Routing with Confidence:
A Model for Trustworthy Communication

APU KAPADIA

Institute for Security Technology Studies (ISTS), Dartmouth College

and

PRASAD NALDURG

Microsoft Research

and

ROY H. CAMPBELL

Department of Computer Science, University of lllinois at Urbana-Champaign

We present a model for trustworthy communication with respect to security and privacy in het-
erogeneous networks. In general, existing privacy protocols assume independently operated nodes
spread over the Internet. Most of the analysis of these protocols has assumed a fraction of collud-
ing nodes picked at random. While these approaches provide promising guarantees of anonymity
for such attack models, we argue that trust relationships dominate threats to privacy at smaller
scales, and such independence assumptions should not be made. For example, within an orga-
nization, all nodes along a chosen path may be physically collocated, making a collusion attack
more likely. Users can have varying notions of threat to their privacy — users may not trust nodes
located in a particular domain, or consider nodes with low physical security to be a particularly
strong threat to their privacy. We present a model for trustworthy communication that addresses
users’ privacy needs in such environments. Our model also applies to peer-to-peer anonymizing
networks such as Tor for finding more trustworthy routes. For example, users may consider nodes
operating in a particular country to be untrustworthy. We recognize that users in the network
will have different perceived threats and must be allowed to “route around” untrustworthy nodes
based on these threats.

Our research makes the following contributions: We present a formalization of trustworthy
routing and examine its properties in an effort to understand the boundaries of attribute based
trustworthy routing schemes. We propose a model that exposes trust relationships in the network
to concerned users. Our policy language allows users to specify qualitative path policies based on
their own perceived threat to security and privacy. We define a general quantitative measure of
trust that is used to find routes that are most trustworthy based on this measure. We identify
feasible and infeasible interpretations of trust by showing how trustworthy routes can be computed
efficiently for certain semantic models of trust and by contributing several NP-hardness results
for infeasible models of trust.
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1. INTRODUCTION

We address the trustworthiness of the security and privacy of a user’s communi-
cation in networked environments. In our study of existing anonymous routing
solutions such as Crowds [Reiter and Rubin 1998], Tor [Dingledine et al. 2004],
and Mix networks [Chaum 1981], we found that the strong anonymity of these
approaches is restricted to widely distributed environments and is problematic in
smaller systems. In these protocols, routers are assumed to be independent entities
and attackers are assumed to compromise nodes with a certain uniformly applied
probability. However, at smaller scales (e.g., an organization) this model does not
effectively capture the trust relationships within the network. For example, they fail
to provide protection against administrators who may have access to several routers
participating in the anonymizing network. A user may distrust nodes running a
particular version of an operating system due to a known (unpatched) vulnerability.
At such scales, we argue that trust relationships must be exposed to users, who can
then make fine-grained decisions about which routers are trustworthy for carrying
a user’s communication. Furthermore, peer-to-peer anonymizing networks such as
Tor can leverage the diversity of nodes within the network to provide stronger trust
guarantees by allowing users to discriminate between trustworthy and untrustwor-
thy nodes. For example, a user may not trust Tor nodes located in a particular
country or organization. We present a trustworthy communication model for route
selection (e.g., in Tor) that allows users to specify richer privacy requirements than
the one-dimensional (quantitative) anonymity provided by current solutions. These
requirements are based on each individual’s perceived threat to privacy, recognizing
that users have differing notions of threats to their privacy. Our approach allows
users to express their threats effectively. Further, they may use it to find routes
within a network that improves the trustworthiness of their private communication.
We formalize the notion of trustworthy routing and examine the theoretical limits
of such a system. The results provided in this paper have practical significance for
any trustworthy routing scheme since it examines feasible and infeasible models of
trust within the framework of attribute based route selection.

Our main observation is that routing elements in a heterogeneous network will
have several attributes such as domain ID, administrator, physical security, OS
version, and attack history. Basing trust on a router’s attributes provides users
with more flexibility for their individual privacy demands given a set of the user’s
perceived threats. For example, a user may choose to exclude routers from a par-
ticular domain, include only those routers with certified high physical security and
exclude intermediate wireless links based on his or her own perceived threat. We
also present a quantitative model for trust that allows users to optimize paths based
on quantitative metrics of trust, which we call “confidence.” For example, a user
may assign a high degree of confidence in the DoS resilience of a router, but a low
degree of confidence in its resistance to virus attacks. As one example, our model
would allow users to find paths with the highest resilience against virus attacks (or
in other words, avoiding paths with likely “zombies”). We present a general model
for capturing these relationships, and examine the boundaries of feasibility within
this model. In Section 5.2 we provide a brief discussion on how confidence can be
measured in practice.
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We make the following contributions:

—At a higher level, we present a formalization of trustworthy routing that examines
the limits of feasible and infeasible trust models for the security and privacy of
communication.

—We present a labeled state-transition representation of the various network ele-
ments and their attributes.

—We define a language for specifying qualitative privacy policies of communication
paths based on a user’s perceived threat to privacy and show how routes satisfying
these policies can be computed efficiently.

—We define a quantitative model for measuring the trustworthiness of routes, and
efficient algorithms for computing trustworthy paths that satisfy the user’s poli-
cies. We call this model for trustworthy routing “routing with confidence.”

—In addition to our positive results on feasible trust models, we contribute NP-
hardness results by showing that several properties of interest in trustworthy
routing are computationally hard to satisfy.

1.1 Outline

We provide background and related work on privacy protocols and trustworthy
routing in Section 2. In Section 3 we introduce our model for trustworthy com-
munication and describe our language for specifying qualitative path policies in
Section 4. In Section 5 we present our quantitative trust model and we provide
several results for feasible and infeasible models of trust in Sections 6 and 7. We
discuss concrete applications of our model in Section 8 and end with future work
and conclusions in Sections 9 and 10

2. BACKGROUND AND RELATED WORK

We begin with a brief overview of privacy protocols. We then provide some back-
ground on trustworthy routing.

2.1 Privacy protocols

There has been a substantial amount of research on anonymous communication for
the Internet. As a primary goal, these protocols aim to provide sender-anonymity,
and some approaches also attempt to provide sender-unobservability through cover
traffic. We discuss some of the important work in Internet anonymous routing such
as Crowds [Reiter and Rubin 1998], Mix networks [Chaum 1981] and Onion [Reed
et al. 1998] routing, and then introduce Mist [Al-Muhtadi et al. 2002], which we
developed at the University of Illinois specifically for location privacy in ubiquitous
computing environments.

2.1.1 Crowds. Even though Crowds [Reiter and Rubin 1998] was originally de-
signed for the anonymity of web transactions, the underlying principle is applicable
to anonymous routing in general. Each participant is called a jondo. The originator
of a message picks a jondo from the crowd (possibly itself) and forwards the request
to the selected jondo. At each stage, the request is propagated within the crowd
with probability p or sent directly to the server (receiver) with probability 1 — p.
The parameter p is assumed to be constant within the crowd, and influences the
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average path length between the sender and receiver. Using this simple forwarding
scheme, one can show that senders have sender-anonymity beyond suspicion with
respect to the receivers. Furthermore, Reiter and Rubin [1998] show that the sender
has probable innocence against malicious collaborating jondos for sufficiently large
crowd sizes. This is proved using the parameter ¢, which is the fraction of com-
promised nodes in the crowd. We argue that this assumption may be reasonable
in widely dispersed crowds where routers can be assumed to be independent enti-
ties, but does not necessarily hold for crowds in smaller geographic locations where
collusion can be highly correlated, e.g., within a building.

2.1.2  Mizes. Chaum [1981] proposed an anonymous remailing scheme based on
the concept of “mixing.” Mail relays in the Mix network would receive emails, and
reorder outgoing emails to break the association between incoming and outgoing
emails. This was meant to foil traffic analysis by adversaries observing traffic en-
tering and leaving the mail relays. Email messages were encrypted several times to
encode the path of remailers. We discuss this technique in more detail in the next
section on onion routing. The main contribution of Mix networks was to provide
a scheme for sender-anonymity that aimed to resist traffic analysis and provide
sender-unobservability.

2.1.3  Onion. Reed et al. [1998] describe an onion routing system meant to
establish two-way anonymous communication channels. An “onion packet” contains
a message using several layers of encryption. Each router that receives an onion
packet can decrypt (or “peel off”) the outermost layer of encryption, yielding the
identity of the next router in the path chosen by the sender, and an onion packet to
be forwarded to the next router containing the rest of the path. The main idea is
that each router only knows the previous and next routers of a communication path,
providing an anonymous connection between the sender and receiver. Onion routing
is an important building block for establishing secure routes of communication
since the routers along the path are oblivious to the sending and receiving parties.
Dingledine et al. [2004] propose Tor, “the second-generation onion router” and
Camenisch and Lysyanskaya [2005] give a formal description of onion routing and
provide a provably secure scheme for onion routing. We will assume a secure onion
routing scheme in the rest of this paper.

2.1.4 Mist. The protocols mentioned above were mainly focused towards pro-
viding sender and/or receiver anonymity. It is assumed that the parties commu-
nicating want to do so anonymously without revealing their identities, where the
location and identity of the person were considered “synonymous.” The main con-
tribution of Mist [Al-Muhtadi et al. 2002], developed at the University of Illinois,
was to recognize and separate the two pieces of identity. In ubiquitous environ-
ments, users want to interact with services and other users with their disclosed
identities, e.g., Alice and Bob, and are mainly concerned about their location pri-
vacy. Hence a system is required whereby users are available (or reachable) for
communication in the system while their locations are hidden. How can one pro-
vide such a service to its users?

To solve the location privacy problem and allow users to be reachable for commu-
nication, Mist introduced the concept of Lighthouses that served as communication
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points for users. This is similar in concept to the NAT endpoints in Tarzan. For
example, Alice can register with a Lighthouse through an anonymous channel and
make herself available for communication “in the mist.” When Bob wants to contact
Alice, Bob can communicate with her through her Lighthouse. Like with Onion,
each Mist Router along the path from Alice to her Lighthouse only knows the pre-
vious and next hops. Hence, Alice’s Lighthouse can route traffic to Alice without
knowing her location. In effect, Alice chooses not to have sender-anonymity, but
instead location anonymity (or location privacy). Note that Alice can choose not to
disclose her name, in which case Alice will have anonymity in addition to location
privacy.

Our work on Mist exposed the need for trustworthy routing within an organiza-
tional setting. Indeed, a path to a Lighthouse may traverse routers that are not
trustworthy with respect to privacy. We now discuss the concept of trustworthy
routing.

2.2 Trustworthy routing

We first provide some background on Policy Based Networking (PBN) and then
introduce the notion of trustworthy communication within this framework.

2.2.1 Policy Based Networking. In PBN, network administrators now have the
ability to specify, administer, and enforce an organization’s network-access and uti-
lization policies more effectively. PBN has traditionally focused on which users
have access to what resources in a network [Sloman and Lupu 2002]. These policies
correspond to mandatory access control (MAC) and utilization policies that the
network, as a system, applies to its users. Our work can be viewed as complemen-
tary to such systems since we focus on a user’s (discretionary) privacy expectations
and preferences governed by the existing mandatory network policies. Users can
influence the path of their traffic within this setting. Our motivation stems from
the observation that the discretionary privacy demands of users have been largely
ignored in any formulation of PBN policies, and for communication privacy in gen-
eral. Our initial work on discretionary path policies within a PBN was published
in [Kapadia et al. 2004]. We build on this idea for providing users with a model
for trustworthy communication within a network. We now define precisely what we
mean by “trust.”

2.2.2  Trust. “Trust” relates to the degree by which a user believes a certain
property to be true. In security, we are interested in security properties such as
resilience to attack — “can I trust this system to be virus-free?” or certificate vali-
dation — Alice may trust Bob’s digital certificate of identity issued by Verisign [ver
], but not one issued by some other user Charlie. As defined in [Bishop 2003], an
entity is trustworthy if there is sufficient credible evidence leading one to believe
that the system will meet a set of given requirements. Trust is a measure of trust-
worthiness, relying on the evidence provided. If trust is a numerical measure of
trustworthiness, deeming a system as trustworthy may be based on a threshold of
some trust value, or simply the system with the highest trust value is deemed to
be most trustworthy. We refer to this quantitative notion of trust as “confidence”
or “diffidence” as the case may be. In some cases it is useful to measure posi-
tive attributes of trust, e.g., reputation based systems. We refer to these positive
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measures as “confidence.” Likewise, it is also useful to collect negative reports on
behavior, e.g., intrusion detection reports. We refer to these values as “diffidence”
values. We will refer to the trustworthiness of a route as its “Quality of Protection
(QoP)” or more specifically its “path-confidence.”

2.2.3  Trustworthy routing. Users may be interested in setting up routes that
preserve their privacy, in terms of location anonymity or identity anonymity. A
user may desire a trustworthy route that is likely to preserve the user’s anonymity.
Our model enables users to set up routes through routers in a way that does not
compromise their privacy. Users can specify trust attributes to avoid certain nodes
and prefer some routes over others, rather than relying on the system to make
anonymous routing decisions. This system addresses the route-selection phase be-
fore using a scheme like Onion routing or Tor. In Mist, trustworthy routes can be
used for connecting to a Lighthouse.

We now discuss some general approaches towards trustworthy networking. Yi
et al. [2001] propose the notion of secure routing for ad-hoc military environments.
While their work focused on ad-hoc wireless routing environments and the spe-
cific credentials of the users and group key management, we present a generalized
model based on different types of attributes of users and routers, and trust assump-
tions between these entities. While Yi et al. [2001] perform route selection using
broadcast messages, in our approach communication endpoints are given a graph
of the network, and can compute routes based on policies that are not revealed to
routers, even when the routers are part of the communication path. Finally, our
model also incorporates a quantitative measure of trustworthiness of routes that
are complementary to the qualitative routing policies based on attributes. It is
also worthwhile to address some of the research in multimedia, which attempts to
find paths that satisfy “Quality of Service (QoS)” requirements, much like find-
ing trustworthy routes with high QoP. Routing schemes have been proposed for
some discretionary requirements such as bandwidth and latency. Resilient Over-
lay Networks (RON) [Andersen et al. 2001] have been proposed to discover higher
bandwidth (or lower latency) routes on the Internet by attempting to circumvent
the standard underlying BGP policies. Selfish Routing [Qiu et al. 2003] examines
the effects of non-cooperative routing on the overall performance of the network
and proposes algorithms that minimize the cost of selfish routing. Salsano and
Veltri [2002] describe a method to incorporate RSVP [Zhang et al. 1993] in Policy
Based Networks, where clients can specify QoS demands for their route. Constraint
Based Routing (CBR) in Multiprotocol Label Switching (MPLS) [Jamoussi et al.
2002] allows clients to specify certain constraints (again, concentrating on QoS).
The network then computes paths for the clients based on these constraints. We
address discretionary security requirements of users that desire a higher Quality of
Protection (QoP) rather than a higher Quality of Service (QoS). Moreover, clients
do not have the ability to keep their policies private in the QoS protocols, and must
disclose them to the network for admission control. We present a model that keeps
the user’s privacy policies secret from the routers. Lastly, QoS properties such as
latency or packet-loss are additive or multiplicative for each node visited (and the
penalty is incurred each time a node is visited or revisited). In QoP, the penalty
is usually incurred only once for each node visited, making the two measures (and
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Fig. 1. Architecture Overview

the techniques used to enhance QoP and QoS) incompatible. Consider the prop-
erty “no node along the path is compromised” where the probability of a single
node being compromised is p and is independent of other nodes. For a path of any
length, if there are n unique nodes along the path, the probability of no nodes being
compromised along the path is (1 — p)”, irrespective of the path length. However,
the latency of a path does depend on the path length since some latency is incurred
every time a node is visited, whether it has been visited before or not. This impacts
our choice of policy language presented in Section 4.2.

3. MODEL FOR TRUSTWORTHY COMMUNICATION

Our model consists of three parts: a representation of the network, a policy lan-
guage for specifying qualitative routing policies, and a quantitative trust model for
evaluating the trustworthiness of paths. Using these components, users can specify
routing policies based on their perceived threat to privacy and obtain satisfying
paths with a high Quality of Protection, or trustworthiness. We begin with a brief
overview of the system.

3.1 System architecture

As shown in Figure 1, users connect to our routing infrastructure through access
points. This could either be a PBN or a network such as Tor. Services can be
connected to access points as shown, or certain services may be available at the
routing nodes itself (e.g., discovery services that are part of the routing infrastruc-
ture). Based on the certified attributes that the user chooses to disclose to the
authenticating system (for privacy reasons the user may only disclose a subset of
their current attributes), the user is presented with a snapshot of our system con-
sisting of different network elements, including routers, links and servers. Note that
this snapshot is a restricted view of the network, reflecting what resources a user
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is authorized to use based on the user’s disclosed credentials !, according to the
mandatory access policies of the organization.

The user hence possesses a logical view of the routers, their attributes, and their
connectivity. When a user wishes to communicate with another entity on the net-
work, he or she looks up the access point of the destination and computes a route to
that access point. Within this logical view of the network, our framework allows the
user to specify qualitative and quantitative policies for trustworthy communication.

In the next few subsections we describe how each part of this process works,
along with the trust negotiation and bootstrapping that occurs in the system.

3.2 Assumptions

We assume a network such as a PBN within an organization or a specialized network
such as Tor. This allows for the use of specialized protocols for secure and private
communication within the organization. Attackers can actively drop, modify, or
inject packets into the network and end-to-end encryption can be used to detect
such activity. We depend on a suitable Public Key Infrastructure (PKI) and cen-
tralized or distributed trust authority for issuing certificates for attributes. While
this paper is motivated by small scale networks where traditional attack models are
insufficient, our model is widely applicable to specialized Internet-wide networks
such as Tor where nodes can be issued attribute certificates, and users can select
more trustworthy routes based on these attributes.

3.3 Approach

We introduce a model of the network as a labeled state-transition diagram, and use
a subset of Constraint Linear Temporal Logic (CLTL) [Demri and D’Souza 2002]
based on integer periodicity constraints for discretionary policy specification. These
formulas are based on attributes of entities in the network, which may be qualitative
or quantitative. This approach allows users to specify qualitative communication
path properties based on quantitative attributes, and explore algorithms to discover
routes that satisfy users’ policies. For example, a user may demand a path that
visits only physically secure routers (a qualitative demand) with fewer than 15
intrusion reports (a quantitative demand) in the previous week. In order to capture
the effect of dynamically changing trust relationships on the quality of routes our
model can discover, we introduce a quantitative measure of trust called confidence.
For example, attributes of routers maybe be true with a certain degree of confidence.
The combination of these approaches allows users to set up routes of high confidence
that satisfy their discretionary policies. We show how our policy language can
be efficiently interpreted over the network model and be combined with shortest
path algorithms for certain models of confidence. As described in Section 2.2.2,
confidence or diffidence is a measure of trust for a node. The Quality of Protection
(QoP) refers to the trustworthiness of a route, which we will refer to as “path-
confidence” to differentiate it from the QoP or “confidence” of an individual node.

Using this metric, we describe different functions to combine meaningfully the
confidence values of individual links along a route quantitatively to compute the

1We use credentials and attributes interchangeably since attributes are certified and are presented
as credentials
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path-confidence or QoP of a path, presenting what we believe is a novel compu-
tational model of trust relationships. Confidence values also capture threat by
changing the confidence levels in response to exposed threats and vulnerabilities.
We show how we can efficiently compute routes that maximize the confidence a
user can expect given the current threat model and trust relationships.

Our proposed framework explicitly models static and dynamic trust attributes of
both users and network objects to capture the system’s evolution. Some attributes
of the network elements are dynamic, in the sense that they may change over time.
We list different types of attributes network elements and classify them according
to whether they are inherent, consensus based, or need to be inferred by the user
in some way. We explore the issue of trust management and describe what entities
we need to enable certification and validation of dynamic trust attributes.

3.4 Attributes

Since our network model incorporates attributes of network elements, we first define
three types of attributes to capture both the static and dynamic nature of evolving
trust relationships in our system—inherent attributes, consensus-based attributes
and inferred attributes. Routers and links are associated with attribute-value pairs.
As we show later, these attributes allow users to specify qualitative path policies
and to quantify the trust relationships in the system by associating them with a
measure of confidence.

Inherent attributes: These attributes are relatively static characteristics of an
entity, which can be certified by a Certificate Authority (CA). Inherent router
or link attributes can include physical location, administrative authority, physical
security, clearance level, and firewall security. Based on these attributes, users
can set up routes that are physically secure and that belong to a certain trusted
administrative entity.

Consensus-based attributes: These attributes relate to the behavior of an entity
with respect with other entities in the system. For example, routers in the network
can vouch for the integrity of neighboring routers if they appear to be routing pack-
ets correctly. A compromised router may stop forwarding packets, and neighboring
routers would degrade their trust in that router with respect to packet delivery.
Users can therefore use these dynamic attributes to set up routes through routers
that have been routing packets reliably on a need-to-use basis. This may encourage
good behavior of routers within the network. Since these certificates are issued
for the current behavior of a router, it is impractical to have the CA issue such
certificates.

Therefore, we need a robust and efficient protocol where routers can generate,
agree, and distribute these relatively dynamic attributes. Since routers, especially
compromised ones, can lie about these attributes, we suggest the use COCA [Zhou
et al. 2002], an online certification authority that uses threshold cryptography to
issue these certificates. The basic idea is that at least k out of n routers would need
to agree on an attribute to issue a certificate for that attribute. COCA comes with
built-in intrusion tolerance for Byzantine failures, and is reasonably efficient.

Inferred attributes: While entities in the network may have inherent or consensus-
based attributes, users may have reasons not to trust certain routers or links. A
user might infer (through probes for example) that certain routers are running
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outdated versions of software with a known vulnerability. This is an indicator that
the router may be compromised and is not trustworthy. Hence a user may want
to avoid such routers. Since these are attributes that the user assigns to routers
(or vice versa), these attributes are local to the entity making the inference. No
certification is required for such attributes. Other examples include latest patches,
daemons running, past behavior observed by the user, etc.

3.5 Routing model

We now present our routing model. As explained before, users can obtain a map
of the network that they are authorized to view according to the organizational
mandatory policy at startup. This map lists all the routers, and links, and labels
each router and link with the set of attributes and attribute-variables that are valid
on that router. Users are allowed to update this map with dynamic attributes at
any point in time.

We model our network as a labeled state-transition diagram similar to Kripke
structures used in model checking [Clarke et al. 2000]. Formally, a Kripke structure
is the tuple M = (S, Sp, R, L), where S is a set of states, Sy is the set of initial or
start states, R C .S x S is a transition relation between states, and L : S — P(AP)
is a labeling function where P(AP) is the power set of atomic propositions AP.
Given a state s € S, L(s) is the set of atomic propositions that are true in s. We
augment this model to also represent link attributes.

In the case of attribute-based routing, the set of routers corresponds to the set of
states S in the model. If two routers s1, so are connected then (s1,s2), (s2,51) € R
since we assume symmetric links. We overload the definition of L to include the
function L : S xS — 24 that maps a link (u,v) to its set of attributes L(u,v). The
resulting model is now a labeled state-transition diagram with a labeling function
over nodes and edges. Each relation in R corresponds to the connectivity between
routers. The set of attributes at each router can be viewed as atomic propositions
(or truth valued statements) about attributes in that that state. Therefore the set
AP is the set of all possible attribute-value pairs in our system. For example, the
attribute-value pair a = (OSVersion, 4.0) is an atomic proposition that is true for
routers with this specific attribute-value pair, i.e., OS Version 4.0. Without loss
of generality, we will refer to attribute-value pairs as atomic propositions. In our
previous example, the attribute-value pair (OSVersion, 4.0) is represented as the
atomic proposition a. Note, this set is finite in our model. The set of start states
So are specified by the user.

Adding wvariables: It is clear from the preceding examples that expressing
numerical properties can be cumbersome. Consider the attribute-value pairs
(SecurityLevel,5) and (SecurityLevel,4). Instead of treating this as two separate
attributes, it helps to treat “Security Level” as a variable that takes on different
values in different states (or nodes). When these values are real numbers, we allow
users to treat attributes as variables and specify arithmetic operations on these
variables (e.g., SecurityLevel < 4 would correspond to the request “use routers
with security level less than 47). We use the notation S(s;) to denote the value of
variable S in the network node s;. We discuss the use of arithmetic comparisons of
attributes in more detail in Section 5, where we allow comparisons of trust values
for properties between routers.
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We now summarize our network model:

AP : set of atomic propositions
VAR : set of variables
= (S,50,R,L,0)
set of routers
source router
S x S :set of links
S — P(AP)
R — P(AP)
S x VAR — R
R x VAR — R

Q 9 hb?ué”mi

The labeling function L maps a router (or link) to the set of atomic propositions
that are true for that router (or link). The valuation function o maps a router
(or link) and a variable to the value of that variable at the router (or link). For
simplicity, we will refer to the valuation of x at a router s; as o;(x).

4. QUALITATIVE PATH POLICIES

The user can now define their discretionary policies as path characteristics using
temporal logic formulas that can be interpreted over the network model. Different
types of temporal logic have been studied extensively in the past [Clarke et al.
2000] to describe properties of infinite computation trees. We focus on finite paths
and suitable fragments of temporal logic for this purpose. We believe that the most
useful logic for our case is Constraint Linear Temporal Logic (CLTL), which is used
specify characteristics of paths based on constraints on attributes. In addition to
standard LTL, our proposed fragment of CLTL can express quantitative properties
of paths. We do not define the syntax and semantics of LTL as it is well known,
but explain how we can use it with quantitative constraints to specify properties
of interest. While this approach can be computationally expensive, we show how
we can adapt this technique to a computationally inexpensive subset of CLTL and
highlight specific characteristics of our problem that make it scalable.

4.1 Tractability of LTL

LTL formulas are a powerful way for users to express qualitative path requirements.
Model checkers can be used to generate multiple paths, when they exist, that satisfy
these constraints between a source access point and a destination access point in
our model. Model checking algorithms for LTL formulas in general have time
complexity O(|M|2°UfD)), where |f] is the size of the LTL formula.

In addition to exponential dependence on |f]|, traditional model checking can
also be encumbered by large state spaces (large |M]). Some systems with simple
high level specifications may result in a “state space explosion.” For example, a
state transition occurs in a Kripke model when the truth values of the atomic
propositions in that state change. As a result, computation trees that represent
all possible behaviors of the system by enumerating states and transitions for all
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combinations of changes of these values can become very large. Unlike such systems,
the state space explosion problem is not a concern for us since |M| is the size of
the network. In our case, the attribute certificates are fixed for a particular view of
the network. We do not model the changing values of these attributes as different
states for each router. Therefore, we can limit the size of our model |M| by number
of routers, links, and attributes in our network, and we are only limited by the
complexity of algorithms for verifying LTL formulas.

While the overall complexity is low for smaller LTL formulas, finding paths sat-
isfying longer LTL formulas can easily become prohibitively expensive because of
the 29U/D term. Since we augment this model with quantitative confidence met-
rics, finding paths of highest confidence that satisfy the LTL formula becomes even
more challenging and instead we focus on a fragment of Constraint LTL for which
the complexity of finding satisfying paths is linear in |f|. In addition, CLTL al-
lows users to specify policies using quantitative variables. In effect, our model will
reduce to running shortest path algorithms on a directed graph of size |M| after
some inexpensive transformations on the graph. We present our policy language in
Section 4.2

4.2 Policy language

We now describe the policy language that users can use to specify qualitative con-
straints on their communication. This is a fragment of LTL with variables, and
constraints on these variables. These variables take different values in different
states. We refer to the variables as VAR = {x1,2z2,...}. VAR takes real values in
R. Users specify router and link policies that will be applied independently to each
router and link along the path, making it very easy to find paths that satisfy the
given policy.

We define the constraint system C = {R, Ry,..., R,}, where R is the domain of
real numbers, each R; is a relation of arity a;, such that R; : R* — { True, False}.
An atomic C constraint over a set of finite variables is of the form R;(w1,...,w,,),
where each w; is either a variable or a real-valued constant. Like atomic proposi-
tions that represent attributes, these atomic constraints evaluate to true or false.
Mathematical equalities and inequalities are examples of constraints. For example,
21 ~ cand 1 ~ 29 @ ¢ where ~€ {<,>,=}, ® € {+,—,Xx,+}, and ¢ € R, are
valid C constraints.

Let v : VAR — R be a map or valuation of the variables. We also define v
to include the identity map over R, in particular v(r) = r for any r € R. The
interpretation of these constraints is as follows.

v E Ri(wy,...,we;) < Ri(v(wy),...,v(w,,))

In other words, the valuation v satisfies the relation R; if after replacing all
variables with their values as specified by v, the relation evaluates to true.

We now define a fragment of CLTL(C), i.e., CLTL based on constraint system
C. We will call this “policy language” L. We distinguish between two kinds of C
constraints: ¢; is a constraint defined with respect to links and ¢, is defined for
routers. ¢; and ¢, are relations over variable values at a particular link or router,
and additionally, variables in ¢; may be prefixed with P or X to refer to the values
of variables at the incident routers. We will define the semantics of such constraints
after presenting the grammar for L:
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We now define the semantics of the policy language. Let m = (s1,...,5,) be a
path in the labeled state-transition diagram M. This path represents both routers
and links. In particular s1,ss,...,s, are routers, and $o, S4,...,S,_1 are the links
(81,83),(83,55),- -, (Sn—2,8n). Let 0 = o1,...,0, be the sequence of valuations
of variables corresponding to routers and links s1,...,s, in m. Let S, be the set
of routers in 7 and S; be the set of links in 7. A discretionary demand by a user
includes the policy P and the source and destination pair s,t. The path must be
an s, t-path that satisfies P. We define the satisfiability relation for a policy P and
path 7 in labeled state-transition diagram M inductively as follows.

MaE GOPANGYS MarEGPAMrEGVY
Mn E G @& Vs, €S, M,m; ED
M,m = G¥ & Vs, € S, M,m T

M7 = ~® e M,m EP

M E & VP& Mm ED VM mE

Mm, E ®ANPy & M,m |EDOyAM,7; |E Dy

M,m; = a<sa€ L(s;)

M,m E Pasa€ L(s;_1)

M,m = Xa < a€ L(siy1)

M, E ¢ <0 Ee

M,m Eas|..,w — oi(w;), Pwg — oi—1(wi), Xw; — o1 (wy),...] = ¢

In other words, policies can specify router policies G, @, link policies G; ¥, or
both. Router policies are boolean combinations of atomic propositions and con-
straints that must be true at each individual router along a path. Link policies are
boolean combinations of atomic propositions, and constraints that must be true
(based on the most current knowledge of the attributes) at each individual link
along a path. Constraints on links can include variables from the incident routers,
allowing the user to specify “one-hop precedence properties.” Note that the values
of variables and attributes might change after the route has been established. We
assume that the users can detect such changes and decide whether they want to
compute a new route or not.

We now give some simple examples of our policy language. Let z represent the
number of DoS attacks a node has suffered in the past 24 hours. Let y be the width
of cable shielding in mm for links in the network. Let z represent the security



14 : Routing with Confidence: A Model for Trustworthy Communication

level. Let v be the number of virus attacks in the past 24 hours. The policy
Gy (z <10Av < 2) A Gi(y > 5APz < Xz) states that the path must only contain
routers with at most 10 DoS attacks and the number of virus attacks don’t exceed
the DoS attacks, links with at least 5mm shielding, and the order of security levels
of routers must be non-decreasing.

4.3 Graph transformation

Given the user’s policy we can perform certain transformations on the graph such
that any path in the transformed graph will satisfy the user’s policy. Furthermore,
any path that satisfies the user’s policy will be present in the transformed graph.
Each atomic constraint (node or precedence constraint) can be evaluated to true
or false for a router or link as the case may be. Hence these constraints are atomic
constraints that evaluate to true or false and can be used in boolean expressions
with other atomic propositions. Each router of link policy p specified as G, p or
G p evaluates to true or false for the node in question. Routers and links, for which
the policies evaluate to false, are removed from the graph. Any path from node
s to t in this modified graph will satisfy the overall path policy. In the following
section, we will discuss the use of shortest path algorithms to accommodate various
quantitative trust models based on the current state of the system.

Our choice of policy language is deliberate, since path automata (such as regular
expressions) are not compatible with shortest path algorithms for our model of QoP.
Cross-product automata can have several vertices representing the same router in
the network. Shortest-path algorithms can accumulate costs for the same router
twice by visiting two different vertices corresponding to that router. However,
since QoP is computed over sets of nodes visited, cross-product automata will
yield incorrect solutions. Our policy language makes transformations on the graph,
resulting in a subgraph of the network where each router is represented by only one
vertex in the modified graph. This can be used with shortest path algorithms for
computing QoP, without such problems.

5. QUANTITATIVE TRUST MODEL

Once a user transforms the graph (as described above) of the network satisfying
the qualitative attribute requirements, the user would like to set up a route to a
destination. One solution would be to obtain the shortest path (in terms of hops)
to the destination. However, if the network is under attack, some paths are more
trustworthy than others. For example, it may be known that there are intruders
in the system with physical access to machines. One would like to degrade trust in
routers that have lower physical security. It might be known that certain machines
have been compromised without knowing the specific machines. In such a case,
users may degrade trust for machines run by certain administrators, or for those
machines that are running out of date software. Specifically, certain attributes of
routers may be more trustworthy than others. The user may be confident that a
router is in a particular domain, but may not be that confident about the router’s
physical security after a possible break in.
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5.1 Confidence of an attribute

We propose a quantitative measure of trust as the confidence a user has in an
attribute at a router or link. Users can assign confidence levels to attributes of
routers. After specifying the qualitative route properties, users can now choose to
optimize their routes based on one or more of their attributes of interest. As defined
below, each attribute a for a router r (or link (u,v)) is associated with a confidence
value ¢, (a) (cy(a)), which can be integer or real valued. We explore the various
semantic interpretations of this confidence value and how overall “path-confidence”
can be calculated.

Definition 5.1. Given a router s € S with attributes L(s), a user’s confidence
function C : S x AP — R returns the confidence level for an attribute at a
router. We abbreviate the confidence level C(s,a) of attribute a at router s as
¢s(a). Similarly we expand the definition to include confidence levels of links. The
function C': S x S x AP — R returns the confidence level for an attribute at a
router. We abbreviate the confidence level C(u,v,a) of attribute a at link (u,v) as
Cupwl(a).

The exact nature of this confidence function will depend on the nature of at-
tributes and how these levels can be composed to compute the confidence or QoP
of a path, by combining confidence values of different routers in the path meaning-
fully. For example, confidence values can represent the probability with which the
user believes that the attribute is true or not. It can also represent the number of
incidents reported by an intrusion detection system or positive reports submitted
by users. In each case these confidence levels must be combined meaningfully to
reflect overall path confidence, which we describe in the next section. We discuss
how we can compute paths of high overall confidence based on confidence levels of
attributes of routers along the path under various semantic models of trust.

5.2  Measurement

Before we continue with our discussion, an important question is how confidence
levels can be measured. We based some of our examples on intrusion detection sys-
tem (IDS) reports. For example, an IDS can record the number of virus or worm
intrusions for systems on the network and share these reports with users, possibly
attached to the network graph presented to the user. Gossip protocols could be
used to share information about neighboring routers, although care must be taken
to ensure the integrity of such approaches. Singh et al. [2004] discuss an approach
whereby routers can query other routers anonymously to report on their routing
table information, and show how the node being queried cannot falsify responses.
Various numerical attributes (using attribute variables) can be certified (e.g., secu-
rity level) and obtained from the router itself, or through a lookup service. When
accessing lookup services, it is important to know that queries can leak the poli-
cies of users. Hence users must request properties of several (or all) routers to keep
their policy contents secret. The use of gossip protocols [Chandra et al. 2001] allows
users to passively collect information about other routers, and is a good solution for
certified attributes. In this paper we focus on the issue of using confidence values
by providing a general model that allows the use of several confidence assessment
techniques. We aim to characterize what models are feasible and what are not.
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5.3 Path-confidence of an attribute

We refer to any simple (no repeated vertices) path from router u to router v as a
u, v-path. Similarly a u,v-walk is a path from u to v that may repeat vertices and
edges. We assume that u and v are the endpoints of communication.

We now define the path-confidence of an attribute.

Definition 5.2. The path confidence C,(a) for an attribute a along a u, v-path
7 is obtained by applying a combiner function K(c;(a),...,cy(a)) that takes
all the confidence levels ¢;(a) of the n nodes s; along the path 7 from u to v
(s1 = u, s, = v), and returns a single confidence value for the path in R.

We assume that a combiner function is applied with respect to a single attribute,
and omit the “(a)” part in Cr(a) and ¢;(a) above for clarity. Users may also want
to optimize over the values of variables. For example, let D be the number of DoS
attacks a router has suffered within a certain time window. The user may want to
find a path that minimizes the sum total of D along a path.

Definition 5.3. The path confidence C (D) for an attribute variable D along
a u,v-path 7 is obtained by applying a combiner function K(D(s1),...,D(sy))
that takes all the variable values D(s;) of the n nodes s; along the path 7 from u
to v (s1 =wu, s, = v), and returns a single confidence value for the path in R.

We assume that if confidence levels are also associated with link attributes, links
are subdivided to include a node that represents the link. Hence all confidence
levels will be associated with nodes in the graph, which allows us to use shortest
path algorithms in a consistent manner. We now focus our attention on how users
can optimize path-confidence for a single attribute. In Section 7 we discuss how a
user can optimize path-confidence for multiple attributes (multiple combiners).

6. OPTIMIZING A SINGLE ATTRIBUTE

We now explore different combiner functions and how they apply to different models
of trust. To illustrate, consider the concept of “weakest link.” There may be routers
that are highly vulnerable, and it is extremely likely that they will be chosen for
attack. The path confidence in this case can be defined as the minimum of all
confidence values of routers along the path. Here K(cq,...,¢,) = min{ecy,..., ¢}
So when a user needs to pick a path based on its combined confidence value, he or
she can avoid paths with low path confidence.

Also consider the following example. A user may conclude that the DoS vulner-
ability of a router is proportional to the number of incoming links. Hence the user
would like a path that minimizes the average sum of incoming links over all routers
along a path, but also does not include any nodes with very high connectivity.
The user can first eliminate routers with incoming links beyond a certain threshold
and then minimize the average. A user may also be interested in minimizing the
variance of a certain variable.

First we focus on the multiplicative combiner. A multiplicative measure of path
confidence can be used to model various properties of interest to a user: high
probability of success of delivery, high probability of no information leakage, high
probability that routers along a path will not be compromised, etc.
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6.1 Multiplicative combiners

We consider the case when K(ci,...,¢,) = ¢1...cpn, the product of confidence
levels of nodes along a path. This multiplicative model of path confidence applies
to confidence levels that were computed independently along a path. In this model,
a user assigns confidence levels based on the probability of “good things happening”
at each node. Assuming independence, the probability of the desired property being
true along the entire path is simply the product of all the confidence levels. We
now present an efficient method for computing paths of high path confidence under
the multiplicative model.

The main idea behind computing paths of high confidence is that by applying the
correct weights to edges in a network connectivity graph, we can use shortest path
algorithms (that use additive weights) to find paths with highest overall confidence
(based on multiplicative weights).

Consider the directed graph G that represents the connectivity of routers spec-
ified by the labeled state-transition diagram M. As mentioned earlier, links with
confidence levels can be subdivided to include a node that represents that link. For
each s € S, we now assign — In(c;) to be the weight of all incoming edges to s,
ie., {(u,8) € R:u € S}. We assume non-negative confidence levels in the range
[0,1] (larger ranges can be normalized). We now have a weighted directed graph
G’. Consider a source node a and a destination node b.

THEOREM 6.1. The k-shortest a,b-paths in G’ correspond to the k a,b-paths of
highest path confidence in G.

PROOF. See Appendiz Section A.1 [

Since all edge weights are non-negative, Theorem 6.1 allows us to apply k-shortest
simple (loopless) path algorithms to find cycle-free paths of highest confidence. For
example, Dijkstra’s algorithm is the special case when £ = 1 and will yield a
path with maximum path confidence. Several algorithms have been proposed for
obtaining the k shortest simple paths in a directed graph. The best known worst
case time complexity of these algorithms is O(kn(m + nlogn)) [Yen 1971; 1972].
Hershberger et al. [2003] propose an algorithm that provides a ©(n) improvement
in most cases. For small k (for example, the user may want the 3 highest confidence
paths) these algorithms are efficient for all practical purposes. They provide results
of their algorithm for large graphs (e.g., 5000 nodes, 12000 edges) based on real GIS
(Geographic Information Services) data for road networks in the United States.

In addition to the models we present in this section, we argue that the ability to
specify both threat and trust relationships using a combined metric is extremely
powerful. We plan to study how these values can vary over time, using sensitivity
analysis, stochastic analysis and other techniques. In the next section, we present
three example scenarios that showcase the benefits of our new framework.

6.2 Additive combiners

We consider the case when K(ci,...,¢,) = ¢1 + ... + ¢y, the sum of confidence
levels of nodes along a path. Finding simple paths of highest path-confidence is
NP-hard. For example, the Hamiltonian Path problem can be reduced to finding
the highest confidence (or longest path) in a graph with uniform edge-weights, and
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then verifying whether it is a Hamiltonian path or not. The same reasoning can be
used to show that finding paths of “least confidence” using multiplicative combiners
is NP-hard.

Hence we look at the problem where we attempt to minimize the confidence val-
ues. For better intuition, we refer to these as diffidence values, and correspondingly
refer to path-confidence as path-diffidence. Paths of least diffidence can be solved
trivially by using shortest path algorithms. This model can be used in cases where
intrusion detection systems may produce negative reports for nodes. Users may
want to find paths that minimize the sum of negative reports along the path, cor-
responding to a path with the least number of known problems. Similarly, a node’s
incoming degree can be a measure of vulnerability to DoS. A user may want to find
a path with the least number of total incoming edges, which could imply a lower
amount of vulnerability of the path to DoS.

A user may also want to find a path where the average confidence (or average
diffidence) for each node along a path is minimized (respectively maximized). We
address the problem of average combiners below, and show that finding solutions
for this demand is NP-hard.

6.3 Weakest link

As mentioned earlier, the confidence of the path is the minimum confidence level of
nodes in the path, K(ci,...,¢,) = min{cy,...,c,}. The path of highest confidence
can be computed by sorting the links based on weight. First all links are removed
from the graph, and links are added back iteratively in descending order of weight.
At each iteration, if a path from s to ¢ exists, then it will be the path of highest
confidence. The same can be done for computing paths of least diffidence, where
the confidence level is the maximum of confidence level of routers along the path.

For example, consider an attribute that measures DoS resilience. Furthermore
the user is certain that there is a DoS attack in the network and would like a path
with the highest DoS resilience. Since the DoS resilience of a path is only as good as
its weakest link, the user can use this combiner to find a path of highest confidence,
or DoS resilience.

6.4 Average combiners

We consider the case when the confidence or diffidence K(cy,...,c,) = @t=tcn

and the user desires a path of least average cost (or least dlﬂidence) or h%hest
average cost (highest confidence).

For example, the user may desire a path that minimizes the average incoming
degree for each node. Singh et al. [2004] describe an eclipse attack in overlay
networks where malicious nodes are identified by having a higher in-degree. In an
eclipse attack, a group of malicious nodes attempts to corrupt routing tables of
other nodes in the network, such that all communication in the network is directed
through malicious nodes. The authors observe that malicious nodes in this setting
would have a high incoming degree and propose an auditing mechanism to ascertain
the incoming degree of nodes. In particular, malicious nodes cannot hide their
incoming degree because of their proposed anonymous auditing mechanism. A
reasonable demand would be to find a path with the lowest minimum average
degree, improving the overall confidence in the path with respect to the eclipse
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attack. This can be done after eliminating nodes above a certain threshold of
incoming degree to avoid the obviously malicious nodes.

We show that these problems are NP-hard by reducing the s, t-Hamiltonian Path
problem to finding the minimum or maximum average cost path.

Definition 6.2. Hamiltonian Path Problem (HP): Given a directed graph
G = (V,E) find an s,t-path that visits all vertices in V. Such a path is called a
Hamiltonian path.

HP is NP-complete.

Definition 6.3. s,t-Hamiltonian Path Problem (s,t-HP): Given a directed
graph G = (V, E) and vertices s,t € V, find an s, t-path that visits all vertices in
V. Such a path is called an s,t-Hamiltonian path

s, t-HP is NP-complete. It is easy to show this by reducing HP to s, t-HP. Given
a graph G, construct G’ by adding vertices s,t, and the directed edges (s,v) and
(v,t) for all vertices v € V. G’ has an s, t-Hamiltonian path if and only if G has a
Hamiltonian path. Hence s, t-HP is NP-complete.

Definition 6.4. Minimum Average Cost Simple-Path Problem (MinAC-
SPP): Given a graph G = (V, E), with positive vertex weights w(v) for each vertex
v € V, and vertices s,t € V, find an s,t-path p that minimizes the average cost
of p. The average cost of a path p is defined as the the total additive cost of p
divided by the number of vertices in p.

Maximum Average Cost Simple-Path Problem (MaxACSPP): Given a
graph G = (V, E), with positive vertex weights w(v) for each vertex v € V, and
vertices s,t € V, find an s,t-path p that maximizes the average cost of p. The
average cost of a path p is defined as the the total additive cost of p divided by
the number of vertices in p.

THEOREM 6.5. The Minimum Average Cost Simple-Path Problem (MinACSPP)
1s NP-hard.

PROOF. See Appendiz Theorem A.4 [

THEOREM 6.6. The Mazimum Average Cost Simple-Path Problem (MazAC-
SPP) is NP-hard.

PROOF. See Appendixz Theorem A.5 O

These results imply that in general it is very hard to compute paths that min-
imize/maximize path diffidence/confidence. A natural question to ask is whether
the shortest average path for various restrictions on hop-length can be computed.
In Section 7.3 we show that these related problems are also NP-hard.

6.5 Minimum variance

We consider the case when the diffidence K(c1,...,¢,) = C§+'T'l‘+ci — (adeten )
and the user desires a path of least variance or least diffidence.
For example, the user may want to pick a path with the most consistent (as
measured by low variance) set of confidence values within an acceptable range.
We show that the problem of minimizing variance is NP-hard by reducing s, t-HP
to finding the minimum variance path.
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Definition 6.7. Minimum Variance Simple-Path Problem (MVSPP):
Given a graph G = (V, E), with positive vertex weights w(v) for each vertex v € V,
and vertices s,t € V such that (s,t) € E, find an s,t-path p that minimizes the
variance of weights for the set of vertices in p.

We assume that s,t are not directly connected by a single edge, because then
the solution is trivial. The path (s,t) has variance 0 and is the minimum variance
path.

THEOREM 6.8. The Minimum Variance Simple-Path Problem (MVSPP) is NP-
hard.

PROOF. See Appendix Theorem A.6 [

6.6 Approximation techniques

For minimum/maximum average and minimum variance weight s, t-paths, picking
a large value for § such as n2, the approximate solutions to these problems will
closely approximate solutions to the longest s, t-path problem. Karger et al. [1993]
show that unless P = NP, there is no polynomial time algorithm that can find a
path of length n — n° for any € > 1. This indicates that there is very little hope to
approximate these problems.

7. OPTIMIZING MULTIPLE ATTRIBUTES

Consider the case where a user may want to maximize confidence along a path for
two or more attributes. In our model this is the same as applying two or more
combiners to the labeled state-transition diagram.

There has been considerable work in the QoS community that addresses finding
network paths that minimize multiple constraints. It can be shown that mini-
mizing two additive or multiplicative (or a combination of the two) constraints is
NP-hard. Specifically, given n attributes with the additive combiner, and thresh-
olds Lq,..., L, for each attribute, finding a path with costs m,...,m, for each
attribute such that my < Lq,...,m, < L, is NP-complete [Wang and Crowcroft
1996]. This immediately implies hardness results for multiple attributes in the
additive or multiplicative models.

7.1 Unifying multiple attributes

We present an approach that unifies confidence for each node, after which a single
combiner can be applied. Specifically, multiple attributes are treated as a single
attribute with a unified confidence value, after which our results for single attributes
can be applied.

7.1.1  Tractable additive models. Consider the two attributes “DoS attacks” and
“Worm attacks.” FEach attribute has diffidence equal to the number of intrusion
detection reports for that attack. A user may want to pick a path that minimizes
the number of “DoS and Worm attacks.” In this case the single attribute “DoS
and Worm attacks” can be unified by adding their diffidence values. The user can
also choose to weight each attribute. For example, the user may consider DoS
attacks more important, and unify the DoS Attack and Worm Attack diffidence
values d and w as 0.8d + 0.2w. In fact this is semantically the same as considering
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each combiner separately, and minimizing a linear combination of each additive
combiner.

Formally, consider the n attribute variables aq,...,a,. For a given path 7, their
individual path confidences are represented as Cr(a1),...,Cr(ay). As mentioned
earlier, finding a path 7 such that C;(a1) < Li,...,Cr(an) < L, for supplied
thresholds Ly, ..., L, is NP-complete. However, finding a path that minimizes
w1Cr(a1) + ... + wpCr(ay) is equivalent to minimizing the additive cost Cr(a) of
unified attribute a, where for each node k, ¢x(a) = wicy +. . . +wpc,. For attribute
variables, we would have a(sx) = a1(sk) + ...+ an(sk). This is easy to prove as in
[Jaffe 1984].

This model would apply more easily to attributes with low correlation. In general
it is reasonable to assume that DoS and Worm attacks are unrelated. For exam-
ple, the DoS vulnerability of the node is a function of its connectivity, whereas
vulnerability to worms is related to the current version of software. While unify-
ing attributes with a high degree of correlation can be done by more complicated
unifiers, we use the linear combination model for its tractability.

7.1.2  Tractable multiplicative models. We focus on the model where confidence
levels are equal to the probability that the attribute is true. We assume that these
probabilities are independent. In this case, multiple attributes at a router can be
unified into a single attribute using boolean connectives. It is easy to compute the
overall probability for expressions such as a; A...Aa, or a1 V...Va, using standard
combinatorial rules. We assume unifiers of this form. For example, unified attribute
a defined as a; A ag will have the confidence c(ay)c(az), while a defined as ay V as
will have the confidence ¢(ay) + ¢(a2) — ¢(aq)c(az). This allows us to meaningfully
unify attributes under the independent probability model. Unified attributes now
have a single probability (or confidence) at individual nodes, and the multiplicative
combiner can be use to find paths of highest confidence.

For a more complicated combination of boolean connectives we assume a user
supplied formula for calculating the overall probability or the use of available tools.
Composing events as arbitrary boolean expressions is common in Fault Tree Anal-
ysis (FTA) [FTA 1981] and several FTA tools such as Galileo [Coppit and Sullivan
2000] and SAPHIRE [sap ] are available for computing the overall probability of
the defined event.

We now address more complicated privacy demands where a user may want to
visit k£ or more distinct nodes to make a traceback attack harder to execute by an
attacker. In other words, an attacker trying to expose the location of the user will
have to retrace the path through these routers, and a user would like to select such
a path with high confidence.

7.2 Visit k distinct nodes

In QoS, one might be interested in bounding the number of hops by k. However, in
security applications, users might want paths that visit at least k nodes to thwart
a trace-back attack. We examine the viability of such a demand.

Consider an attribute variable such as node ID d. We consider the case when
K(d(s1),...,d(sn)) = 1if n = k and 0 otherwise. Finding an s, t-path of highest
non-zero confidence is equivalent to finding a simple path from s to ¢ that visits
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exactly k or at least k nodes (s, t-k-path or s, -kT-path). Such a property would be
of interest to thwart traceback attacks to expose a user’s location, but this problem
is NP-complete [Alon et al. 1995]. Indeed if we set k = |V|, then a solution to this
problem will yield an s, t-Hamiltonian path for any graph G = (V, E) if and only
if one exists. Hence the minimum weight simple k-path and k*-path problems are
NP-hard optimization problems. We call these problems k&-MWSP and k+*-MWSP.
Note that the problem of finding an s, {-path with at most & nodes (s, t-k~-path)
is easily solved by finding the shortest path from s to ¢ and testing whether the
length is at most k, however we are interested in k as a lower bound for security
against traceback attacks.

If we relax the restriction on simple paths to allow walks (vertices and edges can
be repeated), the problem of finding an s, t-k-walk is trivially solvable for undirected
graphs. Since the graph is undirected, a walk can be constructed that will visit k
distinct nodes by first finding the shortest path from s to ¢. If there are more than
k nodes in this path, the desired walk does not exist. If there are less than k nodes
in this walk, then neighbors to this walk can be successively inserted to increase
the distinct nodes visited by 1 with each iteration. More precisely, at the beginning
of each iteration, there will exist at least one vertex v in the walk with a neighbor
w in the list of unvisited vertices. This is guaranteed by the fact that the graph is
connected. Replace v in the walk with v, w,v.

We now present a high level algorithm for finding an s, ¢t-walk in any directed
graph that visits at least k vertices. For a directed graph G, this algorithm finds
an s, t-walk that visits the most possible distinct vertices, and hence will trivially
satisfy the “at least k” requirement. If the path returned by this algorithm visits
fewer than k distinct vertices, then we know that no such path exists.

Decompose graph into Strongly Connected Components (SCC)
//Linear time decomposition O(|V| + |E|) [Tarjan 1972]
for each SCC S do
assign weight —|S| to each incoming edge to S
//where |S| is the number of vertices in S
end for
let Ss, Sy be the components containing s, t respectively
find the minimum cost path from S to S;
//The SCC graph is a DAG, and minimum cost algorithms for graphs with
negative weights can be applied

This algorithm yields a path p from S to S; in the SCC graph that maximizes
the sum of vertices of each SCC (or cost —c). Starting from s, a walk can be
constructed that visits all nodes in each SCC of p, and ending at ¢. This will be an
s, t-walk that visits the maximum number of distinct vertices (¢ vertices). If ¢ > k
we can use this walk as an s,t-kT-walk. If ¢ < k, no such walk exists.

For directed graphs in general, we are not aware of the complexity of finding a
walk that visits exactly k distinct vertices. However, we show that the minimum
cost version of finding a walk that visits k distinct vertices, and optimizes another
confidence metric is NP-hard. Hence in general, it is hard to find optimal walks
or paths in networks with a specified number of distinct nodes even if we allow
repetition of nodes.
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Definition 7.1. k-Distinct Vertex Minimum Weight Walk Problem (k-
MWWP): Given a graph G = (V, E), with positive vertex weights w(v) for each
vertex v € V', and vertices s,t € V|, find an s,t-walk p that visits k& < |V| distinct
vertices (we will call this an s, t-k-walk), and minimizes the weight of walk p. The
weight w(p) of walk p is defined as the the total additive cost of the set of vertices
in p. w(p) =>_,¢, w(v). Hence the cost of visiting a vertex is incurred only once.

THEOREM 7.2. k-Distinct Vertex Minimum Weight Walk Problem (k-MWWP)
is NP-hard.

PrROOF. See Appendiz Section A.3 [

Since finding minimum weight s, t-walks of length k is NP-hard, an interesting
question is whether one can find minimum weight s, t-walks with at least k distinct
vertices. Earlier we showed that finding s, t-kT-walks without a cost metric can
be done in polynomial time. However we show that the minimum cost version of
finding s, t-k*-walks (we call this problem kT-MWWP) is NP-hard.

THEOREM 7.3. k*-Distinct Verter Minimum Weight Walk Problem (k*-
MWWP) is NP-hard.

PROOF. See Appendiz Section A.4 [

7.2.1 Approzimation techniques. While we have shown that finding node-
weighted minimum weight s, -walks in a network that visit k or at least k distinct
nodes is NP-hard in general, approximation algorithms may yield acceptable solu-
tions. We leave this to future work, but mention relevant research here. For the
simpler node-weighted minimum weight k-cardinality tree problem on graphs with
undirected edges Mladenovi¢ and UroSevié [2004] present a heuristic based on vari-
able neighborhood search and provide performance results under various scenarios.
Blum and Ehrgott [2003] show that problem can be solved in polynomial time if the
graph contains “exactly one trough.” They also present several local search heuris-
tics for the problem, and provide an extensive discussion on related solutions for
this problem. Hence, it may be useful to compute approximate solutions based on
these heuristics to find paths of acceptable confidence, if not the highest confidence.

7.3 Scoped minimum average cost

We now return to the problem of finding the minimum average cost path in a graph
and explore the complexity of s, t-k-walks of minimum average cost.

Definition 7.4. k Minimum Average Cost Simple-Path Problem (k-
MinACSPP): Given a graph G = (V, E), with positive vertex weights w(v) for
each vertex v € V, and vertices s,t € V, find an s, t-k-path p that minimizes the
average cost of p. The average cost of a path p is defined as the the total additive
cost of p divided by the number of vertices in p.

k™ Minimum Average Cost Simple-Path Problem (kT-MinACSPP):
Given a graph G = (V, E), with positive vertex weights w(v) for each vertex v € V|
and vertices s,t € V, find an s,t-kT-path p that minimizes the average cost of p.
The average cost of a path p is defined as the the total additive cost of p divided
by the number of vertices in p.
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k~ Minimum Average Cost Simple-Path Problem (k£ -MinACSPP):
Given a graph G = (V, E), with positive vertex weights w(v) for each vertex v € V,
and vertices s,t € V, find an s,t-k~-path p that minimizes the average cost of p.
The average cost of a path p is defined as the the total additive cost of p divided
by the number of vertices in p.

k Minimum Average Cost Walk Problem (k-MACWP): Given a graph
G = (V, E), with positive vertex weights w(v) for each vertex v € V, and vertices
s,t € V, find an s,t-k-walk p that minimizes the average cost of p. The average
cost of a path p is defined as the the total additive cost of the set of vertices in p
divided by the cardinality of the set of vertices in p.

We prove that these problems are NP-hard optimization problems in Appendix
Section A.5, along with a list of five related problems that are also NP-hard.

7.4 Dealing with hardness

In Sections 6.6 and 7.2.1, we present related work in approximation. In particular,
it is not expected that viable solutions exist for minimum/maximum average cost
and minimum variance. Using our policy language users can qualitatively eliminate
nodes with high values diffidence or low values of confidence. This can help find
paths with low overall average diffidence or high average confidence. For minimum
variance, a user may specify that any link for which the confidence values at its
incident routers differ by more than J is to be avoided. Hence every hop will avoid
a large change in confidence, thus providing lower variance. The user can translate
their problem into acceptable one-hop precedence properties as an alternative to
the more general minimum variable problem. This approach will efficiently yield
paths that satisfy the user’s modified policy.

8. APPLICATIONS

We present three concrete examples that use our framework. We present the first
example in more detail, and suggest two other uses.

8.1 High-performance and military environments

Consider an MLS (Multilevel Security system) user w; with sensitivity level
Confidential in compartment { Navy}, connected at the access point s;. User ug
has security clearance {Confidential, {Army}} and is connected at access point
s19. Based on wuq’s clearance (uq chooses to only reveal this, not its identity), the
system presents the user with a logical view of the network as shown in Figure 2(a).
All routers in this system are cleared for {Con fidential, { Army, Navy}}. For sim-
plicity we look at only two inherent attributes: physical security and Domain. The
attribute physical security can take any value in {1,2,3,4}. Unshaded nodes rep-
resent routers with physical security values 3 or 4, shaded nodes represent values 1
or 2. The attribute Domain can take any value in {1,2} (D; and D5 in Figure 2(a)
correspond to domains 1 and 2). D; can correspond to confidential network owned
by the Army for example.

User u; desires to communicate with us and determines that us’s access point
is s19. We assume a network component analogous to dynamic DNS which can
respond with a user’s current access point (us has chosen to register its access
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(b) Resultant view based on user’s policy, including
confidence levels

(c¢) Resultant digraph for use with k-shortest path algorithms

Fig. 2. Military network example

point with the service). Now wu; has been informed by trusted sources that there
is an intruder physically located on the premises, and that low physical security
routers should be excluded. wu; specifies the following constraint formula G, physical
security = high. This eliminates s5, s15 from the logical view and results in the graph
shown in Figure 2(b).

The user now wishes to optimize paths based on a unified attribute “x” based
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on OS wversion, Domain, and physical security. Under the independence assump-
tion, confidence values of these attributes are unified into one confidence value by
multiplying their individual confidence levels. In each case, the confidence value
represents the probability with which the user believes the node is not compro-
mised. First, all the confidence values for each attribute at all the nodes are set to
1.

By means of network probes, the u; determines the inferred attribute OS wver-
ston, which can be outdated (square nodes) or latest (round nodes). Routers with
outdated operating system versions (OS version = outdated) have their confidence
levels multiplied by 0.8 since they may be compromised. Lastly, u; would like to
avoid machines in domain D; because of a suspected insider attack in that domain.
uy multiplies the confidence levels of routers in this domain by 0.4. u; has experi-
enced large delays when routing through Ds. Suspecting worm activity, u; degrades
confidence in those routers by multiplying their confidence levels by 0.7. Figure 2(b)
shows these confidence levels for each node. Figure 2(c) shows the resulting digraph
with multiplicative weights. As described in Section 5.3 we replace these weight by
their negative natural logarithm, and then apply k-shortest path algorithms [Hersh-
berger et al. 2003] to obtain the three paths of highest confidence. In this example
it is easy to see that the following are paths with the three highest path confidences:
(1,3,7,12,16,18,19), (1,3,6,11,16,18,19), and (1,3,6,10,9,13,17,19). The first
two paths have a path confidence of 0.392 (with respect to the logarithmic weights,
the total weight is 0.9365), and the third has a path confidence of 0.32 (weight
1.139).

Once these three paths are obtained, the user needs to set up a path through
the routers. This is done using a scheme that encrypts the packet multiple times,
based on the routers in the path, as in onion routing [Reed et al. 1998], since public
keys of routers are assumed to be well known to u;. The user encrypts the path
in reverse order using the keys of the routers in the reverse path. Each subsequent
router decrypts the received route setup packet to obtain the next hop and an
encrypted route setup packet for the next router. This technique hides the path
from the routers, which only know the previous and next hops in the path. By
means of this route setup, u; can establish the chosen path to us. Packets from uq
to u; are simply forwarded on the reverse path.

8.2 Ubiquitous computing

The previous example provided a detailed overview on how our system works in a
military environment. In this section we briefly discuss applications to ubiquitous
computing. Users in ubiquitous computing environments seamlessly interact with
numerous devices and services. In such an environment discovery of services, and
access to such services is one of the main applications. However, with such an
environment it is very easy for the ubiquitous system to track a user’s movements
or record user patterns. Using our system as a basic infrastructure or service,
users can maintain their privacy. Users only need to reveal as much information as
necessary to get a logical view of the ubiquitous environment. This can be achieved
by trust negotiation as described in [Yu et al. 2003]. In a university setting, a user
may want to avoid using routers or services that belong to other research groups,
and eliminate these by using global property specifications. While connecting to
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certain services, a user may choose to maintain location anonymity (for example,
using Mist [Al-Muhtadi et al. 2002]) by creating a route to a Lighthouse that is
hard to trace back.

8.3 Peer-to-peer overlay networks

We consider peer to peer networks where it is feasible for users to obtain topological
information of the overlay. We assume the user can form a logical view of the overlay
network based on information available to the user. We have presented a general
model for use with arbitrary topologies. Currently, networks such as Tor are fully
connected networks, for which several trust models that are otherwise NP-hard can
be computed efficiently. For example, finding the shortest path that visits at least
k nodes can be computed by simply selecting the k least cost nodes in the graph.
However, we envision structured peer-to-peer networks that restrict links between
different nodes. For example, a particular Tor router may only accept connections
from a subset of trusted Tor routers. As diversity is exploited in such networks, we
believe that the topologies will also be more varied than a fully connected topology.

9. FUTURE WORK

In this paper, we discussed several semantic models of trust. In Section 6.1 we
showed how multiplicative combiners can be used for probabilistic models of trust.
For example, the confidence value of 0.9 for the attribute “Physically Secure” can
mean that the probability that the machine is physically secure is 90%. We showed
how the overall confidence of the path, the probability that the entire path is phys-
ically secure, is simply the product of these probabilities, assuming they are inde-
pendent. In modeling, one attempts to abstract or approximate the real probability
distribution with one that is tractable. For example, Markov models in queueing
theory assume a memoryless distribution for arrivals, which greatly simplifies the
mathematics. While it is certainly true that security failures in a network are not in-
dependent, we would like to examine the space of probability models that are more
powerful than the independent probability model, but still computationally efficient
to compute. In particular, we would like to avoid approaches with time or space
complexity that is exponential in the size of the network. We have been exploring
the use of Markov Random Fields and Bayesian networks to represent correlated
confidence values. While these models appear to be intractable in general, we would
like to identify restrictions on these models that yield tractable solutions. For ex-
ample, Sahner and Trivedi [1986] explore combinatorial approaches in conjunction
with Markov models to constrain the state-space. Such approaches may yield useful
and tractable models for trustworthy routing. We would also like to study more
powerful policy specification languages for trustworthy routing. Ultimately, user
studies are required to identify a usable policy language or a higher level policy
specification tool, which would allow regular users to specify privacy policies in a
more intuitive way. We also identified several semantic models of trust for which
it is NP-hard to find paths of highest confidence. Further research is required for
approximation techniques and heuristics for computing paths with reasonably high
confidence even if the optimal solutions are elusive.
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10. CONCLUSIONS

In this paper, we argued that users must be given sufficient control over their
communication in an organizational network, such as a ubiquitous computing envi-
ronment. We presented a model that allows users to specify discretionary privacy
properties of routes based on the attributes of routers and links in the network
based on perceived threat. These attributes can represent boolean as well as real-
valued properties. Our policy language allows users to specify global and one-hop
precedence properties based on attributes of links and routers. We discussed vari-
ous representations of trust and showed how trustworthy routes can be computed
efficiently for various semantic models of trust. We also identified various models
of trust that are computationally hard to satisfy. More specifically, we showed
that several quantitative demands of interest in anonymous routing networks that
require “at least kK7 nodes to be visited are NP-hard. Our model can be used
to improve trustworthiness in organizational networks and deployed anonymizing
networks such as Tor.
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APPENDIX
A.1 Multiplicative combiner

LEMMA A.1. Let s be the sum of weights on the a,b-path w in G'. The path
confidence C, of m in G is equal to e”%.

PROOF. Letcy,...,c, be the confidence levels of all the nodes in w except a. Cr =
c1ea ... ¢y sinceca =1. Nows =" | —In(¢;) = =Y. In(¢;) = —In(cica... cp).
Hence e = eln(c1e2¢n) — 109 ¢, = Crr.

Note that if for there exists a ¢; = 0, then the path confidence is 0. Moreover,
s = oo since —In(0) = oo and e* = 0, so there is no discrepancy for confidence
levels of 0. FEssentially, any path which includes a node of 0 confidence will not be
chosen by the user. [

LEMMA A.2. For any two a,b-paths 71, T with total weights wi,ws in G', we
have w1 < wy if and only if Cr, > Cyr, in G.

PROOF. From Lemma A.1 we have that wy < wy & —w; > —wy & e~ %1 >
e & Cry >Cr,. O

THEOREM A.3. The k-shortest a,b-paths in G’ correspond to the k a,b-paths of
highest path confidence in G.

PROOF. This follows from Lemma A.2 since if we order all the a, b-paths in G’ in
increasing order of weight, they are ordered in decreasing order of path confidence
mG. O

A.2 Average and variance combiners

THEOREM A.4. The Minimum Average Cost Simple-Path Problem (MinAC-
SPP) is NP-hard.

PROOF. We reduce the s,t-HP to MinACSPP. Given a graph G = (V, E), and
vertices s,t € V', assign the weight 1 to all vertices except t. Assign the weight
140 tot. Any s,t-path of length (number of vertices) n will have average cost
w =1+ %. This average cost is minimized for largest possible n = |V|.
Hence the solution to MinACSPP will yield an s, t-path that visits |V| vertices if

and only if an s, t-Hamiltonian path exists in G. Hence MinACSPP is NP-hard. [

THEOREM A.5. The Mazimum Average Cost Simple-Path Problem (MazAC-
SPP) is NP-hard.

PROOF. We reduce the s,t-HP to MinACSPP. Given a graph G = (V, E), and
vertices s,t € V, assign the weight 1 to all vertices except t. Assign the weight
1 -4 tot (where d < 1). Any s, t-path of length (number of vertices) n will have
average cost w — é. This average cost is maximized for largest possible
n = |V|. Hence the solutzon to MazACSPP will yield an s,t-path that visits |V|
vertices if and only if an s,t-Hamiltonian path exists in G. Hence MaxACSPP is
NP-hard. O

THEOREM A.6. The Minimum Variance Simple-Path Problem (MVSPP) is NP-
hard.
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PrOOF. We reduce the s,t-HP to MVSPP. Given a graph G = (V, E), and ver-
tices s,t € G, assign the weight 1 to all vertices other than t. Assign the weight
146 tot.

Any s, t-path of length (number of vertices) n will have variance
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For any fixed §, since n > 3 (by assumption that (s,t) € E), the variance is
minimized for largest possible n = |V'|. Hence the solution to MVSPP will yield an
s, t-path that visits |V'| vertices if and only if an s,t-Hamiltonian path exists in G.
Hence MVSPP is NP-hard. [

A.3  k-Distinct Vertex Minimum Weight Walk Problem (k-MWWP)

The Vertex Weighted k-Minimum Tree Problem is NP-hard [Fischetti et al. 1994].
We reduce this to s,t-k-VMT, and in turn to &-MWWP to prove NP-hardness of
E-MWWP.

Definition A.7. Vertex Weighted k-Minimum Tree Problem (k-VMT):
Given an undirected graph G = (V, E), with positive vertex weights w(v) for each
vertex v € V, find a tree T in G with k < |V vertices (we call this a k-tree?), where
T is of minimum weight. The weight w(T") of T is the sum of weights of the set of
vertices in T. w(T') = 3, cpw(v).

Definition A.8. Vertex Weighted s, t-k-Minimum Tree Problem (s, t-k-
VMT): Given an undirected graph G = (V, E), with positive vertex weights w(v)
for each vertex v € V, find a tree T in G with k < |V vertices containing specified
vertices s and t. (we call this an s,t-k-tree), where T is of minimum weight.
The weight w(T") of T is the sum of weights of the set of vertices in T. w(T) =

ZUGTU}(U)'
LEMMA A.9. Vertex Weighted s,t-k-Minimum Tree Problem (s,t-k-VMT) is
NP-hard.

Proor. We reduce k-VMT to s,t-k-VMT.

Given k and an undirected graph G = (V, E) with vertex weights w(v), construct
G' = (V',E') in the following way. Assume some ordering vi,...,v, of vertices in
V. Start with a copy of G, and for each vertex v; € V' add two new vertices s; and
t;. Add the edges (v;,s;) and (v;,t;). Let M = 7 w(v;). Assign the weight M + 1
to s; and t;. In addition, add the vertices s and t and the edges (s,s;) and (t,t;)
foralli=1,...,n. Assign weights § = 1 to s,t. This new graph contains 3n + 2

2Fischetti et al. [1994] define a k-tree to have k edges, however trees with k edges have k + 1
vertices, and hence our definition is equivalent
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vertices, and |E|+ 4|V| edges. G', along with s,t and k + 4 is used as input to the
8,t-k-VMT problem. We show that G has a k-tree of cost < ¢ if and only if G’ has
an s,t-(k + 4)-tree of cost < c+2(M + 1) + 25, where ¢ < M.

Clearly if G has a k-tree T of cost < ¢, then we we can add vertices s;,t; for
some v; € T, along with s,t and edges (v;, s;), (vi,t;), (s,8:), (t,t;) to obtain an
s,t-(k + 4)-tree T' in G', where w(T') < ¢+ 2(M + 1) + 26.

Likewise, let T" be an s,t-(k+4)-tree in G’ with weight < ¢c+2(M +1)425, where
c< M. We argue that T' contains k vertices from V, and hence includes only two
vertices s; and t;j for some particular values of i,j. Since s,t € V(T"), we know that
must be at least two such vertices. Consider the case when there are more than two
such vertices. We have w(T") > 3(M +1)+2§. But since w(T") < c+2(M+1)+26,
and ¢ < M, we have w(T") < 3(M + 1) + 25, which is a contradiction. Hence there
are only two vertices of weight M + 1. Let T be the k-vertex embedding of T' in
G. We know that T is a tree because any two vertices in T are connected in T,
but cannot be connected through s,t,s;,s;. T is therefore connected and is a tree.
Furthermore w(T) = w(T") —2(M + 1) — 26 < c.

It follows that a minimum s,t-(k + 4)-tree T' of G' can be transformed into the
minimum k-tree of G, and we have that s,t-k-VMT is NP-hard. [

THEOREM A.10. k-Distinct Vertex Minimum Weight Walk Problem (k-
MWWP) is NP-hard.

PrOOF. We reduce s,t-k-VMT, which is NP-hard from Lemma A.9 to k-
MWWP.

Given an undirected graph G = (V, E) with vertex weights w(v), k, and s,t € V,
create the directed graph G' = (V' =V, E'), where each undirected edge (u,v) € E
is replaced by directed edges (u,v) and (v,u) in E'.

We claim that G contains an s, t-k-tree of weight < ¢ if and only if G' contains
an s,t-k-walk of weight < c.

If T is an s,t-k-tree of weight < c. Consider the embedding T' of T in G', where
each undirected edge (u,v) in T is replaced with the corresponding directed edges
(u,v) and (v,u) in T'. T’ is a strongly connected subgraph of G' with k distinct
vertices. Hence we can construct a walk p from s to t using only vertices and edges
in T, yielding an s,t-k-walk of the same weight, which is < c.

Let p be an s,t-k-walk of G’ of cost < c. Consider the embedding G, of p in G,
where directed edges of p are replaced by undirected edges in G. G, is a connected
subgraph of G. Let T, be a spanning tree of G, (this can be computed in polynomial
time). T, is an s,t-k-tree of the same weight < c.

It follows that a minimum weight s,t-k-walk in G’ can be transformed into a
minimum weight s, t-k-tree in G, and hence k-MWWP is NP-hard. O

A.4  EkT-Distinct Vertex Minimum Weight Walk Problem (kT-MWWP)
LEMMA A.11. Minimum cost k™ -tree problem is NP-hard (k*-VMT).
Proor. We reduce k-VMT to k*-VMT.
Given a graph G we claim that there exists a k-tree T of cost < ¢ if and only if

there exists a kT -tree T of cost < c.
Clearly, a k-tree T of cost < c is also a k™ -tree of cost < c.
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Now consider a k™ -tree T' of cost < c. Consider any subtree T of T" with k
vertices. T is a k-tree with w(T) < c.

It follows that the minimum weight k™ -tree of G yields a minimum weight k-tree
of G, and hence the kT -tree problem is NP-hard. [

LEMMA A.12. Vertex Weighted s,t-k-Minimum Tree Problem (s,t-k-VMT) is
NP-hard.

ProoFr. We reduce kT-VMT to s,t-k-VMT.

Given k and an undirected graph G = (V, E) with vertex weights w(v), construct
G' = (V',E') in the following way. Assume some ordering vi,...,v, of vertices in
V. Start with a copy of G, and for each vertex v; € V' add two new vertices s; and
t;. Add the edges (v;,s;) and (v;,t;). Let M =3 w(v;). Assign the weight M + 1
to s; and t;. In addition, add the vertices s and t and the edges (s,s;) and (t,t;)
foralli=1,...,n. Assign weights 6 = 1 to s,t. This new graph contains 3n + 2
vertices, and |E|+ 4|V| edges. G', along with s,t and k + 4 is used as input to the
s,t-k-VMT problem. We show that G has a k™ -tree of cost < c if and only if G’
has an s,t-(k + 4)T -tree of cost < c+ 2(M + 1) + 25, where ¢ < M.

Clearly if G has a kT -tree T of cost < c, then we we can add vertices s;,t; for
some v; € T, along with s,t and edges (v;, s;), (vi,t;), (s,8:), (t,t;) to obtain an
s,t-(k +4)T-tree T" in G, where w(T") < ¢+ 2(M + 1) + 24.

Likewise, let T" be an s,t-(k+4)" -tree in G’ with weight < c+2(M+1)+25, where
c < M. We argue that T' contains at least k vertices from V', and includes only two
vertices s; and t; for some particular values of i, j. Since s,t € V(T"), we know that
must be at least two such vertices. Consider the case when there are more than two
such vertices. We have w(T") > 3(M +1)+2§. But since w(T") < c+2(M+1)+26,
and ¢ < M, we have w(T") < 3(M + 1) + 25, which is a contradiction. Hence there
are only two vertices of weight M + 1. Let T be the embedding of T' in G using
only the vertices in V. We know that T is a tree because any two vertices in T are
connected in T', but cannot be connected through s,t, s;,s;. T is therefore connected
and is a k™ -tree. Furthermore w(T) = w(T") —2(M +1) — 2§ < c.

It follows that a minimum s,t-(k +4)T-tree T' of G’ can be transformed into the
minimum kT -tree of G, and we have that s,t-k™-VMT is NP-hard. O

THEOREM A.13. kT -Distinct Vertex Minimum Weight Walk Problem (k-
MWWP) is NP-hard.

Proor. We reduce s,t-k*-VMT, which is NP-hard from Lemma A.9 to k*-
MWWP.

Given an undirected graph G = (V, E) with vertex weights w(v), k, and s,t € V,
create the directed graph G' = (V' =V, E'), where each undirected edge (u,v) € E
is replaced by directed edges (u,v) and (v,u) in E’.

We claim that G contains an s,t-k™ -tree of weight < c if and only if G' contains
an s,t-kT-walk of weight < c.

If T is an s,t-kT-tree of weight < c. Consider the embedding T of T in G’,
where each undirected edge (u,v) in T is replaced with the corresponding directed
edges (u,v) and (v,u) inT'. T’ is a strongly connected subgraph of G’ with at least
k distinct vertices. Hence we can construct a walk p from s to t using only vertices
and edges in T', yielding an s,t-k*-walk of the same weight, which is < c.
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Let p be an s,t-k*-walk of G' of cost < c. Consider the embedding G, of p in G,
where directed edges of p are replaced by undirected edges in G. G, is a connected
subgraph of G. Let T, be a spanning tree of G, (this can be computed in polynomial
time). T, is an s,t-k*-tree of the same weight < c.

It follows that a minimum weight s,t-kT™-walk in G’ can be transformed into a
minimum weight s,t-k*-tree in G, and hence kT™-MWWP is NP-hard. O

A5 Scoped minimum average cost

THEOREM A.14. k&  Minimum Average Cost Simple-Path Problem (k-
MinACSPP) is NP-hard.

Proor. We reduce s,t-HP to k-MinACSPP.

Given a graph G = (V, E), and vertices s,t € V, simply specifying k = |V|, and
w(v) =1 for allv € V, k-MinACSPP will return an s,t-Hamiltonian path in G if
and only if it exists. [

THEOREM A.15. kT  Minimum Average Cost Simple-Path Problem (k-
MinACSPP) is NP-hard.

ProoFr. We reduce s,t-HP to k™-MinACSPP.

Given a graph G = (V, E), and vertices s,t € V, simply specifying k = |V|, and
w() =1 for allv € V, kT-MinACSPP will return an s,t-Hamiltonian path in G
if and only if it exists. O

THEOREM A.16. k= Minimum Average Cost Simple-Path Problem (k~-
MinACSPP) is NP-hard.

ProoF. We reduce s,t-HP to k—-MinACSPP.

Given a graph G = (V, E), and vertices s,t € V, assign the weight 1 to all
vertices other than t. Assign the weight 1 + 6 to t. Any s,t-path of length n will
have average cost W =1+ %, This average cost is minimaized for largest
possible n = |V|. Hence for k = n, the solution to k= -MinACSPP will yield an
s, t-path that visits |V'| vertices if and only if an s, t-Hamiltonian path exists in G.
Hence k= -MinACSPP is NP-hard. [

THEOREM A.17. k Minimum Average Cost Walk Problem (k-MACWP) is NP-
hard.

ProoF. We can reduce k-MWWP to k-MACWP.

Given a graph G = (V, E), vertices s,t € V, and k, we need to find the minimum
cost walk from s to t with exactly k vertices.

We use G, s,t and k as input to k-MACWP. Let w(p) be the weight of a walk p,
and a(p) be the average cost of p. We have that w(p) < c if and only if a(p) < %.

Hence the minimum average weight s,t-k-walk in G will be the minimum cost
s, t-k-walk in G. O

Similarly the following problems can be shown to be NP-hard. We omit the
proofs since they are similar to the proofs above.

Definition A.18. k Maximum Average Cost Simple-Path Problem (k-
MaxACSPP): Given a graph G = (V, E), with positive vertex weights w(v) for
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each vertex v € V, and vertices s,t € V, find an s, t-k-path p that maximizes the
average cost of p. The average cost of a path p is defined as the the total additive
cost of p divided by the number of vertices in p.

kT Maximum Average Cost Simple-Path Problem (kT-MaxACSPP):
Given a graph G = (V, E), with positive vertex weights w(v) for each vertex v € V|
and vertices s,t € V, find an s,#-kT-path p that maximizes the average cost of p.
The average cost of a path p is defined as the the total additive cost of p divided
by the number of vertices in p.

k~ Maximum Average Cost Simple-Path Problem (k¥ -MaxACSPP):
Given a graph G = (V, E), with positive vertex weights w(v) for each vertex v € V|
and vertices s,t € V, find an s,t-k~-path p that maximizes the average cost of p.
The average cost of a path p is defined as the the total additive cost of p divided
by the number of vertices in p.

k-Minimum Variance Simple-Path Problem (k-MVSPP): Given a graph
G = (V, E), with positive vertex weights w(v) for each vertex v € V', and vertices
s,t € V such that (s,t)— € E, find an s, t-k-path p that minimizes the variance of
weights for the set of vertices in p.

kT-Minimum Variance Simple-Path Problem (kT-MVSPP): Given a
graph G = (V, E), with positive vertex weights w(v) for each vertex v € V, and
vertices s,t € V such that (s,t)— € E, find an s,t-k-+-path p that minimizes the
variance of weights for the set of vertices in p.

k~-Minimum Variance Simple-Path Problem (ki -MVSPP): Given a
graph G = (V| E), with positive vertex weights w(v) for each vertex v € V, and
vertices s,t € V such that (s,t)— € E, find an s,t-k~-path p that minimizes the
variance of weights for the set of vertices in p.
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