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Abstract
Genome-wide association studies (GWAS) aim at discovering the
association between genetic variations, particularly single-nucleotide
polymorphism (SNP), and common diseases, which is well recog-
nized to be one of the most important and active areas in biomedical
research. Also renowned is the privacy implication of such stud-
ies, which has been brought into the limelight by the recent attack
proposed by Homer et al. Homer’s attack demonstrates that it is
possible to identify a GWAS participant from the allele frequencies
of a large number of SNPs. Such a threat, unfortunately, was found
in our research to be significantly understated. In this paper, we
show that individuals can actually be identified from even a rela-
tively small set of statistics, as those routinely published in GWAS
papers. We present two attacks. The first one extends Homer’s
attack with a much more powerful test statistic, based on the corre-
lations among different SNPs described by coefficient of determi-
nation (r2). This attack can determine the presence of an individual
from the statistics related to a couple of hundred SNPs. The second
attack can lead to complete disclosure of hundreds of participants’
SNPs, through analyzing the information derived from published
statistics. We also found that those attacks can succeed even when
the precisions of the statistics are low and part of data is missing.
We evaluated our attacks on the real human genomes and concluded
that such threats are completely realistic.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access

General Terms
Security

Keywords
Genome Wide Association Study, Single Nucleotide Polymorphism,
Test Statistics, Markov Model, Integer Programming

1. INTRODUCTION
The rapid advancement in genome technology has revolutionized

the field of human genetics by enabling the large-scale applications
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of genome-wide association study (GWAS) [7], a study that aims
at discovering the association between human genes and common
diseases. To this end, GWAS investigators determined the geno-
types of two groups of participants, people with a disease (cases)
and similar people without (controls) in an attempt to use statisti-
cal testing to identify genetic markers, typically single-nucleotide
polymorphisms (SNP), that are associated to disease susceptibility
genes [46]. If the variation of a SNP is found to be significantly
higher in the case group than that in the control group, it is re-
ported as a potential marker of the disease. Of great importance to
such a study is privacy of the participants, whose sensitive informa-
tion, personally identifiable genetic markers in particular, should
not be leaked out without explicit consent. So far, this has been
enforced through an informed consent from participants [9] and an
agreement from investigators to ensure proper use of data according
to the consent. Unfortunately, while this process prevents explicit
misuse of participants’ DNA data, it turns out to be insufficient for
deterring information leaks in a more implicit way. Particularly,
this paper reports a surprising finding of our research: even the test
statistics computed over a small set of SNPs, like those routinely
published in GWAS papers, could reveal a substantial amount of
genetic information about participants, and even lead to disclosure
of their identities.

The inadequacy of privacy protection in current genome research
has also been pointed out by other researchers. For example, Ma-
lin et al [45] show that even after removal of explicit identifiers
(e.g., name, social security number), an individual could still be
identified from a genetic database by examining the genetic mark-
ers related to her phenotypes (e.g., eye, skin and hair color). More
seriously, Homer et al [39, 60, 5] recently proposes a statistical
attack that could determine the presence of an individual in a group
(e.g. the cases) from the aggregateallele frequencies, i.e. frac-
tions of individual variants (calledallele) occurred at each SNP
site, of the whole group. Unlike the threats that have been exten-
sively studied in statistical disclosure control [52, 27], Homer’s at-
tack takes advantage of the rich background information related to
human genome available in the public domain, as well as the par-
ticular statistical properties of genomic data: it compares the vic-
tim’s SNP profile against the allele frequencies of two populations,
a “mixture” such as the case group in a GWAS and a reference
population that can be acquired from public sources such as the
International HapMap project [8]; given the profile of a sufficient
number of independent SNPs from the victim (at least 10,000), her
affiliation in the mixture can be determined with high confidence.
The impact of this finding is significant. As an example, the NIH
was reported to swiftly remove all aggregate data of GWAS, in-
cluding allele frequencies, from public websites [60, 5].

Homer’s attack made an important step towards better under-



Table 1: GWAS Terminologies used in this paper.
Terminologies Description

Polymorphism
The occurrence of two or more genetic forms (e.g. alleles of SNPs) among individuals in the same population
of a species.

Single Nucleotide Polymorphism(SNP)
The smallest possible polymorphism, which involves two types of nucleotides out of four (A, T, C, G) at a
single nucleotide site in the genome.

Allele
One of the two sets of DNAs in a human individual’s genome. In a population, most SNP sites have two
types of alleles. The one with higher frequency is defined as the major allele (denoted by 0), the other as a
minor allele (denoted by 1).

Genotype
The combination of two set of alleles. For a SNP site with two common alleles in human population, there
are three possible genotypes: two homozygotes, 00 and 11, and one heterozygote 01.

Locus(plural loci) The surrounding regions of a SNP site in the genome .

Haplotype
Haplotype, also referred to as SNP sequence, is the specific combination of alleles across multiple neighbor-
ing SNP sites in a locus. Each individual has two haplotypes inherited from the parents. At the population
level, some haplotypes are more common than others.

Linkage disequilibrium(LD) Non-random association of alleles among multiple neighboring SNP sites.

standing of the privacy risks involved in publishing personal or ag-
gregated genomic data. However, its impacts on GWAS remain un-
certain, as most data released by a GWAS are test statistics such as
p-values and r square (r2) instead of allele frequencies used in the
attack. Moreover, the attack needs a large amount of genome data,
including a highly-dense genomic profile (> 10, 000 independent
SNPs) from the victim and their corresponding allele frequencies
from a mixture, which can be hard to come by.

In this paper, we show that in the absence of proper protec-
tion, even a moderate disclosure of those test statistics, as did most
GWAS papers, could pose a privacy risk that cannot be ignored.
We present two attacks on these statistics. The first one could sta-
tistically identify an individual in the case group from a small set
of statistics, which in some cases are only related to a singlelocus,
the surrounding region in the genome where a disease susceptibility
SNP is discovered in a GWAS. Like Homer’s attack, our technique
also needs a reference population, which can be obtained from the
reports of the same study conducted over other populations, and a
SNP profile from the victim. Unlike the prior approach, however,
our attack utilizesr2, a measurement of the correlation between
SNPs (referred to as linkage disequilibrium (LD)), which is much
more powerful than allele frequencies of single SNPs. As a result,
the presence of an individual can be determined from the statistics
involving only a couple of hundred SNPs at some locus. The sec-
ond attack utilizes integer programming to analyze the pair-wise
correlations of SNPs (measured byr2 or D’), which in some cases
could recover hundreds of participants’ SNPs. We also describe
a technique that reverse engineers the statistics (e.g.,p-values,r2

and D’) to calculate pair-wise allele frequencies, a necessary step
in both of the attacks.

We believe that our paper makes the following contributions:
•Novel identification attacks on GWAS statistics. We developed
novel techniques to recover personally identifiable information from
the test statistics published by GWAS papers. These techniques are
powerful, capable of restoring hundreds of SNPs and identifying
an individual using a much smaller number of SNPs than the prior
attack [39]. This suggests that privacy threats in genome research
are much more realistic than we thought.
•Study of countermeasures. Our research shows that a simple coun-
termeasure like publishing only coarse-grained statistics might not
work well, as the relations among various statistics can still give
away a sufficient amount of information for restoring fine-grained
data. The strength of such a “correlation” attack demands a well-
thought-out response that is built upon analysis of the connections
among these statistics.
•Implementation and evaluations. We implemented the proposed
attacks and evaluated them on real human genome data.

The attack technologies we present in this paper, though power-
ful, are not without limitations. Specifically, our current approaches
are not designed to directly work ongenotype, the genetic constitu-
tion of individuals, but onhaplotype, the SNP sequences derived
from genotype. These two concepts are elaborated in Table 1,
together with other genomic terminologies necessary for under-
standing this paper. With the maturity of genotype phasing tech-
niques [57, 55, 19, 14, 25, 28], genome research today is increas-
ingly based upon haplotypes, which offer more accurate descrip-
tions of LD and therefore are more useful to the research. How-
ever, many previous GWAS studies use genotypes, which are more
difficult to analyze. The feasibility of attacks on genotypes is left
to our future research.

The rest of the paper has been organized as follows: Section 2
introduces the background knowledge; Section 3 elaborates the at-
tacks; Section 4 reports evaluation results; Section 5 discusses the
limitations of our techniques and possible defense; Section 6 sur-
veys the related research and Section 7 concludes the paper.

2. BACKGROUNDS

2.1 GWAS: Steps and Test Statistics
A GWAS takes multiple steps to unravel the association between

genetic variation and a common disease. Researchers first genotype
participants from the case and control groups to extract a set of SNP
profiles on selected sites. Usually two alleles can be found at each
SNP site, referred to as the major and the minor alleles, denoted by
0 and 1. After proper quality control, the allele frequencies of these
SNPs (i.e. the frequencies of 1 or 0) are computed over the case
and control respectively. These frequencies are then used as inputs
to an association test.

Association tests are used to detect the SNPs significantly asso-
ciated to the cases (thus potentially to the disease) under the study.
Examples of the tests include Pearson’s chi square (χ2) [50], logis-
tic regression [13], Fisher’s exact test [33] or Crochnan-Armitage’s
test for trends [15]. These tests are performed over the allele fre-
quencies of the case and control groups, and their outcomes are
used to calculate ap-value for each SNP. The SNPs with suffi-
ciently smallp-values, for example, below10−7, are selected as pu-
tative markers. Note that SNP-disease associations (thep-values)
can be evaluated not only at the single SNP genotype level, but
also at the level of haplotype (allele combinations involving multi-
ple SNPs), which was shown a stronger statistical power than the
genotype-based tests. To achieve this, a class of algorithms called
the phasing algorithms [2] will be first applied to infer the most
likely haplotypes of the individuals (two haplotypes for each indi-
vidual) in the case and control group from their genotypes.



Table 2: GWAS Statistics. HereCpq represents the count of an
allelepq (p, q ∈ {0, 1}).

2× 2 contingency table for
Disease - SNP association study

of two SNPs
Disease

SNP Control Case

0 (Other allele) C00 C01

1 (Risk allele) C10 C11

2× 2 contingency table for the
linkage disequilibrium analysis

of two SNPs
SNP 1 SNP 2

Alleles 0 1 Sum

0 C00 C01 C0∗
1 C10 C11 C1∗
Sum C∗0 C∗1

Formula for related measures of association and LD
Statistics Formula Asymptotic distribution

log odds ratios log
C00C11
C01C10

Gaussian

r2 (C00C11−C01C10)2

C0∗C1∗C∗0C∗1 Chi-square

D′ C00C11−C01C10
Dmax

-

Once putative markers have been detected, the study often moves
on to map their associations with other SNPs in the same loci,
which is referred to aslinkage disequilibrium(LD) [51]. This typi-
cally involves measurement of pair-wise allele frequencies (the fre-
quencies of specific two-SNP allele combinations), and calculating
statistics such as sensitivity indices (D’) or coefficients of corre-
lation (r2) over the frequencies. These statistics can help identify
other SNPs also related to the disease.

One last step of GWAS is to replicate the study on other case
and control groups to verify whether the association between the
SNP markers and the disease, as identified in prior steps, can also
be observed from those populations.

Table 2 lists the formula for calculating aforementioned test statis-
tics. These statistics are routinely published in GWAS papers [29,
54, 53, 57, 40]. Typically,p-values of tens or sometimes hundreds
of SNPs have been reported. Thousands ofr2 or D’ that reflect
the LD among these SNPs are often illustrated in figures, and can
be acquired from authors without any restrictions. Sometimes, de-
tailed accounts of replication studies are also made public, which
discloses multiple populations with identical allele-frequency dis-
tributions, and can therefore be used in Homer’s attack and our
attack elaborated in the follow-up sections.

2.2 Homer’s Attack
A statistical attack recently proposed by Homer, et al [39] is be-

lieved to threaten the privacy assurance in current GWAS. Follow-
ing we describe this attack on phased genotypes, i.e., haplotypes or
SNP sequences.

In Homer’s attack, the attacker is assumed to already have a high-
density SNP profile of the victim, which can be extracted from a
small amount of blood sample. This assumption is realistic, as the
cost of genotyping is becoming increasingly affordable [4]. What
the attacker wants to determine is the presence of an individual in
the case group, an indicative of her contraction of a disease. To
this end, the attacker measures the distances between the allele
frequency of every SNPj on the profile,Yj ∈ {0, 1}, and the
corresponding frequencies in a referencePopj , and a mixtureMj

respectively. These distances are used to compute the following
statistic:

D(Yj) = |Yj − Popj | − |Yj −Mj | (1)

Assuming that the distributions of individual SNPs’ allele fre-
quencies in the mixture and the reference population are identical,
D(Yj) will have the same distributions across all independent SNP
j. As a result, their sum, according to the central limit theorem, will
converge to a normal distribution. The mean of the distribution is
zero if the victim is not in the case group, and positive otherwise.

Using statistical hypothesis testing, the authors found that 25,000
SNPs of a member in a mixture built from the HapMap offered a
p-value below10−6, given the null hypothesis that she does not
belong to the mixture.

3. OUR ATTACKS

3.1 From Statistics to Allele Frequencies

Figure 1: Recover allele frequencies.

A SNP contains a major allele, denoted by 0, and a minor al-
lele, 1. Their individual frequencies and the allele frequencies of
SNP pairs (00, 01, 10, and 11) contain a large amount of informa-
tion. The former is the main ingredient of Homer’s attack, and both
are needed in our attacks, as elaborated in Section 3.2 and 3.3. A
GWAS typically reports the allele frequencies for the SNPs iden-
tified as putative genetic markers for a disease. For other SNPs,
however, only theirp-values and LD statistics,r2 or D’, are pub-
lished. Therefore, the first problem that an attacker needs to solve
is how to recover the frequencies from these statistics.

This step is by no means trivial. For example, though the map-
ping between ap-value and the outcome of an association test is
typically one-on-one, there could be multiple frequencies that cor-
respond to that outcome. For example, using Pearson’s chi square,
a p-value of 0.01 was found to associated with 80 possible SNP
frequencies in a population studied in our research. The problem
is further complicated by the fact that published statistics typically
have low precisions, which makes determination of their input fre-
quencies even more difficult.

On the other hand, the statistics published by a GWAS are of-
ten connected: for example, thep-values of individual SNPs are
bridged by ther2 between them. This relation can be leveraged to
reveal their allele frequencies, as elaborate below.

Inference of single SNP allele frequencies. We found that the
allele frequencies of single SNPs can be restored by “propagating”
a genetic marker’s frequencies to other SNPs through their linkage
disequilibrium, often described byr2 or D’. Loosely speaking, such
a correlation tells us how likely one SNP of an individual can be
used to infer some of her other SNPs. Ther2 between two SNPs,
as illustrated in Table 2, can also be calculated as follows:

r2 =
(C00N − C∗0C0∗)2

C0∗C1∗C∗0C∗1
(2)

whereN is the size of the population,C00 is the counts of the pairs
of the SNPs’ major alleles,C0∗ andC1∗ are the counts of the first
SNP’s major and minor alleles respectively, andC∗0 andC∗1 are
the allele counts of the second SNP. In the case that the first SNP is
actually a marker, whose counts (C0∗ andC1∗) are known,C∗0 and
C∗1, which are interdependent, can be determined by ther2 once
C00 is known. Actually,C00 also relates toC∗0, C0∗ andN . Using
these relations as constraints, we can find solutions forC∗0 andC∗1
through constraint solving [1]. This can be done efficiently, as the
searching space here is bounded byN2.

It is possible, however, that those constraints are satisfied by
more than one solution. To make the solution unique, we need to



find more constraints. An immediate one is thep-value of the sec-
ond SNP, which is computed over the SNP’s allele counts in both
case and control populations. Other constraints come from the rela-
tions among SNPs, as illustrated in Figure 1. Consider three SNPs,
S1, S2 andS3, whereS1 is a marker. Besides the aforementioned
constraints that exist in pairs(S1, S2) and(S1, S3), r2 for (S2, S3)
can also be leveraged. Similarly, more constraints can be found by
looking into the correlations among more SNPs. This approach was
demonstrated to be very effective in our research: it completely re-
covered single SNP frequencies from the statistics with only mod-
erate precisions (r2 rounded to 2 decimal places, given a population
of 200 individuals). Though we discuss our technique here using
r2, the same approach can also be applied to D’.

Recovery of pair-wise frequencies. From the allele frequencies of
individual SNPs, pair-wise frequencies can be directly calculated.
Specifically, solving Equation 2 withr2, C0∗, C1∗, C∗0 andC∗1
gives usC00. Note that there are actually two solutions forC00

in Equation 2, for positive and negativer respectively. However,
typically only one of them is an integer, the legitimate value for
C00. The counts of other pair-wise alleles,C01, C10 andC11, are
found from the following linear equations:

C0∗ = C00 + C01 (3)

C1∗ = C10 + C11

C∗0 = C00 + C10

C∗1 = C01 + C11

Inaccurate statistics. A practical hurdle for our attacks is that the
published statistics are often of low-precision. This can be han-
dled by changing Equation 2 to an inequality, givingr2 a range of
acceptable values. Specifically, we use the following constraint to
find single-SNP allele counts:

L <
(C00N − C∗0C0∗)2

C0∗C1∗C∗0C∗1
< U (4)

whereL andU are the lower and upper limits ofr2 respectively.

Signs. An important piece of information for our statistical attack
(Section 3.2) issign, which is determined by the equalityC00C11 >
C01C10: it is positive if the inequality holds, and negative oth-
erwise. It is conceivable that signs are much easier to recover
than allele frequencies, which can actually be used to compute
the signs. In our research, we first ran our constraint solver on
C00C11 > C01C10, together with other constraints for inferring
frequencies, and then onC00C11 < C01C10. The sign is recov-
ered if no solution is found in one of these two cases.

3.2 A Statistical Attack
We follow the strategy proposed by Homer et al. to design our

statistical attack. The goal of our attack is to determine the like-
lihood of a victim to be in a case group of a GWAS study based
on one given SNP sequence of a victim. To achieve this goal, we
first establish areferencegroup (Figure 2), consisting of the SNP
sequences from a group of individuals, drawn from a reference pop-
ulation with the same genetic background as the case group. The
International HapMap project [8] provides a large source of sam-
ples for this exercise, containing individuals from various ethnic
groups, including Nigeria (Yoruba), Japan/China and US residents
with ancestry from Northern and Western Europe. In Section 4.2,
we will show that the statistical power of our attack relies on the
selection of the reference group. However, even when the refer-
ence group does not completely mimic the genetic background of
the case group, the attack still works, although with a lower power.

Once the reference group is established, we propose a hypothesis

test on the SNP sequence of the victim to determine her presence
in the case group. A high confidence estimated by this test indi-
cates that the victim’s SNP sequence is significantly closer to the
reported LD structure (measured by the pair-wiser2 values) than
any other sequence in the reference group, and it is unique enough
for identifying the victim. Below we describe this test statistic in
details.

Test statistic. GivenN sequences ofM neighboring SNPs in the
genome, we define thesignedallele correlationsrij between two
SNPsi andj (1 ≤ i < j ≤ M ) asrij = C11C00−C01C10√

C1∗C0∗C∗1C∗0
, where

Cpq is the pair-wise allele counts, i.e. the number of haplotypes
with allelep (p ∈ {0, 1}) at SNPi and alleleq (q ∈ {0, 1}) at SNP
j, andCp∗ = Cp0 + Cp1 andC∗q = C0q + C1q.

The signed allele correlations can be computed solely from a set
of given SNP sequences, and thus can be easily computed from
the reference group (denoted asrR, Figure 2). On the other hand,
although the signed allele correlations of the case individuals (de-
noted asrC ) usually are not reported in GWAS papers (r2 is pub-
lished instead), they can be derived from the reported data, i.e.,
r2 with signs recovered from constraint solving (Section 3.1). To
test on the SNP sequence of the victim,H = h1h2...hm (where
hi ∈ {0, 1} is an allele of SNPi), we use an “indicator” of the al-
lele of a SNP pairij, Y pq

ij , wherepq is an allele pair (p, q ∈ {0, 1})
of the SNP pair. Specifically, ifhi = p andhj = q, Y pq

ij = 1;
otherwise,Y pq

ij = 0. Note that for a specific SNP pair, only one
Y pq = 1 and the other threeY pq = 0 among four possible allele
pairs (11, 10, 01 and 00). Now we are ready to define the hypothe-
sis test statistic,Tr as,

Tr =
P

1≤i<j≤N Tij

=
P

1≤i<j≤N (|(Y 00
ij + Y 11

ij )− (rR
ij + 1)/2|

−|(Y 00
ij + Y 11

ij )− (rC
ij + 1)/2|)

=
P

1≤i<j≤N (rC
ij − rR

ij) · (Y 00
ij + Y 11

ij − Y 01
ij − Y 10

ij )
(5)

The statistic is designed to make the test of an individual’s pres-
ence in the case groupvalid. Intuitively, this means that the contri-
bution of a case participant’s SNP sequence toTr needs bepositive
so as to statistically distinguish her relation with the case from that
with the reference she is not in. Formally, based on the null hypoth-
esis that the to-be-tested sequence (of the victim) is not within the
case group, we haveE(Tr) = 0; however, if the sequence is indeed
in the case, the expected contribution of this instance to a specific
signed allele correlationrC

ij , i.e.,
∂Tij

∂Chihj
, is non-negative for any

pair of SNPsi andj and any pair of alleles 11, 10, 01 or 00 (see
Appendix 1 for a proof). Therefore, the sum statistic ofTr is valid.
Note that because the signed allele correlationr ranges from−1 to
1, for the validity of the test statistic, we use(r + 1)/2 to map it to
a value between0 and1. In the Appendix, we also prove thatTr is
close to an optimal test statistic assumingr approximately follows
a normal distribution. Notably, though the test statistic proposed
here has a similar form as the one proposed by Homer et al. [39],
it sums over

�
m
2

�
variables (i.e. signed allele correlations) instead

of m independent SNPs, and hence, as we show in Section 4.2, it
results in a much more powerful attack.

Markov model estimation. However, since the signed allele cor-
relations (rij) are not completely independent, we cannot assume
the distribution ofTr under the null hypothesis is normal. With
the limited size of available reference population from the HapMap
project, we resorted to the Markov chain modeling and sampling
techniques to simulate the data for estimating the confidence of our
statistical attack. Markov models [36, 43, 47] have been used ex-
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Figure 2: A schematic illustration of a statistical attack on the
reported r2 values between pairs of SNPs. Assume the attacker
has obtained the haplotype of a victim and his goal is to deter-
mine how likely this victim is within a case group in a GWAS
study. To achieve this goal, the attacker will compute a test
statistics (Tr) that measures the distance between two set of
signedallele correlations, rC derived from the reported (r2)
values computed from the haplotypes of the individuals in the
case group (left panel), andrR computed directly from hap-
lotypes of the reference group (right panel). Tr has the same
property as the test statisticTp proposed by Homer et al.: it
is significantly larger when the victim is within the case group
than otherwise. Using an empirically deduced distribution of
Tr given the null hypothesis that the victim is not in the case
group, the attacker can then estimate the confidence level of
identifying the victim.

tensively in modeling SNP sequences. In our research, we con-
structed an inhomogeneous 1st order Markov model by a maxi-
mum likelihood approach from a limited number of haplotypes ob-
tained from HapMap website (as the training dataset). The model
parameters, including one set of initial probabilities andm− 1 set
of transition probabilities, can be directly estimated based on the
counts for single SNPs and the neighboring SNP pairs in the train-
ing dataset. Once the Markov model is built, it can be used to draw
unlimited number of haplotypes with a similar genetic background
as the ones in the training dataset. In each simulation, at least 1000
case and reference groups (each with 50-1000 haplotypes) are sam-
pled, and the test statisticsTr is computed for each of these paired
case/reference groups. Using this technology, we studied how the
power of the test statistics is affected by various GWAS aspects
such as the SNP sequence of the victim, the case group size, the
resemblance between the reference and case group, the precision
of reportedr2 and missing values ofr2.

Reference population. A practical attack needs a reference popu-
lation that preferably resembles the case group in the distribution of
r. Such a population can come from various sources, for example,
replication studies on different populations, or reuse of the case
data for a new study. Among these, of a particular interest is the
possibility that one could actually acquire the genomes of the ref-
erence population through signing an agreement. Though privacy

agreements legally bind researchers against revealing the genomic
data under study, it does nothing to stop an attacker using the col-
lected data as a reference population to compromise the privacy of
individuals involved in other datasets, for which she has no obli-
gation. Actually, in Section 4.2, we demonstrate that even a bad
reference, with anr distribution deviated from the case group, can
allow us to identify some individuals with high confidence.

Encoding nuclotides. A problem an attacker has to tackle is how
to translate the victim’s nucleotides (A, T, C, G) into alleles (0 or
1). These alleles are determined from the population studied in a
GWAS: for the two nucleotide values a SNP can take, the popular
one is encoded as 0, and the other as 1. The attacker, who does
not have direct access to the population, needs to figure out how
to encode the victim’s nucleotides before launching the attack. A
solution is to utilize the HapMap to identify major alleles, which is
often very effective, as observed in our research.

3.3 An Integer-Programming Attack
Given pair-wise allele frequencies for a whole locus that involves

tens of or even a couple of hundred SNPs, the idea of recovering
individuals’ SNPs becomes really enticing. We believe that this can
actually be done with proper techniques. In this section, we report
such an attack based upon integer programming.

Illustrated in Figure 3 is the sequences ofN individuals, each
containingM SNPs. These SNPs form anN by M matrix, below
which are their LDs. Our attack attempts to recover the whole or
part of the matrix from the LDs that are in the form of pair-wise al-
lele frequencies. To this end, we designed a “divide-and-conquer”
approach described below.
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... …   …   …
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Figure 3: Recover individuals’ SNPs
Human DNA information is passed from one generation to an-

other in a way that recombinations occur much more frequently be-
tween two SNP blocks, calledhaplotype block, than within a block.
As a result, a haplotype block typically contains only a small num-
ber of combinations (i.e., haplotypes) of SNP values. To leverage
this property, our attack partitions a SNP sequence into blocks ac-
cording to their LDs, to ensure that the SNPs on the same block
have strong connections. Then, integer programming is utilized
to find out the haplotypes within individual blocks that satisfy the
constraints of pair-wise frequencies and single-SNP frequencies.
Finally, haplotypes in different blocks are connected based upon
the LDs between these blocks.

Recovering individual blocks. GWAS participants’ SNP sequences
within a block are actually described by the counts of different hap-
lotypes. Therefore, the first stage of our attack focuses on determin-



Figure 4: Recover individual blocks

ing those counts. Let[x0 · · ·x2l−1] be a vector of integer variables
that represent the counts of individual haplotypes, wherel is the
number of the SNPs on a block. Note that individual SNP can only
have two values, and thus2l is the total number of different haplo-
types in the block. To find a solution for the vector, our approach
takes the following three steps:
• Step 1: We first build a system of linear equations upon the equal-
ity constraints derived from pair-wise allele counts and the number
of the participants. Figure 4 describes an example that works on
a 3-SNP block. The block can have total 8 possible haplotypes
whose counts are denoted by~X = [x0 · · ·x7]. Given 12 pair-wise
frequencies (each pair can take 4 alleles), we can build 12 linear
equations: the first equation represents the count of the allele “00”
for the first two SNPs, the second is the count of “01” for the same
SNP pair, and other pair-wise counts are described by the remain-
ing equations. Such a system is then solved using Gaussian elimi-
nation, and its solution set can be represented in a parametric form
that includes a set of free variables. In the example, the solutions
are described by~X = ~ax7 + ~b, where~a and~b are two constant
vectors as illustrated in Figure 4, andx7 is a free variable.
•Step 2: The ranges of the free variables are determined by integer
programming. We first add in inequality constraints that require all
the solutions to be non-negative. Then, for every free variable, a
pair of integer programming problems are solved to minimize and
maximize its value under the constraints. This gives us the accept-
able range of the variable. Figure 4 displays the inequality con-
straints for the example, under whichmin x7 andmax x7 reveal
that the variable can take 0 or 1.
•Step 3: In the presence of multiple free variables, we need to ex-
haustively search their value ranges to find a combination that sat-
isfies all the constraints. This is an exponential problem. However,
its scale can be controlled by adjusting block size. Every combina-
tion found is fed into the parametric solution of the linear equation
system, which gives us the haplotype counts we are looking for.
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Figure 5: Connect two blocks through overlapping.

Connecting different blocks. After restoring haplotypes for indi-
vidual blocks, we move on to link different blocks together based
on the LDs between them. The SNPs in different blocks typically
have weak correlations. However, the aggregate connections from

individual SNP pairs can be strong between two large blocks. We
took a strategy in our research that first merges blocks with strong
LDs into a large block, and then bridges it to other blocks. To con-
nect two blocks, we again use a vector of variables to represent the
counts for individual combinations of the haplotypes from different
blocks. For example, consider two 3-SNP blocks, each with two
haplotypes: (“001” and “011”) for one and (“100” and “110”) for
the other; our approach generates 4 variables to represent the counts
for (“001” “100”), (“001” “110”), (“011” “100”) and (“011” “110”)
respectively. In general, two blocks withm andn different haplo-
types respectively bring inmn variables. The solutions for those
variables are computed through integer programming, as does the
step for recovering individual blocks.

A problem arises when the number of haplotypes in each block is
large, which makes the number of variables even larger. As a result,
the time integer programming takes to find a solution can increase
exponentially. In our research, we adopted a simple technique to
mitigate this problem. For the part of a SNP sequence where LDs
are weak, our approach cuts blocks in a way that allows two blocks
to share a set of SNPs. Those SNPs let us look at the common
part of the haplotypes from different blocks, and as a result, help
reduce the number of variables. Consider two blocks,A andB,
with an overlap that includesk haplotypes. For each haplotypei
(1 ≤ i ≤ k), suppose that it is attached tomi different haplotypes
in A andni in B. This gives us at most

P
k mini different ways to

connect the haplotypes from different blocks. Figure 5 presents an
example in which two blocks with 3 and 2 haplotypes respectively
have an overlap involving 2 haplotypes (“0” and “1”). We only
need 3 variables to describe all possible haplotype combinations
between these blocks, instead of 6.

Identification of an individual . Once we obtain a solution (a set
of SNP sequences), we could compute the corresponding test statis-
tic Tr (based on ther values for the case, and a reference sample
available) and estimate the identification confidence of each of the
sequences. If one sequence receives a smallp-value, it is probably a
correct solution, and the individual with the sequence (known to us
now) is probably in the case group; on the other hand if a sequence
receives a largep-value, the sequence could either be wrong or not
unique enough to determine a person. Actually, a sequence with a
high identification confidence can reveal a lot of information about
its owner. For example, if it happens to contain the SNPs related
to observable phenotypes, Malin’s attack [45] could be applied to
identify the individual associated with the sequence, even if the at-
tacker does not have the victim’s DNA profilea priori.

3.4 Simple Defense
Low-precision statistics. As described in Section 3.1, our ap-
proach recovers allele frequencies by propagating genetic markers’



frequencies to other SNPs through their LDs. The markers’ fre-
quencies are among the most important outcomes of a GWAS and
therefore have to be released. What the defender can do here is to
downgrade the precisions of LD statistics. This, unfortunately, is
often insufficient for blocking the information that can be used to
recover allele frequencies. The fundamental problem here is that
all the statistics,p-values of individuals SNP andr2 for SNP pairs,
are correlated. Such correlations, together with the marker’s fre-
quencies and the size of a case group, can make up for the informa-
tion loss caused by coarse-grained statistics. Consider the example
in Figure 1: the LD between SNPs(S1, S2), affects the relation
between(S2, S3), given the constraints of the total number of par-
ticipants; the LDs of(S1, S2) and(S2, S3) further constrain that
of (S1, S3). Our approach leverages such relations and therefore is
very robust to inaccurate statistics. An experimental study reported
in Section 4 shows that givenr2 rounded to 2 decimal places (only
1 decimal place forr), we still restored more than 50% of pair-wise
allele frequencies and all the signs.

On the other hand, the attacks we propose do not rely on fine-
grained statistics. Our statistical attack only needsr rounded to 1
decimal place to establish one’s presence in the case (Section 4.2).
The integer-programming attack can still work in the absence of
some frequency constraints, though this can result in multiple so-
lutions. These properties of our attacks were evaluated through an
experimental study, which is reported in Section 4.

Thresholds. Publishing less data can certainly make it more dif-
ficult for an attacker to infer sensitive information. However, it
equally renders GWA papers less informative. An obvious solu-
tion is to use a threshold to remove the data deemed insignificant
to the research. The question is how to set such a threshold. For
example, in Figure 3, all ther2 values below 0.01 are dropped.
However, we can still figure out haplotype frequencies for individ-
ual haplotype blocks using ther2 within blocks, and connect dif-
ferent blocks together by running a maximum likelihood estimator
over the remaining LDs between blocks. Moreover, if the remain-
ing data contains sufficient information for recovering signs, our
statistical attack still works.

We believe that a one-size-fits-all threshold does not work for
GWAS. Techniques need to be developed to assess the outcomes of
individual research to compute a customized threshold that enables
dissemination of the findings of a study without compromising the
privacy of its participants.

Noises. Adding carefully-designed noises to genome data can im-
pede our analysis. Particularly, one can append individual pair-wise
SNP counts with decimal components, which removes the integer
constraint we use to uniquely identifyC00 from the two solutions
of Equation 2 (Section 3.1). However, this can still be insufficient
to defeat our attack. Again, the constraints imposed by the relations
among multiple SNP pairs can still enable us to pinpoint the counts
closest to satisfying the constraints. Biocomputing tools such as
R [10] use maximum likelihood methods to compute pair-wise al-
lele frequencies directly from genotypes. As a result, these fre-
quencies are inconsistent with each other, and with population size
andp-values, which mitigates the threat of our attack. However,
these frequencies are inaccurate and therefore much less useful to
genome research than those computed from haplotypes.

4. EVALUATIONS
This section reports an experimental study of the techniques we

propose. Like the prior work [39], our study was based upon
real haplotypes from the HapMap project [41] (http://www.
hapmap.org/ ). More specifically, we used SNP sequences at

Table 3: Infer Frequencies and Signs
Statistics Precision Recovered Information %

r2 p-value single SNP frequency pair-wise frequency sign of r

0.1 0.1 12.1 1.8 6.7

0.1 0.00001 40.6 11.7 31.7

0.01 * 100 50.1 98.7

0.001 * 100 90.4 100

0.0001 * 100 95.1 100

FGFR2 locus (around SNP rs1219648) in the HapMap phase 3 re-
lease 2, which covers 200kb region from SNP rs12354864 (human
reference genome b36 location 123189345) to SNP rs7900009 (hu-
man reference genome b36 location 123450068). The locus was
chosen because it was recently reported in a GWAS paper [40] to
be associated with the risk of sporadic postmenopausal breast can-
cer, and the linkage disequilibrium plot usingr2 for the 174 SNPs
in the locus is directly available in the paper (as did routinely in
most GWAS articles), which makes it a proper target of our at-
tack. Note the real haplotypes used in our evaluation arenot from
the individuals involved in that GWAS [40], but instead from the
HapMap database, due to privacy concerns.

In our experiment, we randomly chose a population of 200 with
Africa backgrounds, half as cases and other half as controls. As-
sociation statistics of the population were first computed, including
pair-wiser2 of the case group andp-values of individual SNPs esti-
mated from Pearson’s chi-square. Our attacks were evaluated over
these statistics, together with the knowledge of the sizes of the case
and control groups and the allele frequencies of a SNP treated as
a genetic marker (SNP rs1219648). Such information is typically
reported in a GWAS paper and its supplementary materials, or can
be conveniently acquired from authors of the paper. Following we
describe this evaluation study.

4.1 Inferring Allele Frequencies and Signs
The first step of our attack was to infer the allele frequencies

for both individual SNPs and SNP pairs from the statistics. Our
approach started with the marker and propagated its frequencies
to other SNPs through theirr2. During this process, a constraint
solver (cream [1]) was used to search for the unique solutions for
single and pair-wise allele counts within the population under the
constraints posed by ther2, thep-values and the population sizes,
as described in Section 3.1. The solver also recovered the signs
of r, if they could be uniquely determined. In our experiment,
we evaluated this approach against the statistics with various preci-
sions. The outcomes are illustrated in Table 3.

The experiment demonstrates the prowess of our technique. Given
an r2 rounded to 2 decimal places, which amounts to 1 decimal
place forr, we successfully recovered all the single-SNP frequen-
cies, half of pair-wise frequencies and almost all the signs forr,
regardless of the precisions ofp-values. 95% of pair-wise frequen-
cies were identified when the precision ofr2 reached 4 decimal
places. An interesting observation is thatp-values could make up
for the loss of precision inr2: anr2 of 1 decimal place, once paired
with a p-value of 5 decimal places, could be used to restore more
than 30% of signs. On the other hand, GWAS papers typically
offer p-values rounded to 4 to 5 decimal places (often in the sup-
plementary materials [53, 49, 59, 37]), andr2 even to 8 decimal
places [40]. This is more than enough for our attack.

4.2 Identifying Individuals
Evaluation of the power of Tr based on simulations. Based on
reference groups drawn from the first order inhomogeneous Markov
chain (see section 3.2), we estimated the power of our statistical
attack. If not mentioned otherwise, the simulation model is built
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Figure 6: Comparison of estimated probability density func-
tions of the test statistic on pairwiser values (Tr, left) vs. the
test statistic based on single SNP frequencies (Tp, right). The
probability density is estimated based on 1000 rounds of simu-
lations with 1 fixed victim, 200 cases and 200 references.

from the FGFR2 loci with 230 SNP sequences of the YRI popula-
tion (Yoruba in Ibadan, Nigeria) from the HapMap database. We
compared our attack with the one proposed by Homer et al. [39],
and found that the statistical attack based onTr is much more pow-
erful than the attack on single SNP profiles, which uses the statistic
Tp =

P
j D(Yj), whereD(Yj) is defined in equation 1 (see Fig-

ure 6). LetH0 be the null hypothesis (the victim is not in the case
group), and letHA be the alternative hypothesis (the victim is in
the case group). Note that the power of the statistic is higher if the
overlapping portion of the two distributions (underH0 andHA, re-
spectively) is smaller (Figure 6). We estimated the distribution of
H0 by sampling the victim and the cases independently, and the
distribution ofHA by including the victim’s SNP sequence into the
sampled case group. For 200 sequences of 174 SNPs at the FGFR2
locus in each of the case and control groups,Tr can identify80%
individuals in the case group at fixed type I error of 0.05 (or95%
confidence), whileTp can only identify around9%. Note that the
lower bound of the power for any statistic equals type I error (5%);
thus we can pessimistically estimate thatTr correctly identified at
least75% of case individuals whileTp only worked out4%, indi-
cating thatTr is about 19 times more powerful. ForTp to reach
a similar power, we found that around 30 times more SNPs were
required (i.e. 5000 SNPs).

Using the simulation based on the Markov model, we found that
Tr approximately follows a normal distribution (Figure 6), and the
standard deviationof the distribution under the null hypothesis is
nearly constant with respect to various SNP sequence of the victim
and various ethnic group the cases belong to, as long as the sam-
ple size and number of SNPs are fixed. This implies that we may
not need to re-deduce the null distribution for every test. In a set
of simulations with 100 SNPs, 200 cases and 200 references, we
found that the power of our attack varied from30% to 80% (with
average62% and standard error11%) depending on the SNP se-
quences of the cases. When we looked into the ethnic group of
the cases, we found that the power for cases from Africa (popula-
tion YRI, Yoruba in Ibadan, Nigeria) was higher than those from
central Europe or east Asia (data not shown), indicating that some
individuals (from some ethnic groups) are easier to be identified
than others, presumably because they carried more sensitive SNPs
than the others. Finally, we examined the power of the attack on
cases with various sizes, ranging from 50 to 1600 (table 4), which
revealed that even when the case was very large (e.g. 1600, larger
than typical GWAS studies), there were still a significant proportion
(18.1%) of cases who could be identified confidently.

We evaluated our attack against thelow precisionapproach (only
providing low precision values forr in the GWAS paper) and the
thresholddefense (removingr values below the threshold). We
found the performance of the statistical test was very robust to both
countermeasures. At a very strong defense level, e.g. threshold0.1
for |r| , or the precision level of 1 decimal place, majority of the

Table 4: Dependence of the statistical power of theTr on sam-
ple size based on the simulation on the FGFR2 locus.N is the
number of SNP sequences in the case groups (the same as the
number in the reference group).

N 50 100 200 400 800 1600
power (%) 99.9 85.7 67.2 40.4 36.2 18.1

Table 5: Percentage of statistical power (at 0.05 Type I er-
ror) left at various precision of input data rC . The power
is estimated based on 1000 rounds of simulated attacks. The
number of cases and controls are both 200. The individual
SNP sequences were randomly drawn from the inhomogeneous
Markov Chain built on 230 SNP sequences of the FGFR2 locus
from the HapMap phase 3 YRI (Africa) population.

Precision ofrC 0.5 0.2 0.1 0.01 0.001
% powerπ left 12 74 85 100 100

statistical power (79% and 85% respectively) was retained. The
results are shown in Table 5.

The power of realistic attacks. The simulations described above
can generate a large set of SNP sequences, which enabled us to
systematically analyze the power of our statistical attack. A fur-
ther step is to evaluate the performance of our attack under a re-
alistic setting. Three types of attacks were experimented in our
research (Figure 7). In each of them, three groups (C - case group,
R - reference group, and T - test group) of real SNP sequences of
FGFR2 locus were retrieved from different populations in HapMap
database (see section 3.2 for details); then, for each SNP sequence
H from Case, Reference, andTest, Tr was computed usingH
and ther values fromCase andReference (see figure 2). Note
that the individuals in the test group were completely independent
from the case and the reference, and therefore the mean of theirTr

was zero. In the first two attacks,Case andReference individ-
uals were taken from a same population (YRI, Yoruba in Ibadan,
Nigeria, or JPT+CHB, Japanese in Tokyo, Japan, and Han Chinese
in Beijing, China). This mimics the situation where we have a good
reference sample that resembles the case group very well. In the
third experiments,Case (from YRI) andReference (from ASW
- African ancestry in Southwest USA) were taken from a different
but related population. This mimics the situation where we do not
have a good reference sample, but have to use anaveragereference
available from a public data source. For each experiment, with the
case and reference SNP sequences fixed,Tr was computed for each
SNP sequence in the case, reference, and the test groups.

The results from these realistic attacks are promising. For the
two experiments with good references, many individuals in the case
group received higherTr values than those from other groups (Fig-
ure 7A), suggesting that many SNP sequences in the case group can
indeed be identified with relatively high confidence, withp-values
from 0.01 to10−5 (Figure 7C). While for the situation where an
average reference was used, there was a drop of the discrimination
power (Figure 7B vs. Figure 7A right), however there was still a
significant amount of power left, making the attack still possible.
Note that in many GWAS studies, data for more than one loci are
provided, which makes the attack even more powerful.

To estimate the confidence (p-values) for each victim, we only
need to estimated the variance ofTr under the null hypothesis.
One approach is to build a Markov chain from the reference sample
(which is known to the attacker), and then estimate the variance by
the simulation experiment (see 3.2 for details). A second approach
is to estimate the variance directly fromTr values obtained from in-
dividuals of the test sample. We found in our research that the sec-
ond approach gave relatively more a conservative estimate, whereas
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Figure 7: Evaluation of the power of the statistical attack. (A) Realistic attacks using good references. SNP sequences retrieved
from Hapmap database are used as cases (Case, red dots), references(Ref, greendots) as well as the tests (Test,blue dots andTest1,
black dots). Individuals in Ref/Test/Test1are marked if they have 100% (*) or > 95% (x) identity with some individuals in Cases.
In the left plot, Case/Ref/TestSNP sequences are taken fromYRI (Yoruba in Ibadan, Nigeria), while Test1haplotypes are from a
different population JPT+CHB(Japanese in Tokyo, Japan, and Han Chinese in Beijing, China). In the right plot,Case/Ref/Testare
from JPT+CHB, with Test1from YRI. (B). Realistic attacks using average references. Legend should be interpreted the same as
in A except that there is noTest1. Here cases are taken fromyri population, whereas references are taken from a different (but
related) population ASW (African ancestry in Southwest USA) (C). Estimatedp-values for the attack shown in the right plot of A.
The variance under the null distribution were estimated byTr values from the groups ofTestand Test1.

the first approach offered an over-optimistic estimation that might
lead to a lot of false positives. Figure 7C gives an example of es-
timatedp-values for the attack with a good reference. One inter-
esting observation is that, many non-case individuals could also
receive relatively smallp-values, especially when they were not
completely independent from some case individuals (Figure 7C).
This is expected, as essentially, our statistical attack is to test the
(genetic) independence of the victim from the case individuals.

4.3 Recovering SNPs
We implemented the Integer-Programming attack using Matlab,

based upon two toolboxes,rref [6] for solving systems of linear
equations, andbintprog [3] for integer programming. This imple-
mentation was run on our dataset to recover the SNP sequences for
all 100 individuals from their pair-wise allele frequencies. In the
attack, we partitioned the sequences into small blocks according to
the LDs of the locus, as demonstrated by ther2. Block size varied
around 10 SNPs. Haplotypes within individual blocks were first
restored through solving linear-equation systems and integer pro-
gramming, and then connected together using overlapping blocks
in accordance to the LDs, as described in Section 3.3. This attack
was run on a system with 2.80GHz Core 2 Duo processor and 3GB
memory. Within 12 hours, we successfully restored the 174 SNPs
for all 100 participants. This demonstrates that the threat of the
integer programming attack is realistic.

5. DISCUSSION
A GWAS can either analyze individuals’ genotypes or phase

them into haplotypes before the analysis happens. Attack on geno-
types is more challenging, as we can no longer use the integer con-
straint and consistent LDs to recover pair-wise allele frequencies.
Nevertheless, some of the techniques we propose, particularly the
way to estimate single allele frequencies and the statistic attack,
can still work. Further study of such an attack is left to our future
research. On the other hand, the maturity of phasing technologies
makes the use of haplotypes, which carries more information, in-
creasingly a trend [57, 55, 19, 14, 25, 28]. This makes our attack a
realistic threat.

The attacks we propose could be defeated by well-planned coun-
termeasures. A potential approach can be adding noise to published
dataset. This, however, needs to be done carefully, because the
noise can undermine the scientific values of a paper, making others
hard to repeat the experiments reported by a GWAS. One technique
we can use is to adjust some of the published LDs to the extent that
the signs ofr are just changed. This requires a careful selection
of a set of SNP pairs, whose LDs are not significantly affected by

switch of signs. Examples of the SNPs are those with very close
C00C11 and C01C10. Also important here is the assurance that
other unperturbed LDs do not give an attacker sufficient statistical
powers to identify an individual. Another approach is to selectively
remove some data. For example, dropping some LD statistics can
interrupt the path for propagating markers’ frequencies, and as a
result, makes allele frequencies more difficult to recover. Funda-
mentally, effective defense against our attacks can be achieved by
enforcing differential privacy: that is, the presence of an individual
in the case group changes nothing but negligible statistical features
of the group. This will be investigated in our follow-up research.

6. RELATED WORK
The problem of releasing aggregate data in privacy-preserving

ways has been intensively studied in the areas like privacy-preserving
data analysis [30, 34], statistical disclosure control [18, 20, 32], in-
ference control [24], privacy-preserving data mining [11, 12], and
private data analysis [31, 48].

Privacy problems in GWAS, however, are related to special struc-
tures of genome data (linkage disequilibrium) and background in-
formation (reference populations), which have not been studied in
prior research. Recently, research has been conducted on privacy-
preserving genome computing [16, 42, 22]. Those approaches are
more to do with preventing a party from accessing sensitive data,
than protecting sensitive information from being inferred from the
outcome of a computation. A recently proposed concept highly re-
lated to our attacks isdifferential privacy[30]. Loosely speaking,
the concept ensures that removing or adding an individual’s record
to a database does not substantially changes the statistics calculated
from the database. So far, this has been achieved through adding
noise [17, 31, 20]. Such an approach, if carefully designed, could
mitigate the threat of the attacks we propose.

Recovering individuals’ SNP sequences is essentially the prob-
lem of contingency table release, which has been studied in statis-
tics community for decades [21, 38, 23, 58, 26] in the context of
census. Consider an individual’s record in a database as a row,
which consists ofk binary attributes. A contingency table is a vec-
tor that describes, for each combination ofk attributes (called aset-
ting), the counts of the rows satisfying this setting. Typically, only
the counts (calledmarginals) of different settings are published, in-
stead of the table. What an attacker wants to do is to infer the table
from the marginals.

In our integer programming attack, individual SNP frequencies
and pair-wise frequencies are actually such marginals. However,
existing techniques [58] cannot be directly applied to recover SNPs
from them, because of the scale of our problem: up to our knowl-



edge, prior research can only handle as many as 16 attributes [26],
while our attack needs to work on 174 attributes. This was achieved
in our research by taking advantage of special properties of ge-
nomic data. Our “divide-and-conquer” approach made full use
of the correlations among different SNPs, which can be observed
from publishedr2. More specifically, we first partitioned a SNP
sequence into small blocks according to their LDs, which signifi-
cantly increases the chance for restoring these blocks because the
LDs within the same blocks are strong; then, individual blocks were
connected using their aggregate correlations. The techniques de-
signed for this purpose, solving linear equations and use of over-
lapping blocks in particular, are novel, up to our knowledge.

Few researcher has looked into the privacy risks in GWAS [44,
35]. The most relevant work other than Homer et al. is the as-
sociation study based on thepooledgenotypes, i.e. the aggregate
genotype profiles of a group of cases and controls (rather than for
each individual of them) were used in the SNP marker discovery,
e.g by Yang et.al. [56]. These approaches, though adopting a sim-
ilar experimental setting, aim to address a distinct problem as our
approach, that is, to retrieve SNPs (or SNP sequences) significantly
associated with the disease, which tend to be the common genetic
features of the disease population rather than the features specific
to the individuals in the case group, and hence cannot be used for
identification of individuals.

7. CONCLUSION
GWAS is among the most active research areas in biomedical re-

search. It is also the area fraught with privacy concerns. The recent
work by Homer et al. [39] demonstrates that personal identification
is plausible by analyzing a large number of allele frequencies re-
lated to GWAS. The privacy threat of this kind has been found in
our research to be even more realistic than expected. In this paper,
we report two new techniques that can lead to identification of the
participants of a GWAS from a small set of statistics, as those rou-
tinely published in GWAS papers. One of the techniques can sta-
tistically determine the presence of an individual in the case group,
based upon the LDs among as few as a couple of hundred SNPs.
The other attack can even recover all participants’ SNP sequences
related to the statistics. We also show that these attacks work on
coarse-grained statistics. Our experimental study further justifies
the concerns of such threats, which were shown to be capable of
cracking statistics computed from real genome data.

A further step in this important direction is study of potential
attack techniques that work on genotypes. On the defense side,
we believe that research in statistical disclosure control, differential
privacy in particular, can offer an effective guideline to mitigate and
ultimately eliminate the privacy threat to GWAS.
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APPENDIX
1. Proof of the validity of Tr

Given the definition of the signed allele correlationr,

rC
ij =

C11C00 − C01C10√
C1∗C0∗C∗1C∗0

(6)

we have

∂Tij

∂C00
=

∂rC · Y 00

∂C00
(7)

=
C11 · [1− 1

2
· (1− C10C01

C11C00
) · ( C00

C0∗
+ C00

C∗0
)]

√
C1∗C0∗C∗1C∗0

≥ 0

for any pair of SNPsi andj. Similarly, we can get
∂Tij

∂C11
,

∂Tij

∂C10
and

∂Tij

∂C01
are also non-negative for any pair of SNPsi andj.

2. Proof of the optimality of the Tr statistics
Givenr = {r̂ij |i, j} and assuming the signed allele correlations follow

the normal distribution, the optimal statistic forH0: victim is in Case vs.
HA: victim is not in Case isTr = Σi,j{2µ0(r̂C

ij−rC
ij)+

1
n
{[r̂C

ij−(µ0+

rC
ij)]

2 − [µ2
0 +

(1−(rC
ij)2)2

n−1
]}} by applying the Neyman-Pearson lemma,

whereµ0 ≈ ∂rC
ij

∂C00
Y00 +

∂rC
ij

∂C01
Y01 +

∂rC
ij

∂C10
Y10 +

∂rC
ij

∂C11
Y11 , n is the

number of individual in the case group,rC
ij is the theoretical signed allele

correlations, and̂rC
ij is the estimated signed allele correlations measure.

By ommiting the second terms in the formula, which is1/n times smaller

than the first term, and replacing
∂rC

ij

∂C∗∗ by their signs (the real values need
pair-wise frequencies to compute, which are unknown here), we haveTr =

2Σi,j [(Y00 + Y11 − Y01 − Y10) · (r̂C
ij − rC

ij)]. In practice, we estimate

r̂C
ij by using a reference group, i.e.r̂R

ij .


