
A Framework for Assisted Exploration with Collaboration

Eric A. Wernert Andrew J. Hanson�

Computer Science Department
Indiana University

Bloomington, IN 47405 USA

Figure 1: Assisted collaborative exploration scenario with the leader’s guide avatar being a dog, and two groups of following col-
laborators. Observe that the guide avatar points to objects of interest even if they are not aligned with the direction of locomotion
or the observer’s ground plane, and that the local leader serves as the guide avatar for all attached followers.

Abstract

We approach the problem of exploring a virtual space by exploiting
positional and camera-model constraints on navigation to provide
extra assistance that focuses the user’s explorational wanderings
on the task objectives. Our specific design incorporates not only
task-based constraints on the viewer’s location, gaze, and viewing
parameters, but also a personal “guide” that serves two important
functions: keeping the user oriented in the navigation space, and
“pointing” to interesting subject areas as they are approached. The
guide’s cues may be ignored by continuing in motion, but if the user
stops, the gaze shifts automatically toward whatever the guide was
interested in. This design has the serendipitous feature that it au-
tomatically incorporates a nested collaborative paradigm simply by
allowing any given viewer to be seen as the “guide” of one or more
viewers following behind; the leading automated guide (we tend to
select a guide dog for this avatar) can remind the leading live hu-
man guide of interesting sites to point out, while each real human
collaborator down the chain has some choices about whether to fol-
low the local leader’s hints. We have chosen VRML as our initial
development medium primarily because of its portability, and we
have implemented a variety of natural modes for leading and col-

�Email: fewernert, hansong@cs.indiana.edu

laborating, including ways for collaborators to attach to and detach
from a particular leader.

Keywords: wayfinding, locomotion, navigation, exploration, col-
laboration, virtual reality, VRML

1 Introduction

Getting around a virtual environment or data set while keeping track
of one’s whereabouts and task objectives is the subject of a num-
ber of techniques often referred to by such names as wayfinding,
locomotion, and navigation. We advocate a family of approaches
involving the incorporation of task-based constraints on the navi-
gation parameters such as viewer position and orientation; this ap-
proach enables the environment designer to provide extra assistance
to keep the user’s explorational wanderings and attention focused
on the task objectives [10, 11].

The critical feature of such constraints is the enablement of be-
haviors that are not possible with simple “movie-like” animations
along one-dimensional parameter paths, and which are more goal-
directed than free motion. For desktop systems, “fishtank” virtual
reality displays, and fully immersive display environments, we sup-
ply at least two degrees of freedom corresponding to mouse move-

ments or horizontal controller movements, plus a variety of options
for controlling the gaze direction of the user’s navigation frame.
The same general theoretical structure naturally includes other lay-
ers of interpolatable state variables such as points of interest, spot-
lights, fog, “gravitational” attraction to critical positions, and vari-
able controller sensitivity.

We address a number of issues relevant to collaboration, which
has the dual goals of facilitating information and viewpoint shar-
ing while promoting individual exploration and the development of
conceptual models. For example, by forcing collaborating avatars
to adhere to the constraint manifold while following one of several
rules for attaching oneself to a leader, we avoid some frequent prob-
lems such as losing your tour group or crashing through the scenery
while trying to catch up with the leader.

Previous work in this area ranges widely in its objectives.
Methods that intelligently focus on particular scene points include
Mackinlay et al. [15], while Phillips et al. [20] construct constraint-
based camera placement, and more general control systems are
treated by Ware and Osborne [27] and Drucker et al. [6]. Robinett
and Holloway [22] employ constraints in view selection, while ex-
pert knowledge is utilized by Billinghurst and Savage [1]; wayfind-
ing strategies in general are analyzed in Darken and Sibert [5],
while viewpoint control and locomotion in immersive environments
have been studied by Bowman, et al., [2, 3]. Other work by Ware
and Fleet [26] focuses on the nature of “flying” modes of naviga-
tion, and Pierce et al. [21] observe the manner in which image plane
interaction can be exploited for getting around the scene. An ex-
haustive analysis of usability characteristics, including navigation
methods, has been undertaken in a report by Gabbard and Hix [8].

Very recent work includes, for example, user studies showing the
advantage of a hierarchy of usability methods in virtual reality by
Hix, et al. [14], who conclude that “navigation. . . in a virtual world
. . . profoundly affects all other user tasks.” They also compare ex-
ocentric viewing to egocentric viewing, and perform experiments
on the tradeoffs between providing user control of many degrees
of freedom versus less control but more convenience. The results
support the general philosophy of our system designs, which em-
phasize situations where constraints enabling convenience and effi-
ciency seem to outweigh the freedom of detailed control, although
experts may choose to alternate between full freedom and assisted
modes.

The behavior of groups of collaborators and the nature of lead-
ership in shared virtual environments were studied by Steed et
al. [25, 24], who found that, if only one collaborator was immersed,
that person tended to lead, and that a sense of being in the same
place aided collaborative performance. Related issues such as the
effects of network bandwidth on collaborative tasks in virtual re-
ality are treated, e.g., in Park and Kenyon [19], while Wartell, et
al. [28] have dealt with the challenging problem of integrating nav-
igation tasks with a large range of scales.

2 Concepts

The critical issues addressed here include the following:

� Using constraints to implement assisted exploration.One
way to view constrained navigation is as a generalization of
a conventional animation. An MPEG file, QuickTime movie,
or videotape has the property that each camera position in the
animation has a unique precedent and a unique antecedent, so
the exploration of the environment is characterized by a 1D
constraint manifold parameterized, say, byt, with a viewpoint
x(t) and camera model preselected at each parameter value
t. By playing the animation backward and forward at vari-
ous speeds, one explores the space of viewpoints preordained
by the director of the animation, but has no feeling of free

motion or ego-determined control. We assert that by adding
one or more degrees of freedom to the animation concept, the
feeling of ego-determined control returns even though the de-
signer — the director of the generalized animation — can in
fact continue to impose substantial control so the viewer is
invisibly assisted in exploring the space according to the de-
signer’s choices. Constrained navigation implements the de-
signer’s conception of what a viewer is supposed to see and
learn while giving the exploration a feeling of freedom and
self-discovery.

� Benefits of Constraints.When the viewer is given complete
navigational freedom, he or she becomes in effect the direc-
tor of a film with no script. Without constrained navigation,
the best a designer can do is to make the important objects
stand out and prevent the viewer from running into things; but
even this simple assistance can be very expensive to imple-
ment with traditional methods. The application of constraints
to assisted exploration, in contrast, can do away with such
headaches as collision detection and the associated expense
entirely simply by restricting the guide manifold to unoccu-
pied subsets of the domain. The viewer is provided with a
self-guided script, and need not worry about getting into or
mistakenly focusing on unimportant scene areas.

� Locomotion merged with assisted focus on interest points.
We explore methods for single users to traverse a constrained
space with two principal modes of gaze control. The case
most like a standard animation has the viewer’s gaze prede-
termined at each position, so the viewer controls the position
in parameter space but not the direction of viewing. One vari-
ation permits a family of prestored gaze directions that may
depend on the direction of motion. To provide an additional
sense of control while preserving context, we also can pre-
store the heads-up direction only, and use the remaining free-
dom to choose the direction of viewing to be the direction of
motion, as though driving a vehicle over a terrain that deter-
mines heads-up. We then supply a separate indicator (typi-
cally provided by an automated guide avatar) that points to-
wards the object of interest at each point (or the selected di-
rection out of a family of directions keyed to the motion direc-
tion); if this hint interests the user, the user can stop moving
and the gaze will be turned toward the interest point. With ad-
ditional controller degrees of freedom, one can pivot the gaze
at will while continuing to travel in a different direction, like
looking out the side window of a car.

� Gaze interpolation and sense of orientation.There are a
variety of choices to make when the user stops moving, and
when the user resumes motion. First, the gaze can be con-
strained to the plane perpendicular to the heads-up direction
and rotated in the general direction of the interest point, but
typically not looking directly at it. A second choice is to in-
terpolate the gaze from the current traveling direction to the
actual interest point, wherever it may be; this has some ad-
vantages for off-track points, but can be more disorienting.
Finally, when motion resumes, we can either swingback to
the remembered prior vehicle orientation,or we can force the
vehicle to start moving in the direction of the current gaze
(which is towards the current interest point).

� Guide avatars as navigational assistants.Our experience
is that individual navigators require additional help from an
automated assistant to help point out where they should be
looking. A simple model for this is walking a dog; the user
holding the leash in principle chooses the route, where to turn,
what roads to cross, but the dog may be continually pointing

its nose in various directions and tugging away at the leash
“suggesting” alternative choices. While the user has absolute
control of which sidewalk networks to traverse (i.e., the free-
dom permitted in the guide manifold), the dog’s more sen-
sitive perceptions can lead to explorations in directions the
leash-holder would not have thought to go. It is thus up to the
designer of this multiple-degree-of-freedom movie to suggest
task-effective exploration directions and provide them to the
automated guide.

� Collaborative tools for assisted exploration.Collaboration
modes occur almost automatically as extensions of the single-
user assisted exploration modalities. Just as the guide avatar
provided by the designer of the prestored environment tugs at
the single user, any single user can have several followers for
which he or she serves the same purpose, focusing their at-
tention by turning towards significant environmental features.
This directly facilitates the goal of collaboration, i.e., the shar-
ing of information and experiences. Additional richness de-
rives from the fact that each person has the objective of help-
ing the other collaborators achieve new understandings, and
exactly who is teaching whom may be ambiguous and may
change rapidly in a true collaboration. Thus we look at ways
in which collaborators can have some freedom to wander with
varying looseness of the tether to the leader, making it possi-
ble to break away from the main group and rejoin at the touch
of a button, and facilitate exchange of leadership roles.

� The VRML environment as a portable implementation.
The original prototype of the system described here was im-
plemented on the desktop in Iris Explorer and Inventor, and
then ported for further testing to the CAVETM [4] immer-
sive environment using Performer. The main advantage of
these environments is high performance at the cost of porta-
bility and ease of exposure to a larger base of users for
feedback. As new projects arose with additional needs for
portability, user-modifiability of the data models, and long-
distance multi-collaborator sharing of visualization experi-
ences, it became apparent that a more portable implementa-
tion was needed. The obvious choice of a relatively portable
and user-modifiable 3D graphics environment was VRML as
supported by a number of plugins for Web browsers [13].
A wealth of publicly available models and avatars become
available for free, and the system is potentially available for
a wider variety of future projects and users. Since VRML
worlds can also be displayed in the CAVE using tools such
as Open WorldsTM [18] andcave6u [16], we can also utilize
our system to some extent in immersive display environments.
More significantly, VRML browsers can also run on almost
any recent PC in addition to high-end SGI workstations that
have been the traditional domain for such work.

There are fundamentally two choices to make in the design
decision to use VRML: whether to add private enhancements
via VRMLScript , a close cousin ofJavaScript , which
is slow and somewhat awkward but widely supported, or via
Java and the EAI (External Authoring Interface [7]). It turns
out that Java and EAI are essential for any activities that must
communicate among different machines fluidly for remote
collaboration; however, if only a single user is involved in
a given visualization,vrmlscript ’s simple data exchange
interface makes it relatively easy to use and extends its porta-
bility.

One elegant feature of the VRML implementation is that the
array of viewing parameters and the guide manifold them-
selves may, with some labor in the scripting language, be
initially stored and even viewed as vanilla VRML objects.

��
��
��
��

��
��
��
��
�
�
�
�

��
��
��
��

��
��
��
��

ΦGuide Field Range:

Position (u,v); Velocity (u,v)

Map Function: G(u,v; u,v)

Controller Space Domain:

Figure 2: The constrained navigation approach to assisted exploration
involves tandem interpolations among sampled parameter sets associ-
ated with each point of the controller space.

Then one has the option of inspecting the designer’s navi-
gation space before enabling it as a constraint system for its
associated scene. Constraint manifolds and arrays of view pa-
rameters simply become VRML files that are loaded with the
scene, but that have a special meaning for the navigation con-
trollers implemented in Java and/orvrmlscript .

3 Constraints and Assisted Exploration

In previous work, we described the general framework of con-
strained navigation [10] in the context of an arbitrarily complex
space of scene-viewing parameters attached to each point of a nav-
igation manifold spanned by the motions of a chosen controller, as
shown schematically in Figure 2. Typically, we map a controller
space of dimension two or greater,(u; v; : : :) and its optional ve-
locity information(_u; _v; : : :), into a sampled set of viewing param-
eters denoted by the mapG(u; v; : : : ; _u; _v; : : :) from the domain
of the control device to the full space� of parameters.

G : (u; v; : : : ; _u; _v; : : :) 7! � : (1)

The objects in the range� include such things as

1. Viewer position on guide manifold: the point in the universe
where the virtual owner of the device appears to be standing.

2. Viewer gaze orientation: where the virtual user is actually
looking.

3. Task-driven suggestion for gaze orientation: where the virtual
user should be looking to perform well on the task at hand.
This can be either a direction or a specific point of interest in
the environment.

4. Viewing parameters: focal length (wide angle, telephoto
lens), depth of field, and binocular convergence.

5. Viewing properties: fog, light attenuation, etc.

6. Control modifiers: mouse response, importance weighting,
gravity attraction, etc.

7. Visualization application parameters: streamline characteris-
tics, particle source location, pseudo-color assignments, etc.

(a) (b)

Figure 3: (a) Each point of the guide manifold permits one single viewing choice, interpolated among the sampled values selected by the
designer. (b) A compass rose of view parameters is preselected at each sample point of the guide manifold to allow a viewpoint keyed to
the user’s direction of motion.

4 Fundamental Methods.

4.1 Single user locomotion/navigation.

We begin our presentation of the implementation methods of the
current system with the single-user navigation paradigms that we
have found most useful. Experience with assisted navigation proce-
dures has led us to work with two fundamental frameworks:Fixed
GazeandMotion-Weighted Gaze.

Fixed Gaze. There are two subclasses of fixed gaze. The first,
illustrated in Figure 3(a), permits the user no freedom; wherever the
controller is positioned, the viewing parameters are given uniquely
by multidimensional interpolation of the sampled values supplied
with the guide manifold. Wherever one moves, the gaze direction
is predetermined, even if it points in the opposite direction to the
viewer’s motion. This mode is well suited to applications such as
molecular inspection that require the gaze to be continually read-
justed to face towards a complex, often nonconvex, object. The
second, illustrated in Figure 3(b), is somewhat more clever: by stor-
ing a compass rose of fixed directions at each sample point, we can
use the user’s velocity vector to select from an interpolated family
of appropriate directions. Instead of having the view parameters
fixed by the position alone, the parameters are determined uniquely
by the position and velocity(u; v; : : : ; _u; _v; : : :) taken together.

Motion-Weighted Gaze. In motion-weighted mode, the user is
imagined to be traveling in a sort of automobile or golf cart, or per-
haps pulled by a sled dog. The heads-up direction of the viewing
frame is fixed at sample points of the guide manifold by the de-
signer, but the horizontal direction is undetermined. On the desk-
top, the user’s gaze follows the direction of motion as long as the
velocity is above threshold, though the guide avatar (which we like
to choose as a guide dog) may look in the designer-stored direc-
tions of interest as they pass. In an immersive display environment,
the navigation frame follows the same behavior, though of course
the viewer can look off to the side if desired. When the user slows
down, the gaze direction shifts to look at the interest point. Two
modes are provided when motion resumes: either the original ve-
locity is remembered and the gaze and motion shift back to the pre-
vious values, or the interest-point gaze direction becomes the new
direction of initial motion and the old parameters are discarded.
One other option that we have used is to alter the predetermined
heads-up direction temporarily when the user is stopped, and rotate
the entire frame, including the heads-up direction, in the plane of
the interest direction and the heads-up direction, so the point of in-
terest is centered in the field of view; the predetermined heads-up
is recovered when motion resumes.

Navigation Formulas. The basic features of the navigation en-
vironment include several variables. First, we have at each point
(u; v) of the guide manifold a prior point(u� du; v � dv), so the
velocity direction is the difference(_u = du; _v = dv). The corre-
sponding pointx(u; v) in physical space thus has an instantaneous
velocity

V(u; v) = _x(u; v) � x(u; v)� x(u� du; v � dv) : (2)

Other environment variables at each navigation parameter include
an interpolated, fixed, heads-up directionĥ(u; v), and a gaze point
p(u; v) or a gaze direction̂q(u; v); typically,q(u; v) = p(u; v)�
x(u; v) and we use the unit normal directionq̂ = q=kqk.

At each point in the journey, the velocity may be computed ap-
proximately from neighboring differences as in Eq. (2); however,
since the heads-up vector may not be related to the manifold nor-
mal, we need a more specific convention. All that is really needed
is to use the Gram-Schmidt procedure to find the part of each vector
that is parallel tôh(u; v) and subtract it:

q?(u; v) = q̂(u; v)� ĥ(u; v)
�
ĥ(u; v) � q̂(u; v)

�
(3)

V?(u; v) = V̂(u; v)� ĥ(u; v)
�
ĥ(u; v) � V̂(u; v)

�
; (4)

with the corresponding unit vectorŝq? = q?=kq?k andV̂? =

V?=kV?k as usual.V̂?(u; v) is the corrected velocity direction
in the plane orthogonal to the heads-up direction, and should be our
standard choice.

Rotating about heads-up. To rotate about the heads-up di-
rection to get as close to the interest-point direction as we can with-
out changing heads-up, we first project to the ground plane using
Eq. (3) to get̂q? as shown in Figure 4(a). Defining

cos � = V̂? � q̂?

sign � = sign ĥ � (V̂? � q̂?) ;

we find the basic linear interpolation in the parametert to be

R(t�; ĥ) ; (5)

where we takeR(�; n̂) to be the standard right-handed 3D rotation
matrix about the fixed direction̂n by angle�.

Tilting to a new heads-up. The alternative interpolation to
temporarily relinquish heads-up in favor of centering the point-of-
interestp(u; v) in the view is schematized in Figure 4(b). We repre-
sent each frame as a standard OpenGL-like coordinate frame, with

^^

q

qh

x

^

Motion Direction

Interest Direction

t θθ

⊥

Direction

�
�
�
�

����
⊥

^
V

Heads Up Direction
Heads Up

Interest Direction

x
⊥

’

⊥
^

V

Motion Direction

q

^

q̂

ĥ q̂
ĥ

h

����

��
��
��
��

^x

����

(a) (b)

Figure 4: Motion-weighted gaze modes. The direction of user travel determines gaze direction while moving, but guide avatar may
indicate points of interest as they go by. (a) In this mode, if the user chooses to slow or stop, the direction of the point of interest is
projected to the plane perpendicular to the current heads-up direction and the gaze is swung around to align with that direction while
leaving heads-up invariant. (b) An alternative is to determine two frames, one pointing towards the direction of motion, and the other
towards the point of interest, and formulate an interpolation between them by finding the eigenvector of the matrixF2 � F

�1

1
and using

that to interpolate between the initial and final frames.

the gaze direction the negative of thez direction (in the third col-
umn) and the heads-up being the positivey direction (in the second
column). Thus, ifF1 is the frame matrix corresponding to looking
in the direction of travel at a particular point(u; v), andF2 is the
frame formed by tilting in the plane of(ĥ; q̂) to gaze directly in the
interest-point direction̂q, we have

F1 =
�
� V̂? � ĥ ĥ �V̂?

�
� (6)

F2 =
�� q̂� ĥ0 ĥ0 �q̂

�� (7)

whereĥ0 can be computed using Gram-Schmidt as usual,

h
0 = ĥ� q̂

�
q̂ � ĥ

�
; (8)

whereĥ0 = h0=kh0k. The key to the interpolation is now to find
a parameterized rotation that starts atF1 and follows a great circle
geodesic path toF2. Such an interpolation is computed starting
with the rotation matrix

R(�; n̂) = F2 � (F1)
�1 (9)

where� andn̂ are easily determined by standard methods [23, 17].
Then the matrix

M(t) = R(t�; n̂) � F1 (10)

is easily verified to reduce toF1 at t = 0 and toF2 at t = 1.

Hybrid Tilt. An intuitively pleasing variant that seems to com-
bine the best of both these methods is to rotate first about the heads-
up direction to align witĥq?, and then tilt by rotating about̂q� ĥ
using the interpolated rotation

R(t arccos(q̂ � q̂?); q̂� ĥ=kq̂� ĥk) : (11)

to look in the q̂ direction, making overall a kind of “L”-shaped
sweep.

4.2 Taxonomy of Assisted Navigation

Most situations appropriate to assisted navigation can be realized
with several basic classes of user options, including where to look
while moving, how to behave whenstopping, and how to move
whenrestarting:

Moving.

� Fixed Gaze.

– Single Direction. At each point of the guide manifold,
only one fixed set of gaze parameters is stored. Whether
one moves backward, forward, or sideways, the direc-
tion of view and the family of viewing parameters is
always the same, as illustrated in Figure 3(a).

– Rose of Directions.A compass-rose of directions and
parameter fields, typically four, is stored at each sample
point of the guide manifold, as represented in in Figure
3(b). The travel direction(_u; _v) is used to interpolate
an appropriate value given the sampled values on the
compass rose.

� Motion Weighted Gaze. If full control of the gaze is re-
linquished, we can store data or algorithms determining the
heads-up direction at every guide manifold sample point,
while permitting any viewpoints within the remaining rota-
tional degree of freedom. The mathematical framework for
dealing with such freedom is in fact isomorphic to the prob-
lem of assigning frames to surfaces with fixed normal direc-
tions, and was treated thoroughly using a quaternion frame-
work in recent work by one of the authors [9, 12].

– Watch where you are going. Using the model of a
traveling vehicle such as an automobile or golf-cart, the
user will want to focus on the “road,” and so the gaze
will be aligned with the direction of motion consistent
with the fixed heads-up direction. Note that the correct
plane for the vehicle velocity is determined by interpo-
lating the vertex normals, so the proper velocity is found
from Eq. (4) by projecting the actual difference between
successive vehicle(u; v) positions to that local plane.

– Be slightly distracted.We assume that some, if not all,
points along our route of locomotion have directions
of interest that may be pointed out to us by the guide
avatar. If it is task-appropriate, we may wish to allow
our gaze to be distracted from the motion direction to-
wards the interesting direction using a certain percent-

age or weight that would logically depend on our veloc-
ity.

� Dual gaze and motion control.In an immersive environment
as well as in a desktop system with multiple controls, one can
alternatively modify one’s gaze direction while continuing to
move independently in a different direction.

Stopping.

� Force the gaze to preserve heads-up.Assuming that a pleas-
ant, scene-oriented heads-up constraint has been supplied for
the guide manifold, we could assume that, wherever we are,
we have only the freedom to pivot about that fixed (interpo-
lated) direction determined by the sampled grid values. In this
case, an interest-direction above or below the viewer’s plane
cannot be gazed at directly, but must be approximated; nor-
mally this involves projecting the gaze to the user plane and
pivoting to face in the direction of this projection, as shown in
Figure 4(a).

� Gaze in the direction of interest. If we are willing to risk
the disorientation of losing the heads-up direction temporarily
in the interest of having the object of attention centered in
the view, we can perform a more complex view interpolation
when the viewer stops to look. In this case, we determine
the plane containing the desired gaze direction and the heads-
up direction and force the temporary, new heads-up to lie in
that plane. This determines all the new frame parameters, and
we simply do a frame interpolation directly to this orientation
starting from the original traveling frame, as shown in Figure
4(b).

Restarting.

� Remember prior direction. Using the model of a vehicle as
our mode of travel, we can assume the vehicle has stopped but
has not turned. Thus no matter where we turned our head to
look, the vehicle will start moving again in its old direction,
and we will swing our heads gradually to align with that direc-
tion as we gain velocity. The vehicle remains fixed as shown
in Figure 5(a); only the view direction changes.

� Redirect towards interest point. Alternatively, the vehicle
can turn with us as we stop, as shown in Figure 5(b). The in-
terpolation is computed according to Eq. (5) which was used
also to compute Figure 4(a). Then when we restart our jour-
ney, there is no memory of the prior state, and we trundle on in
the direction of the interesting object we stopped to observe.

The utility of these modes cannot be evaluated universally; the ap-
propriateness depends on the task and context.

5 Guided Collaboration

The basic environment that we have described embodies a natu-
ral extension to a collaborative system. The assisting features of
the guide avatar may be exploited in the extension to collaborative
viewing. Among the relevant properties we note the following:

� Tracking and Watching. The leader’s guide appears in the
center of the view of the leader, but the leader appears in the
center of the view of the followers, so as the leader tracks the
guide, the collaborators track the leader. Each human leader’s
avatar is seen by the attached collaborators in a central loca-
tion; if the leader is immersed in a system with a headtracker,
the followers see the leader’s head motions much as the leader

can see the pointing motions of the automated guide avatar.
And each following collaborator can in turn be a leader for
another group of followers, who will see him or her in the
leadership position, as shown in Figure 1.

� Sharing Points of Interest. When the leader stops to check
a point of interest, all the following collaborators either turn
in place, or swing, attached to the leader, to face that direc-
tion while remaining within the legal guide manifold. This
avoids many troublesome navigation problems for the collab-
orators, since they can pay visual attention to what is being
emphasized without extra navigation effort to get in a good
position. In regions where the designer knows in advance that
collaborative viewing of an object will take place, extra care
can be taken to construct an “arena” — a bowl-like area in the
guide manifold that will let the collaborators place themselves
in good viewing positions as though sitting on a hillside above
the guide. Alternatively, in applications like molecule inspec-
tion that may require gaze directions essentially orthogonal to
the guide surface, it may be better to use a model in which
the collaborators swing out of the guide manifold behind the
leader (see, e.g., Figure 7(b)).

� Tethering Freedom. Of course, there will always be some
situations in which the collaborators will have to jockey their
positions to get a point of view, but each has some degrees of
control of their situation as well. Returning to the leash anal-
ogy, the collaborators following a particular leader are treated
as though constrained by elastic leashes. The can wander from
side to side, pull themselves up close behind the leader for a
better view, or drop back. One mode permits the following
collaborators to detach completely from the leader and navi-
gate the guide manifold with their own guide avatar if they are
not interested in what the leader is pointing out. A press of
the button re-attaches the leash or tether, and the straggler re-
joins the group with a slow-in slow-out camera motion similar
to the standard VRML browser’s transitions among prestored
viewpoints.

� Speed SensitivityWhen traveling at reasonable speed, the
viewer will be moving in a particular direction and will be
centered directly behind the local guide. Regardless of the
speed, the human or automated guide avatar will typically turn
its head or pointer to indicate interesting things that are being
passed by. If the navigator slows below a threshold, all are
coerced to look in the “preferred” direction. Upon resuming
speed, travel resumes according to the chosen options from
Figure 5. The redirection mode of Figure 5(b) may be pre-
ferred for continuous over-the-shoulder collaborative viewers.

� Intelligent Dragging. If a collaborative tethering paradigm
is too rigid, the following viewers can easily bump into walls
or get disoriented. For terrain-like environments, our system
keeps the viewer tied to the constraint manifold at a fixed dis-
tance and horizontal angle from the guide, thus eliminating
the need for expensive collision detection, and permits bring-
ing the reins up tight, wandering loosely behind the leader,
or detaching and requesting an automated return later. For
molecule-like environments, or situations where the collabo-
rators need to look from a viewpoint that is behind their guide,
but cannot be exactly on the guide manifold because the guide
is facing perpendicular to the guide surface, the collaborators
can be constrained to keep a fixed relationship to the guide
per se, rather than being constrained to the navigable mani-
fold; the leading guide, however, retains context and keeps a
position on the constraint manifold while staying in full view
of the collaborators.

q̂
⊥

Motion Direction
⊥

Interest Direction

V
^

⊥

⊥
old motion direction

Interest Direction
-> new motion direction

^

V
^���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

q

(a) (b)

Figure 5: Restart modes after stopping to inspect an interest point. (a) Leave vehicle pointing in original direction, turning only the
gaze when inspecting the interest point; continue in original direction of travel when resuming motion. (b) Rotate the vehicle in the
ground plane, basically as in Figure 4(a), to align as closely as possible with the gaze direction, and then resume motion in that direction,
forgetting the original direction.

6 Examples

Terrain Following. In Figure 6, we show examples of an envi-
ronment represented by a 3D terrain elevation map. This environ-
ment is distiguished by the assignment of a fixed heads-up vector
to each point of the plane, typically either oriented with gravity or
with the pointwise terrain normal vectors. Each motion produces a
new camera model constructed from the prestored normal and the
shape of the object being navigated.

Molecular Examination. We first get a hint of the value of con-
strained navigation when we examine the cumbersome environment
of a large molecule in Figure 7. Here, choosing the heads-up direc-
tion requires significant designer attention to match the particular
application, which might be the examination of a protein binding
site or unusual geometry.

Non-Convex Buildings. Standard 3D viewers attempt to see
all aspects of an object by “rolling it over” in your virtual hand.
The critical problem with this approach is that it does not account
for various non-convex nooks and crannies which could keep the
viewer in a standard examiner from seeing important details. In
Figure 8, we show how a bubble-like navigation field can settle
over a very nonconvex building or an entire set of buildings without
any need for complex user actions or prior knowledge of the interest
points.

7 Conclusion and Future Work

We have implemented a designer-assisted approach to the problem
of exploring and visualizing a virtual space that permits a natural
extension to shared collaborative experiences. The paradigm ex-
ploits positional and camera-model constraints on navigation, as
well as taking advantage of additional variables such as interest-
points to provide extra assistance that focuses the user’s explo-
rational wanderings on the task objectives. Our specific de-
sign incorporates not only task-based geometric constraints on the
viewer’s location and gaze, but also a personal “guide” that serves
two important functions: keeping the user oriented in the naviga-
tion space, and “pointing” to interesting subject areas as they are
approached. Collaboration in a particular style is supported by
recursively attaching following collaborators to a guiding avatar,
which may be either an automaton or a human. By implementing

the constraint configurations as VRML objects with additional nav-
igational interpretation, we achieve a new level of portability and
availability.

Among the areas remaining for future work, we note:

� Scaling. Scaling up to large applications such as the entire
earth requires the introduction of interesting new complexities
such as multiresolution constraint grids. See [28] for an initial
attempt at this problem.

� Time Evolving Systems.Data, points of interest, and guide
manifolds that vary with time present additional challenges
due to the requirements imposed by additional dimensions of
interpolation and context knowledge. An example of such a
problem would be modeling an arctic hiker traversing an ice
flow that is in the middle of breaking up and drifting away in
pieces.

� User Testing.Gathering user data on effectiveness of the var-
ious navigation modes is currently in progress. Specific mea-
surement and data-recording tools need to be added to sup-
port this task. A quite advanced system for supporting such
inquiries has been presented by Hix et al., [14].

� Collaborative Testing. Collaboration data are particularly
difficult to come by because of the challenge of finding groups
of users with an appropriate problem and resources. Several
projects currently underway in our laboratory, including work
on immersive exploration of astrophysical data, are antici-
pated to provide an appropriate framework. A sampling of
the questions specifically related to virtual collaboration that
need to be understood has been studied recently by Tromp, et
al., and Steed, et al. [25, 24].

Acknowledgments

This research was made possible in part by NSF infrastructure grant
CDA 93-03189 and the support of the Indiana University Advanced
Information Technology Laboratory.

References

[1] M. Billinghurst and J. Savage. Adding intelligence to the in-
terface. InProceedings of VRAIS ’96, pages 168–175, 1996.

[2] D. Bowman, D. Koller, and L.F. Hodges. Travel in immer-
sive environments: An evaluation of viewpoint motion con-
trol techniques. InProceedings of VRAIS ’97, pages 42–52,
1997.

[3] D. Bowman, D. Koller, and L.F. Hodges. A methodology
for the evaluation of travel techniques for immersive virtual
environments.Virtual Reality: Journal of the Virtual Reality
Society, 3:120–131, 1998.

[4] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. De-
Fanti. Surround-screen projection-based virtual reality: The
design and implementation of the CAVE. In James T. Ka-
jiya, editor, Computer Graphics (SIGGRAPH ’93 Proceed-
ings), volume 27, pages 135–142, August 1993.

[5] R. P. Darken and J. L. Sibert. Wayfinding strategies and be-
haviors in large virtual environments. InProceedings of Hu-
man Factors in Computing Systems (CHI ’96), pages 142–
149, 1996.

[6] S. M. Drucker, T. A. Galyean, and D. Zeltzer. Cinema: A sys-
tem for procedural camera movements. InComputer Graph-
ics, pages 67–70, 1992. Proceedings of 1992 Symposium on
Interactive 3D Graphics.

[7] EAI. External authoring interface. A
Java interface specification for VRML; see
http://www.vrml.org/WorkingGroups/vrml-eai/Specification/
for more information.

[8] Joseph L. Gabbard and Deborah Hix. A taxonomy
of usability characteristics in virtual environments. Re-
port for ONR, November 1997. Obtainable from
http://csgrad.cs.vt.edu/ jgabbard/ve/taxonomy.

[9] A. J. Hanson. Constrained optimal framings of curves and
surfaces using quaternion gauss maps. InProceedings of Visu-
alization ’98, pages 375–382. IEEE Computer Society Press,
1998.

[10] A. J. Hanson and E. Wernert. Constrained 3D navigation with
2D controllers. InProceedings of Visualization ’97, pages
175–182. IEEE Computer Society Press, 1997.

[11] A. J. Hanson, E. Wernert, and S. Hughes. Constrained nav-
igation interfaces. In Hans Hagen and Hans-Christian Ro-
drian, editors,Scientific Visualization. Springer Verlag, 1999.
To appear in collection based on proceedings of Dagstuhl ’97
Workshop on Scientific Visualization.

[12] A.J. Hanson. Quaternion gauss maps and optimal framings
of curves and surfaces. Indiana University Computer Science
Department Technical Report 518 (October, 1998).

[13] Jed Hartman and Josie Werneke.The VRML 2.0 Handbook.
Addison-Wesley, 1996.

[14] Deborah Hix, J. Edward Swan II, Joseph Gabbard, Mike
McGee, Jim Durbin, and Tony King. User-centered design
and evaluation of a real-time battlefield visualization virtual
environment. InProceedings of IEEE VR ’99, pages 96–103,
1999.

[15] J. D. Mackinlay, S. Card, and G. Robertson. Rapid controlled
movement through a virtual 3D workspace. InComputer
Graphics, volume 24, pages 171–176, 1990. Proceedings of
SIGGRAPH 1990.

[16] Swaminathan Narayanan. cave6u. A VRML
browser for the CAVE. A description is available at
http://www.evl.uic.edu/swami/cave6u/vrml.html.

[17] G. M. Nielson. Smooth interpolation of orientations. In N. M.
Thalman and D. Thalman, editors,Computer Animation ’93,
pages 75–93, Tokyo, June 1993. Springer-Verlag.

[18] OpenWorlds. A commercial VRML browser. Information is
available at http://www.openworlds.com.

[19] Kyoung Shin Park and Robert V. Kenyon. Effects of network
characteristics on human performance in a collaborative vir-
tual environment. InProceedings of IEEE VR ’99, pages 104–
111, 1999.

[20] C. B. Phillips, N. I. Badler, and J. Granieri. Automatic view-
ing control for 3D direct manipulation. InComputer Graph-
ics, pages 71–74, 1992. Proceedings of 1992 Symposium on
Interactive 3D Graphics.

[21] J.S. Pierce, A. Forsberg, M.J. Conway, S. Hong, R. Zeleznik,
and M.R. Mine. Image plane interaction techniques in 3d
immersive environments. InComputer Graphics, pages 39–
43, 1997. Proceedings of 1997 Symposium on Interactive 3D
Graphics.

[22] W. Robinett and R. Holloway. Implementation of flying, scal-
ing, and grabbing in virtual worlds. InComputer Graphics,
pages 189–192, 1992. Proceedings of 1992 Symposium on
Interactive 3D Graphics.

[23] K. Shoemake. Animating rotation with quaternion curves. In
Computer Graphics, volume 19, pages 245–254, 1985. Pro-
ceedings of SIGGRAPH 1985.

[24] A. Steed, M. Slater, A. Sadagic, A. Bullock, and J. Tromp.
Leadership and collaboration in shared virtual environments.
In Proceedings of IEEE VR ’99, pages 112–115, 1999.

[25] J.G. Tromp, A. Steed, E. Frecon, A. Bullock, A. Sadagic, and
M. Slater. Small group behaviour in the COVEN project.
IEEE Computer Graphics and Applications, 18(6):53–63,
1998.

[26] C. Ware and D. Fleet. Context sensitive flying interaction. In
Computer Graphics, pages 127–130, 1997. Proceedings of
1997 Symposium on Interactive 3D Graphics.

[27] C. Ware and S. Osborne. Exploration and virtual camera con-
trol in virtual three-dimensional environments. InComputer
Graphics, volume 24, pages 175–184, 1990. Proceedings of
1990 Symposium on Interactive 3D Graphics.

[28] Z. Wartell, W. Ribarsky, and L. Hodges. Third-person navi-
gation of whole-planet terrain in a head-tracked stereoscopic
environment. InProceedings of IEEE VR ’99, pages 141–148,
1999.

(a) (b)
Figure 6: Two modes of group terrain-traversal. (a) Constrained to the guide manifold using surface normal for heads-up.
(b) Using gravity for heads-up. Viewer on right respects the heads-up constraint of Figure 4(a).

(a) (b)
Figure 7: A topologically complex guide manifold. (a) Collaborators cluster around leader constrained to surface. (b)
Collaborators hover with fixed orientation to leader, who remains in guide surface.

(a) (b)
Figure 8: Nonconvex structure that confounds “examiner” browsing mode. (a) Moving to the left gate, gaze is on left gate.
(b) As we move to the right gate, the navigation constraints effortlessly shift the gaze.

