I-RBAC 2000:
A DYNAMIC ROLE TRANSLATION MODEL FOR SECURE INTEROPERABILITY

BY
APU CHANDRASEN KAPADIA

B.S., University of Illinois at Urbana-Champaign, 1998

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2001

Urbana, Illinois

(© Copyright by Apu Chandrasen Kapadia, 2001

ABSTRACT

The secure interaction between two or more administrative domains is a major con-
cern. In this thesis we examine the issues of secure interoperability between two security
domains operating under the Role Based Access Control (RBAC) Model. We propose
a model that quickly establishes a flexible policy for dynamic role translation. The role
hierarchies of the local and foreign domains can be manipulated through the Role Ed-
itor which is used to set up associations between these hierarchies. These associations
result in a combined partial ordering of the role hierarchies, which can be used to make
meaningful access control decisions for secure interoperability.

To demonstrate the efficacy of this approach, we integrated our policy framework
into Seraphim, a componentized framework for dynamic security polices. Seraphim is
used while making access control decisions in an active network. Our policy framework
translates the credentials of foreign agents into credentials that are meaningful in the

local domain.

il

To my parents

v

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Roy Campbell for his help, support, and
guidance. I also thank Prof. M. Dennis Mickunas and my colleagues at SRG. I thank
Jalal Al-Muhtadi for help with developing the I-RBAC 2000 model. I would also like to
thank the members of the Active Networking Group for their help and patience while I
modified their work on Seraphim.

I am also grateful to the Department of Defence! for financial support.

'DOD grant MDA-904-98-C-A895

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION e s e 1
1.1 Proposed framework L0 2
1.2 Deployment in an active network L. 3

2 DYNAMIC ROLE TRANSLATION 4
2.1 Policy framework 4
2.1.1 Role translation policies 8

2.1.2 Dynamic translation 9

2.2 Security issues 10
2.2.1 Conflict resolution 11

222 Deletionofroles. oL oL 12

2.2.3 Domain crossing 13

3 THE ROLE EDITOR e 15
3.1 Functionality 16
3.1.1 Creating or opening a hierarchy 16

3.1.2 Developing the hierarchy 16

3.1.3 Specifying Associations L. 19

3.1.4 Other Features oL 19

3.2 Implementation L Lo L 20
3.2.1 RoleAppFrame 20

3.2.2 RoleGraphPanel o000 22

3.2.3 RoleGraphViewo oL 24

3.24 RoleGraph o 24

3.25 RoleNode 26

3.2.6 IOPAssociations 26

3.2.7 Association 27

4 IRBAC Server e 28
4.1 Architecture L 28
4.1.1 TIRBACServer e 28

vi

4.1.2 IRBACClient 30

413 Realm 30

5 Interoperability in Active Networks 32
5.1 Activenetworks 32
5.2 Seraphim - Securing active networkso 0oL 33
5.3 Making Seraphim Interoperable 35
5.3.1 Interoperable Capsules 35

5.3.2 SignedCredentialso 36

5.3.3 Changes to NodeOS 36

5.3.4 Changes to NodeOS Proxy 37

5.3.5 Changes to the Reference Monitor 37

5.4 Test application e 37

6 RELATED AND FUTURE WORK 38
7 CONCLUSION e e e s s e 40
REFERENCES e 41

vil

Figure

21
2.2

3.1
3.2
3.3
3.4

5.1

LIST OF FIGURES

Page
Associations between hierarchies - dotted lines 6
Conflicting associations oL 11
Role Editor o 15
Role Editor - local hierarchy 17
Role Editor - local hierarchy with Student role deleted 17
Role Editor Class Diagram 21
Secure Active Network Node 34

viil

CHAPTER 1

INTRODUCTION

We use the terms domain and security domain to refer to an administrative domain,
which is defined as “a collection of hosts and routers, and the interconnecting network(s),
managed by a single administrative authority [8].” This single administrative authority
will include a security officer. We assume that the domains operate under the Role Based
Access Control (RBAC) model [9]. In RBAC, a user is assigned to a role that indicates
the user’s function in his or her organization.

Consider the scenario when two security domains, A and B, desire to interoperate
securely. In order to do this, A and B need to establish a secure context. We define a
secure context to be “a secure session between two entities subject to a domain security

”

policy.” To establish a secure context both domains need to agree on a security policy.
Both domains can revert to a default security policy that provides a basic level of secu-
rity. However, such naive approaches are static and do not offer flexibility to security

aware applications and domains. For example, if a client object C, in domain A wants

to establish a secure context with a target object T, in domain B, it must rely on the

underlying security mechanism to establish the secure context. For a higher degree of
flexibility, both the client and target objects C' and T', should be aware of each other’s
identities. This occurs naturally within a single domain. However since C' and T are in
different domains, their identities are generally unknown to each other. In RBAC, if the
client object C' has the foreign role of Professor, and if the target object T" usually inter-
acts with client objects with the local role Manager, how would each domain determine

the relevance of the foreign roles? This is the problem that we will address.

1.1 Proposed framework

To solve this problem, we propose a policy framework that facilitates the secure
interoperability between two or more domains. The policy framework works with a set
of associations between the local and foreign role hierarchies. These associations form a
combined hierarchy that is partially ordered. This combined partial ordering is used to
attain the level of flexibility desired. Foreign roles can now be translated into local roles,
which are understandable to local entities. At the very least, it provides the default role
translation. An example of the minimal translation is when all foreign roles are treated as
a single Guest role in the local domain. At the other extreme, it allows the security officer
to specify a highly explicit role mapping (we call this a complete policy, which will be
explained later). An example of a more explicit mapping (we call this a partial mapping)
is when the security officer specifies that a Professor from domain A is equivalent to a

Manager in domain B.

Once these associations have been set up, all foreign roles are dynamically translated
into local roles. Applications can now make meaningful access control decisions based on
the translated roles. These associations are managed through the Role Editor, which is
at the heart of our policy framework and is the security officer’s tool for secure interop-
erability. Our model is named the Interoperable Role Based Access Control Model 2000

(I-RBAC 2000).

1.2 Deployment in an active network

To show that our policy framework is indeed flexible and useful, we have added it to
Seraphim, a componentized framework for dynamic security polices [6]. Seraphim was
developed to secure active networks. For example, an active capsule or agent from a
foreign domain will have credentials issued by its original domain. However, for secure
interoperability, the local domain needs to translate the foreign credentials into local
credentials. This is achieved by our policy framework that translates the foreign role into
a local role. New credentials are generated based on the translated roles. Hence, the

credentials are effectively translated into credentials understood by the local domain.

CHAPTER 2

DYNAMIC ROLE TRANSLATION

In this chapter, we discuss our role translation model. This translation is achieved by
adding associations originating from the foreign role hierarchy into the local role hierar-
chy. These associations allow us to translate foreign roles into local roles. Section 2.1
describes our policy framework formally. We explain the notion of transitive and non-
transitive associations and their importance. A combination of such associations can
constitute different security polices, which is described in Section 2.1.1. In Section 2.2

we address security issues with respect to our model.

2.1 Policy framework

Consider the simple role hierarchies Hy and H; for domains Dy and D; respectively,
described in Figure 2.1. An arrow directed from a role x to a role y means that x is the
parent of y and is hence higher than y in the hierarchy. Although the structures of the

role hierarchies are similar, they differ in their semantics. If a client object from a foreign

domain, with the role Manager, wants to interoperate with an application in the local
domain, that usually allows only local Professor roles, the application must be able to
translate the foreign Manager role into something meaningful. We also observe that
both domains have the Guest role. If foreign roles are not understood, one can define
a simple policy framework to treat all foreign roles to be equivalent to the local Guest
role. However, this kind of an approach is not very flexible, since all foreign roles are
considered to be of only one type, i.e., the local Guest role.

Our policy framework creates a combined partial ordering by adding a set of associa-
tions between the two role hierarchies. By doing so, one can easily manipulate the levels
of access for specific foreign roles.

To formalize this, let Ry denote the set of roles in the local domain Dy. Let R;
denote the set of roles in some foreign domain D;. Then the role hierarchies Hy and H;

are partial orderings as shown in Figure 2.1 (solid arrows only).

Definition 2.1.1 If z and y are roles, we define x > y to mean that x is higher than y

in the hierarchy, or, x is the ancestor of y.

Role-names with subscripts, for example Managerg,, will read as Manager from Ry.

Definition 2.1.2 Let Ry Ry denote the set of associations from Ry to Ry, where Ry and
Ry are role hierarchies. We define an association directed from role xg, to role yg, to
be an ordered pair (zr,,Yr,) such that (xg,,yr,) € R1Ry C Ry x Ry. We also denote

(TR, YRy) S TR, *> YR,- Such an association implies that if yg, is the ancestor of a

particular role in Ry then xg, is also an ancestor to that role. Formally, Vzr,,yr, > 2R,

implies xr, > ZR,-

Once these associations are defined, we obtain a dynamic role translation model for

secure interoperability.

More
L= Roles

Figure 2.1 Associations between hierarchies - dotted lines

For example, in Figure 2.1 we have the association from Managerg, to Professorg,
(labeled as 3). This implies that Managerg, from the foreign domain D; will be trans-
lated to Professorg, in the local domain Dy. We will use the following notation to
symbolize an association: Managerr, +— Professorg,. We can also write this as
(Manager, Professor) € RiRy.

We define two kinds of associations: transitive and non-transitive associations.
Transitive Associations: In Figure 2.1 we can see the association Guestr, — Guestg,
(labeled as 1). Hence Guestg, will be translated to Guestg,. For a transitive association,

this implies that all the ancestors of Guestg, will map to the Guestg,.

Definition 2.1.3 Consider the association xg, « ag,. If this association is a transitive

association then Yy € Ry, if yr, > Trg,, then yr, > ag,.

We can say that yg, is the ancestor of ag, since yg, implicitly maps to ag,. This is
a transitive property in which roles inherit the associations of other roles that are lower
in the hierarchy. Transitivity is also followed in the local hierarchy. Therefore, Vb € Ry,
such that ar, > bg,, if Tr, — ag, then zg, > br,. Hence these associations are called
transitive associations.
Non-transitive Associations: The security officer may specifically want to grant access
to a particular foreign role and only that foreign role. At the same time, the security
officer does not have the power to alter the foreign hierarchy. For example, in Figure 2.1,
the security officer may want to specifically translate Employeeg, to the Janitorg,, and
deny Administratorr, and Managerg, from inheriting this association. If the security
officer had the power to alter the foreign hierarchy, the officer could semantically achieve
this by altering the foreign role hierarchy. But the security officer of the local domain
does not have the ability or power to do so. Hence, we introduce the concept of a
non-transitive association. In Figure 2.1, we can see a such an association between
Employeeg, and Janitorg,. We will use the following notation to denote such a mapping:

Employeer, — nt Janitorg, or (Employee, Janitor)yr € RiRy.

Definition 2.1.4 An association rr, — N1 ar, S non-transitive if it is an association
that does not possess the property of a transitive association. In other words, ygr, > Tg,

does not imply that yr, > ar,. However, ag, > bgr, does imply xr, > bg,.

2.1.1 Role translation policies

A set of transitive and non-transitive associations between the foreign and local hi-

erarchies can be used to create a combined partial ordering and define a security policy.
Such policies can be put into three categories:
Default Policy: This policy involves setting up a minimal number of associations between
a set of roles in the foreign hierarchy and Guestr,. These associations will allow a
particular set of foreign roles to interoperate at the default level of security. In Figure 2.1
we can see the association Guestr, — Guestr,. This corresponds to a default policy.
Vz € Ry, it zr, > Guestg,, then xg, > Guestg,.

This scheme is the easiest to set up, but is also the least flexible. This is because all
foreign principals are treated as the same role, i.e., Guestr,. However, this scheme is
important since it allows the basic level of interoperability and can be used in conjunction
with a partial policy, which is described next.

Complete Policy: In this policy, the security officer specifically maps every foreign role to
a set of local roles. This policy is an extreme case that illustrates the maximum amount
of flexibility in which the security officer can make the mappings explicit for each foreign
role. An effective way to do this would be to make non-transitive associations from every
role in Ry to a subset of roles in Ry.

Partial Policy: This policy illustrates the true flexibility of our dynamic role translation
model. A mapping is partial if it is not a complete policy and when there are one or

more associations, usually in addition to the default policy. In such partial hierarchies,

foreign roles without explicit associations still have logical associations by means of the
partial hierarchy.

The associations labeled 1, 2 and 3 in Figure 2.1 illustrate this policy. We can see
that Managerg, is higher than Professorg, (Managergr, > Professorg,) since we
have the association Managerg, — Professorg,. Hence, Managerg, will be translated
into Professorg,. Similarly, Administratorg, > Professorg, since Administratorg, >
Managerg,. Hence, Administratorg, will be translated into Professorg,.

For example, applications in Dy that usually grant access to Studentg, (Figure 2.1)
also grant access to the foreign Managerg, role since Managergr, > Studentg,. It
is important to note that Employeer, will be treated as {Guestg,, Janitorg,}. For
example, applications that allow access to Studentg, will not grant Employeer, access
unless an association Employeer, — Studentp, is provided. This is a demonstration of
a partial mapping.

This model is highly flexible because it allows the security officer to specify the place-
ment of specific foreign roles in the hierarchy, without enforcing a mapping for each and

every role in the foreign hierarchy.

2.1.2 Dynamic translation

If new roles are added to the local or foreign hierarchies, these roles automatically fit
into the translation model and the security officer does not need to make any immediate

changes. Hence the policy framework is dynamic in nature. By following an appropriate

notification protocol for the deletion and addition of roles (see Section 2.2.2), the role

translation model will dynamically respond to such changes.

2.2 Security issues

Once we have a role translation policy defined, one can ask the question, “How secure
is this system?” We must first spell out the underlying assumptions for such a policy.
This policy framework does not specify how a secure context is established. Our role
translation model provides a meaningful translation of foreign roles into local roles. This
is a key step that must be followed before establishing a secure context across domains.
Hence, our model is useful in establishing meaningful secure contexts. Once our model
provides the translation, it is the responsibility of the overlying security mechanisms to
use the translation meaningfully.

The question of how secure this system is can only be answered in context of the global
security policy that uses our role translation policy as an enhancement. For example,
our model allows the security officer to give higher access to certain foreign principals
than others. This could potentially make the system less secure if the foreign domain is
not trusted. However, one can view our model as a way of giving lower access to certain

foreign principals than others and hence the security of the system is enhanced.

10

HO

Hl
Administrator

- Employee

Figure 2.2 Conflicting associations

2.2.1 Conflict resolution

It is easy to imagine a situation in which a particular association conflicts with another
association. For example, consider Figure 2.2. If we had a partial policy with the associa-
tion Managerg, — Studentg,, it is clear that Employeer, will be translated to Guestg,
and not Studentg,. Now consider a second association Employeer, +— Professorg,.
Now, Employeer, will be translated to Professorr,. We can see that these two as-
sociations conflict since now Managerg, > Professorg,, even though the association
Managerg, — Studentr, does not allow this. In such situations, conflicts are resolved
by giving the foreign role the highest possible translation in the local hierarchy that
the associations can allow. In other words, we take a union of all the reachable roles
and hence do not violate the semantics of a partial ordering. Hence Managerg, will be
translated into Professorg, since Professorg, > Studentp,.

This may result in a security hazard in which the security officer may grant a foreign

role higher access without meaning to do so. To prevent such a situation, our Role Editor

11

can be put into the reachability mode. In this mode, the security officer can select foreign
roles and a reachability graph will be drawn for that selection. More specifically, the Role

Editor color codes all the local roles that are reachable from the selected foreign role.

2.2.2 Deletion of roles

When a role is removed from the local hierarchy, we must maintain the ancestral
wmwvariance of the hierarchies. We define ancestral invariance for our role translation

model as follows:

Definition 2.2.1 Consider the association Tgr, — agr,. Hence, xg, is an ancestor of all
the children of agr,. This ancestral relationship must be maintained even after ag, has
been deleted. Similarly, if yr, > Tgr,, then ygr, is also an ancestor of all the children of
ag,. Again, this ancestral relationship must be maintained if vg, is deleted. We call this

property ancestral invariance.

To maintain the ancestral invariance, when a role is deleted in the local hierarchy, for
every association that connects to the removed role, a new set of associations originating
from the same forign role, is added to all the children of the removed role. This makes sure
that the ancestral invariance is maintained even after the role has been deleted. Transitive
associations are replaced by a set of transitive associations, and non-transitive associa-
tions are replaced by a set of non-transitive associations. For example, in Figure 2.1, if
Professorg, is removed from Hj, then the association Managergr, — Professorg, is

replaced by {Managerg, — Studentr,}.

12

When a role is removed from the foreign hierarchy, for every transitive association
that begins at the removed role, a set of new transitive associations are added from
all its parents to the role that it was connected to. For example, in Figure 2.1, if
Managerg, is removed from H;, the association Managerg, — Professorg, is replaced
by {Administratorg, — Professorg,}. Non-transitive associations are ignored. Note
that for this to be feasible, if there is a change in the role hierarchy of a particular domain,

all the domains that it interoperates with must be notified through some protocol.

2.2.3 Domain crossing

When a principal attempts to interoperate with a target in another domain, it must
cross one domain boundary. We call this a domain crossing. As outlined below, multiple
domain crossings can be a security hazard because it may allow infiltration and covert
promotion. The reason why these problems arise is because we argue that the translation
of roles is a non-transitive property over multiple domains. For example, a translation
from domain D, to D; is not meaningful to Dg, even if there is a translation policy
between D; and Dgy. This is similar to the notion of trust. If A trusts B, and if B trusts
C, then this does not imply that A trusts C. Similarly if zg, — ygr, and ygr, — 2g,,
then this does not imply that zg, — zr,. We call this property the inter-domain non-
transitivity of role translations.

Infiltration: Consider the case when domains Dy and D; decide to interoperate, and
domains D; and D, decide to interoperate. This does not imply that Dy and Dy want

to interoperate. Even though Dy may not want to interoperate with Dy, principals from

13

D, could first enter D; and consequently infiltrate into Dy. Since our model assumes
inter-domain non-transitivity for role translations, our role translation model will not
allow infiltration.

Covert promotion: Another problem with such domain crossings is that principals can
cross domain boundaries and possibly return to the original domain with a role higher
than their original role. Effectively, a principal can covertly promote itself in the role
hierarchy by crossing multiple domains. Since our model assumes inter-domain non-
transitivity for role translations, our role translation model will not allow covert promo-
tions.

To prevent infiltration and covert promotion, the translation is made valid for only
one domain crossing. Each domain translates the principal’s original role, and not simply
the role from the previous domain. This ensures that irrespective of domain crossings,
the role translation model will be valid. Hence, infiltration and covert promotion can
be prevented by including the original domain and role names within the principal’s
certificate. However, this requires the cooperation of all the domains because rogue
domains could fabricate a principal’s certificate to appear to have originated from that

domain. Without cooperation, it is possible to have covert promotion, and infiltration.

14

CHAPTER 3

THE ROLE EDITOR

The Role Editor (Figure 3.1) is the security officer’s tool to manage the local hierarchy,
view foreign hierarchies and, most importantly, to make associations between the foreign
and local hierarchies. This chapter first describes the functionality of the Role Editor,

and then provides implementation details in Section 3.2.

File Edit view

:§|mﬂ|\ Delete| Edit Role.. Connect! NT Connect|Disconnect| undo Last Step| | Exit|

lo

Figure 3.1 Role Editor

15

3.1 Functionality

Understanding the functionality of the Role Editor provides us with a basis to un-
derstand the architecture of our policy framework. The Role Editor has a plethora of
features that aids the security officer in manipulating role hierarchies. These features are

explained below.

3.1.1 Creating or opening a hierarchy

Role hierarchies are stored in files with the extension .rol. The Role Editor presents
these stored hierarchies to the security officer in a graphical format. The security officer
can either retrieve an existing role hierarchy by using the Open... command from the
File menu, or create a new hierarchy by selecting New... from the same menu. When
a new hierarchy is created the default root node is the Admin node. A hierarchy must
have a root node. The S.0O. is also prompted for the realm-name, which is analogous to
a “domain-name.”

After altering the role hierarchy, the security officer can save the hierarchy by selecting
Save or Save As... from the File menu.

Figure 3.2 shows the local hierarchy loaded into the Role Editor.

3.1.2 Developing the hierarchy

Adding new roles: The S.O. (Security Officer) can add new roles by first selecting the

parent, and then clicking on Add. ... This will add a new role as a child of the selected

16

Figure 3.2 Role Editor - local hierarchy

Figure 3.3 Role Editor - local hierarchy with Student role deleted

17

node. The security officer is prompted to specify a unique role name, and a risk-value!
for this role.

Editing roles: The S.O. can select a node and then click Edit Role... to change the
attributes (role-name and risk-value) of the selected role. The Role Editor asserts that a
duplicate role-name has not been specified.

Deleting roles: The S.O. can select a node and then click Delete to delete a node.
However, to maintain the node invariance in the hierarchy, we must connect all the
parents of the deleted node, to the children of that node. This ensures that even though
a node has been deleted, the parent-child relationships between other nodes are not
affected. Figure 3.3 illustrates what happens when the S.O. deletes the Student node
shown in Figure 3.2.

Connections: A parent-child relationship is asserted by adding a connection between
two nodes. For example, in Figure 3.2 we can see the connection Admin +— Janitor.
A connection between two nodes can be made by first selecting a node from which the
connection will originate. The S.O. then clicks the Connect button which indicates that
a connection will be made. The S.O. then clicks on a node where the connection will
end. If this new connection does not add a cycle? in the resultant graph, the connect
operation will be accepted.

Similarly, a connection can be removed by using the Disconnect button. If a discon-

nection results in an orphaned node (i.e., if the only parent is disconnected), the root

L At this point, we only provide a facility to specify and store risk values. This will be used in future
work for more sophisticated security models
2For example, a cycle in the graph can allow a role to achieve a higher status than its parent.

18

node is automatically made the parent of this node. Hence, it is not possible to have a

node that is not reachable from the root node.

3.1.3 Specifying Associations

Loading a foreign hierarchy: Once the local hierarchy has been loaded into the Role
Editor, as in Figure 3.2, the S.O. can insert the foreign hierarchy by selecting File
Import — InsertRemote.... This brings up the foreign hierarchy next to the local
hierarchy.

Adding and removing associations: Associations can be added in the same way con-
nections are added within the local hierarchy. In addition, a non-transitive connection

can be added by clicking on the NT Connect button.

3.1.4 Other Features

Undo Last Step: The S.O. can undo the last operation by clicking on this node.
The Role Editor keeps track of the previous hierarchy, and simply replaces the current
hierarchy with the previous hierarchy. Hence subsequent clicks on this button will toggle
between the previous and current hierarchies.

Auto Arrange: In this mode, the S.O. does not have to worry about the placement
of nodes in the graph. The Role Editor uses an auto-arrange algorithm to draw the
hierarchy on to the Role Editor.

Manual Arrange: In this mode, the S.O. can drag nodes and hence change their

locations. The Role Editor will not allow dragged nodes to overlap with other nodes and

19

will cancel the drag operation if it detects an overlap. When adding a new node, it will

place the new node at a suitably close location, such that the new node does not overlap

with another node. The S.O. can then drag this node and place it at another location.
When a hierarchy is saved the coordinates of the nodes are also stored in the file, so

that the S.0O.’s placement preferences are not lost.

3.2 Implementation

The Role Editor has been implemented in Java. The class diagram is shown in Figure

3.4. The individual classes are described below.

3.2.1 RoleAppFrame

This class is the outer frame of the Role Editor. It lays out the menus, and the toolbar
that can be seen at the top in Figure 3.2. It also contains the functionality of enabling
and disabling the Role Editor functions depending on whether a hierarchy is displayed
or not. This class also interacts with the RoleGraphPanel class by keeping track of the
file name. The RoleGraphPanel notifies this class of a file name change, which in turn
updates the file name displayed in the frame. Observe the file name, Univ.rol, displayed in

Figure 3.2. The RoleAppFrame carries one reference to the underlying RoleGraphPanel.

20

RoleAppFrame

RoleGraphPanel

IRBACCIient

1,2 0,1

RoleGraphView

| OPA ssociations

1
1

RoleGraph

1
1

Hashtable

Hashtable

Association

*

RoleNode

Figure 3.4 Role Editor Class Diagram

21

3.2.2 RoleGraphPanel

The RoleGraphPanel encapsulates most of the functionality of the Role Editor. It
is responsible for opening and closing role hierarchy files (.rol files), and displaying the
role hierarchies. It holds one, or two, references to RoleGraphView classes depending on
whether it is in interoperability mode or not. When the Role Editor is in the interop-
erability mode, it displays two RoleGraphsViews and handles the associations between
the two underlying RoleGraphs. When it is not in this mode, the SO can manipulate
the hierarchy of a single RoleGraph. When the Role Editor is in the interoperability
mode, it holds a reference to the IOPAssociations class. When not in this mode, this
reference is set to null. The RoleGraphPanel also holds a reference to the IRBACClient
class (Section 4.1.2), to communicate with the IRBACServer (Section 4.1.1).

The important methods in this class are described here.

o setAutoArrange(boolean auto): This sets the auto arrange mode of the Role Editor

which is described in Section 3.1.4

e setFile(File newFile): This updates the new file name, and informs all the classes

that have registered for the file update event.

e paintComponent(Graphics g): This method is called whenever the RoleGraphPanel
is painted. This method systematically draws the RoleGraphViews and the Asso-

ciations depending on the interoperability mode.

22

e saveFile(): This method saves the current underlying RoleGraph to the current file

name.

o mouseClicked(MouseFvent ev): This method captures mouse click events. It first
figures out whether a node was clicked or not. It does this by querying the un-
derlying RoleGraphView classes with the mouse-click coordinates. If a node was
clicked, then there are several cases that are handled, such as, deleting a node,
connecting two nodes, disconnecting two nodes, and adding an association between

two nodes.

e mouseDragged(MouseEvent ev)/mouseReleased(MouseEvent ev): When the Role
Editor is in the manual arrange mode, the SO can drag nodes to new locations

within the RoleGraphPanel. This functionality is handled by these two methods.

e actionPerformed(ActionEvent e): This method performs most of the functionality
of the RoleGraphPanel because it captures various events generated by the user and
acts on them. The following functionality is present within this method: opening
files, saving files, adding and deleting nodes, connecting and disconnecting nodes,
editing nodes, committing changes to the IRBACServer, inserting foreign hierar-
chies into the RoleGraphPanel, setting the auto/manual arrange mode and setting

the reachability mode,

23

3.2.3 RoleGraphView

A RoleGraph can be visualized by using the RoleGraphView class. This class holds
a reference to the underlying RoleGraph, and uses it to draw the components of the
RoleGraph. It also adds the undo feature to the RoleGraph. Some of the important

methods are listed below.

e getDefaultNode(): This returns the default node of the underlying RoleGraph. This
is important because the RoleGraphPanel will require this information to add the

default association between the default nodes of the foreign and local hierarchies.

e getClickedNode(int z, int y): This returns the node in the underlying RoleGraph

that contains the point (x,y).

e drawReachability(Graphics g, Vector nodes): If a node is selected in the foreign
hierarchy, the RoleGraphPanel will figure out the vector of ”EntryPoints” and

supply this for drawing the reachability graph.

e draw(Graphics g): Draws the underlying RoleGraph by arranging the nodes ac-

cording to whether it is in auto arrange mode or not, and then drawing each node.

3.2.4 RoleGraph

This class is the datastructure of a hierarchy of RoleNodes. It maintains connections
between various nodes to make the hierarchy. Some of the important methods in this

class are:

24

setRootNode(RoleNode rootNode): The RoleGraph must have a designated root
node, which is at the top of the hierarchy. The root node is set through this

method.

isMyNode(RoleNode node): The RoleGraph can be queried to check whether the

supplied node is a part of the RoleGraph or not.

getEntryPoints(RoleNode node, IOPAssociations iopAssoc): Finds the entry points
for 'node’ into another RoleGraph by looking at the supplied IOPAssociations. See

the explanation for the same function in Section 4.1.1 for more details.

saveToF'ile(File file): Stores the entire RoleGraph into a file using a simple text
format. Hence this is easy for debugging purposes. This RoleGraph can be retrieved

from the file by using the appropriate constructor.

addNode(): There are various definitions for this method, but they all result in

adding a node to the RoleGraph.
deleteNode(RoleNode node): Deletes the specified RoleNode from the RoleGraph.

calcReachability(Vector nodes): Calculate all the nodes reachable from the supplied

Vector of nodes. These nodes are marked as reachable and hence colored pink.

isAncestor(RoleNode potentialAncestor, RoleNode node): checks to see whether

potential Ancestor is an ancestor of node or not.

connect(RoleNode parent, RoleNode child)/disconnect(RoleNode parent, RoleNode

child): Connects or disconnects two nodes in the RoleGraph.

25

3.2.5 RoleNode

This class holds the information for a particular role, i.e., the name and the risk value®

associated with the node. Some of the important methods are:

e isChildOf(RoleNode parent)/isParentOf(RoleNode child): Checks to see whether

the current RoleNode is a child/parent of the supplied node.

e addParent(RoleNode parent) /addChild(RoleNode child): Adds a parent/child to the

RoleNode.

e removeParent(RoleNode parent)/removeChild(RoleNode child): Removes the sup-

plied node from the parent/child list of RoleNodes.

3.2.6 I0OPAssociations

This class manages the associations between two files, and is responsible for read-
ing/writing from/to the .iop files

Some important methods of this class are:

o regenerate(RoleNode child, String oldName): If a RoleNode in the local hierarchy
changes, then we need to regenerate any associations with this node, since the name
of the node is used to index the association. Hence, we use the old node’s name to

retrieve the association, and then rename the association with the new name.

3 Although we do not use the risk values associated with a role in our work, we provide it for future
work involving risk assessment.

26

e removeAssociationsTo(RoleNode node, Vector children): If a RoleNode in the local
hierarchy is deleted, then we need to remove all associations to this node, and

replace them with associations to the children of the deleted node.

e addAssociation(RoleNode parent, RoleNode child): This method adds an associa-
tion between a node in the foreign hierarchy (parent) to a node in the local hierarchy

(child).

e addNTAssociation(RoleNode parent, RoleNode child): This method adds a non-
transitive association between a node in the foreign hierarchy (parent) to a node in

the local hierarchy (child).

3.2.7 Association

This class maintains an association between two nodes. The parent is a RoleNode in

the foreign hierarchy, and the child is a RoleNode in the local hierarchy.

27

CHAPTER 4

IRBAC Server

The IRBAC Server is responsible for maintaining the role translations specified by
the Role Editor. The Role Editor communicates changes to the IRBAC Server. This
server can be queried for specific role translations, and can be deployed into a wide range

of access control systems with relative ease.

4.1 Architecture

The server architecture comprises of the IRBAC Server, the IRBAC Client and the

abstraction of a Realm.

4.1.1 IRBACServer

The IRBAC Server uses Java RMI for its communication. The IRBAC Server defines

a simple interface with the following methods:

28

e addRealm(File realmFile): The Role Editor can inform the IRBAC Server to add a
new realm for secure interoperability. For example, after the SO has specified the
role translations for a new foreign domain, the SO selects the Commit to server. ..
option in the Role Editor, which eventually calls this method on the server. The
server then loads the interoperability file for this realm and is now dynamically

configured to translate roles from the specified foreign domain (realm).

e getEntryPoints(String role): The server can be queried for the translations of any
role. Roles are formatted as role@domain, for example, Student@Quiuc.edu. The
server then looks up the realm indicated by the domain in the role string, and
then queries it for the entry points into the local hierarchy. The entry points
for a particular foreign role, F, is the set of entry roles reachable by F. Entry
Roles are roles in the local hierarchy that have incident transitive or non-transitive

associations.

e reloadLocal(): The IRBAC Server maintains only one datastructure for the local
hierarchy. All foreign associations with foreign hierarchies are maintained through
a single local hierarchy. When the local hierarchy is modified, the server must
regenerate all the associations with the foreign hierarchies. Hence, the Role Editor
informs the IRBAC Server of any changes to the local hierarchy by invoking this

method on the server

o isAncestorOf(String potentialAncestor, String role): This method checks whether

potentialAncestor is the ancestor of role within a certain hierarchy. This provides

29

the simple functionality for RBAC, so that applications can make access control

decisions based on the role hierarchy.

4.1.2 IRBACClient

This is a utility class that can be used by any class that needs to communicate with
the IRBAC Server. It handles the complications of connection setup with the RMI
Server. Hence it provides the programmer with simplicity, and is hence easily deployable
in access control systems.

The IRBAC Client essentially presents the same interface as the IRBAC Server.

4.1.3 Realm

The Realm class is an abstraction to make things simpler for the IRBACServer. The
Realm object is aware of the associations and translations for a particular realm. The
IRBAC Server maintains a hashtable of all the realms. When it needs to perform a role
translation for a particular realm, it looks up the realm in the hashtable and then queries
the realm for the role translation.

The Realm class contains the following methods:

e generate(RoleGraph localRoleGraph): This method generates the associations be-
tween the foreign hierarchy (stored within the Realm class) and the supplied Role-
Graph for the local hierarchy. This method is all called while regenerating the

associations when the local hierarchy has changed.

30

This class also defines getEntryPoints() and isAncestorOf(). The functionality is the

same as described in Section 4.1.1, and is called by the IRBAC Server.

31

CHAPTER 5

Interoperability in Active Networks

In this chapter we will introduce the concept of active networks and the motivation
for security. We will also discuss the need for an interoperability architecture and discuss
our implementation for the same. We refer the reader to [6] for a detailed discussion on

Seraphim, a dynamic security architecture for active networks.

5.1 Active networks

Active networks provides an infrastructure to applications for customizing their com-
munications. Applications can inject capsules into the network. These capsules are like
persistent objects in that they carry executable code and maintain state. Active routers
install and execute these capsules on the application data dynamically. This makes it
possible to deploy new protocols very quickly. Various other applications are also made
possible. For example, one can have shopping agents that are active pieces of code that

traverse the network and find the best available deal for a certain product.

32

However, securing this infrastructure against threats and exposures remains a major
challenge. Allowing executable code at the routers opens the possibility for viruses,
trojans and resource-hogs to name a few. Most of the research in this area has focussed

on

e preventing malicious behavior of arbitrary user code, and

e protecting the user code and data from malicious routers

5.2 Seraphim - Securing active networks

Seraphim is a dynamic security architecture for active networks. It was developed at
the University of Illinois by the Active Networking Group. We have made modifications
to this architecture to include secure interoperability. In addition to authentication and
encryption, Seraphim has provisions for Mandatory Access Control (MAC), Discretionary
Access Control (DAC), Double Discretionary Access Control (DDAC) and Role Based
Access Control (RBAC). Since our interoperability framework is based on RBAC, it works
only under the RBAC mode. In other modes, the username is designated as foreigner
and suitable access control decisions can be made in this case.

The Seraphim security architecture interacts with three distinct layers of an active
router’s software: the application, the Execution Environment (EE), and the NodeOS.
The NodeOS is similar to the kernel of an operating system and performs resource al-

location and management. The EE runs on a NodeOS and provides an interpreter, or

33

“sandbox” for active code and provides a means for accessing NodeOS resources. The
active network installs and executes the capsule code dynamically on remote routers.

The Seraphim architecture can be seen in Figure 5.1.

ANTS PLAN CANES
EE ©0® EE

EE
Management \ \ / EE

EE
NodeOS

Seraphim e Y

of o Security
R er_ence Proxy
Monitor

[
L) v

NodeOS
Resources

*

Figure 5.1 Secure Active Network Node

Seraphim is centered around the “reference monitor.” The reference monitor is an
extension to the NodeOS. Every node has a reference monitor through which all ac-
cesses to node resources occur. The Seraphim policy framework is implemented in the
reference monitor, which can be downloaded dynamically when required and is hence
reconfigurable.

All requests from within an EE are made through a Security Proxy, or a NodeOS
Proxy, which queries the reference monitor. If the reference monitor allows the request,
the call is passed down to the NodeOS; otherwise, a denial notification is sent back to
the EE.

Security for a capsule is maintained by using an active capability. These active capa-
bilities carry code for security policies and access control decisions. They can also verify

the authenticity and integrity of the capsule’s contents on a hop-to-hop basis. This also

34

means that the credentials can be cryptographically bound to the capsule by the active

capability. Active capabilities are explained in more detail in [6].

5.3 Making Seraphim Interoperable

Various additions were made to ANTS and Seraphim to include interoperability. In
the following subsections we describe how we added credentials to capsules and fitted our

interoperability policy server into Seraphim.

5.3.1 Interoperable Capsules

Instead of extending the current java classes for the Capsule, we chose to create an
Interoperable Capsule interface. This has the advantage of being compatible with any
kind of Capsule definition, since an interoperable capsule only needs to implement this
interface. If a capsule is an InteroperableCapule then our policy server will be used to
translate roles. However, if a capsule is not an InteroperableCapsule, the normal access
control decisions are made.

For a capsule to be interoperable it must implement the InteroperableCapsule inter-

face. This interface is defined as follows:

e public Signed]OPCredentials getOriginalCredentials(); By defining such a method,
the capsule can respond to queries for its original credentials. These credentials

correspond to the credentials of the principal in its originating domain.

35

e public void setLocalCredentials(SignedLocalCredentials localCredentials); When the
capsule enters a Node in a foreign domain, the NodeOS translates the original cre-

dentials into local credentials, and stores it within the capsule using this method.

o public SignedLocalCredentials getLocalCredentials(); When making access control

decisions, the capsule can be queried for its local credentials using this method.

5.3.2 SignedCredentials

This class is the superclass for Signed[OPCredentials (original credentials) and Signed-
LocalCredentials (local credentials). It holds a SignedObject which is created using the
credentials and the private key specified in the constructor. It has methods for verifying

the signature of the signed object, using a supplied public key.

5.3.3 Changes to NodeOS

When a capsule enters the NodeOS, the NodeOS first checks whether the capsule is an
InteroperableCapsule or not. If it is, then it retrieves the original credentials and verifies
the signature of the sending domain. After the original credentials have been verified,
the NodeOS then contacts the role server for the translated roles. These translated roles
are then included in the local credentials, which are then signed using the local domain’s
private key. These local credentials are then inserted into the capsule, which will later

be used in making access control decisions.

36

5.3.4 Changes to NodeOS Proxy

When routeForNode() is called on the NodeOS Proxy, the proxy checks to see whether
the request has been made by an InteroperableCapsule or not. If it is, then it retrieves
the local credentials, verifies the signature, and then sends the translated roles encoded

in the user string to the reference monitor.

5.3.5 Changes to the Reference Monitor

Once the reference monitor receives a routeForNode() request, it decodes the user
string sent from the NodeOS Proxy. If the current policy is RBAC, these roles are used
in making the access control decisions. If RBAC is not in effect, then the username

(foreigner for foreign capsules) is used.

5.4 Test application

The Ping Application was modified to use the InteroperableCapsule interface. Ping
capsules that entered different nodes were translated upon entry into the NodeOS, and
these translated roles were seen by the reference monitor in making its access control

decisions

37

CHAPTER 6

RELATED AND FUTURE WORK

Very little research has been done with respect to secure interoperability between
different domains. Campbell, et al. [5] discuss a security architecture for dynamic in-
teroperability in active networks. They propose an architecture that can be used to
“recursively install and support the secure deployment of new security mechanisms.” In
effect, they are dynamically able to install security policies on routers that may belong
to different domains. This is an interesting approach where they discuss dynamic fire-
walls that can be used to combat denial of service attacks. Their system also operates
under the RBAC model, among others, and hence our policy framework could be used
to enhance their security services.

Besides active networks, our policy server was also used in enhancing the Secure
InterORB Protocol (SECIOP) [2] in a Java based ORB called JacORB [4]. Secure con-
texts between client and target objects in different ORBs were established using our role

translation mechanism [1].

38

Our policy server interacts with the Role Editor and responds to role translation
requests. Future work could include a protocol to ensure inter-domain concurrency by
making the policy server interact with other policy servers. Currently, there is no mecha-
nism in place to propagate changes to the role hierarchy in one domain to other domains.
Our model can also be extended to use a risk model. We provide a framework for specify-
ing risk values for each role. In the future, these risk values could be used in conjunction
with dynamic role translation to make better role translation decisions.

Related to our work on role translation, we have developed a prototype model of
Administrative I-RBAC, or A-IRBAC [3]|. This extends the A-RBAC [10] model of ad-

ministrative hierarchies to include operations for assigning and revoking role translations.

39

CHAPTER 7

CONCLUSION

We have provided an efficient and dynamic method for role translation. This makes
secure interoperability more flexible than conventional interoperability models that use
a default or minimal translation. We believe that this model will be extremely useful in
mobile networking systems, where the secure interoperability between different domains
is essential.

We implemented a feature-rich application for specifying and editing role hierarchies
and role translations between foreign domains and the local domain. To demonstrate
our policy framework’s effectiveness, we modified the current Active Network infrastruc-
ture to use our interoperability modules. We plan on releasing these changes in the
next version of Seraphim, and hence our interoperability framework will reach a wider
community.

Lastly, a conference paper outlining our - RBAC 2000 model was published in the

International Conference on Internet Computing, 2000 [7].

40

[1]
2]

3]

[4]

[5]

[6]

[7]

8]
[9]

[10]

REFERENCES

Malakim Development Pages. URL: http://choices.cs.uiuc.edu/Security /malakim/.

SECIOP - Security Service Specification, December 1998. URL:
http://www.omg.org/docs/ptc/98-12-03.pdf.

Jalal Al-muhtadi, Apu Kapadia, Roy Campbell, and Dennis Mickunas. The A-
IRBAC 2000 Model: Administrative Interoperable Role-Based Access Control. Tech-
nical Report: UIUCDCS-R-2000-2163.

Gerald Brose. JacORB - a Java Object Request Broker. Technical Report B-97-02,
Freie Universitat Berlin, April 1997.

R. Campbell, Z. Liu, D. Mickunas, P. Naldurg, and S. Yi. Seraphim: Dynamic
interoperable security architecture for active networks. IEEE OPENARCH 2000,
Tel-Aviv, March 2000.

Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad Naldurg, and Seung
Yi. Seraphim: dynamic interoperable security architecture for active networks. In
OPENARCH 2000, Tel-Aviv, Israel, March 26-27, 2000.

Apu Kapadia, Jalal Al-muhtadi, Roy Campbell, and Dennis Mickunas. I-RBAC
2000: Secure Interoperability Using Dynamic Role Translation. In Proceedings 1st
International Conference on Internet Computing (1C°2000), April 2000.

G. Malkin. Internet Users’ Glossary - RFC 1983, network working group, August
1996.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role Based Access
Control Models. IEEE Computer, 29(2), February 1996.

Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 Model
for Role-Based Administration of Roles. In ACM Transactions on Information and
System Security, volume 2, page 105 to 135, Dec. 1999.

41

