Chapter 29

Revised: The Relationship of 4D
Rotations to Quaternions

29.1 What Happened in Three Dimensions

In three dimensions, there were many ways to deduce the quadratic mapping from quaternions to
the 3 x 3 rotation matrix belonging to the group SO(3) and implementing a rotation on ordinary
3D frames. The one most directly derived from the quaternion algebra conjugates “pure” quaternion
three-vectors v; = (0, V;) and pulls out the elements of the rotation matrix in the following way:

We easily find that the quadratic relationship between R3(q) and ¢ = (qo, q1, g2, ¢3) is

B+a—a6—a 2049 — 29003 24143 + 2q0q2
Rs=| 2q1¢2+20005 @& —G+d5—aq 2¢2g3 — 2q0q1 | - (29.1)
24193 — 2qoq2 2¢2q3 + 2901 @} — @ — @ + 43

29.2 Quaternions and Four Dimensions

In the 4D case, which we should really regard as the more fundamental one because it includes the
3D transformation as a special case, we can find the induced SO(4) matrix by extending quaternion
multiplication to act on full four-vector quaternions v, = (vg, V), and not just three-vectors (“pure”
quaternions) v = (0, V) in the following way:

3

-1
E Ryv, =pxv,xq .
v=0

2 CHAPTER 29. REVISED: THE RELATIONSHIP OF 4D ROTATIONS TO QUATERNIONS

QQTo4DRot [p_List, g _List]
Module[{p0 = p[[1]], pl pll2]], p2
q0 = gl[[1]], 9l = gl[2]], Q2

{{p0xg0 + plxgl + p2+9g2 + pP3*93,

[
Q
w
Q
w
[
Q
=

pOxgl - pl*xg0 - p2xg3 + p3xg2,
p0*xg2 - p2xq0 + pl*g3 - p3xql,
p0*xg3 - p3xg0 - pl*xg2 + p2xql},
{-pOxgl + plxg0 - p2%g3 + p3xq2,
p0xg0 + plxgl - p2+xg2 - p3*93,
-p0*g3 - p3*xg0 + plxg2 + p2*9gl,
p0*g2 + p2xq0 + plxg3 + p3xql},
{-p0*q2 + p2xq0 + plxg3 - p3xql,
p0*g3 + p3*g0 + plxg2 + p2xgl,
pO0xg0 - plxgl + p2+xg2 - p3x93,
-p0*gl - plxg0 + p2+xg3 + pP3*qg2},
{-p0*g3 + p3xq0 - plxg2 + p2xql,
-p0*g2 - p2xg0 + plxg3 + p3*gl,
pOxgl + plxq0 + p2+g3 + p3xq2,
p0xg0 - plxgl - p2+xg2 + pP3*g3}} 1]

Table 29.1: | Mathematica code for the 4 x 4 orthogonal rotation matrix in terms of a double quaternion.

Working out the algebra, we find that the 3D rotation matrix Ry is just the degenerate p = g case of
the following 4D rotation matrix:

DPoqo + P1q1 + P2q2 + P3gs Poq1 — P19o — P293 + D3q2
R, = | P +P19o — P2g3 +P3g2 Pogo + P1q1 — P2g2 — P3qs3

—Pog2 + P2go +P1g3 —P3q1 Pogs + P3qo + P19z + p2a

—Pog3 + P3go — P192 +P2q1 —Pog2 — P2qo + P1G3 + P3q1

DPogq2 — P2qo + P193 — P3q1 Pogq3 — P3qo — P1q2 + P24q1

—Pog3 — P3go +P1g2 +p2q1 Pog2 + P2go + D193 + P31 . (29.2)
DPoqo — P1G1 +DP2g2 —P3q3 —Pog1 — P1go + P2g3 + P3q2

Poq1 + P1qo + P2g3 + P3q2 Poqo — P11 — P2g2 + D343

One may check that Equation 29.1 is just the lower right-hand corner of the degenerate p = ¢ case
of Equation 29.2. An implementation of Equation 29.2 is presented in Table 29.1.

29.2. QUATERNIONS AND FOUR DIMENSIONS 3

We may take this form and plug in
po = cos(¢/2), p=rhsin(¢/2)

to get a new form of the 4D orthogonal rotation matrix parameterized in terms of two separate
three-sphere coordinates:

R, = [Ay A Ay, Ay, (29.3)

where

O, +C_ +1-a(C. - Cy)
—myC +mozCy +my S +my Sy
—mzC— +mz Cp +my S— +my S,
|—mC +m,Cy +miS_ +m3 Sy

Ay =

N | =

—mysC +myyCh —mi S— —my Sy

C+ +C_ + (m1n1 — MaoNy — mgng)(C’_ — C+)
miCo —mLCy +my S_ +mi S, ’
m$HC- —md;Cy —my S— —m3 Sy

DO | =

—mg O +my Cp —my S —my Sy
miC_ —mLCy —mg S_ —mi Sy
C+ +C_ + (—m1n1 + mong — m3n3)(C, — C+) ’
mgzC_ —m3zCy +my S_ +my Sy

Ay =

DN =

—mppCo +mpCy —my S_ —my S,
p - L maC— —md;C +my S +m3 Sy
ST 2 mizC_ —m3,Cy —miS_ —m S,

C+ + C + (7m1n1 — MaNo + mg’ﬂg)(c_ - O+)_

Here, C+ = cos %(¢ +6), Sy =sin %(qﬁ +0), mii = (m; £ n;), and miij = (myn; £ mjn;).

Shoemake-style interpolation between two distinct 4D frames is now achieved by applying
the desired SLERP-based interpolation method independently to a set of coordinates p(¢) on one
three-sphere, and to a separate set of coordinates ¢(t) on another. The resulting matrix Ry(t)
gives geodesic interpolations for simple SLERPs, and smooth interpolations based on infinitesimal
geodesic components when the spline methods of Chapter 25 are used in tandem on both quaternions
of the pair at the same time.

Controls: A three-degree-of-freedom controller can in fact be used to generalize the two-degree-
of-freedom rolling-ball controller [66] from 3D to 4D orientation control [34,72] . This 4D orienta-
tion control technique can be used with a 3D tracker or 3D haptic probe to carry out interactive view
control or to specify keyframes for 4D double-quaternion interpolations. As pointed out by Shoe-
make [151] , the Arcball controller can also be adapted with complete faithfulness of spirit to the 4D
case, in that one can pick two points in a three-sphere to specify an initial 4D frame and then pick
two more points in the three-sphere to define the current 4D frame. Note that Equation 29.2 gives
the complete 4D rotation formula. Alternatively, one can replace the 4D rolling ball or virtual sphere
controls described at the beginning by a pair (or more) of 3D controllers as noted by Hanson [66].

