as path-diffidence. Paths of least diffidence can be solved
trivially by using shortest path algorithms. This model can be used in cases where
intrusion detection systems may produce negative reports for nodes. Users may
want to find paths that minimize the sum of negative reports along the path, corre-
sponding to a path with the least number of known problems. Similarly, a node’s
incoming degree can be a measure of vulnerability to DoS. A user may want to find
a path with the least number of total incoming edges, which could imply a lower
amount of vulnerability of the path to DoS.

A user may also want to find a path where the average confidence (or average

44

diffidence) for each node along a path is minimized (resp. maximized). We address
the problem of average combiners below, and show that finding solutions for this
demand is NP-hard.

4.7.4 Weakest link

As mentioned earlier, the confidence of the path is the minimum confidence level of
nodes in the path, K(c1, . . . , cn) = min{c1, . . . , cn}. The path of highest confidence
can be computed by sorting the links based on weight. First all links are removed
from the graph, and links are added back iteratively in descending order of weight.
At each iteration, if a path from s to t exists, then it will be the path of highest
confidence. The same can be done for computing paths of least diffidence, where
the confidence level is the maximum of confidence level of routers along the path.

For example, consider an attribute that measures DoS resilience. Furthermore the
user is certain that there is a DoS attack in the network and would like a path with
the highest DoS resilience. Since the DoS resilience of a path is only as good as its
weakest link, the user can use this combiner to find a path of highest confidence,
or DoS resilience.

4.7.5 Average combiners

We consider the case when the confidence or diffidence K(c1, . . . , cn) = c1+...+cn
n ,

and the user desires a path of least average cost (or least diffidence) or highest
average cost (highest confidence).

For example, the user may desire a path that minimizes the average incoming de-
gree for each node. Singh et al. [SCRD04] describe an eclipse attack in overlay
networks where malicious nodes are identified by having a higher in-degree. In
an eclipse attack, a group of malicious nodes attempts to corrupt routing tables
of other nodes in the network, such that all communication in the network is di-
rected through malicious nodes. The authors observe that malicious nodes in this
setting would have a high incoming degree and propose an auditing mechanism
to ascertain the incoming degree of nodes. In particular, malicious nodes cannot
hide their incoming degree because of their proposed anonymous auditing mech-
anism. A reasonable demand would be to find a path with the lowest minimum
average degree, improving the overall confidence in the path with respect to the
eclipse attack. This can be done after eliminating nodes above a certain threshold
of incoming degree to avoid the obviously malicious nodes.

45

We show that these problems are NP-hard by reducing the s, t-Hamiltonian Path
problem to finding the minimum or maximum average cost path.
Definition 9. Hamiltonian Path Problem (HP): Given a directed graph G = (V,E)
find an s, t-path that visits all vertices in V . Such a path is called a Hamiltonian path.

HP is NP-complete.
Definition 10. s, t-Hamiltonian Path Problem (s, t-HP): Given a directed graph G =
(V,E) and vertices s, t ∈ V , find an s, t-path that visits all vertices in V . Such a path is
called an s, t-Hamiltonian path

s, t-HP is NP-complete. It is easy to show this by reducing HP to s, t-HP. Given
a graph G, construct G′ by adding vertices s, t, and the directed edges (s, v) and
(v, t) for all vertices v ∈ V . G′ has an s, t-Hamiltonian path if and only if G has a
Hamiltonian path. Hence s, t-HP is NP-complete.
Definition 11. Minimum Average Cost Simple-Path Problem (MinACSPP): Given
a graph G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices
s, t ∈ V , find an s, t-path p that minimizes the average cost of p. The average cost of a
path p is defined as the the total additive cost of p divided by the number of vertices in p.

Maximum Average Cost Simple-Path Problem (MaxACSPP): Given a graph G =
(V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V , find
an s, t-path p that maximizes the average cost of p. The average cost of a path p is defined
as the the total additive cost of p divided by the number of vertices in p.
Theorem 2. The Minimum Average Cost Simple-Path Problem (MinACSPP) is NP-hard.

Proof. We reduce the s, t-HP to MinACSPP. Given a graph G = (V,E), and vertices
s, t ∈ V , assign the weight 1 to all vertices except t. Assign the weight 1+δ to t. Any
s, t-path of length (number of vertices) n will have average cost (n−1)+(1+δ)

n = 1+ δ
n .

This average cost is minimized for largest possible n = |V |. Hence the solution
to MinACSPP will yield an s, t-path that visits |V | vertices if and only if an s, t-
Hamiltonian path exists in G. Hence MinACSPP is NP-hard.

Theorem 3. The Maximum Average Cost Simple-Path Problem (MaxACSPP) is NP-
hard.

Proof. We reduce the s, t-HP to MinACSPP. Given a graph G = (V,E), and vertices
s, t ∈ V , assign the weight 1 to all vertices except t. Assign the weight 1 − δ to t

(where δ < 1). Any s, t-path of length (number of vertices) n will have average cost
(n−1)+(1−δ)

n = 1 − δ
n . This average cost is maximized for largest possible n = |V |.

Hence the solution to MaxACSPP will yield an s, t-path that visits |V | vertices if
and only if an s, t-Hamiltonian path exists in G. Hence MaxACSPP is NP-hard.

46

These results imply that in general it is very hard to compute paths that mini-
mize/maximize path diffidence/confidence. A natural question to ask is whether
the shortest average path for various restrictions on hop-length can be computed.
In Section 4.8.3 we show that these related problems are also NP-hard.

4.7.6 Minimum variance

We consider the case when the diffidence K(c1, . . . , cn) = c21+...+c2n
n − (c1+...+cn

n)2,
and the user desires a path of least variance or least diffidence.

For example, the user may want to pick a path with the most consistent (as mea-
sured by low variance) set of confidence values within an acceptable range.

We show that the problem of minimizing variance is NP-hard by reducing s, t-HP
to finding the minimum variance path.
Definition 12. Minimum Variance Simple-Path Problem (MVSPP): Given a graph
G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V

such that (s, t)¬ ∈ E, find an s, t-path p that minimizes the variance of weights for the set
of vertices in p.

We assume that s, t are not directly connected by a single edge, because then the
solution is trivial. The path 〈s, t〉 has variance 0 and is the minimum variance path.
Theorem 4. The Minimum Variance Simple-Path Problem is NP-hard.

Proof. We reduce the s, t-HP to MVSPP. Given a graph G = (V,E), and vertices
s, t ∈ G, assign the weight 1 to all vertices other than t. Assign the weight 1 + δ to
t.

Any s, t-path of length (number of vertices) n will have variance

=
(n− 1)12 + (1 + δ)2

n
− (n + δ)2

n2
(4.1)

=
n + δ2 + 2δ

n
− n2 + δ2 + 2nδ

n2
(4.2)

=
n2 + nδ2 + 2nδ

n2
− n2 + δ2 + 2nδ

n2
(4.3)

=
δ2(n− 1)

n2
(4.4)

For any fixed δ, since n ≥ 3 (by assumption that (s, t) 6∈ E), the variance is min-
imized for largest possible n = |V |. Hence the solution to MVSPP will yield an
s, t-path that visits |V | vertices if and only if an s, t-Hamiltonian path exists in G.
Hence MVSPP is NP-hard.

47

4.7.7 Approximation

For minimum/maximum average and minimum variance weight s, t-paths pick-
ing a large value for δ such as n2, the approximate solutions to these problems will
closely approximate solutions to the longest s, t-path problem. Karger et al. [KMR93]
show that unless P = NP, there is no polynomial time algorithm that can find a path
of length n−nε for any ε > 1. This indicates that there is very little hope to approx-
imate these problems.

4.7.8 Measurement

Before we continue with our discussion on multiple combiners, an important ques-
tion is how confidence levels can be measured. We based some of our examples
on intrusion detection system (IDS) reports. For example, an IDS can record the
number of virus or worm intrusions for systems on the network and share these
reports with users, possibly attached to the network graph presented to the user.
Gossip protocols could be used to share information about neighboring routers,
although care must be taken to ensure the integrity of such approaches. Singh et
al. [SCRD04] discuss an approach whereby routers can query other routers anony-
mously to report on their routing table information, and show how the node be-
ing queried cannot falsify responses. Various numerical attributes (using attribute
variables) can be certified (e.g., security level) and obtained from the router itself,
or through a lookup service. When accessing lookup services, it is important to
know that queries can leak the policies of users. Hence users must request proper-
ties of several (or all) routers to keep their policy contents secret. The use of gossip
protocols [CRB01] allows users to passively collect information about other routers,
and is a good solution for certified attributes. In this thesis we focus on the issue of
using confidence values by providing a general model that allows the use of several
confidence assessment techniques.

4.8 Multiple combiners

Consider the case where a user may want to maximize confidence along a path
for two or more attributes. In our model this is the same as applying two or more
combiners to the labeled state-transition diagram.

48

There has been considerable work in the QoS community that addresses finding
network paths that minimize multiple constraints. It can be shown that minimiz-
ing two additive or multiplicative (or a combination of the two) constraints is NP-
hard. Specifically, given n attributes with the additive combiner, and thresholds
L1, . . . , Ln for each attribute, finding a path with costs c1, . . . , cn for each attribute
such that c1 ≤ L1, . . . , cn ≤ Ln is NP-complete [WC96]. This immediately implies
hardness results for multiple attributes in the additive or multiplicative models.

4.8.1 Unifying multiple attributes

We present an approach that unifies confidence for each node, after which a single
combiner can be applied. Specifically, multiple attributes are treated as a single at-
tribute with a unified confidence value, after which our results for single attributes
can be applied.

Tractable additive models

Consider the two attributes “DoS attacks” and “Worm attacks.” Each attribute has
diffidence equal to the number of intrusion detection reports for that attack. A
user may want to pick a path that minimizes the number of “DoS and Worm at-
tacks.” In this case the single attribute “DoS and Worm attacks” can be unified by
adding their diffidence values. The user can also choose to weight each attribute.
For example, the user may consider DoS attacks more important, and unify the
DoS Attack and Worm Attack diffidences d and w as 0.8d + 0.2w. In fact this is se-
mantically the same as consider each combiner separately, and minimizing a linear
combination of each additive combiner.

Formally, consider the n attribute variables a1, . . . , an. For a given path π, their
individual path confidences are represented as Cπ(a1), . . . , Cπ(an). As mentioned
earlier, finding a path π such that Cπ(a1) ≤ L1, . . . , Cπ(an) ≤ Ln for supplied
thresholds L1, . . . , Ln is NP-complete. However, finding a path that minimizes
w1Cπ(a1) + . . . + wnCπ(an) is equivalent to minimizing the additive cost Cπ(a) of
unified attribute a, where for each node k, ck(a) = w1c1 + . . . + wncn. For attribute
variables, we would have a(sk) = a1(sk) + . . . + an(sk). This is easy to prove as in
[Jaf84].

This model would apply more easily to attributes with low correlation. In general it
is reasonable to assume that DoS and Worm attacks are unrelated. For example, the
DoS vulnerability of the node is a function of its connectivity, whereas vulnerability
to worms is related to the current version of software. While unifying attributes

49

with a high degree of correlation can be done by more complicated unifiers, we use
the linear combination model for its tractability.

Tractable multiplicative models

We focus on the model where confidence levels are equal to the probability that
the attribute is true. We assume that these probabilities are independent. In this
case, multiple attributes at a router can be unified into a single attribute using
boolean connectives. It is easy to compute the overall probability for expressions
such as a1 ∧ . . . ∧ an or a1 ∨ . . . ∨ an using standard combinatorial rules. We as-
sume unifiers of this form. For example, unified attribute a defined as a1 ∧ a2 will
have the confidence c(a1)c(a2), while a defined as a1 ∨ a2 will have the confidence
c(a1)+c(a2)−c(a1)c(a2). This allows us to meaningfully unify attributes under the
independent probability model. Unified attributes now have a single probability
(or confidence) at individual nodes, and the multiplicative combiner can be use to
find paths of highest confidence.

For a more complicated combination of boolean connectives we assume a user sup-
plied formula for calculating the overall probability or the use of available tools.
Composing events as arbitrary boolean expressions is common in Fault Tree Analy-
sis (FTA) [FTA81] and several FTA tools such as Galileo [CS00] and SAPHIRE [sap]
are available for computing the overall probability of the defined event.

We now address more complicated privacy demands where a user may want to
visit k or more distinct nodes to make a traceback attack harder to execute by an
attacker. In other words, an attacker trying to expose the location of the user will
have to retrace the path through these routers, and a user would like to select such
a path with high confidence.

4.8.2 Visit k distinct nodes

Consider an attribute variable such as node ID d. We consider the case when
K(d(s1), . . . , d(sn)) = 1 if n = k and 0 otherwise. Finding an s, t-path of high-
est non-zero confidence is equivalent to finding a simple path from s to t that visits
exactly k or at least k nodes (s, t-k-path or s, t-k+-path). Such a property would be
of interest to thwart traceback attacks to expose a user’s location, but this problem
is NP-complete [AYZ95]. Indeed if we set k = |V |, then a solution to this prob-
lem will yield an s, t-Hamiltonian path for any graph G = (V,E) if and only if
one exists. Hence the minimum weight simple k-path and k+-path problems are
NP-hard optimization problems. We call these problems k-MWSP and k+-MWSP.

50

Note that the problem of finding an s, t-path with at most k nodes (s, t-k−-path) is
easily solved by finding the shortest path from s to t and testing whether the length
is at most k, however we are interested in k as a lower bound for security against
traceback attacks.

If we relax the restriction on simple paths to allow walks (vertices and edges can
be repeated), the problem of finding an s, t-k-walk is trivially solvable for strongly
connected graphs. Since the graph is strongly connected, a walk can be constructed
that will visit k distinct nodes by first finding the shortest path from s to t. If there
are more than k nodes in this path, the desired walk does not exist. If there are less
than k nodes in this walk, then neighbors to this walk can be successively inserted
to increase the distinct nodes visited by 1 with each iteration. More precisely, at the
beginning of each iteration, there will exist at least one vertex v in the walk with a
neighbor w in the list of unvisited vertices. This is guaranteed by the fact that the
graph is strongly connected. Replace v in the walk with v, w, v.

We now present a high level algorithm for finding an s, t-walk in any directed
graph that visits at least k vertices. For a directed graph G, this algorithm finds
an s, t-walk that visits the most possible distinct vertices, and hence will trivially
satisfy the “at least k” requirement. If the path returned by this algorithm visits
fewer than k distinct vertices, then we know that no such path exists.

Decompose graph into Strongly Connected Components (SCC)
//Linear time decomposition O(|V |+ |E|) [Tar72]
for each SCC S do

assign weight −|S| to each incoming edge to S
//where |S| is the number of vertices in S

end for
let Ss, St be the components containing s, t respectively
find the minimum cost path from Ss to St

//The SCC graph is a DAG, and minimum cost algorithms for graphs with neg-
ative weights can be applied

This algorithm yields a path p from Ss to St in the SCC graph that maximizes the
sum of vertices of each SCC (or cost−c). Starting from s, a walk can be constructed
that visits all nodes in each SCC of p, and ending at t. This will be an s, t-walk that
visits the maximum number of distinct vertices (c vertices). If c ≥ k we can use this
walk as an s, t-k+-walk. If c < k, no such walk exists.

For directed graphs in general, we are not aware of the complexity of finding a
walk that visits exactly k distinct vertices. However, we show that the minimum
cost version of finding a walk that visits k distinct vertices, and optimizes another
confidence metric is NP-hard. Hence in general, it is hard to find optimal walks

51

or paths in networks with a specified number of distinct nodes even if we allow
repetition of nodes.
Definition 13. k-Distinct Vertex Minimum Weight Walk Problem (k-MWWP):
Given a graph G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and
vertices s, t ∈ V , find an s, t-walk p that visits k < |V | distinct vertices (we will call this
an s, t-k-walk), and minimizes the weight of walk p. The weight w(p) of walk p is defined
as the the total additive cost of the set of vertices in p. w(p) =

∑
v∈p w(v). Hence the cost

of visiting a vertex is incurred only once.

The Vertex Weighted k-Minimum Tree Problem is NP-hard [FHJM94]. We reduce
this to s, t-k-VMT, and in turn to k-MWWP to prove NP-hardness of k-MWWP.
Definition 14. Vertex Weighted k-Minimum Tree Problem (k-VMT): Given an
undirected graph G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , find
a tree T in G with k < |V | vertices (we call this a k-tree2), where T is of minimum weight.
The weight w(T) of T is the sum of weights of the set of vertices in T . w(T) =

∑
v∈T w(v).

Definition 15. Vertex Weighted s, t-k-Minimum Tree Problem (s, t-k-VMT): Given
an undirected graph G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V ,
find a tree T in G with k < |V | vertices containing specified vertices s and t. (we call this
an s, t-k-tree), where T is of minimum weight. The weight w(T) of T is the sum of weights
of the set of vertices in T . w(T) =

∑
v∈T w(v).

Lemma 3. Vertex Weighted s, t-k-Minimum Tree Problem (s, t-k-VMT) is NP-hard.

Proof. We reduce k-VMT to s, t-k-VMT.

Given k and an undirected graph G = (V,E) with vertex weights w(v), construct
G′ = (V ′, E′) in the following way. Assume some ordering v1, . . . , vn of vertices in
V . Start with a copy of G, and for each vertex vi ∈ V add two new vertices si and
ti. Add the edges (vi, si) and (vi, ti). Let M =

∑n
1 w(vi). Assign the weight M + 1

to si and ti. In addition, add the vertices s and t and the edges (s, si) and (t, ti)
for all i = 1, . . . , n. Assign weights δ = 1 to s, t. This new graph contains 3n + 2
vertices, and |E| + 4|V | edges. G′, along with s, t and k + 4 is used as input to the
s, t-k-VMT problem. We show that G has a k-tree of cost ≤ c if and only if G′ has
an s, t-(k + 4)-tree of cost ≤ c + 2(M + 1) + 2δ, where c ≤M .

Clearly if G has a k-tree T of cost ≤ c, then we we can add vertices si, ti for some
vi ∈ T , along with s, t and edges (vi, si), (vi, ti), (s, si), (t, ti) to obtain an s, t-(k+4)-
tree T ′ in G′, where w(T ′) ≤ c + 2(M + 1) + 2δ.

Likewise, let T ′ be an s, t-(k + 4)-tree in G′ with weight ≤ c + 2(M + 1) + 2δ, where
c ≤ M . We argue that T ′ contains k vertices from V , and hence includes only two

2Fischetti et al. [FHJM94] define a k-tree to have k edges, however trees with k edges have k + 1
vertices, and hence our definition is equivalent

52

vertices si and tj for some particular values of i, j. Since s, t ∈ V (T ′), we know that
must be at least two such vertices. Consider the case when there are more than two
such vertices. We have w(T ′) ≥ 3(M +1)+2δ. But since w(T ′) ≤ c+2(M +1)+2δ,
and c ≤M , we have w(T ′) < 3(M + 1) + 2δ, which is a contradiction. Hence there
are only two vertices of weight M + 1. Let T be the k-vertex embedding of T ′ in
G. We know that T is a tree because any two vertices in T are connected in T ′,
but cannot be connected through s, t, si, sj . T is therefore connected and is a tree.
Furthermore w(T) = w(T ′)− 2(M + 1)− 2δ ≤ c.

It follows that a minimum s, t-(k + 4)-tree T ′ of G′ can be transformed into the
minimum k-tree of G, and we have that s, t-k-VMT is NP-hard.

Theorem 5. k-Distinct Vertex Minimum Weight Walk Problem (k-MWWP) is NP-hard.

Proof. We reduce s, t-k-VMT, which is NP-hard from Lemma 3 to k-MWWP.

Given an undirected graph G = (V,E) with vertex weights w(v), k, and s, t ∈ V ,
create the directed graph G′ = (V ′ = V,E′), where each undirected edge (u, v) ∈ E

is replaced by directed edges (u, v) and (v, u) in E′.

We claim that G contains an s, t-k-tree of weight ≤ c if and only if G′ contains an
s, t-k-walk of weight ≤ c.

If T is an s, t-k-tree of weight ≤ c. Consider the embedding T ′ of T in G′, where
each undirected edge (u, v) in T is replaced with the corresponding directed edges
(u, v) and (v, u) in T ′. T ′ is a strongly connected subgraph of G′ with k distinct
vertices. Hence we can construct a walk p from s to t using only vertices and edges
in T ′, yielding an s, t-k-walk of the same weight, which is ≤ c.

Let p be an s, t-k-walk of G′ of cost ≤ c. Consider the embedding Gp of p in G,
where directed edges of p are replaced by undirected edges in G. Gp is a connected
subgraph of G. Let Tp be a spanning tree of Gp (this can be computed in polynomial
time). Tp is an s, t-k-tree of the same weight ≤ c.

It follows that a minimum weight s, t-k-walk in G′ can be transformed into a mini-
mum weight s, t-k-tree in G, and hence k-MWWP is NP-hard.

Since finding minimum weight s, t-walks of length k is NP-hard, an interesting
question is whether one can find minimum weight s, t-walks with at least k distinct
vertices. Earlier we showed that finding s, t-k+-walks without a cost metric can

53

be done in polynomial time. However we show that the minimum cost version of
finding s, t-k+-walks (we call this problem k+-MWWP) is NP-hard.
Lemma 4. Minimum cost k+-tree problem is NP-hard (k+-VMT).

Proof. We reduce k-VMT to k+-VMT.

Given a graph G we claim that there exists a k-tree T of cost ≤ c if and only if there
exists a k+-tree T ′ of cost ≤ c.

Clearly, a k-tree T of cost ≤ c is also a k+-tree of cost ≤ c.

Now consider a k+-tree T ′ of cost≤ c. Consider any subtree T of T ′ with k vertices.
T is a k-tree with w(T) ≤ c.

It follows that the minimum weight k+-tree of G yields a minimum weight k-tree
of G, and hence the k+-tree problem is NP-hard.

Lemma 5. Vertex Weighted s, t-k-Minimum Tree Problem (s, t-k-VMT) is NP-hard.

Proof. We reduce k+-VMT to s, t-k-VMT.

Given k and an undirected graph G = (V,E) with vertex weights w(v), construct
G′ = (V ′, E′) in the following way. Assume some ordering v1, . . . , vn of vertices in
V . Start with a copy of G, and for each vertex vi ∈ V add two new vertices si and
ti. Add the edges (vi, si) and (vi, ti). Let M =

∑n
1 w(vi). Assign the weight M + 1

to si and ti. In addition, add the vertices s and t and the edges (s, si) and (t, ti)
for all i = 1, . . . , n. Assign weights δ = 1 to s, t. This new graph contains 3n + 2
vertices, and |E| + 4|V | edges. G′, along with s, t and k + 4 is used as input to the
s, t-k-VMT problem. We show that G has a k+-tree of cost ≤ c if and only if G′ has
an s, t-(k + 4)+-tree of cost ≤ c + 2(M + 1) + 2δ, where c ≤M .

Clearly if G has a k+-tree T of cost ≤ c, then we we can add vertices si, ti for
some vi ∈ T , along with s, t and edges (vi, si), (vi, ti), (s, si), (t, ti) to obtain an
s, t-(k + 4)+-tree T ′ in G′, where w(T ′) ≤ c + 2(M + 1) + 2δ.

Likewise, let T ′ be an s, t-(k+4)+-tree in G′ with weight≤ c+2(M +1)+2δ, where
c ≤M . We argue that T ′ contains at least k vertices from V , and includes only two
vertices si and tj for some particular values of i, j. Since s, t ∈ V (T ′), we know that
must be at least two such vertices. Consider the case when there are more than two
such vertices. We have w(T ′) ≥ 3(M +1)+2δ. But since w(T ′) ≤ c+2(M +1)+2δ,
and c ≤ M , we have w(T ′) < 3(M + 1) + 2δ, which is a contradiction. Hence
there are only two vertices of weight M + 1. Let T be the embedding of T ′ in G

using only the vertices in V . We know that T is a tree because any two vertices in

54

T are connected in T ′, but cannot be connected through s, t, si, sj . T is therefore
connected and is a k+-tree. Furthermore w(T) = w(T ′)− 2(M + 1)− 2δ ≤ c.

It follows that a minimum s, t-(k + 4)+-tree T ′ of G′ can be transformed into the
minimum k+-tree of G, and we have that s, t-k+-VMT is NP-hard.

Theorem 6. k+-Distinct Vertex Minimum Weight Walk Problem (k+-MWWP) is NP-
hard.

Proof. We reduce s, t-k+-VMT, which is NP-hard from Lemma 3 to k+-MWWP.

Given an undirected graph G = (V,E) with vertex weights w(v), k, and s, t ∈ V ,
create the directed graph G′ = (V ′ = V,E′), where each undirected edge (u, v) ∈ E

is replaced by directed edges (u, v) and (v, u) in E′.

We claim that G contains an s, t-k+-tree of weight ≤ c if and only if G′ contains an
s, t-k+-walk of weight ≤ c.

If T is an s, t-k+-tree of weight ≤ c. Consider the embedding T ′ of T in G′, where
each undirected edge (u, v) in T is replaced with the corresponding directed edges
(u, v) and (v, u) in T ′. T ′ is a strongly connected subgraph of G′ with at least k

distinct vertices. Hence we can construct a walk p from s to t using only vertices
and edges in T ′, yielding an s, t-k+-walk of the same weight, which is ≤ c.

Let p be an s, t-k+-walk of G′ of cost ≤ c. Consider the embedding Gp of p in G,
where directed edges of p are replaced by undirected edges in G. Gp is a connected
subgraph of G. Let Tp be a spanning tree of Gp (this can be computed in polynomial
time). Tp is an s, t-k+-tree of the same weight ≤ c.

It follows that a minimum weight s, t-k+-walk in G′ can be transformed into a
minimum weight s, t-k+-tree in G, and hence k+-MWWP is NP-hard.

Approximation

While we have shown that finding node-weighted minimum weight s, t-paths in a
network that visit k or at least k distinct nodes is NP-hard in general, approxima-
tion algorithms may yield acceptable solutions. We leave this to future work, but
mention relevant research here. For the simpler node-weighted minimum weight
k-cardinality tree problem Mladenović and Urošević [MU04] present a heuristic
based on variable neighborhood search and provide performance results under

55

various scenarios. Blum and Ehrgott [BE03] show that problem can be solved in
polynomial time if the graph contains “exactly one trough.” They also present sev-
eral local search heuristics for the problem, and provide an extensive discussion on
related solutions for this problem. Hence, it may be useful to compute approximate
solutions based on these heuristics to find paths of acceptable confidence, if not the
highest confidence.

4.8.3 Scoped minimum average cost

We now return to the problem of finding the minimum average cost path in a graph
and explore the complexity of s, t-k-walks of minimum average cost.
Definition 16. k Minimum Average Cost Simple-Path Problem (k-MinACSPP):
Given a graph G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and
vertices s, t ∈ V , find an s, t-k-path p that minimizes the average cost of p. The average
cost of a path p is defined as the the total additive cost of p divided by the number of vertices
in p.

k+ Minimum Average Cost Simple-Path Problem (k+-MinACSPP): Given a graph
G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V ,
find an s, t-k+-path p that minimizes the average cost of p. The average cost of a path p

is defined as the the total additive cost of p divided by the number of vertices in p.

k− Minimum Average Cost Simple-Path Problem (k−-MinACSPP): Given a graph
G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V ,
find an s, t-k−-path p that minimizes the average cost of p. The average cost of a path p

is defined as the the total additive cost of p divided by the number of vertices in p.

k Minimum Average Cost Walk Problem (k-MACWP): Given a graph G = (V,E),
with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V , find an
s, t-k-walk p that minimizes the average cost of p. The average cost of a path p is defined
as the the total additive cost of the set of vertices in p divided by the cardinality of the set of
vertices in p.
Theorem 7. k Minimum Average Cost Simple-Path Problem (k-MinACSPP) is NP-hard.

Proof. We reduce s, t-HP to k-MinACSPP.

Given a graph G = (V,E), and vertices s, t ∈ V , simply specifying k = |V |, and
w(v) = 1 for all v ∈ V , k-MinACSPP will return an s, t-Hamiltonian path in G if
and only if it exists.

56

Theorem 8. k+ Minimum Average Cost Simple-Path Problem (k+-MinACSPP) is NP-
hard.

Proof. We reduce s, t-HP to k+-MinACSPP.

Given a graph G = (V,E), and vertices s, t ∈ V , simply specifying k = |V |, and
w(v) = 1 for all v ∈ V , k+-MinACSPP will return an s, t-Hamiltonian path in G if
and only if it exists.

Theorem 9. k− Minimum Average Cost Simple-Path Problem (k−-MinACSPP) is NP-
hard.

Proof. We reduce s, t-HP to k−-MinACSPP.

Given a graph G = (V,E), and vertices s, t ∈ V , assign the weight 1 to all vertices
other than t. Assign the weight 1+δ to t. Any s, t-path of length n will have average
cost (n−1)+(1+δ)

n = 1+ δ
n . This average cost is minimized for largest possible n = |V |.

Hence for k = n, the solution to k−-MinACSPP will yield an s, t-path that visits |V |
vertices if and only if an s, t-Hamiltonian path exists in G. Hence k−-MinACSPP is
NP-hard.

Theorem 10. k Minimum Average Cost Walk Problem (k-MACWP) is NP-hard.

Proof. We can reduce k-MWWP to k-MACWP.

Given a graph G = (V,E), vertices s, t ∈ V , and k, we need to find the minimum
cost walk from s to t with exactly k vertices.

We use G, s, t and k as input to k-MACWP. Let w(p) be the weight of a walk p, and
a(p) be the average cost of p. We have that w(p) ≤ c if and only if a(p) ≤ c

k .

Hence the minimum average weight s, t-k-walk in G will be the minimum cost
s, t-k-walk in G.

Similarly the following problems can be shown to be NP-hard. We omit the proofs.
Definition 17. k Maximum Average Cost Simple-Path Problem (k-MaxACSPP):
Given a graph G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and
vertices s, t ∈ V , find an s, t-k-path p that maximizes the average cost of p. The average
cost of a path p is defined as the the total additive cost of p divided by the number of vertices
in p.

57

k+ Maximum Average Cost Simple-Path Problem (k+-MaxACSPP): Given a graph
G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V ,
find an s, t-k+-path p that maximizes the average cost of p. The average cost of a path p

is defined as the the total additive cost of p divided by the number of vertices in p.

k− Maximum Average Cost Simple-Path Problem (k−-MaxACSPP): Given a graph
G = (V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V ,
find an s, t-k−-path p that maximizes the average cost of p. The average cost of a path p

is defined as the the total additive cost of p divided by the number of vertices in p.

k-Minimum Variance Simple-Path Problem (k-MVSPP): Given a graph G = (V,E),
with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V such that
(s, t)¬ ∈ E, find an s, t-k-path p that minimizes the variance of weights for the set of
vertices in p.

k+-Minimum Variance Simple-Path Problem (k+-MVSPP): Given a graph G =
(V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V such
that (s, t)¬ ∈ E, find an s, t-k+-path p that minimizes the variance of weights for the set
of vertices in p.

k−-Minimum Variance Simple-Path Problem (k−-MVSPP): Given a graph G =
(V,E), with positive vertex weights w(v) for each vertex v ∈ V , and vertices s, t ∈ V such
that (s, t)¬ ∈ E, find an s, t-k−-path p that minimizes the variance of weights for the set
of vertices in p.

4.8.4 Dealing with hardness

In Sections 4.7.7 and 4.7.7, we present related work in approximation. In particu-
lar, it is not expected that viable solutions exist for minimum/maximum average
cost and minimum variance. Using our policy language users can qualitatively
eliminate nodes with high values of confidence. This can help find paths with low
overall average confidence (the opposite can be done for maximum average). For
minimum variance, a user may specify that any link for which the confidence val-
ues at its incident routers differ by more than δ is to be avoided. Hence every hop
will avoid a large change in confidence, thus providing lower variance. The user
can translate their problem into acceptable one-hop precedence properties as an
alternative to the more general minimum variable problem. This approach will
efficiently yield paths that satisfy the user’s modified policy.

58

4.9 Applications

We present three concrete examples that use our framework. We present the first
example in more detail, and suggest two other uses.

4.9.1 High performance and military environments

Consider an MLS (Multilevel Security system) user u1 with sensitivity level Confidential

in compartment {Navy}, connected at the access point s1. User u2 has security
clearance {Confidential, {Army}} and is connected at access point s19. Based on
u1’s clearance (u1 chooses to only reveal this, not its identity), the system presents
the user with a logical view of the network as shown in Figure 4.2(a). All routers in
this system are cleared for {Confidential, {Army, Navy}}. For simplicity we look
at only two inherent attributes: physical security, an attribute variable, which can be
any value in {1, 2, 3, 4}. Unshaded nodes represent routers with physical security
values 3 or 4, shaded nodes represent values 1 or 2. Domain can be 1, 2, 3 or 4 (we
only show D1 and D2 in Figure 4.2(a) since we use them as one of the constraints
later. These correspond to domains 1 and 2). D1 can correspond to confidential
network owned by the Army for example.

User u1 desires to communicate with u2 and determines that u2’s access point is s19.
We assume a network component analogous to dynamic DNS which can respond
with a user’s current access point (u2 has chosen to register its access point with
the service). Now u1 has been informed by trusted sources that there is an intruder
physically located on the premises, and that low physical security routers should
be excluded. u1 specifies the following constraint formula Gr physical security =
high. This eliminates s5, s15 from the logical view and results in the graph shown
in Figure 4.2(b).

The user now wishes to optimize paths based on a unified attribute “x” based on
OS version, Domain, and physical security. Under the independent assumption, con-
fidence values of these attributes are unified into one confidence value by multiply-
ing their individual confidence levels. In each case, the confidence value represents
the probability with which the user believes the node is not compromised. First, all
the confidence values for each attribute at all the nodes are set to 1.

By means of network probes, the u1 determines the inferred attribute OS version,
which can be outdated (square nodes) or latest (round nodes). Routers with out-
dated operating system versions (OS version = outdated) have their confidence levels
multiplied by 0.8 since they may be compromised. Lastly, u1 would like to avoid

59

machines in domain D1 because of a suspected insider attack in that domain. u1

multiplies the confidence levels of routers in this domain by 0.4. u1 has experienced
large delays when routing through D2. Suspecting worm activity, u1 degrades con-
fidence in those routers by multiplying their confidence levels by 0.7. Figure 4.2(b)
shows these confidence levels for each node. Figure 4.2(c) shows the resulting di-
graph with multiplicative weights. As described in Section 4.7.1 we replace these
weight by their negative natural logarithm, and then apply k-shortest path algo-
rithms [HMS03] to obtain the three paths of highest confidence. In this example it
is easy to see that the following are paths with the three highest path confidences:
〈1, 3, 7, 12, 16, 18, 19〉, 〈1, 3, 6, 11, 16, 18, 19〉, and 〈1, 3, 6, 10, 9, 13, 17, 19〉. The first
two paths have a path confidence of 0.392 (with respect to the logarithmic weights,
the total weight is 0.9365), and the third has a path confidence of 0.32 (weight
1.139).

Once these three paths are obtained, the user needs to set up a path through the
routers. This is done using a scheme that encrypts the packet multiple times, based
on the routers in the path, similar to onion routing [RSG98], since public keys of
routers are assumed to be well known to u1. The user encrypts the path in re-
verse order using the keys of the routers in the reverse path. Each subsequent
router decrypts the received route setup packet to obtain the next hop and an en-
crypted route setup packet for the next router. This technique hides the path from
the routers, which only know the previous and next hops in the path. By means of
this route setup, u1 can establish the chosen path to u2. Packets from u2 to u1 are
simply forwarded on the reverse path.

4.9.2 Ubiquitous computing

The previous example provided a detailed overview on how our system works in
a military environment. In this section we briefly discuss applications to ubiqui-
tous computing. Users in ubiquitous computing environments seamlessly interact
with numerous devices and services. In such an environment discovery of services,
and access to such services is one of the main applications. However, with such an
environment it is very easy for the ubiquitous system to track a user’s movements
or record user patterns. Using our system as a basic infrastructure or service, users
can maintain their privacy. Users only need to reveal as much information as nec-
essary to get a logical view of the ubiquitous environment. Again, this is achieved
by trust negotiation as described in [YWS03]. In a university setting, a user may
want to avoid using routers or services that belong to other research groups, and
eliminate these by using global property specifications. While connecting to cer-

60

tain services, a user may choose to maintain location anonymity (for example, us-
ing Mist [AMCK+02]) by creating a route that is hard to trace back. The user can
assign lower confidence levels to the domains that the user does not trust since
routers within a domain can presumably collaborate to expose the location of the
user. This will give paths of higher confidence that the user trusts for higher loca-
tion privacy.

4.9.3 Peer-to-peer overlay networks

We consider peer to peer networks where it is feasible for users to obtain topo-
logical information of the overlay. We assume the user can form a logical view of
the overlay network based on information available to the user. The user desires
to perform searches for content available at each peer. Applications include dis-
tributed file systems, file sharing, etc. Based on attributes of peers in the overlay,
the user can choose to only search for content at routers that satisfy global property
specifications. That is, the user can avoid performing searches at untrusted nodes
for privacy reasons. Additionally, the user may assign lower confidence levels to
nodes on which it expects the search to fail. This can be based on past performance
(inferred attribute). If certain nodes seldom have content of interest to the user, the
user can assign lower confidence levels. On the other hand, if a biology student is
searching for research papers related to cell division, confidence levels for peers in
the computer science department can be degraded since there is a very low chance
of finding useful content. Hence the user can set up a search path with the highest
confidence, so that the probability of the directed search succeeding is high.

4.10 Summary

In this chapter, we argued that users must be given sufficient control over their
communication in an organizational network, such as a ubiquitous computing en-
vironment. We presented a model that allows users to specify discretionary privacy
properties of routes based on the attributes of routers and links in the network
based on perceived threat. These attributes can represent boolean as well as real-
valued properties. Our policy language allows users to specify global and one-hop
precedence properties based on attributes of links and routers. We discussed vari-
ous representations of trust and showed how trustworthy routes can be computed
efficiently for various semantic models of trust. We also identified various models
of trust that are computationally hard to satisfy.

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

u1

u2

D1

D2

(a) Logical view for u1

1

2

3

4

6

7

8

9

10

11

12

13

14

16

17

18

19

u1

u2

D1

D2

1

1

1

1

1

1

1

1

0.4

0.4

0.7
0.7

0.7

0.8

0.8

0.8

0.4

(b) Resultant view based on user’s policy, includ-
ing confidence levels

1

2

3

4

6

7

8

9

10

11

12

13

14

16

17

18

19

u1

u2

D1

2

0.8 0.8

0.8

0.4

0.4

0.4
0.4

0.8

0.8
0.8

1

1
1 1

1

1

1

1

1

1
0.7 0.7 0.7

0.7

0.7

0.7

11

D

1

1

0.7

1

1

1 1

0.7 0.8
1

1

0.7

0.7

1

1

0.8

0.8

0.4

0.4

0.4

(c) Resultant digraph for use with k-shortest path algorithms

Figure 4.2: Military network example

62

5 Unlinkability through Access
Control

In Chapter 4 we described a model for secure routing. Using this model a user can
access services while maintaining location privacy and anonymity. However, when
a user accesses multiple services, these various accesses can possibly be linked to
the same user. We propose a policy-based framework using RBAC (Role Based Ac-
cess Control) to address the unlinkability problem in the context of correlating au-
dit records generated from access to distributed services. We explore this problem
in an environment such as ubiquitous computing systems, where the enforcement
of access control policies is decentralized and ensuring policy consistency as the
protection state of the system evolves becomes important. We introduce the notion
of an audit flow associated with a user’s access transactions, which represents the
flow of information through audit logs within an administrative domain. Users of
our system can present a set of audit flows to a decision engine that uses global
access rules to detect potential linkability conflicts. Users can use this information
to specify discretionary unlinkability requirements, depending on whether these
accesses can expose sensitive attributes. We present an algorithm that can generate
policy constraints based on these discretionary requirements. We also show how
these policy constraints can be attached to individual audit log records to enforce
unlinkability in a distributed manner. We prove that our proposed algorithm gen-
erates constraints that are secure and precise under strong tranquility assumptions
with respect to the system’s protection state. When we relax these assumptions, we
show how versioning can cope with evolving protection state, trading off precision
to maintain the security of deployed policies.

This chapter is based on research published in [KNC05].

5.1 Introduction

We examine the problem of preventing administrators from accessing (or “link-
ing”) multiple audit records corresponding to transactions initiated by the same
user. Our problem is motivated by user identity and location privacy concerns in

63

our university environment, where both physical access1 to our facilities as well as
virtual access to computing resources across our department and the wider campus
are controlled by software. While the problem of loss of privacy when a user’s ac-
tions are observed in person by a third party persists, the integration of physical and
virtual access control mechanisms exposes a new concern. Users are now worried
about other users being able to track their movement as well as their service-access
behavior remotely by correlating system audit logs. These system audit logs are
stored in various databases with independent access control mechanisms, making
the enforcement of unlinkability a difficult task. While centralized mechanisms
can solve such problems in theory, such approaches are not practical in our setting.
They present a bottleneck for distributed access to resources and also provide a
single point of failure for access control.

Traditionally, unlinkability is defined as the infeasibility of an adversary to correlate
two transactions initiated by the same user who does not reveal his/her identity,
even when the user presents the same set of attributes to gain access. To address
this problem, researchers have proposed a number of cryptographic mechanisms to
construct anonymous credentials [CE86; Bra00; CL01; LRSW99] that make it com-
putationally infeasible for a server to link the use of these credentials. However,
even if a user presents an anonymous credential to access a service, the set of users
allowed to possess those credentials in the first place may be small enough com-
promise anonymity. Furthermore, while many of these schemes rely on providing
user anonymity, there are systems in which users cannot be anonymous. For ex-
ample, an organization may be required to keep detailed audit records about who
accessed payroll information by law. However, access to such information should
only be provided to authorized users. In such systems, it becomes important to
provide unlinkability through access control, allowing for linkability in only cer-
tain cases, e.g., legal subpoenas. We also note that cryptographic mechanisms are
also vulnerable to collusion attacks between verifiers and issuers that correlate tim-
ing information for access logs [PM04], and adequate access control mechanisms
can prevent such attacks.

In this context, we introduce policy-based unlinkability as the problem of restrict-
ing access to multiple audit records belonging to the same user, corresponding to
multiple access transactions, which can be correlated to expose sensitive informa-
tion. For example, two or more log records that can link a user Alice’s identity
with her location or other privacy sensitive attributes must not be accessible by
administrative users unless they are explicitly authorized by a mandatory system

1Users have to swipe their i-card to gain access to the building, labs, offices etc. Each access at-
tempt, along with the user-id and time stamp as well as the access decision, is recorded in a database.

64

policy or allowed by Alice. Our goal therefore is to provide a framework that can
analyze conflicts, and change the authorizations (except when they are explicitly
required by system policy) to access audit logs, and prevent such exposures. For
example, the system may inform Alice that users in role Network Administrator
can access information about her network transactions. There may be some Net-
work Administrators who are also Students and Research Programmers. Based on
Alice’s privacy requirements, she can then request that Network Administrators
who are Students be prevented from linking her audit records. In effect, the system
allows Alice to negotiate a set of constraints to prevent certain administrative users
from linking her transactions.

In this aspect, our work is related to the Separation of Duty (SoD) problem [SZ97]
in the context of RBAC, where different tasks and their associated authorizations
are distributed among multiple users to prevent fraud and errors. Our problem is
similar in the sense that we are interested in engineering an appropriate set of roles
with specific audit access authorizations subject to constraints. However, instead
of preventing a user from performing two or more related actions on single object
in the context of a work flow, our separation of duty problem is about preventing
a single user from accessing two or more related data objects, across different au-
dit flows. This distinction impacts the way in which unlinkability constraints can
be enforced. In Chinese Wall policies, objects are grouped into Conflict of Interest
(COI) classes and individual users are not allowed to access information from two
or more objects in a COI class. Chinese Wall policies and SoD for workflows can
be enforced using history-based approaches [San98; Min04]. Since each object can
only record its local history and cannot exchange this information with other re-
lated objects without explicit coordination, a decentralized approach that does not
rely on the access history of individuals or groups is more scalable. The semantics
of our approach is more restrictive than the Chinese Wall approach, allowing us to
enforce unlinkability in a decentralized way. As with Chinese Wall policies, in our
approach we can prohibit administrators from accessing two or more audit-flows
in a session; however, we do not guarantee that administrators identified as threats
can access individual flows of their choosing. In contrast, Chinese Wall policies
allow administrators to access any object in a COI class, but prevent subsequent
accesses to other objects in that COI class. This assumption impacts our solution
and we prove how our unlinkability policies can be enforced in a decentralized
setting without requiring a history of accesses.

The task of building a system that can accommodate for individual users’ unlink-
ability constraints for any ordering of access transactions, with guarantees that
extend over long periods of time, is formidable. It is not feasible for the secu-

65

rity engineers to simulate all the possible access transaction scenarios for different
users, identify unlinkability violations and enforce authorizations accordingly, es-
pecially when new services, users and modes of interaction are added periodically.
To tackle this problem, we propose a policy engineering framework where a sys-
tem entity called the Policy Negotiation Server (PNS) works with the user to refine
the authorizations to access audit traces based on discretionary unlinkability con-
cerns. The PNS collects information about different audit logs and their associated
authorized users and stores it in a policy database. A user Alice can present to the
PNS a set of access transactions constituting a session, ask the PNS to analyze these
sessions for conflicts, and subsequently update this set by adding new transactions.
We explore this problem in the context of RBAC [SCFY96; FK92a] (Role-Based Ac-
cess Control) system, where users are assigned to roles, which are associated with
a set of permissions. The PNS identifies conflicts and generates authorization con-
straints in terms of access restrictions on user roles, which can be attached to Alice’s
audit flow records in our system. Using these constraints, accesses to these objects
can be allowed or denied based on local access control decisions. With respect to
Chinese Wall [BN89] policies that are created with specific threats in mind (e.g., an
employee working for two organizations), our analysis identifies linkability threats
based on the specified access transactions, and allows users to negotiate policies
based on these threats.

Assuming that we trust the underlying enforcement mechanisms, given a set of
user transactions, we show how we can generate policy constraints that are both
secure and precise with respect to enforcing unlinkability properties. We first prove
these results under the strong tranquility assumption where the user-role assign-
ments and permission-role assignments do not change over a session. Subsequently,
we show how we can relax these assumptions and present an algorithm that uses
versioning to handle changes in the authorizations under a weak tranquility as-
sumption, sacrificing precision for the ability to change protection state. Using
versioning we can always identify the set of users for which the policies are secure
and precise. In both cases we show how users can add new flows to their sessions,
refining their unlinkability requirements iteratively.

The rest of the chapter is organized as follows: In Section 5.2 we present an archi-
tectural overview of system components and describe the basic policy negotiation
protocol. Section 5.3 describes our approach, highlighting the assumptions, formu-
lating the problem, and presenting our algorithm to generate policy constraints in
detail. This section also presents a proof of how our algorithm is secure and pre-
cise under the strong tranquility assumption. Section 5.4 relaxes this assumption,
and presents results for systems with evolving protection state. We summarize this

66

chapter in Section 5.5.

5.2 Architecture

In this section, we provide a brief overview of our system architecture. We intro-
duce some terminology and outline the steps involved in policy negotiation shown
in Figure 5.1.

Policy

Negotiation

Server

Access
Transactions

User

1 2

4

5

6

3

7

Audit log databases

���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

��������������

�
�
�
�
�
�
�
�
�
�
�

Policy
Database

Figure 5.1: System Architecture

We assume a distributed system for sharing resources that allows us to specify and
enforce system-wide access control policies. Users in the system access services by
presenting credentials resulting in an access transaction. We focus on a single admin-
istrative domain, where users may engage in attribute-based authentication, possi-
bly with cryptographically unlinkable certificates, although identity-based authen-
tication may be used as well. Users negotiate unlinkability policies with a policy
negotiation server (PNS) that generates policy constraints, which when enforced
correctly prevents any exposure of sensitive information through audit log analy-
sis by other administrative users.

Information related to an access transaction (e.g., audit logs for location tracking) is
stored in one or more databases. We define an audit flow for a given transaction as
the set of databases and their associated authorizations that define the possible flow
of audit information to other users in the organization. A collection of transactions
and their associated audit flows that a user desires to keep unlinkable is called a
session. Sessions are associated with individual users and may be open-ended, i.e.,
they last for the lifetime of the system and users are allowed to update the list of
transactions in their session. As mentioned earlier, users and access permissions
are organized into roles using RBAC.

We now describe a high level overview of our system with the aid of Figure 5.1.

67

(1) In the first step, a concerned user Alice sends her session information to the
policy negotiation server (PNS). This is a set of unique identifiers corresponding
to access transactions. In steps (2)-(3), the PNS looks up relevant information for
each service including access policies and flow policies (replication of data between
servers), builds the audit flows I1, · · · , In, and analyzes them for unlinkability con-
flicts. The PNS presents Alice with a set of roles whose users can access her audit
log information from two or more audit flows.

In Step (4) Alice identifies her discretionary unlinkability requirements in terms of
roles whose users she wants to prevent from linking her audit information. This
approach places the burden of specifying useful privacy policies on Alice. In a real
system, Alice can be guided to make an informed choice based on standard organi-
zational policy. The granularity of access to records in a database can be finer, and
Alice can specify requirements for specific fields in records. For simplicity of no-
tation, we only model access to a database record as an all-or-nothing permission,
and this can be extended to finer-grained permissions as necessary.

As mentioned earlier, the PNS may not be able to enforce some of Alice’s choices
if there are mandatory access requirements. After Alice and the PNS agree on the
policies, in (5) the PNS sends the Alice a certificate with policy constraints for her
audit records. This certificate is a digitally signed and can be tagged to Alice’s au-
dit data and sent to the databases as the information is generated. The PNS also
stores Alice’s discretionary policies and session information in the policy database.
In Steps (6)-(7), for each access transaction, Alice presents these certificates, which
are attached to audit records that make up the audit flows. These policy constraints
enforce her unlinkability requirements for the session. We assume that all interac-
tions are cryptographically secured for authenticity, confidentiality, and integrity.

Alice may update her session at any time and introduce new transactions, which
may introduce new conflicts. The PNS generates new constraints in this situation
and sends the updated credentials to Alice. We assume that Alice has no motiva-
tion to delete any transactions from her session. Therefore, we can guarantee that
all old policies will still be honored and each successive iteration of our system
will be a refinement of the original access restrictions. However, updating policy
constraints every time there is a change in protection state can be prohibitively ex-
pensive. In Section 5.4, we show how we can maintain security by trading precision
for the ability to change protection state, without impacting the privacy guarantees
of previously issued policy constraints.

We deliberately choose to limit the functionality of our PNS as a decision engine
that generates and distributes access constraints. Users (or agents working on be-

68

half of the user) have to attach these constraints to their audit records. An alterna-
tive design would be to centralize policy decision making at the PNS and require
that all databases contact the PNS every time an audit record is accessed, to evalu-
ate whether it should be allowed or denied based on the current set of sessions and
discretionary policies in the policy database. While this alternative design is more
precise with respect to enforcement of the privacy policies, we believe it induces a
performance overhead and may create a single point of failure.

Throughout this chapter we will refer to three types of policies. Flow policies are
explicit representations of data flows between databases. For example a policy
such as (d1, d2) allows database d1 to supply copies or transformations of data to
d2. The system can use these flow policies to construct graphical representations of
audit flows throughout the system. Access policies are Permission-Role assignments
(d, r), where role r may access database d. Lastly policy constraints are described in
Section 5.3.5, and are attached to audit records. Access to an audit record is granted
to users based on the access policy for that database, and the policy constraints of
that audit flow, which can override the former.

An important point to note in our framework is that we address the unlinkabil-
ity problem at the level of RBAC access permissions, and assume that the system
is aware of the semantics of how the information stored in the audit logs can be
linked to expose sensitive user information. However, we do not require that users
are aware of the semantic relationships across audit logs. If a user is not aware of
the relationships, our system can still enforce a default policy that is conservative
and prevent anybody who has access to two or more flows from accessing audit
records in both. Techniques such as information hiding, anonymizers and statisti-
cal mixing etc., address the unlinkability problem at the semantic level by modify-
ing the contents of the databases. We believe that using access control to enforce
unlinkability complements these other approaches and our solution explores the
effectiveness of using access control permissions to perform audit flow analysis
comprehensively, and prevent linkability in this context.

5.3 Approach

In this section we present our algorithm for constructing audit flow graphs and for
generating policy constraints from these graphs based on the system’s mandatory
requirements and the user’s discretionary unlinkability policies. Users in the sys-
tem typically interact with various services over the lifetime of the system. The
set of access transactions that a user wishes to keep unlinkable is referred to as a

69

session.

Our first goal is to provide users with a set of mechanisms to negotiate and enforce
unlinkability for all their transactions as specified in their session. We explain our
system with regard to a particular user Alice who wishes to keep her transaction
information unlinkable from other users in the system. For example, Alice may
decide that her location information should not be linked with the use of physi-
cal services that she may access anonymously. Correlating logs with the location
database would expose her identity. Hence, Alice may want to restrict the ability
of other users in the system to access both audit flows, viz., location information
and Alice’s service audit trail. We also show how we can extend this protection
when Alice iteratively adds transactions to her session, which we call “open-ended
sessions.”

One way to specify policy constraints to preserve unlinkability for Alice’s session
is to find all the users who can access information from two or more flows and
restrict their access to sensitive audit records. We propose that data objects in an
audit flow are tagged with these access policy constraints in terms of lists of users
that are not authorized to view the data. We rely on the trustworthiness of the
underlying access mechanisms to enforce these authorizations correctly. Since we
assume that the system is working with the users to protect their privacy, access is
granted only if these constraints are not violated.

One of the issues with this approach is that these access lists associated with audit
flow records could become very large. Furthermore, changes in user permissions
during the lifetime of the session will affect the validity of the policy constraints. To
improve the compactness of policy representation and handle dynamically chang-
ing authorizations, we feel that an RBAC system can address these concerns effec-
tively. In an RBAC system, users are removed and added to roles, and the permis-
sions for roles will not be affected by these operations. Furthermore, our policy
constraints can provide instant feedback to administrators as to why their access
was denied.

We now propose an approach to enforce unlinkability for Alice’s transactions, de-
fined by her session, by finding all possible roles that are explicitly granted read
access to each audit flow. We then examine all the users in this set of roles and con-
struct a set of overlapping roles, i.e., the set of roles that these users can activate in
the system. Roles with a common user are overlapping roles. The main idea here is
that if two audit flows have common overlapping roles, then the flows are poten-
tially linkable. A common overlapping role indicates that there may be users with
that role who can access both audit flows. We also assume that for the purposes of

70

accessing audit logs, the system has access to all the roles that a user can activate,
not only those that the user has activated currently.

For example, say role Administrator can read audit flow I1. Now suppose that there
are two users u1, u2 in the system with the Administrator role that also possess the
Student role, which is an overlapping role. Further, suppose that u1 in the Teach-
ing Assistant role can read audit flow I2. Since Student appears in both audit flow
graphs, it is a common overlapping role. Since there is a particular user u1 in role
Student who can access both flows, we call Student a conflicting role. An access pol-
icy constraint can be generated if Alice would like to prevent Students from linking
her flows. Alice could specify “Do not allow any user whose role set contains all
the roles 〈Student ,Administrator ,TeachingAssistant〉 to access audit flow records
tagged I1 and I2.” While this will prevent Students from accessing Alice’s informa-
tion, it will still allow other (non-Student) Administrators and Teaching Assistants to
access I1 and I2 respectively. Furthermore, students who are not linkability threats
(i.e., those who can access only one flow), will still be allowed to access Alice’s
audit records. A reference monitor enforcing access to the audit record database
will check if a particular user has all three roles at the time of access and deny ac-
cess appropriately. This is more concise than listing all the possible users that can
link audit flows. We now formalize these concepts, and show how we can provide
users with unlinkability with respect to audit flows. The key idea here is that Alice
can specifically deny users of certain roles from linking her information.

5.3.1 Notation

Our system includes roles, databases, and users. In this chapter we refer to these
entities both in the context of general access control, and as vertices in graphs. For
simplicity, we use the same notation for both contexts, instead of having separate
“role vertices” for the corresponding roles, and so on.

5.3.2 Audit Flow Graph

Let the set of roles in the system be Γ, and the set of databases be ∆. Let U be
the set of users in our system. Let URA and PRA be the user-role assignment and
the permission-role assignment, defined according to standard RBAC terminology.
URA(u) returns all the roles that a user u can activate. Similarly, PRA(r), returns
all the permissions or accesses allowed to a role r.

An audit flow graph for an access transaction is a directed graph I = (V,E) with
the set of vertices V ⊆ ∆ ∪ Γ, representing databases, roles, and overlapping roles.

71

Overlapping roles are discussed shortly. A directed edge (u, v) ∈ E indicates the
flow of audit information from u to v. We identify the first database in the audit
flow Ii of a given user as the root vertex δi for that flow.

R2

R1

R4R3

R2 R5 R6
���
���
���
���

���
���
���
���

R7 R4

���
���
���
���

���
���
���
���

R8

2I

���
���
���
���

���
���
���
���

R1

���
���
���
���

���
���
���
���

R3

1

11

2

2 2 2

1 1

1

2 2

2 2

I1
Database 1 Database 2

Database 4Database 3

root node

root node

1,2 1,2

1,2 1,2 2222

1
1

1

1

22
2 2 2

2

{u1}

{u5}{u2}
{u2}

{u1,u2}

{u2,u4}
{u2}2 2 2

{u3}

{u2}

{u3} {u3} {u4}{u4}

{u4}

{u3}

2

Figure 5.2: Session Graph

We now describe how to create an audit flow graph, given a root vertex that repre-
sents Alice’s transaction, and show how to construct the combined session graph
for multiple audit flows. Figure 5.2 represents an example session graph for two
audit flows, which we will refer to for clarity. The audit flow graph Ii for transac-
tion i for user u is constructed as follows:

1. Adding databases: The root vertex δi represents the start of the audit flow Ii.
Starting from this vertex, we iteratively add vertices and edges corresponding to all
databases that receive audit log information about the access transaction δi initiated
by the user. This operation is repeated until all databases for the audit flow have

72

been added to the audit flow graph. For databases d1, d2 we have (d1, d2) ∈ E if
and only if the audit flow information for that transaction flows from d1 to d2.

In Figure 5.2, databases are represented as rectangles. The root vertex for I1 is
Database 1. As information related to audit flow I1 flows from Database 1 to Database
2, we have a directed edge from Database 1 to Database 2. Similarly, we have audit
flow I2 flowing from Database 3 to Database 4.

2. Adding roles: For each database d ∈ V , determine the set of roles R ⊆ Γ
with read permission to database d. These roles are added to the audit flow graph
vertices V , along with the edges (d, r) for each r ∈ R. We have (d, r) ∈ E if and
only if role r has permission to read database d.

In Figure 5.2, roles are represented as circles. The individual access policies of
Database 1 and Database 2 allow read access to users with role R1. Hence we have
directed edges from Database 1 and Database 2 to R1, and so on.

3. Adding overlapping roles: For each role r ∈ V , we generate the corresponding
overlapping roles, and include directed edges to them. Let O ⊆ Γ be the set of
overlapping roles such that for every o ∈ O, some user u can activate role o in
addition to r. We call r the parent of overlapping role o. We have (r, o) ∈ E if and
only if o is an overlapping role of r.

Consider the following URA for a system with five users u1, u2, u3, u4, u5. URA(u1) =
{R1, R8}, URA(u2) = {R1, R3, R7}, URA(u3) = {R2, R5, R6}, URA(u4) = {R3, R4}
and URA(u5) = {R3, R8} Figure 5.2 shows the overlapping roles overlapping roles
(represented as squares). Role R1 has overlapping roles {R1, R3, R7, R8}, R2 has
overlapping roles {R2, R5, R6}, and so on. The user-sets on edges of overlapping
roles show the users common to both roles.

We now examine the complexity of creating an audit flow graph for a given transac-
tion. In Step 1, at most |∆| new vertices can be added to the graph. For each vertex,
at most |∆| − 1 new edges can be added. Therefore we are bounded by O(|∆|2)
operations. In Step 2, for each database, at most |Γ| role edges can be added to the
graph. Therefore Step 2 is bounded by O(|∆||Γ|) operations.

Constructing the AURA Graph

Step 3 involves generating overlapping roles. We show how we can amortize the
cost of this step by augmenting a standard URA mapping to include overlapping
role assignments. We call this the AURA graph (Augmented User Role Assignment
graph). A directed edge (u, r) mean that user u is assigned to role r. An undirected

73

edge (r1, r2) means that r1 and r2 are overlapping roles. Each undirected edge
is associated with the set of overlapping users for roles r1 and r2, U(r1, r2). In
Section 5.3.3 we will use these user-sets to identify conflicting roles. A conflicting
role is a role that contains one or more users who can access two or more audit
flows within a session.

1u

2u

R

R

1

2

3

R

{u1}

{u2}

(a) Current AURA
Graph

1u

2u

R

R

1

2

3

R

{u2}

{u2}

{u1,u2}
{u1}

(b) Adding User-Role as-
signment (u2, R1)

1u

2u

R

R

1

2

3

R

{u2}

{u1,u2}

{u2}

(c) New AURA Graph

1u

2u

R

R

1

2

3

R

{u2}

{u1}
{u1,u2}

{u2}
{}

(d) Removing User-Role
assignment (u2, R1)

Figure 5.3: AURA Graph example

We show how we can use the AURA graph to maintain overlapping role informa-
tion, and describe how to update an AURA graph when the protection state of the
system changes:

Adding a Role: This operation does not create any extra overhead, since overlapping
roles are not affected until a User-Role assignment changes.

Adding a User-Role assignment: If a User-Role assignment (u, r) is added, then for
each of u’s roles r′ ∈ URA(u), the undirected edges (r, r′) are added unless these
edges exist already, and u is added to the set U(r, r′). There are |URA(u)| opera-
tions, which is bounded by |Γ|. The time complexity for set union for adding u to
U(r, r′) is constant (using hash tables). For example, consider the AURA graph in
Figure 5.3(a). We omit self-loops (r, r) with user-sets U(r, r) equal to the set of all
users in r. We add the assignment (u2, R1) as shown in Figure 5.3(b). We must now

74

update edges (R1, R1), (R1, R2) and (R1, R3), resulting in three operations on the
AURA graph. Since URA(u) = {R1, R2, R3}, we have |URA(u)| = 3 as expected.
The resulting AURA graph is shown in Figure 5.3(c).

Removing a User-Role assignment: If a User-Role assignment (u, r) is removed, then
for each of u’s roles r′ ∈ URA(u), u is removed from U(r, r′). If U(r, r′) = ∅, the
edge (r, r′) is removed. There are |URA(u)|+ 1 operations, which are bounded by
|Γ|. Again, removing u from U(r, r′) can be done in constant-time with the use of
hash tables. In our previous example we added the assignment (u2, R1), result-
ing in the AURA graph shown in Figure 5.3(b). To remove this assignment, we
must update the edges (R1, R1), (R1, R2) and (R1, R3), as shown in Figure 5.3(d).
Here URA(u) = {R2, R3} since the assignment (u2, R1) was removed, and we have
|URA(u)|+1 = 3 as expected. The resulting AURA graph is the same as the original
AURA graph in Figure 5.3(a).

Removing a Role: Each User-Role assignment must be removed first. Let U be the
set of users for the role being removed. Hence we have |URA(u)| operations for
each user u ∈ U . This is bounded by |U||URA(u)|.

Therefore, this approach requires at most |URA(u)| operations on the AURA graph
for each addition/deletion of a User-Role assignment. In the worst case this is
O(|Γ|) operations for each addition/deletion of a User-Role assignment. Deleting
a role in the system is more expensive and is bounded by O(|U||Γ|). Overlapping
roles for any particular role can be efficiently extracted from the AURA graph by a
simple lookup.

5.3.3 Session Graph

While individual audit flow graphs capture the dissemination of log information
to authorized users in an organization, users are interested in exploring how their
sensitive attributes can be exposed by log correlation across these databases. Given
a set of audit flows {I1, · · · , In} , corresponding to a set of transactions that user
Alice may execute, we define session graph S by constructing a composite graph
which includes each audit flow graph that was constructed as described in Sec-
tion 5.3.2. The set of vertices and edges in the composite graph is the union of the
sets of vertices and edges in the original audit flow graphs. However, we preserve
the information about distinct flows in this composite graph by augmenting edges
with colors as described next.

In order to represent overlapping nodes and edges between these graphs and iden-
tify linkability conflicts, we introduce the mapping Color : Ii → N, which identi-

75

fies a unique natural number with each audit flow. For simplicity, we assume that
edges ei ∈ Ei from Ii are assigned color i, i.e., Color(Ii) = i. An edge es ∈ S may
therefore have multiple colors, reflecting which flow it belongs to for each color.
We define the colors for a vertex vs ∈ VS as Colors(vs) : VS → 2N, as the set of
colors of its incident edges. Figure 5.2 shows the session graph with colors for each
edge and vertex.

Let C ′ ⊂ VS be the set of all overlapping role vertices in the composite session
graph S with two or more colors. We call this the set of potentially conflicting roles.
These roles may contain users that have static read access to two or more flows. To
illustrate, R7 and R8 are potentially conflicting roles in Figure 5.2, and are indicated
with shaded squares. After these potentially conflicting roles are identified, they
are further examined for linkability conflicts.

Consider the potentially conflicting role c′ ∈ C ′. Recall that all the incident edges
(r, c′) are augmented with the set of common users U(r, c′) from the AURA graph,
in addition to their colors. For a given potentially conflicting role, if the intersection
of the user sets for edges of different colors is not empty (that is if there is a user u

in two edge sets of different colors) then we identify c′ as a conflicting role. Also, if
any edge has two or more colors, and at least one user in its user-set, then c′ is a
conflicting role. Let the set of conflicting roles be C ⊆ C ′.

In Figure 5.2, R8 is not a conflicting role since there are no users in R8 that are in
parent roles R1 and R3, that can access flows of different colors, viz., I1 and I2.
R7 is a conflicting role because u2 appears on the edges (R1, R7) and (R3, R7), i.e.,
user u2 with role R7, also has roles R1 and R3 and can access two flows of different
colors I1 and I2. The conflicting roles in Figure 5.2 are R1, R3 and R7.

Complexity of detecting conflicting roles: Let E be the set of incident edges on a po-
tentially conflicting role c′. In the worst case, each edge e ∈ E has a different color
from the other edges. For each color i (or flow), compute the union Ui of the edge
sets U(r, c′) for all parent roles r of c′ and all edges with color i. Ui is the set of
users in c′ that can access flow Ii. Now we must check for pairwise intersections
between the Ui’s (O(n2) intersections) to identify real conflicts. Since there are at
most |E| union operations bounded by the number of roles |Γ|, and each such op-
eration is linear in |U(e)| bounded by |U| (set union using a hash table), the worst
case complexity for this step is O(n2|U|+ |Γ||U|).

We now show how a user of the system can specify discretionary policies repre-
senting unlinkability requirements and present an automated technique to gener-
ate constraints on the dissemination of audit flow information. We also show how
if we can enforce these constraints appropriately, we can prevent linkability.

76

5.3.4 Specifying discretionary policies

As described in Section 5.3.3, the PNS returns to Alice a set of conflicting roles C

in S. Alice picks a subset of these roles CAlice as her discretionary unlinkability
requirements.

A linkability conflict occurs for users with role c ∈ CAlice that can access a database
belonging to two or more flows. When Alice creates a new audit record that flows
to a database that can be accessed by a user in a conflicting role, the underlying ac-
cess control system denies the right to access these records to all users in these roles
who pose a linkability threat. The PNS subsequently generates policy constraints
that Alice can attach to her audit records.

5.3.5 Generating and enforcing policy constraints

We call CAlice Alice’s deny-set. The members in Alice’s deny-set should be pre-
vented from linking Alice’s flows. Note that not all users in the deny-set are link-
ability threats, and hence we need to make sure that only the users who can link
Alice’s flows must be denied access. We define the Alice’s policy constraints for ses-
sion S, PS , as the tuple 〈CAlice,R1, . . . ,Rn〉, where Ri is the set of roles with static
read permission to information flow Ii, and are parents of some role in CAlice. This
is easily obtained from the session graph S.

Audit flow records in session S are tagged with PS . When a user u attempts to
access an audit record, the database’s reference monitor first checks to see if u has
static read access for that database. If so, it then checks the attached PS to see
if any of u’s roles are in CAlice. If so, the reference monitor checks to see if u’s
role-set URA(u) has a non-empty intersection with at least two different sets in
{R1, . . . ,Rn}. If so, the user has static read access to two or more flows in S, and
the user is denied access by the reference monitor. In the worst case, for users
with static read access to the database, the reference monitor needs to compute
n + 1 intersections, where each intersection takes O(|URA(u)| + |Γ|) operations,
which is O(|Γ|). Hence the time complexity for evaluating PS is O(n|Γ|) if u is in
Alice’s deny set. If not, the time complexity is O(|Γ|), the cost of computing the
intersection URA(u)ĈAlice. From Figure 5.2, assuming that CAlice = {R7}. We have
PS = 〈{R7}, {R1}, {R3}〉.

At this point, a valid question is why not generate policy constraints with user IDs.
There are three reasons for this. Firstly, if a user u was identified to be a linkability
threat, then adding u to the policy constraints will prevent u from accessing two
or more flows. However, if u is removed from a particular role and is no longer a

77

linkability threat, u will still be denied access. Our scheme adds more precision to
the system by allowing users who are no longer linkability threats to access audit
records. Secondly, we would like to give administrators feedback as to why their
access was denied. Our policy is able to capture the reasons why access control
decisions are made in addition to what access control decisions are made. And
lastly, in large systems we expect a role based formalism to be a more compact
representation of linkability conflicts.

We now present two definitions, and prove that our system is secure, sound, and
precise under certain assumptions.
Definition 18. If the access permissions for a database record associated with a flow for
user u includes the right to read, then we say that u has static read access to the audit
flow. These static permissions can be overridden by policy constraints.
Definition 19. Strong Tranquility asserts that the access permissions associated with
the users of the system (i.e., the URA and the PRA) do not change by system operation.

Policy constraints are generated based on the current protection state of the system
(i.e., the URA and the PRA). Changes to the protection state can result in policy con-
straints that are “out of date.” We first prove that our constraints are secure, sound,
and precise under the strong tranquility assumption. We relax this assumption in
Section 5.4 and show how we can trade precision for security when the protection
state and the session information are allowed to change. The following theorems
are easy to prove because of the strong tranquility assumption, which makes the
properties hold by construction of session graph S and policy constraints PS .
Theorem 11. user u has static read access to two or more audit flows in a session, then all
of the user’s roles URA(u) appear as conflicting roles in the session graph.

(Security) Assuming strong tranquility, if a user u with a role in Alice’s deny-set CAlice,
has static read access to two or more audit flows in Alice’s session I1, · · · , In, the policy
constraints will prevent u from accessing these flows. Furthermore, Alice was presented
with all of u’s roles as conflicting roles.

Proof. Since u has static read access to two or more flows in I1, · · · , In and since we
assume strong tranquility, by construction all of u’s roles will appear as conflicting
roles in the session graph S. By construction of the constraints, u will be denied
access to I1, · · · , In.

Theorem 12. (Soundness) Assuming strong tranquility, if a user u is denied access to a
flow Ii by the policy constraints, then the user has static read access to two or more audit
flows in the session S.

78

Proof. Since u was denied access by the policy constraints, u’s role set includes
a conflicting role role c ∈ CAlice, and intersects with two or more role sets in
R1, . . . ,Rn. Since we assume strong tranquility, this implies that u has access to
two or more flows in S.

The following theorem is simply the contrapositive of Theorem 12. In the following
sections we will only refer to security and precision, since precision follows from
soundness.
Theorem 13. (Precision) Assuming strong tranquility, if a user u has static read access to
exactly one audit flow within a session, then u is not denied access by the policy constraints.

5.3.6 Open-ended sessions

Our algorithm in Section 5.3.5 maintains security and precision for a predefined
session. Consider the case when user Alice does not know all her transactions a
priori. Alice would like to dynamically generate constraints for new audit flows,
without invalidating her constraints to older audit flows. We extend our algorithm
to allow users to add audit flows to existing sessions and generate new constraints
appropriately.

Consider the session graph S, and the new flow In+1. Construct the session graph
S′ by combining the audit-flow graph for I ′ with S as described previously in Sec-
tion 5.3.3, and generate the new policy constraints for audit-flow In+1 as described
in Section 5.3.5. We now show how security and precision holds for session S′. We
modify the definition of security to allow access to at most one flow, since this does
not violate unlinkability, and implies the security property defined in Theorem 11.
Theorem 14. (Security)

Assuming strong tranquility, if a user u with a role in Alice’s deny-set CAlice, has static
read access to two or more audit flows in Alice’s session I1, · · · , In+1, then the policy con-
straints will prevent u from accessing two or more of these flows.

Proof. We prove this by induction on the number of audit flows. For the base case
we consider policy constraints generated for one audit flow. The set of constraints
is empty. Since there is only one flow, there are no linkability conflicts. Now con-
sider session S with audit-flows I1, . . . , In, and assume the security property holds
for policy constraints for flows in S. If we generate new policy constraints for I ′ as
described in Section 5.3.6, then any user u that has static read access to two or more
flows in S′ is denied access to audit-flow I ′. Users with static read access to two or

79

more flows in S are allowed access to at most one flow in S (inductive hypothesis).
Consider a user u that has static read access to exactly one flow in S, and to I ′.
Policy constraints for S will still allow u to access a single flow in S, and the new
constraints for I ′ will prevent u from accessing I ′. Hence u can access at most one
flow in S′ and security holds.

Theorem 15. (Precision)

Assuming strong tranquility, if a user u has static read access to exactly one audit flow
within a session, then u is not denied access by the policy constraints.

Proof. For the base case, again consider one audit flow. Since there are no policy
constraints, u will not be denied access by the policy constraints. Assume that for
a session S with audit-flows I1, . . . , In, precision holds for the policy constraints.
If we generate new policy constraints for I ′ as described in Section 5.3.6, then any
user u who has static read access to exactly one audit-flow in S′, will still be allowed
access to I ′. Consider the case when u tries to access a flow in S. If u has static read
access to a flow in S, then precision holds by the inductive hypothesis. If u has
static read access to I ′, then u does not have static read access to any flow in S and
is (trivially) denied access to a flow in S.

5.3.7 Mandatory audit flows

The PNS may consider access by certain conflicting roles to be mandatory. In our
example mentioned earlier, the PNS may mandate that student administrators can-
not be denied access (in this case, Administrator is the parent role of the overlap-
ping role Student). Specifically, the PNS can specify edges (r, o) that are mandatory,
where r is a role vertex, and o is an overlapping role of r. Hence, any user with
roles r and o are exempted from the policy constraints. If there are exempted users
that can access two or more audit flows, the user is informed of this.

Our goal is to make the privacy implications of sensitive information explicit to the
user. Users will have complete information of who can access the user’s informa-
tion, and will proceed only if they agree to the PNS’s mandatory policy.

In the next section, we relax the strong tranquility assumption and present a discus-
sion of what policies we can enforce when the permissions are allowed to change
and investigate the trade-off between security and precision.

80

5.4 Security under weak tranquility

Our strong tranquility assumption in Section 5.3.5 is restrictive since the users,
roles, and permissions, which define the protection state in any organization will
change over time. Once the protection state changes, it may not be possible to en-
force some of the unlinkability requirements. New conflicts may emerge that may
invalidate existing guarantees.

In this section, we extend our results to model the effect of changing the protec-
tion state. Our proposed solution uses versioning to localize the impact of these
updates. Since our policy enforcement mechanisms are decentralized, i.e., records
belonging to a particular flow in a database are tagged with access restrictions, it
is important to guarantee the security of these access restrictions under evolving
protection state.

We define the notion of weak tranquility which captures the effect of changing
permissions on the satisfaction of unlinkability properties.
Definition 20. Weak Tranquility states that the access permissions (i.e., the URA and
the PRA) associated with a user u of the system do not change in such a way that it violates
the security and precision of the enforcement of discretionary unlinkability policies for that
user.

Our goal is to guarantee that changes to the protection state can preserve the weak
tranquility property for as many users as possible during the lifetime of the system.

When a policy is agreed upon by the user and the PNS, the policy constraints cer-
tificate is stamped with what we call the system version number maintained by the
PNS. When users are added to the system, they are also stamped with the current
system version number. The user’s version number will be updated when certain
changes are made to the protection state. A user u can access an audit record be-
longing to flow I only if Version(u) ≤ Version(I). We assume that reference moni-
tors have access to the current version number for a user (e.g., policy database or a
revocation-based certificate approach). We prove Lemma 6 based on the following
update rules for a user’s version number.
Lemma 6. Consider audit flows I1, . . . , In in a session S. After any change to URA or
PRA, if for a user u, Version(u) ≤ Version(Ii) for all i = 1, . . . , n, then weak tranquility
holds for user u with respect to audit flows I1, . . . , In.

Proof. We prove this for each possible update to the protection state, and hence the
lemma holds by induction on the number of updates to the protection state. For
the base case, there are no updates to the protection state, and the lemma trivially

81

holds by strong tranquility, which implies weak tranquility.

New User u Created: No change to system version number. Assign current system
version number to user u. u has not been granted any new permissions and weak
tranquility holds for u.

New Role r Added: No change to system version number. No permissions have
changed in the system, and weak tranquility holds for all users.

User-Role (u, r) Assignment Added: When a User-Role assignment (u, r) is added,
it is possible that u now has static read access to two or more flows in session S, but
will not be denied access to two or more flows by the policy constraints. To main-
tain the security property of the policy constraints with respect to u, the system
version number is incremented, and u is assigned the new version number. Since
the permissions of all other users remain unchanged, security and precision of the
constraints hold for all other users, whose version numbers remain unchanged.

User-Role Assignment (u, r) Deleted: No change in version number. We only
need to examine the case when u had static read access to two or more flows in
S before the user-role assignment was deleted. If u continues to have static read
access to two or more flows in S, then u must activate roles other than r, which
must appear in the original policy constraints. Hence u will be prevented access
by the policy constraints if u has a role in the deny list of the constraints (security
property). If u does not have any roles on the deny list (see discussion for privilege
escalation for the case when r ∈ CAlice), then u is allowed access. If it is the case that
u no longer has static read access to two or more audit flows, then r was necessary
for access to two or more flows. Hence r ∈ URA(u) is a necessary condition for
being denied access by the policy constraints. Since now r /∈ URA(u), the policy
constraints will allow u to access flows in S (precision). Since the permissions of all
other users remain unchanged, security and precision of the constraints hold for all
other users, whose version numbers remain unchanged.

User u Deleted: Version number does not change. Equivalent to iteratively remov-
ing all User-Role assignments for u. Delete all the User-Role assignments.

Role r Deleted: Equivalent to iteratively removing all User-Role assignments for r

followed by removing all PRA(r). Note that after this operation, the system version
number remains unchanged.

Permission-Role (d, r) Assignment Added: This means that a role r has been
granted static read access to some database d. Since this role may not have been in-
cluded in the session graph, it is possible that some users in r can now access two or
more audit flows, and will not be denied access by the policy constraints, violating

82

the security of the policy constraints, and weak tranquility does not hold. If there
are any users assigned to role r, the system version number is incremented, and all
users in r are assigned the new version number. Hence, if Version(u) ≤ Version(Ii)
for all i = 1, . . . , n, then u is not a member of r, and weak tranquility holds for u.

Permission-Role (d, r) Assignment Deleted: This means that the static read access
to database d has been removed for a role r. It is possible that users in r are no
longer a threat to linkability, but will still be denied access by policy constraints,
violating the precision of the policy constraints. Hence weak tranquility does not
hold for users in r. If there are any users assigned role r, the system version number
is incremented, and all users in r are assigned the new version number. Hence, if
Version(u) ≤ Version(Ii) for all i = 1, . . . , n, then u is not a member of r, and weak
tranquility holds for u. Note that the security of policy constraints is not affected by
adding the assignment (d, r). However for every policy we would like to maintain
the set of users for which weak tranquility holds, which is why we update the
version numbers for affected users.

Privilege Escalation: Consider the situation when a user has access to only one
flow in a session. After accessing this information, the user is removed from a par-
ticular role, and then added to a new role, giving the user access to another flow in
the session, violating the unlinkability requirement. However, the version number
of the user is incremented when a new user-role assignment is added, which will
prevent this kind of privilege escalation. Similarly, incrementing the version num-
ber on the addition of a new permission-role assignment prevents privilege escala-
tion due to changing permission-role changes. More generally, privilege escalation
is prevented by the fact that a user’s version number is incremented whenever the
user’s static permission set increases. It is important to note that if a role r is re-
moved from a user’s role-set, it is possible that r is on the deny list of some policy
constraint, and that the user will now be able to link flows in that session, which
was disallowed before this removal. With cooperation from the security officer, a
user can remove, and subsequently add, r to his/her role-set resulting in one form
of privilege escalation. We assume that the security officer is trusted, and that priv-
ilege escalation from the removal of a conflicting role is semantically correct and
secure. An alternative approach would be to define this type of privilege escala-
tion as not secure, and increment the version number when a user-role assignment
is removed.

Under versioning, the following theorems follow from Lemma 6.
Theorem 16. (Secure) If a user u with a role in Alice’s deny-set CAlice, has static read

83

access to two or more audit flows in Alice’s session I1, · · · , In+1, then the policy constraints
will prevent u from accessing two or more of these flows.

Proof. If Version(u) ≤ Version(Ii) for all i = 1, . . . , n then the weak tranquility
assumption holds by Lemma 6, which implies security with respect to user u. If
Version(u) > Version(Ii) then the user is trivially denied access, even if their access
did not cause a linkability conflict.

Theorem 17. (Precise up to Versioning) If a user u has static read access to exactly
one audit flow within a session S = {I1, . . . , In}, then u is not denied access by the policy
constraints if Version(u) ≤ Version(Ii) for all i = 1, . . . , n.

Proof. If Version(u) ≤ Version(Ii) for all i = 1, . . . , n then the weak tranquility
assumption holds by Lemma 6, and hence the constraints are precise up to ver-
sioning. For users with higher version numbers, precision does not hold, since
they will be denied access even if they cannot link flows within a session.

After the policy constraints have been generated, previously deployed policy con-
straints gradually lose precision by being overly restrictive to users affected by
evolving system permissions. However, this is restricted only to users who gain
new permissions, and users of roles for which database permissions change. We
argue that the latter case is rare and can be performed at predefined system epochs.
To cope with degrading precision, the PNS can choose to honor the policy con-
straints for a certain time-period called unlinkability window. This window can ei-
ther be a static parameter in the system, or can be negotiated with the user. As men-
tioned earlier, changes in flow policies are considered to be non-trivial changes.
These changes can take place in epochs that honor the unlinkability window. When
this is not possible, all data along the new flow is tagged as sensitive and is only al-
lowed access by designated administrators. Users can be informed in general that
changes in flow policy are possible, and that certain designated administrators will
have access to audit flows in the session.

5.5 Summary

In this chapter, we explored the problem of user unlinkability in the context of
correlating audit data. Our work examined how administrative users with autho-
rizations to view audit records across different servers in an organization can link
different access transactions to sensitive attributes of other users such as identity

84

and location. We showed how this problem persists even if users employ anony-
mous credentials to gain access to a service. To the best of our knowledge, our
work in this paper is the first to discuss a policy-based approach for enforcing un-
linkability.

We formalized the unlinkability problem by defining the the notion of an audit
flow associated with a user’s access transaction. Audit flows for different access
transactions can be composed to generate a session graph that encodes the link-
ability conflicts (potential threats) compactly and captures the scope of the prob-
lem adequately. Using this session graph, we showed how we can transform the
unlinkability problem into a policy engineering problem, and presented an algo-
rithm to generate authorization constraints that can enforce unlinkability based on
a user’s perceived threat.

With appropriate tranquility assumptions on the underlying authorizations, we
proved that our constraints can guarantee unlinkability. We formalized the no-
tion of security and precision with respect to enforcing unlinkability constraints.
To maintain the security of deployed policy constraints under evolving protection
state, we proposed a solution based on versioning that maintains security by trad-
ing precision for evolving protection state. Using our approach, the set of users for
which policy constraints are secure and precise can always be identified.

85

6 Know Why Your Access Was
Denied

In Chapter 4 we described a model for trustworthy routing. Section 4.5.2 described
how a user is presented with a logical view of the network based on the credentials
presented to the system. In general, a user will engage in trust negotiation with the
system until he/she is satisfied with these authorizations. If a user desires access
to more routers, the system must aid the user by providing authorized feedback on
which additional credentials are needed.

In this chapter, we examine the general problem of providing useful feedback about
access control decisions to users while controlling the disclosure of the system’s se-
curity policies. Our model combines the use of qualitative policies and quantitative
cost functions to provide useful and authorized feedback. Relevant feedback en-
hances system usability, especially in systems where permissions change in unpre-
dictable ways depending on contextual information. However, providing feedback
indiscriminately can violate the confidentiality of system policy. To achieve a bal-
ance between system usability and the protection of security policies, we present
Know, a framework that uses quantitative cost functions to provide feedback to
users about access control decisions. Know honors the qualitative policy protec-
tion requirements, which are represented as a meta-policy, and generates permis-
sible and relevant feedback to users on how to obtain access to a resource. To the
best of our knowledge, our work is the first to address the need for useful access
control feedback while honoring the privacy and confidentiality requirements of a
system’s security policy.

Research on Know was done in collaboration with Geetanjali Sampemane [KSC04].

6.1 Introduction

When a user is denied access to a resource, what level of feedback should the sys-
tem provide? At one extreme, the system can conceal all policy information and
respond with a simple “Access is denied.” Many security systems use this policy
on the grounds that an unauthorized user must not be given any further informa-
tion. However, such a system is less user-friendly to legitimate users, because they

86

are not given enough feedback to reason about, and correct errors. This problem is
exacerbated when access also depends on contextual information, and permissions
change based on factors like room activities and time-of-day—without feedback, a
user has no way of discerning why some attempts succeed and others fail. At the
other extreme, the system can be completely open about its policies and make them
public knowledge. Users can then reason about their access to resources, making
such a system more usable. While feedback to legitimate users is often a desirable
feature, unrestricted feedback can be harmful, for example, by assisting intruders
probing system security in finding out where to direct their attacks. Another prob-
lem with open policies is information leakage—policies contain enough informa-
tion to allow legitimate users to deduce what other system users can access, thus
violating the privacy of those other users.

As systems get more complex, access policies get more complicated too, and it is
unreasonable to expect users to memorize all the conditions that affect access. It
thus becomes important to provide useful feedback to legitimate users, while also
addressing privacy and security concerns of the system’s policies (i.e., providing
suitable policy protection). Any such system makes a trade-off between usability
and policy protection. Providing useful feedback also improves system availability
to legitimate users. While this issue has not been adequately researched, common
operating systems do provide primitive forms of policy protection. For example,
UNIX allows users to look at a file’s permissions (or access policy) if they have ex-
ecute access to that directory. However, for two files in the same directory, there is
no way to hide the policy for one file and not the other. While this coarse-grained
policy protection has been adequate in conventional systems, we believe that new
ubiquitous computing [Wei91] environments accentuate the problem of policy pro-
tection and feedback.

Users in ubiquitous computing environments typically interact with a plethora of
computing, communication or I/O devices in their vicinity in many ways—voice,
gestures, and traditional keyboard-and-mouse input being some of them. Different
sets of users are allowed access to different subsets of resources, and these permis-
sions may change depending on contextual information such as the time of day,
the current activity, or the set of people involved. In such an environment, it may
not be clear to a user why he or she was denied access to certain resources. Thus,
informative feedback about why access was denied becomes very important if the
system is to avoid annoying users with apparently-arbitrary restrictions. However,
as mentioned earlier, unrestricted feedback about who is allowed to do what in the
system could itself compromise system security and privacy; therefore, policies
need to be protected against inappropriate disclosure. As a first step in this direc-

87

tion, we present a feedback model called Know, which uses meta-policies for policy
protection and cost functions to compute useful feedback.

Know examines the meta-policy that protects a policy and determines the level of
feedback that can be provided to a particular user. For example, a student trying
to access an audio device in a conference room may be told to return after the on-
going meeting. However, a meeting participant may be informed that the meeting
chair has access to the audio device. The basic challenge in providing informative
feedback is to identify the conditions required for the requested operation to be al-
lowed, i.e., find a way to “satisfy” the access control rule guarding that operation.
This may involve the user activating a different role (or presenting a different cre-
dential) or waiting for the context to change (e.g., the current activity configuration
of the space). Searching all the rules that guard a particular action will determine
all the situations in which this operation is permitted. Know can use this informa-
tion to suggest viable alternatives. A cost function is used to represent the relative
difficulty of changing an attribute to satisfy an access condition—it may be easier
for a student to wait for the end of a meeting to be allowed access to a printer,
rather than to become a room administrator to print the document immediately.

Satisfiability is an NP-complete problem in general. However, we explore the state-
space using ordered binary decision diagrams (OBDDs) [Bry86], which are efficient
and compact representations of boolean expressions in general, and search for con-
ditions that satisfy the access rules. OBDDs are graph structures, which makes
it easy to apply cost functions and shortest path algorithms for providing useful
feedback. While certain degenerate cases can result in exponentially large OBDDs,
there are several heuristics that usually reduce the size of OBDDs. To improve per-
formance, the OBDDs are computed in advance. Know computes feedback only if
it can do so within reasonable bounds of time and space.

This work is an initial attempt to address the problem of providing useful feed-
back about security decisions in ubiquitous computing systems while honoring
protected policies. Our main argument is that system feedback is more useful if
it is tailored to the intended recipient and based on his or her current permissions
rather than a generic “Access is denied” message, and that it is possible to provide
such feedback while still protecting policy information appropriately.

The rest of the chapter is organized as follows—Section 6.2 discusses some neces-
sary background and Section 6.3 describes the system architecture including the
use of OBDDs and cost functions to efficiently generate feedback. In Section 6.4,
we describe our implementation of Know and show how it presents useful feed-
back for a realistic policy. We then discuss some related work and issues raised by

88

our approach in Section 6.5 before concluding in Section 6.6.

6.2 Background

While our method of providing feedback is generally applicable to security sys-
tems, we focus on its use in ubiquitous computing environments. Good security
feedback is particularly important for these systems for a variety of reasons:

Ubiquitous computing is an area of active research [RHC+02; JFW02a] and good
security feedback will help direct secure application design. Ubiquitous comput-
ing environments will be used mainly by non-technical users, where feedback is
important for usability, since users either disable or work around obstructive secu-
rity mechanisms. Access control in these systems can be more confusing to users
than traditional distributed systems due to the inherent dynamism effected by a
context-sensitive environment. Since access control policies may now depend on
context in addition to traditional credential or permission based systems, without
adequate feedback, it can be difficult to tell whether access was denied due to a
bug in the system or due to user permissions changing in response to non-obvious
changes in the context.

We believe that these features make ubiquitous computing systems an ideal test-
bed for Know. Furthermore, such an environment allows us to assume coordination
between security and feedback mechanisms for policies of resources in the entire
system.

Test-bed: The Active Spaces project at the University of Illinois takes an operat-
ing system approach to ubiquitous computing environments. Gaia [RHC+02], a
middleware “meta” operating system interacts with all the devices in the space
and provides a uniform programming interface to application developers. Gaia
provides infrastructure services such as naming and context that applications can
use, as well as security services for authentication and access control. The Gaia
access control system [SNC02] uses an extension of the role-based access control
system [FK92b]. We permit policies written in propositional form, which may in-
clude contextual propositions. Thus, permissions available to a user at any point
in time depend on a variety of factors other than the user’s credentials, and good
feedback about access control denials is very important.

Policy protection: UniPro [YW03] provides a scheme to model the protection of
resources, including policies, in trust negotiation. It allows policies to be treated
as resources in the system, and allows the specification of policies to protect them.

89

C

B

A 0

1
0

1

1

0

T F

(a) Variable or-
dering: a, b, c

B

A

0 1

A C

1 0 1

FT

0

(b) Variable or-
dering b, c, a

Figure 6.1: Example OBDDs for a ∨ (b ∧ c)

Know uses the UniPro notation for writing meta-policies that protect the policies to
decide what feedback can be provided to a user.

Representation: Ordered binary decision diagrams (OBDDs) [Bry86] are a canonical-
form representation for boolean formulas where two restrictions are placed on bi-
nary decision diagrams: the variables should appear in the same order on every
path from the root to a terminal, and there should be no isomorphic subtrees or
redundant vertices in the diagram. A binary decision diagram is a rooted directed
acyclic graph with two types of vertices: terminal and nonterminal. Each nonter-
minal vertex v is labeled by a variable var(v) and has two successors, low(v) and
high(v). We call the edge connecting v to low(v) the 0-edge of v (since it is the
edge taken if v = 0) and the edge connecting v to high(v) the 1-edge of v. A single
formula may be represented by multiple different OBDDs based on the order that
variables in the formula are tested; however, given a particular variable-ordering,
the OBDD structure is fixed (canonical form for that variable-ordering). Figure 6.1
gives an example of two OBDDs that each represent the simple boolean formula
a ∨ (b ∧ c). The first is the canonical-form OBDD for the variable-ordering a, b, c

and the second is the canonical-form OBDD for the variable-ordering b, c, a. To test
for satisfiability, we start at the root node and test whether the variable at the root
is true or false. If it is false, we follow the 0-edge, and if true, the 1-edge, and re-
peat this process. Eventually we reach either the T -node or the F -node (also called
the 1-node and 0-node, respectively). If we reach the T -node, then the given as-
signment satisfies the formula; if we reach the F -node, it does not. For example,
applying the assignment 〈a = false, b = true, c = false〉 to either of the OBDDs in
Figure 6.1 tells us that the formula is not satisfied. We use OBDDs because they are
a compact and graphical representation of boolean formulas. This allows us to use
cost functions and shortest path algorithms to find conditions of satisfiability that
are of “least cost” to the user.

90

Know stores access control rules as OBDDs, and can efficiently search these OBDDs
for paths that satisfy the rules. When access is denied, the OBDD can provide infor-
mation about alternate paths that would allow access. Know provides information
to the user about such paths as feedback. The number of nodes in an OBDD can
be exponential in the size of the boolean expression, but there are several heuris-
tics to find an ordering that reduces the size of the OBDD, and in practice, boolean
functions usually have a compact OBDD representation. We discuss this in more
detail in Section 6.5. As mentioned earlier, Know provides feedback only if it can be
done with acceptable overhead. Examples of Gaia system policies are presented in
Sections 6.3 and 6.4.

6.3 Architecture

We augment the Gaia access control mechanism with our feedback component
(Know). The Gaia access control mechanism intercepts all requests for service and
checks them against the system policy. If disallowed, the access request is for-
warded to Know, which prepares a feedback message for the user. Such a message
contains a list of alternative conditions under which access to the given service
is permitted. Alternatives may not always be available, either due to policy or
computational resource constraints. In this case, the standard “Access is denied”
message is provided. Since Gaia is highly context-driven, the feedback may sug-
gest changes in context. For example, if a printer is inaccessible due to the current
context (e.g., a meeting in the room disallowing the use of noisy printers), feedback
may be of the form, “If you return when there is no meeting, then you will have
access to Printer X .”

When providing feedback to a user, a system must not compromise sensitive com-
ponents of the system policy. For example, feedback of the form, “If you are a
Motorola or IBM employee, then you will have access to this room” reveals sen-
sitive information that IBM and Motorola may be collaborating on a project. To
protect such information, Know augments the policies with meta-policies. A meta-
policy governs access to a policy, thereby treating policies as objects themselves.
When determining feedback for a user Alice, Know first checks the meta-policy to
see what parts of the policy Alice is allowed to read, and constructs feedback us-
ing only those parts. UniPro [YW03] provides a generalized framework to protect
parts of the policy with a policy, which in turn can be protected by another policy,
and so on. Here, in the interest of simplicity, we focus on policies and their meta-
policies (and not multiple levels of meta-policies). Henceforth, our notation will
resemble that of UniPro, since we use a subset of its functionality. We now provide

91

Policy:
R : P

P ↔ P1 ∨ P2

P1 ↔ User.role = Professor

∧ User.department = CS

P2 ↔ User.role = CIA

Meta-Policy:
P1 : User.department = CS

P2 : false

Figure 6.2: Policy for Example 1

some concrete examples of access policies, and their associated meta-policies.

Example 1 The access policy of an electronic door lock might allow access only to
Computer Science professors or members of the CIA. When a person is denied ac-
cess to the room, feedback of the form, “If you are a CS professor or a member of
the CIA, then you will have access to this room” is potentially dangerous. Collab-
oration between the Computer Science department and the CIA could be sensitive
information. Outsiders may also glean intelligence information about where CIA
members meet. Clearly, we may not want to reveal parts of this access rule. Feed-
back of the form, “If you are a professor in Computer Science, then you will have
access to this room” may be acceptable. A meta-policy would control this flow of
information to denied users. Formally, we can represent the policy and meta-policy
as shown in Figure 6.2.

A policy definition includes two types of expressions. An expression of the form
O : P means that an object O is protected by policy P , where policies themselves
can be objects (since policies may be protected by meta-policies). An expression of
the form P ↔ E means that the policy P is defined by expression E. Expressions
can contain both atomic propositions (e.g., User.department = CS) and references
to sub-policies (e.g., P ↔ P1 ∨ P2, where P1 and P2 are defined subsequently).
The access policy for the room is R : P , which means that access to the room R

is protected by policy P . P is defined as the disjunction of policies P1 and P2. P1

is the policy, “User must be a professor in Computer Science.” P2 is the policy,
“User must be a member of the CIA.” Hence the policy P to access the room is
“User must be a professor in Computer Science or the user must be a member of the
CIA.” Figure 6.3(a) shows the associated OBDD for this policy. The meta-policy P1 :
User.department = CS indicates that the policy P1 may be revealed only to subjects

92

in the Computer Science department, while the meta-policy P2 : false does not
reveal P2 under any circumstances1. For example, a denied student in Computer
Science would receive the feedback “If you are a professor in Computer Science,
then you will have access to this room,” while a student in Civil Engineering will
be informed, “Access is denied.” In either case, no policy information involving
the CIA is revealed. We discuss how to apply meta-policies to OBDDs through
cost functions in Section 6.3.1.

We make two assumptions here. First, we assume that any logical dependen-
cies between atomic propositions are captured within the policy. For example, a
policy may contain atomic propositions User.isAdult and User.isMinor. We know
that User.isAdult ⇔ ¬User.isMinor, and hence feedback of the form “If you are an
adult and a minor, you will have access” would be absurd. Such inconsistencies
are avoided by either replacing occurrences of User.isMinor by ¬User.isAdult or by
adding the logical rule User.isAdult ⇔ ¬User.isMinor to the policy. This will avoid
any inconsistencies in feedback. The second assumption we make is that all refer-
ences to an atomic proposition a are protected by the same meta-policy. We elabo-
rate on this in Section 6.3.2.

It is important to note that in all our examples we are careful to provide feedback as
“If. . . then” clauses. This is important for policy protection. Feedback of the form,
“Only professors may access this room” gives more information than “If you are a
professor, then you will have access to this room.” If both types of feedback were
allowed, the user may infer from the latter feedback that there is a protected policy
not being revealed. Hence, if feedback is consistent in its use of “If. . . then” clauses,
users will not gain any extra information about protected policies.

Example 2 Since we are interested in providing useful feedback for complex poli-
cies, we provide a more complex example in Figure 6.4. We first present the policy
P for a printer A, and then augment it with a meta-policy.

To understand this policy, first note that printer A is noisy, and so, disruptive to
meetings being held in the room. During meetings, printer access is restricted to
the person in charge of the meeting. P2 and P6 ensure that nobody will disturb the
meeting by using the printer, but the meeting chair may use the printer if needed.
When there is no meeting in effect, we would like to grant access to the printer
to anybody during normal business hours (P1, P5). At other times, users are only
allowed to access this printer while no meeting is in progress, and in the presence
of a Lab Assistant (P1, P4). Teaching Assistants have 24-hour access (P1, P3) to the

1In our examples we omit meta-policies of the form P : true for clarity. In practice however, all
meta-policies may be assumed to be of the form P : false unless a meta-policy is explicitly specified.

93

r = Prof

r = CIAr = CS

T F

1 0

1
1

0

0

(a) Example 1, with r ≡ User.role

F

T

r = Chair r = TA

labAsst
Present

a =
meeting

1 0

1

0

01

1

0

1
hours
work

0

(b) Example 2, with r ≡ User.role, a ≡ Context.Activity, t ≡ Context.time

Figure 6.3: OBDDs for the examples
.

94

Policy:
A : P

P ↔ P1 ∨ P2

P1 ↔ Context.activity 6= meeting ∧ (P3 ∨ P4 ∨ P5)
P2 ↔ Context.activity = meeting ∧ P6

P3 ↔ User.role = TeachingAssistant

P4 ↔ Context.labAssistantPresent = true

P5 ↔ Context.workingHours = true

P6 ↔ User.spaceRole = MeetingChair

Meta-Policy:
P3 : false

P6 : User ∈ Context.activityMembers

Figure 6.4: Policy for Example 2

printer to perform their duties (again, as long as there is no ongoing meeting in the
room). Figure 6.3(b) shows the associated OBDD for this policy.

Consider the case when a Student is denied access to the printer. An “Access is de-
nied” message may be confusing to the Student who was able to access the printer
the previous day. In the spirit of offering the user a consistent view of the system’s
policies, we would like to inform the user why the access was denied. Was it be-
cause a meeting was in effect? Should the user come back during regular business
hours when there is no meeting? Should the user be informed that there is no lab-
assistant in the room and that it is past business hours? Clearly there are several
useful options available to the user. Now consider some other options that may not
be of much help to the user. Let us say that access was denied outside of working
hours, and no meeting was taking place in the room. Feedback of the form “Access
is denied, but if you are a Teaching or Lab Assistant, then you will have access to
this printer” is clearly less useful to the user, since becoming a Teaching or Lab
Assistant is a non-trivial task.

Consider a final scenario when a person is denied access to the printer because
of an ongoing meeting. If the user is not a member of the meeting, feedback of
the form “If you are the meeting chair, then you will have access to this printer”
may suggest to users that they request the chair to print documents. This is clearly
disruptive, so we would like to disclose this fact only to people who are partic-
ipating in the meeting. Consider the meta-policy for the policy provided above,
shown in Figure 6.4. Using this meta-policy, we restrict feedback provided to users.

95

Users who are denied access are not informed that Teaching Assistants have 24-
hour access (P3 : false), since this may result in several students accosting their
Teaching Assistants for their personal printing needs. Further, users who are de-
nied access to the printer during an ongoing meeting, are only informed about the
meeting chair’s printing capability if they are a member of the current meeting
(P6 : User ∈ Context.activityMembers).

We have presented examples of feedback that a user may, or may not, find useful.
Furthermore, there were some examples of feedback that were restricted or elim-
inated by the meta-policy due to privacy concerns. Providing useful feedback in
the face of restrictions by a meta-policy, and the relative usefulness of the various
options available to the user, suggests the use of a cost function. This cost function
can evaluate each feedback option, and generate an ordering that says one option
is better than another. For example, the system may provide the user with the
three most useful options as determined by the cost function. We now describe
cost functions in more detail and formalize the notion of “feedback.”

6.3.1 Cost functions

When the access policy for a resource is not satisfied, we can try to compute all
the paths from the root of the OBDD of the policy to the true node. Essentially,
a set of such paths will be presented as feedback to the user since they represent
assignments that satisfy the policy. Some of the edges followed in the path will
correspond to conditions that do not currently hold. Consider Example 2, with a
meeting in progress, and a TA trying to access the printer. One possible path from
the root to true is Context.activity 6= meeting, r = TA. This requires one change since
there is a meeting in progress. Other paths may require more changes. The number
of changes that must be made for each path, and the relative difficulty in making
certain changes over others, suggests the use of cost functions to rank the options.
We first introduce some notation and a formal definition of feedback.

We use the notation S |= P to indicate that a policy P is satisfied under the atomic
propositions specified by S. For example, we could have S = {Context.meeting =
false, Context.workingHours = true}. In the notation S[a] |= P , S[a] is the set
of atomic propositions in S along with any update provided by a. In our exam-
ple, S[Context.meeting = true] = {Context.meeting = true, Context.workingHours =
true}. This notation naturally extends to a set of updates, e.g., S[A], where A is a
set of atomic propositions. Let C be the set of atomic propositions relating to the
context of the system and U be the set of atomic propositions specific to the user
(identity, role, etc.). Given a policy P and a user U , the user is granted access when

96

C ∪ U |= P , and denied access when C ∪ U 6|= P . In essence, if C ∪ U 6|= P , then
a set of updates X such that (C ∪ U)[X] |= P constitutes a feedback option to the
user.

To formalize the notion of feedback, let Π = {π1, . . . , πn} be the set of paths from
the root node to the true node in the OBDD of P . Let π′i be the set of atomic propo-
sitions that appear in πi ∈ Π and whose truth values differ in C ∪ U , i.e., the set of
propositions that must be changed (or a set of updates to the state) for the policy to
be satisfied. Let F = {π′1, . . . , π′n}. Note that (C ∪U)[π′i] |= P for all π′i ∈ F . We de-
fine any subset F of F to be the feedback offered to the user. In other words, each
feedback option fi in the feedback F corresponds to a set of atomic propositions the
user must change to be granted access. F is the set of all possible feedback options
available to the user. Since F can be very large, our primary goal is to find a way
to offer the user only a few relevant feedback options in F . We do this through the
use of cost functions. The cost function assigns a cost to each f ∈ F , and returns
the k lowest-cost feedback options, where k is a tunable parameter.

A naı̈ve cost function could assign the same cost to each change, in which case
the user would be given feedback with the least number of changes that need to
be made to access a resource. For example, we could sort the elements fi of F in
ascending order of |fi| (number of atomic propositions in fi) and return the first k

choices. However, changing roles might be more difficult than changing context.
For example, a Student may be able to come back at a later time, but it would
be extremely difficult to acquire a Professor role. This suggests the use of more
sophisticated cost functions.

We need to define an appropriate cost function that is applied to edges in the OBDD
as edge weights. Using these weights we can use shortest path algorithms from
the root to true to provide feedback with lowest total cost. Running Dijkstra’s algo-
rithm gives us a path with lowest total cost in polynomial time. There are several
proposed algorithms for k shortest paths for graphs. Eppstein [Epp94] presents an
algorithm that computes k shortest paths in time O(m + nlogn + k), where n is
the number of vertices, and m is the number of edges in the graph. This is the best
known bound for k shortest paths in directed acyclic graphs. Since an OBDD with n
nodes has 2n−4 edges (two children for each node, except the true and false nodes),
the complexity for computing the k shortest paths in an OBDD is O(nlogn + k).

Let A be the set of atomic propositions in the policy P . We define a cost function
c : A × {0, 1} → R+ ∪ {∞}, where R+ is the set of non-negative real numbers.
This function tells us the cost to change an atomic proposition, an in effect, the cost
to follow a 0-edge or a 1-edge for a node in the OBDD. An infinite cost disallows

97

any changes to the current value of the proposition. When a request for access is
denied, let T ⊆ A be the set of propositions that evaluate to true, and F ⊆ A be the
set of those that evaluate to false. We define c(t, 1) = 0 for t ∈ T and c(f, 0) = 0 for
f ∈ F since there is no cost to maintain atomic propositions that are satisfied under
the current conditions (C ∪ U), and we would like to assign non-zero cost when a
user must change some atomic proposition. Cost functions will differ according to
their assignments to c(t, 0) for all t ∈ T and c(f, 1) for all f ∈ F . Now, for all a ∈ A,
assign the weight c(a, 0) to the 0-edge of a, and c(a, 1) to the 1-edge of a. What
results is a directed acyclic graph with weights assigned to each edge. We can now
apply k-shortest path algorithms to this graph to get the k lowest-cost paths, which
correspond to the k lowest-cost feedback options. For small k, the running time for
such algorithms is dominated by the structure of the OBDD and not k. Specifically,
since we expect to have k < n (for example k = 3 might be sufficient), the running
time is O(nlogn). Our naı̈ve cost function that considers all changes to be equally
expensive would set c(t, 0) = 1 for all t ∈ T and c(f, 1) = 1 for all f ∈ F . Hence
the total cost of any path is equal to the number of propositions that need to be
changed under the given conditions.

6.3.2 Meta-policies

Now that we have described the basic algorithm for computing feedback using
OBDDs and shortest path algorithms, we must modify the algorithm to honor the
meta-policies. Each meta-policy determines whether a user can read certain nodes
in the policy’s OBDD. Let D ⊂ A be the set of nodes forbidden by the meta-policy.
For each d ∈ D, we assign infinite cost to the edge that effects a change in the
current value of d. This does two things: first, it prevents shortest path algorithms
from exploring a change in d and hence does not return any feedback options that
require a change in d. Second, since this proposition d cannot be changed, it will
not appear within a feedback option, which includes only those propositions that
must be changed. Since no atomic proposition that is precluded by the meta-policy
appears in any feedback option, the feedback given to the user honors the meta-policy.
We assume that all nodes corresponding to a particular atomic proposition a are
protected by the same meta-policy, allowing us to perform such a transformation.
Finding efficient ways of computing consistent feedback where references to the
same atomic proposition are protected by different meta-policies is left to future
work.

98

6.3.3 A useful cost function

We now present a useful cost function that improves on the results of the naı̈ve
cost function in the context of ubiquitous computing environments. The useful cost
function forbids the exploration of certain, obviously undesirable, options. Paths to
the true nodes will still be graded according to the number of changes, but certain
changes are forbidden by the cost function, and, therefore, not considered.

Activities: Gaia policies for a smart space depend on the current activity in that
space. Example 2 showed the policy for the activities meeting and no meeting. Con-
sider a space with the possible activities of meeting, conference, reception, presentation
and no activity. If a user is denied access to a resource during a meeting, feedback
of the form “During a conference, if you are the Chair, you will have access” is not
very useful. So we only provide the user feedback for the current activity, and the
absence of any real activities (no activity). Hence, we apply an infinite cost to all 1-
edges for the activities that are not current (the 0-edges will have 0 cost) and apply
a cost of 1 to the 0-edge for the current activity and the 1-edge for no activity. This
will cause Know not to explore feedback for other activities, but do so for both, the
current activity and no activity.

Roles: This cost function assumes that it is difficult for a user to obtain a new role.
Let N be the set of nodes in the OBDD that tests for a role that the user has not
activated. For each node in N , assign infinite cost to the 1-edges (the 0-edges will
have 0 cost). Hence the system will not provide any feedback that requires a user to
obtain a new role. A user may choose to activate only certain roles in the system. If
the user is not satisfied with the feedback options obtained, he or she may activate
another role and get better feedback.

Meta-policy: As described in Section 6.3.2, we assign infinite costs to all edges that
require a change to variable assignments forbidden by the meta-policy.

For a given feedback option (path from root to the true-node in the OBDD), the
cost is the number of changes to be made. Since certain edges are forbidden due
to infinite cost, feedback provided to the user will not require any changes in the
current role, and will only be for the current activity, or no activity. We believe
that this cost function is useful in the context of current policies and activities in
Gaia. In our analysis, we provide a detailed example policy and show how this cost
function provides more useful feedback to the user than the uniform cost function.

99

6.4 Implementation

We have built a prototype of the Know system, which will be incrementally de-
ployed within Gaia. In this section we describe the implementation and results
from a preliminary evaluation. We present results of Know running with an exam-
ple access control policy for videoconferencing equipment located in a kiosk within
a multi-purpose business center.

The system access policy is represented as an OBDD, which is then transformed
into a weighted graph that is specific to access requests. An appropriate cost func-
tion, along with the system meta-policy, is used to assign weights to the edges.
Finding the k shortest paths to the 1-node of the OBDD gives us k sets of assign-
ments to the variables that will satisfy the access control rules, and thus, describe k

situations under which the particular operation is allowed.

The first step is to generate an OBDD from the system access control policy. We
use the BuDDy [LN99] library, which uses heuristics for optimizing the generated
OBDDs. The end result of this is an OBDD that represents all allowable ways to
perform a particular action (or access a particular resource). If the requested action
is permitted, Know is not needed. If not, Know attempts to find alternative paths in
the OBDD that would permit the operation, i.e., paths in the OBDD from the root
to the 1-node.

Alternative paths are found by using the Eppstein [Epp94; Gra] algorithm to find
the k shortest paths from the root to the 1-node in this OBDD. Weights are assigned
to the edges of the OBDD graph based on the cost function and the current values
of the user roles and context variables. Selecting a suitable cost function is site-
specific—the weights assigned to the different changes will depend on the nature of
tasks that are normally performed by users of the system. We provide results from
the two cost functions described earlier—the naı̈ve cost function (which counts
the number of changes required) and the “useful” cost function (which treats role
changes as more difficult to achieve than context changes).

Know then outputs the necessary changes that must occur to satisfy the alternative
paths. It is up to the user to choose between these suggestions, and to retry the
request after following the suggestion.

6.4.1 Evaluation

We illustrate this entire process with its application to a sample policy that governs
the access to videoconferencing devices in the business center of a hotel. In addi-

100

tion to computers, the business center also contains devices such as printers, fax
machines, cameras for videoconferencing and so on. The business center is located
in the conference hall, and hotel guests and other members who have signed up
are normally allowed to use the devices as per the security policy. The conference
hall is also rented out for activities such as meetings, conferences, or receptions,
during which time use is restricted to participants of this activity, as per the policy
configuration by the organizers. Users present their credentials to enter the busi-
ness center, in the form of a smartcard (a conference badge or a hotel room key) and
the system uses this information to restrict access and provide useful feedback. We
present here the rules that affect access control to the camera for the videoconfer-
encing system.

The basic policy is as follows:

• When no activity is scheduled for the room, supervisors, hotel guests or other
registered users can use the videoconferencing equipment during the busi-
ness day. Visitors are also allowed to use the facilities if an operator is present.
Hotel guests may also use the system during non-business hours, but others
may not.

• When an activity (such as a videoconference) is scheduled, only registered
activity participants and supervisors are allowed to use the system.

• Use of the videocamera is disallowed for regular participants if the video-
conferencing activity being undertaken in the conference center is labeled as
confidential. However, the meeting supervisor may still turn on the video-
camera if all participants have the required security clearance.

• Maintenance activities are performed by designated personnel.

• Finally ambient temperature above 30C indicates some problem with the air-
conditioning/cooling system, and camera use is prohibited until temperature
reaches the allowed range. Similarly, overcrowding the room will violate the
fire safety codes and cause access to the camera to be denied.

The meta-policy that governs feedback contains the following rules:

• Information about confidential activities is only provided to the meeting su-
pervisor. Thus an unauthorized user trying to access the videocamera during
a confidential activity will not be informed that a confidential activity is go-
ing on, but just that access is denied at that time. Similarly, feedback about
the presence of uncleared users is only given to the meeting supervisor.

• Information about maintenance activities is not provided to other users.

101

Policy:
C : P

P ↔ P1 ∨ . . . ∨ P10

. . .

V C ↔ activity = VideoConference

∧¬(A1 ∨ . . . ∨An)
CA ↔ Context.isConfidential = true

RS ↔ User.role = Supervisor

NU ↔ Context.UnclearedUsersPresent = false

NH ↔ Context.cameraOverheated = false

NF ↔ Context.roomFull = false

RP ↔ User.role = Participant

P7 ↔ V C ∧ CA ∧RS ∧NU ∧NH ∧NF

P8 ↔ V C ∧ ¬CA ∧ (RP ∨RS) ∧NH ∧NF

Meta-Policy:
. . .

CA : User.role = Supervisor

Figure 6.5: Example policy used for evaluation

The access control rules for this policy above are presented in Figure 6.4.1. In
our implementation, access to the camera C is protected by policy P . Policies
P1, . . . , P10 describe the various rules presented above, where P7 and P8 are rules
pertaining to the VideoConference activity. In the interest of brevity, we only
present the rules relevant to the VideoConference activity in Figure 6.5. This policy
states that during a confidential VideoConference, only a Supervisor can access the
camera as long as there are no uncleared users present. During a non-confidential
VideoConference, any Participant or Supervisor can access the camera. The room
must never be Overheated or Full during a VideoConference. The second rule in
the meta-policy states that only Supervisors will be made aware of Confidential ac-
tivities (or the lack thereof). Hence if an ordinary user is denied access to a camera,
the user will not be told that there is a confidential conference in progress (this in-
formation itself is deemed sensitive). Since there can be only one activity at any
given time, the policy specifies V C ↔ VideoConference ∧ ¬(A1 ∨ . . . ∨ An), where
A1, . . . , An are the remaining activities.

The OBDD generated by the above policy has 17 variables and 35 nodes (in con-
trast, a binary decision tree would have at least 217 nodes).

To evaluate Know, we try to access the videocamera under a variety of situations,

102

and present the suggestions provided by Know using each of the two cost functions
described earlier, which we designate as the “naı̈ve” and the “useful” cost func-
tion. Since the useful cost function just restricts information about role and activity
change, feedback from the useful cost function will just be a (more useful) subset
of the feedback from the naı̈ve cost function. We describe some of the experiments
below for k = 4. The run-time overhead for Know to find these suggestions was
negligible—in the order of milliseconds. Since OBDDs are just a representation of
the access control policy, they can be constructed ahead of time and only need to
be re-computed if the policy changes. Assigning weights to the edges of the OBDD
is performed each time a request arrives, since the weights depend on the current
values of the context variables and user credentials. Since Know runs only when
access is denied, it has no performance overhead on successful requests. We now
describe the situations and results in detail:

• A Visitor tries to use the camera during business hours, but no Operator
is present. There is no activity in session. With the naı̈ve cost function,
Know suggests that the user come back a) as a HotelGuest b) as a Regis-
teredRoomUser c) when an Operator is present, or d) as a Supervisor. The
useful cost function suppresses the suggestions involving a role change, and
only advises the user to come back when an Operator is present. This simple
example illustrates the basic functionality of Know.

• If a HotelGuest tries to use the equipment during working hours when the
room is too hot and there is no activity in session, Know correctly suggests
that the user try again a) when room is not Overheated b) when room is not
Overheated and it is out of business hours and c) when room is not Over-
heated and as a RegisteredRoomUser instead of a HotelGuest, or d) when
room is not Overheated, as a Supervisor, instead of a HotelGuest. The useful
cost function only offers the first two suggestions because it does not recom-
mend role changes. Clearly, the only change required is for the temperature to
be reduced, but Know does not presently restrict suggestions that are subsets
of others. This may be useful in some situations.

Maintenance operations are allowed even in overheated conditions, and a
straightforward search through the policy might have offered the suggestion
to try coming back as a MaintenanceWorker. However, the system meta-
policy forbids the disclosure of information about maintenance permissions,
so this option is correctly ignored by Know.

• During a Confidential videoconferencing activity and regular working hours,
if a Participant tries to access the videocamera when users without the re-

103

quired security clearance are present, the naı̈ve cost function suggests the
user come back a) as a HotelGuest when no activity is in progress, b) as a
RoomUser when no activity is in progress, c) as a Visitor when no activity is
in progress, or d) as a Supervisor when no activity is in progress. The useful
cost function does not offer any feedback, because there is no useful option
for the Participant.

One possible suggestion is to inform the user that this operation is not permit-
ted during a confidential activity and to suggest re-trying when no confiden-
tial activity is being undertaken, but the system meta-policy precludes any
information about confidential activities from being revealed, so this sugges-
tion is not offered. Note that it is possible for users to correlate feedback from
different sessions to infer the existence of hidden atomic propositions. For ex-
ample, the presence or absence of a confidential activity results in differing
feedback. Care must be taken while writing the policies and meta-policies
to prevent the leakage of the identity (e.g., confidential activity) of the atomic
proposition.

• If a Supervisor tries to use the camera when the room is reserved for a con-
fidential VideoConference and uncleared users are present, the uniform cost
function suggests that the user come back a) after changing the activity type
to be non-confidential b) when no uncleared users are present, c) when there
is no activity scheduled, or d) as a Participant after changing the activity type
to be non-confidential. The useful cost function suggests the first three op-
tions. Note how the Supervisor is given feedback regarding Confidential ac-
tivities, as opposed to a Participant in the previous scenario.

While the above examples are fairly simple, they validate our hypothesis that Know
can provide useful information about alternatives when access is denied, that it can
do so without compromising privacy or confidentiality requirements of the secu-
rity policies, and that this can be achieved with negligible performance overheads.
We are in the process of integrating Know fully with the Gaia system, after which
we can perform larger-scale studies.

6.5 Discussion

Usability has been recognized as an important concern for security systems since
the early days [SS75] of research in computer protection systems; however, in prac-
tice, usability issues have not been a primary consideration for security design-
ers. Usability concerns are especially important in ubiquitous computing environ-

104

ments, since the objective of ubiquitous computing is to blend into the background
and allow the user to perform his or her tasks without having to pay attention to
the computing environment. Work on the human-computer interface aspects of se-
curity [Yee02; ZS96] have identified consistent feedback as an important aspect of
usability. We posit that providing useful feedback about access control decisions is
a step in the right direction. Users can then obtain a better picture of the security
policies and can access resources accordingly.

While policy feedback improves system usability, one of the major concerns is in-
formation leakage. Meta-policies allow system administrators to treat the policy
just like any other system resource, and configure access to it accordingly. Thus,
providing feedback does not leak any unauthorized information. We recognize
that writing effective meta-policies that are robust against statistical inferencing
remains a challenge, and further research is indicated.

Computing feedback options is equivalent to computing variable assignments to
satisfy a boolean formula. In general, computing assignments for satisfiability
(SAT) of a boolean formula is NP-complete, and finding least-cost assignments
(Weighted SAT) is an NP-hard optimization problem [OM87]. Therefore, we can-
not expect to compute “least cost” feedback in all cases. We propose that feedback
should be provided if it can be done with acceptable computational and storage
overhead. Responses can be cached to improve efficiency, especially in situations
where users might make repeated requests for a resource.

OBDDs are an efficient and compact representation of boolean formulas, and tests
for satisfiability are efficient. It is well-known that the size of OBDDs depends on
the variable ordering (the order in which variables are tested in an OBDD), and
in certain cases it is not possible to reduce the exponential state space of decision
trees. In fact, determining a suitable variable ordering (yielding a minimum-sized
OBDD) has been shown to be NP-complete [BW96]. Given these challenges, it is
comforting to know that commonly encountered functions have reasonably sized
OBDDs and there are several heuristics (e.g., group-sifting [PS95] is one of the pop-
ular methods, also see [BRKM91; FMK91]) to determine variable orderings for ade-
quately small (non-exponentially sized) OBDDs. Degenerate cases usually involve
functions that behave differently for all possible assignments (e.g., output of an in-
teger multiplier [Bry86] and integer division [HY97]), and we do not expect such
state space explosion in the case of our policies. Furthermore, efficient heuristic
algorithms such as A∗ [Kor02] may improve search performance. While we chose
OBDDs for the convenience of using graph algorithms, other representations of
policies may also prove useful. If policies are represented in Disjunctive Normal
Form (DNF), feedback computation can be performed in at most O(U log U) where

105

U is the number of clauses in the DNF representation. However, converting poli-
cies to DNF may result in large U . We are currently studying the relative merits of
such alternative representations.

The search space could be reduced by allowing the user to specify constraints such
as the maximum number of changes v that he or she is willing to accept. In that
case, even a naı̈ve brute-force algorithm for computing feedback would take time
O(nv), which might be acceptable overhead for small v.

An interesting avenue for future work is the study of suitable cost functions. More
nuanced cost functions could better reflect the relative difficulty of changing propo-
sitions. Selection of an appropriate cost function will be influenced by various fac-
tors, such as user preferences and system usage patterns. Another option could be
to allow users to specify their own cost function to tailor the Know feedback. Learn-
ing algorithms [ZK03] could be used to improve feedback over time by allowing
users to rate the feedback received. For example, the learning algorithm can use
these examples to update the costs for atomic propositions and eventually “learn”
the user’s preferences. Chajewska et al. [CKP00] explore approaches for making
decisions based on imperfect utility functions. The system tries to learn a user’s
utility function through a process called utility elicitation and computes the optimal
decision based on the current utility function.

Other possible approaches include Knowledge bases [LL01] and planning algo-
rithms [LaV06] for storing access policies, and rules to express meta-policies and
user preferences. Planning algorithms can be used to compute the least cost num-
ber of predicates that can be changed to gain access to a resource. The main advan-
tage of this approach would be the use of additional inference rules for better feed-
back. For example, if Alice is a student in a particular course, it is unlikely that she
is also the TA for that course. More complex approaches such as knowledge bases
and the use of non-monotonic logics such as “common sense reasoning” [LGP+90]
can improve the quality of feedback, although such approaches can be computa-
tionally intensive [ET01]. Our current solution for reasoning applies OBDDs and
cost functions that hide the complexity of the general logical inferencing problem
and provides an efficient solution to our specific application of computing feedback
for access control policies.

McGuinness and Silva [MdS04] propose an Inference Web (IW) that aims to pro-
vide explanations for answers to queries based on assertions from diverse sources.
Yes or no answers to questions like “Is red wine good with fish?” are seldom use-
ful to users if the conclusion is not justified or suitably explained. Moreover, facts
or rules used in the explanation may not come from trustworthy sources. The au-

106

thors address “knowledge provenance” or the origins of asserted facts, and how
this can be included in the explanations. For example, a user may trust conclusions
regarding wine if the supporting facts come from the Wine Spectator magazine
more than conclusions based on facts from Sports Illustrated. IW is also meant
to be a “proof abstractor” that seeks to provide concise explanations of lengthy
proofs using rewrite rules and proof annotations. In this context, Know is a system
that provides “explanations” to users as to how they can gain access to a denied
resource, without concerns about knowledge provenance. In terms of proof ab-
straction, Know provides a mechanism to provide the most relevant explanations
to users by using cost functions, and informs users about propositions that need
to be changed, resulting in compact feedback. Unlike Know, IW does not explic-
itly address the confidentiality of facts used in explanations. Meta-policies such
as those in Know may be used to restrict what explanations are given to particular
users where certain explanations may be deemed as sensitive information, while
the conclusions are not. As mentioned for knowledge bases, the IW approach to
providing feedback can be used in conjunction with inference rules that can reason
about useful feedback. When Know gives the user feedback, the system can attempt
to justify why the feedback is useful to the user. For example, a user with similar
attributes may have asserted its usefulness.

Another question of interest is the feedback mechanism, since ubiquitous comput-
ing environments use a variety of mechanisms to interact with users, and text mes-
sages on a display monitor may not always be available or appropriate for system
feedback. Audible feedback may reveal one user’s feedback to other nearby users,
which may also not be appropriate. Hence Know might take into consideration the
credentials of other users present in the room for restricting feedback based on the
delivery mechanism.

6.6 Summary

We have presented Know, a system for providing feedback to users about access
control policy decisions. When the system denies a user access to a resource, Know
suggests useful alternatives for the user to gain access. While a list of all possi-
ble alternatives is likely to be large and not very useful, Know restricts the options
presented to the user to a smaller set of useful options by the use of appropriate
cost functions. An important consideration is that this process should not leak any
information that would compromise the confidentiality of access policies. This is
achieved by using a meta-policy to represent the required protection for the poli-
cies themselves. We presented qualitative performance results from a prototype

107

implementation.

Lastly, we believe that research in the area of providing useful feedback to denied
users has not been adequately researched, and to the best of our knowledge this is
the first attempt at integrating useful policy feedback with policy protection.

108

7 Conclusions

We have presented models for achieving privacy in ubiquitous computing envi-
ronments. We addressed the problems of communication privacy, unlinkability
of users’ accesses to services, and policy privacy during access control feedback.
We now present our conclusions, summary of contributions, and indicate future
research directions.

7.1 Conclusions

We developed a model for trustworthy and anonymous routing, where users can
influence their paths of communication based on qualitative security properties of
routers and quantitative representations of trust based on perceived threat. Our
main contribution was the novel application of model checking constructs, Con-
strained Linear Temporal Logic, and shortest path algorithms for finding paths
with a high quality of protection. We argued that privacy protocols that assume in-
dependence are not adequate in organizational settings, where trust relationships
can no longer be ignored. Furthermore, the discretionary privacy demands of users
had not been adequately researched in networking environments, where security
focused on the mandatory security requirements of the organization.

We showed how a concerned user can present a set of audit flows to a decision en-
gine, which analyzes the potential unlinkability threats of the user’s access trans-
actions across these flows [KNC05]. The user can then negotiate a set of policy
constraints with the system to provide unlinkability of audit flows with respect to
specific perceived threats. We applied graph theoretical techniques to generate pol-
icy constraints for audit records, and proved how our system is secure and precise
under strong tranquility. We also proposed an approach based on versioning that
maintains security by trading off precision for evolving protection state.

We addressed the issue of providing users with useful feedback about access con-
trol decisions while maintaining the privacy of system policies. We presented a
security feedback mechanism called Know [KSC04], which addresses privacy prop-
erties such as the confidentiality of policy authorizations, and showed how sensi-

109

tive permissions in the system can be protected while providing users with useful
feedback on access control decisions. Relevant feedback enhances system usability,
especially in systems where permissions change in unpredictable ways depend-
ing on contextual information. However, providing feedback indiscriminately can
violate the confidentiality of system policy and the privacy of other users. Know
achieves a balance between system usability and the protection of security poli-
cies by allowing administrators to specify “meta-policies” for regulating feedback
based on the system’s perceived threats. Our solution applied ordered binary de-
cision diagrams, cost functions, and shortest path algorithms for computing useful
feedback while providing policy protection. Know is the first model to address the
need of useful access control feedback while honoring the privacy and confiden-
tiality requirements of a system’s security policies.

7.2 Summary of contributions

We now address the evaluation criteria in Section 3.3.

1. Trustworthy routing

(a) In Section 4.5.3 we showed how the network can be represented as a
state transition diagram with a labeling function to represent the prop-
erties (or attributes) of routers and links. This representation facilitates
the use of linear temporal logics for specifying path properties based on
trust relationships in the network.

(b) In Section 4.6.5 we presented a policy language based on Constrained
Linear Temporal Logic for specifying privacy properties for routes in the
network based on a user’s perceived threat to communication privacy.
This policy language captures qualitative and quantitative attributes,
and allows the user to specify constraints that include mathematical re-
lations on boolean and real-valued variables.

(c) In Section 4.6.6 we showed how simple and efficient graph transforma-
tions can be made to satisfy the policy language. Specifically, any route
computed from the transformed graph will satisfy the specified policy.
This property is useful while applying quantitative trust models, which
rely on optimizing paths on a weighted version of the modified graph.

(d) In Section 4.7 we presented a combiner function for computing the trust-
worthiness of paths. This combiner function is general enough to cap-
ture a host of semantic notions of trust.

110

(e) In Sections 4.7 and 4.8 we evaluated and identified several feasible and
infeasible trust models. Several NP-hardness results were presented,
showing that these trust models are hard to use in practice.

(f) We showed how our expressive policy language, combined with the use
of feasible trust models, can efficiently yield paths of “high confidence”
using shortest path algorithms and other techniques.

2. Unlinkability

(a) In Section 5.3.2 we showed how the flow of audit flow information can
be captured with a graph representation.

(b) In Section 5.3.3 we showed how conflicts, or potential threats to linka-
bility, can be identified efficiently.

(c) In Section 5.3.4 we showed how users can specify discretionary unlink-
ability policies based on identified conflicts based on perceived threat to
unlinkability.

(d) In Section 5.3.5 we showed how polices are attached to audit informa-
tion and enforcement of these policies is decentralized and efficient.

(e) In Section 5.3.5 we also proved the security and precision properties of
our approach. We showed how security can be maintained by trading
off precision for evolving protection state by using versioning.

3. Feedback and policy protection

(a) In Section 6.3 we showed how administrators can authorize various lev-
els of feedback based on the user’s credentials. This was done using
meta-policies to encode the perceived threat to policy confidentiality.

(b) In Section 6.3.1 we showed how cost functions can be employed to rate
feedback based on its usefulness to the user.

(c) In Section 6.3 we showed how Know represents policies as Ordered Bi-
nary Decision Diagrams (OBDDs). These OBDDs are a graphical repre-
sentation of the policy. We showed how the OBDD of a policy is mod-
ified based on the meta-policy and cost-function. Shortest path algo-
rithms can be used to compute feedback from the transformed OBDD.

(d) Know allows users in ubiquitous computing environments to get autho-
rized feedback on access control decisions, giving them a clear picture
of their access rights in the system. This approach makes ubiquitous

111

computing environments more usable and more secure, since frustrated
users could otherwise disable security features that are confusing.

7.3 Future Research

We now indicate directions for future work in trustworthy routing, unlinkability of
access transactions, and policy feedback.

In Chapter 4 we discussed several semantic models of trust. In Section 4.7.2 we
showed how multiplicative combiners can be used for probabilistic models of trust.
For example, the confidence value of 0.9 for the attribute “Physically Secure” can
mean that the probability that the machine is physically secure is 90%. We showed
how the overall confidence of the path, the probability that the entire path is phys-
ically secure, is simply the product of these probabilities, assuming they are inde-
pendent. In modeling, one attempts to abstract or approximate the real probability
distribution with one that is tractable. For example, Markov models in queueing
theory assume a memoryless distribution for arrivals, which greatly simplifies the
mathematics. While it is certainly true that security failures in a network are not
independent, we would like to examine the space of probability models that are
more powerful than the independent probability model, but still computationally
efficient to compute. In particular, we would like to avoid approaches with time or
space complexity that is exponential in the size of the network. We have been ex-
ploring the use of Markov Random Fields and Bayesian networks to represent cor-
related confidence values. While these models appear to be intractable in general,
we would like to identify restrictions on these models that yield tractable solutions.
For example, Dugan et al. [ST86] explore combinatorial approaches in conjunction
with Markov models to constrain the state-space. Such approaches may yield use-
ful and tractable models for trustworthy routing. We would also like to study more
powerful policy specification languages for trustworthy routing. Ultimately, user
studies are required to identify a usable policy language or a higher level policy
specification tool, which would allow regular users to specify privacy policies in a
more intuitive way. We also identified several semantic models of trust for which it
is NP-hard to find paths of highest confidence. Further research is required for ap-
proximation techniques and heuristics for computing paths with reasonably high
confidence even if the optimal solutions are elusive.

In Chapter 5 we presented an access control based approach for providing unlink-
ability to users in ubiquitous computing environments. We would like to study
its use in combination with privacy routing protocols. For example, routers may

112

log connection information for legal purposes. The user may want to restrict the
linkability of this information by attaching policies to these records. Further re-
search is needed to analyze the security properties of this approach. We would also
like to combine this approach with quantitative models so that the user and sys-
tem can negotiate unlinkability policies that maximize the “utility” of both parties.
We presented an approach based on versioning to trade off precision for evolving
protection state. It may be possible to improve precision by more complex policy
analysis.

In Chapter 6 we presented a meta-policy language for administrators and a cost-
function based approach for rating the usefulness of feedback. Further research is
required in making meta-policy specification for administrators easier. Know as-
sumes that the administrators have guidelines for setting meta-policies, but this is
still not well understood. We believe it may be useful for administrators to specify
“global” meta-policies that apply to all policies in the system. These global meta-
policies can be applied uniformly to all policies in the system. This can benefit from
RBAC by grouping objects and subjects into roles, and specifying meta-policies for
which sets of subjects can obtain feedback about other sets of subjects for a partic-
ular set of objects or resources. We would also like to study other representations
of policies besides OBDDs. Since the problem of computing useful feedback is
NP-hard in general, it would be useful to combine the power of several representa-
tions. For example, Know could store disjunctive form policies if the OBDDs are too
large. We have evaluated two cost functions that are easy to specify. More research
is required to compute cost functions for different users. For example, the system
can try to learn a user’s preferences and adjust the cost functions appropriately.
Furthermore, a user may want to supply his or her own cost function. Know pro-
vides a framework for such research by reducing the problem of usable feedback
to computing useful cost functions.

113

References

[ABKM01] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and
Robert Morris. Resilient Overlay Networks. In Proc. 18th ACM SOSP,
Banff, Canada, October 2001.

[AH92] Rajeev Alur and Thomas A. Henzinger. Logics and models of real
time: A survey. In Real Time: Theory in Practice, Lecture Notes in Com-
puter Science 600, Springer-Verlag, pp. 74-106., 1992.

[AMCK+02] Jalal Al-Muhtadi, Roy Campbell, Apu Kapadia, Dennis Mickunas,
and Seung Yi. Routing Through the Mist: Privacy Preserving Com-
munication in Ubiquitous Computing Environments. In Proceedings
of The 22nd IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), pages 74–83, 2002.

[AMCRC04] Jalal Al-Muhtadi, Shiva Chetan, Anand Ranganathan, and Roy
Campbell. Super Spaces: A Middleware for Large-Scale Pervasive
Computing Environments. In Perware: IEEE International Workshop on
Pervasive Computing and Communications, Orlando, Florida, pages 198–
202, March 2004.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of
the ACM, 42(4):844–856, July 1995.

[BDS01] Piero Bonatti, Ernesto Damiani, and Pierangela Samarati. A
component-based architecture for secure data publication. In Proceed-
ings of 17th Annual Computer Security Applications Conference (ACSAC),
pages 309–318, New Orleans, LA, December 2001.

[BE03] Christian Blum and Matthias Ehrgott. Local search algorithms for
the k-cardinality tree problem. Discrete Appl. Math., 128(2-3):511–540,
2003.

[Bis03] Matt Bishop. Computer Security: Art and Science. Addison-Wesley,
ISBN 0-201-44099-7, 2003.

[BN89] David F. C. Brewer and Michael J. Nash. The Chinese Wall security
policy. In Proceedings IEEE Symposium on Security and Privacy, pages
206–214, May 1989.

[Bra00] Stefan Brands. Rethinking Public Key Infrastructures and Digital Certifi-
cates; Building in Privacy. MIT Press, 2000.

114

[BRKM91] Kenneth M. Butler, Don E. Ross, Rohit Kapur, and M.Ray Mercer.
Heuristics to compute variable orderings for efficient manipulation of
ordered binary decision diagrams. In Proceedings of the 28th conference
on ACM/IEEE Design Automation, pages 417–420, San Francisco, CA,
June 1991.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[BS02] Piero A. Bonatti and Pierangela Samarati. A uniform framework for
regulating service access and information release on the Web. Journal
of Computer Security, 10(3):241–271, 2002.

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of
OBDDs is NP-complete. IEEE Trans. on Computers, 45(9):993–1001,
September 1996.

[CE86] David Chaum and Jan-Hendrik Evertse. A secure privacy preserv-
ing protocol for transmitting personal information between organi-
zations. In CRYPTO, 1986.

[CGP00] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 2000.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 4(2), February 1981.

[CKP00] U. Chajewska, D. Koller, and R. Parr. Making Rational Decisions us-
ing Adaptive Utility Elicitation. In Proceedings of the 17th National Con-
ference on Artificial Intelligence (AAAI), pages 363–369, aug 2000.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient non-transferable
anonymous multishow credential system with optional anonymity
revocation. In EUROCRYPT, 2001.

[CL05] Jan Camenisch and Anna Lysyanskaya. A Formal Treatment of Onion
Routing. In Proceedings of CRYPTO 2005, pages 169–187. Springer-
Verlag, LNCS 3621, August 2005.

[CLM+00] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad Nal-
durg, and Seung Yi. Seraphim: Dynamic Interoperable Security Ar-
chitecture for Active Networks. In OPENARCH 2000, Tel-Aviv, Israel,
March 2000.

[CRB01] Ranveer Chandra, Venugopalan Ramasubramanian, and Kenneth P.
Birman. Anonymous Gossip: Improving Multicast Reliability in Mo-
bile Ad-Hoc Networks. In Proceedings of the The 21st International Con-
ference on Distributed Computing Systems, page 275, Washington, DC,
USA, 2001. IEEE Computer Society.

[CS00] David Coppit and Kevin J. Sullivan. Galileo: A tool built from mass-
market applications. In Proceedings of the 22nd International Conference
on Software Engineering, Limerick, Ireland, pages 750–753, June 2000.

115

[DD02] Stéphane Demri and Deepak D’Souza. An Automata-Theoretic Ap-
proach to Constraint LTL. In FST TCS ’02: Proceedings of the 22nd
Conference Kanpur on Foundations of Software Technology and Theoretical
Computer Science, pages 121–132, London, UK, 2002. Springer-Verlag.

[Epp94] David Eppstein. Finding the k shortest paths. In Proc. 35th Symp.
Foundations of Computer Science, pages 154–165. IEEE, November 1994.

[ET01] Uwe Egly and Hans Tompits. Proof-complexity results for nonmono-
tonic reasoning. ACM Trans. Comput. Logic, 2(3):340–387, 2001.

[FHJM94] Matteo Fischetti, Horst W. Hamacher, Kurt Jörnsten, and Francesco
Maffioli. Weighted k-Cardinality Trees: Complexity and Polyhedral
Structure. Networks, 24:11–21, September 1994.

[FK92a] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls.
In In Proceedings of the 15th NIST-NSA National Computer Security Con-
ference, Baltimore, MD, Oct, 1992.

[FK92b] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls.
In Proc. 15th NIST-NCSC National Computer Security Conference, pages
554–563, Baltimore, MD, October 1992.

[FM02] Michael J. Freedman and Robert Morris. Tarzan: A Peer-to-Peer
Anonymizing Network Layer. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security (CCS 2002), Washing-
ton, DC, November 2002.

[FMK91] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable
ordering of binary decision diagrams for the application of multi-
level logic synthesis. In Proceedings of the conference on European Design
Automation, pages 50–54, Amsterdam, February 1991. IEEE Computer
Society Press.

[FTA81] Fault Tree Handbook, NUREG-0492. United States Nuclear Regula-
tory Commission, 1981.

[Gai] Gaia, active spaces for ubiquitous computing. http://gaia.cs.
uiuc.edu/.

[GGF98] Virgil D. Gligor, Serban I. Gavrila, and David F. Ferraiolo. On the for-
mal definition of seperation-of-duty policies and their composition.
In In Proceedings of the IEEE Symposium on Research in Security and Pri-
vacy. (Oakland, CA.), 172–183, 1998.

[Gra] Jonathan Graehl. kbest, a C++ library for efficiently finding the
k shortest paths in a graph. Available from http://jonathan.
graehl.org/kbest.zip.

[GSSS02] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste.
Project Aura: Toward Distraction-Free Pervasive Computing. IEEE
Pervasive Computing Magazine, 1(2):22–31, April–June 2002.

116

http://gaia.cs.uiuc.edu/
http://gaia.cs.uiuc.edu/
http://jonathan.graehl.org/kbest.zip
http://jonathan.graehl.org/kbest.zip

[HMS03] John E. Hershberger, Matthew Maxel, and Subhash Suri. Finding
the k shortest simple paths: a new algorithm and its implementa-
tion. In Proceedings, 5th Workshop Algorithm Engineering & Experiments
(ALENEX). SIAM, January 2003.

[Hon05] Jason I. Hong. An Architecture for Privacy-Sensitive Ubiquitous Com-
puting. PhD thesis, University of California at Berkeley, Computer
Science Division, 2005.

[hot] Hotmail Homepage. http://www.hotmail.com/.

[HY97] Takashi Horiyama and Shuzo Yajima. Exponential lower bounds
on the size of OBDDs representing integer divistion. In Proceedings
ISAAC, pages 163–172, 1997.

[J+02] Bilel Jamoussi et al. Constraint-Based LSP Setup using LDP. RFC
3212, January 2002.

[Jaf84] Jeffrey M. Jaffe. Algorithms for Finding Paths with Multiple Con-
straints. Networks, 14:95–116, 1984.

[JFW02a] Brad Johanson, Armando Fox, and Terry Winograd. The Interactive
Workspaces project: Experiences with ubiquitous computing envi-
ronments. IEEE Pervasive Computing magazine, 1(2):67–74, April–June
2002.

[JFW02b] Brad Johanson, Armando Fox, and Terry Winograd. The Interac-
tive Workspaces Project: Experiences with Ubiquitous Computing
Rooms. IEEE Pervasive Computing Magazine, 1(2):67–74, April–June
2002.

[KHJ03] Håkan Kvarnström, Hans Hedbom, and Erland Jonsson. Protecting
security policies in ubiquitous environments using one-way func-
tions. In D.Hutter et al., editors, Security in Pervasive Computing
2003, volume 2802 of LNCS, pages 71–85. Springer-Verlag, Heidel-
berg, 2003.

[KMR93] David Karger, Rajeev Motwani, and G. D. S. Ramkumar. On Approx-
imating the Longest Path in a Graph. In Proceedings of WADS, pages
421–432, 1993.

[KNC04] Apu Kapadia, Prasad Naldurg, and Roy H. Campbell. Routing with
Confidence: Supporting Discretionary Routing Requirements in Pol-
icy Based Networks. In Proceedings IEEE 5th International Workshop
on Policies for Distributed Systems and Networks (POLICY 2004), pages
45–54, June 2004.

[KNC05] Apu Kapadia, Prasad Naldurg, and Roy H. Campbell. Unlinkability
through Access Control: Respecting User-Privacy in Distributed Sys-
tems. Technical Report, University of Illinois, UIUCDCS-R-2005-2621,
August 2005.

117

http://www.hotmail.com/

[Kor02] Richard E. Korf. Search techniques. In Hossein Bidgoli, editor, Ency-
clopedia of Information Systems. Academic Press, San Diego, CA, Au-
gust 2002.

[KSC04] Apu Kapadia, Geetanjali Sampemane, and Roy H. Campbell. KNOW
why your access was denied: Regulating feedback for usable security.
In Proceedings of the ACM Conference on Computers and Communication
Security (CCS), pages 52–61, Washington, DC, October 2004.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
Available from http://msl.cs.uiuc.edu/planning/, 2006.

[LBT04] Ninghui Li, Ziad Bizri, and Mahesh V. Tripunitara. On Mutually-
Exclusive Roles and Separation of Duty. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), October,
2004.

[LGP+90] Douglas B. Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt,
and Mary Shepherd. Cyc: toward programs with common sense.
Commun. ACM, 33(8):30–49, 1990.

[LL01] Hector J. Levesque and Gerhard Lakemeyer. The Logic of Knowledge
Bases. The MIT Press, 2001.

[LN99] Jørn Lind-Nielsen. BuDDy – a binary decision diagram package.
Technical Report IT-TR: 1999-028, Technical University of Denmark,
1999. Available from http://www.itu.dk/research/buddy/
index.html.

[LRSW99] Anna Lysyanskaya, Ronald Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Selected Areas of Cryptography, Volume 1758
LNCS, 1999.

[LS98] Wenke Lee and Salvatore Stolfo. Data mining approaches for intru-
sion detection. In Proceedings of the 7th USENIX Security Symposium,
San Antonio, TX, 1998.

[MdS04] Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining An-
swers from the Semantic Web: The Inference Web Approach. Web
Semantics: Science, Services and Agents on the World Wide Web Special is-
sue: International Semantic Web Conference 2003, 1(4):397–413, October
2004.

[Min04] Naftaly H. Minsky. A Decentralized Treatment of a Highly Dis-
tributed Chinese-Wall Policy. In Proceedings IEEE 5th International
Workshop on Policies for Distributed Systems and Networks (POLICY
2004), pages 181–184, June 2004.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag, 1992.

[MU04] Nenad Mladenović and Dragan Urošević. Variable neighborhood
search for the k-cardinality tree. pages 481–500, 2004.

118

http://msl.cs.uiuc.edu/planning/
http://www.itu.dk/research/buddy/index.html
http://www.itu.dk/research/buddy/index.html

[OM87] Pekka Orponen and Heikki Mannila. On approximation preserving
reductions: Complete problems and robust measures. Technical Re-
port C-1987-28, University of Helsinki, Dept. of Computer Science,
1987.

[oxy] MIT Project Oxygen Homepage. http://oxygen.lcs.mit.edu/.

[P+04] Andreas Pfitzmann et al. Anonymity, Unobservability,
Pseudonymity, and Identity Management - A Proposal for
Terminology. Draft v0.21, September 2004. Available from
http://dud.inf.tu-dresden.de/Literatur_V1.shtml.

[PM04] Andreas Pashalidis and Chris J. Mitchell. Limits to anonymity when
using credentials. In Proceedings of the 12th International Workshop on
Security Protocols, Springer-Verlag LNCS, Berlin, Cambridge, UK, April
2004.

[PS95] Shipra Panda and Fabio Somenzi. Who are the variables in your
neighborhood. In Proc. International Conference on Computer-Aided De-
sign (ICCAD ’95), pages 74–77, San Jose, CA, November 1995.

[PV03] Pino Persiano and Ivan Visconti. An Anonymous Credential System
and a Privacy-Aware PKI. In R. Safavi-Naini and J. Seberry, editors, In-
formation Security and Privacy, 8th Australasian Conference, ACISP 2003,
volume 2727 of Lecture Notes in Computer Science. Springer Verlag, 2003.

[QYZS03] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On Selfish
Routing in Internet-Like Environments. In Proc. of ACM SIGCOMM,
August 2003.

[RHC+02] Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. GaiaOS: A mid-
dleware infrastructure to enable Active Spaces. IEEE Pervasive Com-
puting, pages 74–83, October–December 2002.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web
Transactions. ACM Transactions on Information and System Security,
June 1998.

[RSG98] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anony-
mous connections and onion routing. IEEE Journal on Selected Areas
in Communication (JSAC), Special Issue on Copyright and Privacy Protec-
tion, 16(4):482–494, 1998.

[San98] Ravi Sandhu. Transaction control expressions for separation of du-
ties. In Proceedings of the 4th Aerospace Computer Security Applications
Conference, 1998.

[sap] SAPHIRE Project Homepage. http://saphire.inel.gov/.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. IEEE Computer, 29(2):38–
47, 1996.

119

http://oxygen.lcs.mit.edu/
http://dud.inf.tu-dresden.de/Literatur_V1.shtml
http://saphire.inel.gov/

[SCRD04] Atul Singh, Miguel Castro, Antony Rowstron, and Peter Druschel.
Defending against Eclipse attacks on overlay networks. In Proceedings
of the 11th ACM SIGOPS European Workshop, Leuven, Belgium, Septem-
ber 2004.

[SJW02] Oleg Sheyner, Somesh Jha, and Jeannette M. Wing. Automated Gen-
eration and Analysis of Attack Graphs. In Proceedings of the IEEE Sym-
posium on Security and Privacy, Oakland, CA, May 2002.

[SL02] Morris Sloman and Emil Lupu. Security and Management Policy
Specification. Special Issue on Policy-Based Networking, 16(2), March
2002.

[SNC02] Geetanjali Sampemane, Prasad Naldurg, and Roy H. Campbell. Ac-
cess control for Active Spaces. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), pages 343–352, Las Vegas,
NV, December 2002.

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The protection of infor-
mation in computer systems. In Proceedings of the IEEE, volume 63,
pages 1278–1308, September 1975.

[ST86] Robin A. Sahner and Kishor S. Trivedi. A Hierarchial, Combinatorial-
Markov Model of Solving Complex Reliability Models. In Proceedings
of 1986 ACM Fall Joint Computer Conference, pages 817–825, Los Alami-
tos, CA, USA, 1986. IEEE Computer Society Press.

[SV02] Stefano Salsano and Luca Veltri. QoS Control by Means of COPS to
Support SIP-Based Applications. Special Issue on Policy-Based Network-
ing, 16(2), March 2002.

[SZ97] Richard T. Simon and Mary Ellen Zurko. Separation of duty in role-
based environments. In IEEE Computer Security Foundations Workshop,
pages 183–194, 1997.

[Tar72] Robert E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

[UJ03] Jeffrey L. Undercoffer and Anupam Joshi. Data Mining, Semantics and
Intrusion Detection: What to dig for and Where to find it. MIT Press,
December 2003.

[ver] Verisign Homepage. http://www.verisign.com/.

[Ver01] Eric R. Verheul. Self-Blindable Credential Certificates from the Weil
Pairing. In Proceedings of the 7th International Conference on the Theory
and Application of Cryptology and Information Security, pages 533–551.
Springer-Verlag, 2001.

[WC96] Z. Wang and J. Crowcroft. Quality-of-Service Routing for Supporting
Multimedia Applications. IEEE Journal on Selected Areas in Communi-
cations, 14:1228–1234, 1996.

120

http://www.verisign.com/

[Wei91] Mark Weiser. The computer for the 21st century. Scientific American,
pages 94–104, September 1991.

[WL04] William H. Winsborough and Ninghui Li. Safety in automated trust
negotiation. In Proceedings of the 2004 IEEE Symposium on Security and
Privacy, pages 147–160, Oakland, CA, May 2004. IEEE Press.

[WSS+01] Andrea Westerinen, John Schnizlein, John Strassner, Mark Scherling,
Bob Quinn, Shai Herzog, An-Ni Huynh, Mark Carlson, Jay Perry, and
Steve Waldbusser. Terminogy for Policy-Based Management. RFC
3198, November 2001.

[Yee02] Ka-Ping Yee. User Interaction Design for Secure Systems. In Proceed-
ings of the 4th International Conference on Information and Communica-
tions Security, pages 278–290. Springer-Verlag, 2002.

[Yen71] Jin Y. Yen. Finding the K shortest loopless paths in a network. In
Management Science, volume 17, pages 712–716, 1971.

[Yen72] Jin Y. Yen. Another algorithm for finding the K shortest loopless net-
work paths. In Proceedings of 41st Mtg. Operations Research Society of
America, volume 20, 1972.

[YNK01] Seung Yi, Prasad Naldurg, and Robin Kravets. Security-Aware Ad
Hoc Routing for Wireless Networks. Poster presentation, ACM Sym-
posium on Mobile Ad Hoc Networking & Computing (Mobihoc),
2001.

[YNK02] Seung Yi, Prasad Naldurg, and Robin Kravets. Integrating Qual-
ity of Protection into Ad Hoc Routing Protocols. In The 6th World
Multi-Conference on Systemics, Cybernetics and Informatics (SCI), Or-
lando, Florida, August 2002.

[YW03] Ting Yu and Marianne Winslett. A unified scheme for resource pro-
tection in automated trust negotiation. In Proceedings of the IEEE Sym-
posium on Security and privacy, pages 110–122, May 2003.

[YWS03] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting Struc-
tured Credentials and Sensitive Policies through Interoperable Strate-
gies in Automated Trust Negotiation. ACM Transaction on Information
and System Security, February 2003.

[ZDE+93] Lixia Zhang, Stephen E. Deering, Deborah Estrin, Scott Shenker, and
Daniel Zappala. RSVP: A New Resource ReSerVation Protocol. IEEE
Network, 7(5):8–18, September 1993.

[ZK03] Terry Zimmerman and Subbarao Kambhampati. Learning-assisted
automated planning. AI Magazine, 24(2):73–96, 2003.

[ZS96] Mary Ellen Zurko and Richard T. Simon. User-centered security. In
Proceedings of the Workshop on New Security Paradigms (NSPW), pages
27–33, Lake Arrowhead, CA, September 1996.

121

[ZSvR02] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A
Secure Distributed On-line Certification Authority. ACM Transactions
on Computer Systems, 20(4):329–368, November 2002.

122

Author’s Biography

Apu Kapadia was born in He grew up
in Bombay, India and began his undergraduate studies in Computer Engineering
at the University of Bombay. He transferred to the Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign in January 1996, where he sub-
sequently obtained his B.S., M.S, and Ph.D. degrees in May 1998, May 2001, and
October 2005 respectively.

Apu received a four-year High-Performance Computer Science Fellowship from
the Department of Energy in August 2001 for his dissertation research related to
trustworthy communication. During his graduate studies, Apu interned at the Los
Alamos National Laboratory for two summers performing research on network
protocols. After receiving his doctorate, Apu joined Dartmouth College as a Post-
Doctoral Research Fellow with the Institute of Security Technology Studies.

Apu’s research interests include security and privacy for heterogeneous systems,
and the use of formal methods to reason about related problems.

123

	List of Figures
	List of Abbreviations
	Introduction
	Background and Related Work
	Ubiquitous computing
	Smart spaces
	Meta-operating system
	Context
	Infrastructure

	Privacy
	Anonymity
	Unlinkability
	Unobservability
	Pseudonymity
	Confidentiality
	Degree of anonymity
	Threat

	Protocols for communication privacy
	Crowds
	Mixes
	Onion
	Other protocols

	Mist
	Location privacy
	Lighthouses
	Hierarchy of routers
	A distributed approach

	Trustworthy computing
	Unlinkability of access transactions
	Policy protection

	Problem Statement and Thesis
	Problem statement
	Thesis
	Communication privacy and trustworthy routing
	Audit-log unlinkability
	Privacy-preserving feedback

	Success criteria

	Routing with Confidence
	Policy Based Networking
	Approach
	Overview
	Assumptions
	Solution technique
	Attributes
	Trust negotiation
	Routing model

	Path specification
	Global or invariance properties
	Response properties
	Link and precedence properties
	Adding variables
	Policy language
	Graph transformation

	Trust model
	Trusted paths
	Multiplicative combiners
	Additive combiners
	Weakest link
	Average combiners
	Minimum variance
	Approximation
	Measurement

	Multiple combiners
	Unifying multiple attributes
	Visit k distinct nodes
	Scoped minimum average cost
	Dealing with hardness

	Applications
	High performance and military environments
	Ubiquitous computing
	Peer-to-peer overlay networks

	Summary

	Unlinkability through Access Control
	Introduction
	Architecture
	Approach
	Notation
	Audit Flow Graph
	Session Graph
	Specifying discretionary policies
	Generating and enforcing policy constraints
	Open-ended sessions
	Mandatory audit flows

	Security under weak tranquility
	Summary

	Know Why Your Access Was Denied
	Introduction
	Background
	Architecture
	Cost functions
	Meta-policies
	A useful cost function

	Implementation
	Evaluation

	Discussion
	Summary

	Conclusions
	Conclusions
	Summary of contributions
	Future Research

	References
	Author's Biography

