
Constrained 3D Navigation with 2D Controllers

Andrew J. Hanson Eric A. Wernert

Computer Science Department
Indiana University

Bloomington, IN 47405 USA

Abstract

Navigation through 3D spaces is required in many interactive
graphics and virtual reality applications. We consider the subclass
of situations in which a 2D device such as a mouse controls smooth
movements among viewpoints for a “through the screen” display
of a 3D world. Frequently, there is a poor match between thegoal
of such a navigation activity, the control device, and the skills of
the average user. We propose a unified mathematical framework
for incorporating context-dependent constraints into the general-
ized viewpoint generation problem. These designer-supplied con-
straint modes provide a middle ground between the triviality of a
single camera animation path and the confusing excess freedom of
common unconstrained control paradigms. We illustrate the ap-
proach with a variety of examples, including terrain models, inte-
rior architectural spaces, and complex molecules.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques. I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism. I.3.8 [Computer Graph-
ics]: Applications.

Keywords: Navigation; Constrained Navigation; Viewing Con-
trol; Camera Control

1 Introduction

Navigation in 3D scenes, which we define as the process of select-
ing a continuously-changing set of viewing parameters, is a long-
standing challenge for computer graphics and visualization appli-
cations. Computer animation, for example, requires the choice of a
time sequence of camera models that can be considered as a one-
parameter constraint; applicable techniques range from direct ori-
entation interpolation (e.g., [18, 11]) to rule-based systems [9, 10].
The more complex task of interactive navigation has been consid-
ered in a wide variety of contexts, ranging from the viewing of
simple 3D scenes on a desktop monitor to the control of fully im-
mersive virtual reality environments. Examples of such viewing
control methods run the gamut from orientation control paradigms
(Brooks [4], Nielson and Olson [14], Chen et al. [5], Hanson [7],
and Shoemake [20, 21]) to methods that intelligently focus on par-
ticular scene points such as Mackinlay et al. [12], constraint-based
camera placement systems such as Phillips et al. [15], and general
control systems such as those discussed by Ware and Osborne [25]
and Drucker et al. [6]. The use of constraints in view selection
specifically for virtual reality has been used, for example, by Robi-
nett and Holloway [16] to go beyond the usual “flying” modality,
and by Billinghurst and Savage [2] in an expert system context.

In this paper, we focus on the problem of using a 2 degree-of-
freedom controller such as a mouse to move effectively through a
displayed 3D environment with a particular task in mind; we as-
sume that the system designer has at least some idea of how in
fact to direct a naive user’s attention to those aspects of the scene
needed to meet a chosen goal. We present some very specific fami-

lies of techniques that may be used by the designer to constrain the
user’s motion in ways that avoid the “lost-in-space” pitfalls of most
airplane-style or helicopter-style controls with up to 6 (or more)
degrees of freedom. Our fundamental notion is that, rather than
controlling an unconstrained vehicle in 3D space, the 2D control
device is actually moving the user on a constrained subspace, the
“guide manifold,” a kind of virtual 2D sidewalk. At every sample
point of this virtual sidewalk, we may specify a “guide field” con-
taining all the information the designer wishes to supply to a cus-
tomizable algorithm computing the viewing parameters for the user.
Typically, both the guide manifold and the guide fields are specified
only at sample points, and interpolation methods are used to deter-
mine intermediate values. The manifold itself may be continuous,
may consist of disjoint pieces, or may even cross over itself to give
it “Riemann-manifold” properties that let the traveler traverse a cir-
cuit over and over to the same spot, and each time be presented
with a new set of guide parameters. The parameters of the guide
field may supply arbitrarily complex information to the designer’s
algorithm; we illustrate the power of the idea using applications to
terrain navigation, architectural structures, and complex molecules.
An evaluation of several basic features of the paradigm is currently
in progress.

Combining Displacement Constraints and Viewing Con-
straints. There are several effective ways to construct a frame-
work for constraint-based navigation in 3D viewing situations. In
the simplest version, we just extend the one-parameter camera path
of a traditional animation to a two-parameter surface in 3D space
navigated by mouse strokes; each point of the surface incorporates
a fixed camera-model field. In many cases, the data themselves pro-
vide a context of interest, and can thus be used to modulate a fixed
viewing-parameter field relative to the source of interest.

The field variables may be fixeda priori at key vertices using
designer-specified camera models (orientation plus focal length)
and interpolated among key vertices; or the field variables may
be computed from procedures combining fixed fields, dynamic or
static scene data, and current viewer position and state (e.g., ve-
locity). It then becomes the designer’s problem, not the viewer’s,
to minimize the “lost in space” effect, and thus to optimize the
viewer’s ability to focus on the task that is the goal of the navi-
gation.

A related example of such a system was introduced for the ex-
ploration of complex mathematical manifolds in Hanson and Ma
[8]. The key constraint in this original concept was the idea that
every direction on a 2D manifold implies a geodesic path deter-
mined by the intrinsic geometry; the manifold itself provides a con-
straint on the navigation by providing a “platform” on which the
user walks and which continually rolls up to meet the viewer’s feet,
keeping a constant relative orientation between the viewer’s ver-
tical and the surface normal. This path automatically determines
an orientation in response to directional changes of the 2D mouse
control. The more general concepts proposed in the current paper
follow from the realization that the manifold on which the viewer
is “walking” could in fact be aninvisible sidewalkcreated for the

Guide Field Range

Map Function

Controller Space Domain

Figure 1: Diagram of the general mathematical concept of a guide field and its ramifications.

purpose of seeingother things in the surrounding world, and that
the geodesic-constrained orientations can easily be replaced by a
completely arbitrary field of quaternion orientations combined with
a tandem field of focal lengths and additional viewing and control
parameters if appropriate.

Below, we propose several additional families of dynamic pro-
cedures for determining the current camera parameters in addition
to fixed key vertex values and the geodesic interpolation methods
of Hanson and Ma [8]; these range from methods based on met-
ric relations between the navigation surface and the nearby scene
or terrain, to methods that could be based on arbitrary rules in the
manner of Karp and Feiner, or Billinghurst and Savage [9, 10, 2].
While we focus here on 2D mouse-based interfaces, the framework
clearly extends to immersive virtual reality environments, where the
virtual space of the control device can select points and orientations
in a 3D volume, instead of simple 2D mouse coordinates. We defer
exploration of such issues for the time being in order to focus here
on fundamental concepts of direct application to the most common
visualization systems.

2 Fundamental Methods.

The basic idea behind our approach is the concept of mapping a
controller domain into a guide field range consisting of the param-
eters needed to construct the scene image, possibly combined with
parameters modifying the influence of the controller. This is repre-
sented schematically in Figure 1. We begin with a bare controller
position(u; v), assuming the implicit availability of heading and
velocity information(_u; _v), and define a mapG(u; v) from the
domain of the control device to the full space� of parameters. In
principle the range of the parameter space can include anything,
even computed quantities. Thus we write

G : (u; v) 7! � ; (1)

where objects in the range� include such things as

1. Camera position on guide manifold: the point in the universe
where the virtual owner of the device appears to be standing.

2. Camera orientation: where the virtual user is looking.

3. Camera properties: parameters such as focal length (wide an-
gle, telephoto lens), depth of field, and binocular convergence.

4. Viewing properties: fog, light attenuation, etc.

5. Control modifiers: mouse response, importance weighting,
etc.

6. Visualization application parameters: streamline characteris-
tics, particle source location, pseudo-color assignments, etc.

By retaining successive values of these fields in the control pro-
gram, the designer can also create rate-of-change-dependent re-
sponses.

For most practical purposes, the controller domain corresponds
locally to a path in the guide manifold that is equivalent to a surface
in the 3D world. However, one can imagine applications in which
more general mappings might be useful. For example, one might
instead use the mouse position to vary a two-parameter camera ori-
entation(�; �), treat this orientation as the independent variable of
the guide manifold, and treat spatial position as a dependent guide
field variable attached to each point of(�; �) in the guide mani-
fold. Therefore, we retain all the scene-viewing parameters in a
single data structure, and specify local 2D patches with coordinate
vertices in that parameter space that correspond to 2D controller
position. Each value of the independent controller variables then
selects a particular set of parameters (e.g., one camera position and
an orientation out of the space of possible viewing angles at that
position). These dependent variables are typically determined by
selecting samples on a lattice in the control space, and thus we must
interpolate all these variables in tandem. Achieving smoothness in
all variables is problematic, but can be addressed in various ways
discussed below.

Winged Patches. The simplest relation mapping the controller
space to the scene viewing parameters is generated by a single rect-
angular patch in one-to-one correspondence with the 2D mouse po-
sition, as shown in Figure 2a. To create navigable manifolds in
more complex situations, we must sew together many of these fun-
damental pieces to form a connected whole. The simplest practical
way to achieve this is to require that the edge shared by two adja-
cent patches be “winged:” that is, the curve representing the edge
must contain pointers to the rectangular patches that share it, al-
lowing a navigation algorithm to detect the end of one patch and
implement a transition to the next patch. Figure 2b illustrates a typ-
ical structure that can be represented in this way; many interesting
topological objects one might wish to represent, such as a sphere,
require two or more such patches (for further details, consult any
elementary text on differentiable topological manifolds). There are
many ways one might handle winged patches in practice, and such

(a) (b)

Figure 2: (a) A rectangular patch in mouse space (below), lifted to a guide surface in 3D (above). (b) A network of rectangular
guide patches pieced together into a generalized guide surface using winged edges to relate one patch to another.

issues as continuity and differentiability across the transition edges
are open to the designer; in some cases a smooth transition, achiev-
able using spline techniques, may be essential, and in other cases
a transition with a discontinuous derivative may create the desired
effect.

Modulation by Data. We can immediately go beyond the al-
ready useful idea of having predetermined camera parameters at
each point of the navigable space by definingmodifiersof the de-
fault parameters. In Figure 7, we show the result of using the gra-
dientr� of the terrain elevation model as a cue: starting with an
“up” direction aligned with the surface normal, we rotate the cam-
era by a weighted amount to turn gently towards the gradient into
the valley.

An explicit example is the following: at each point of the
coordinate-space guide manifold, determine the “heads up” direc-
tion of the camera framêu, the “look at” direction of the camera
framek̂, and projection̂p of the terrain gradient onto the plane per-
pendicular tôu; then, ifcos � = p̂ � k̂ describes the angle between
the projected terrain gradient and the camera gaze direction, one ro-
tates the camera about theû vector byc�, wherec = kp̂k=kp̂maxk
is the relative magnitude of the projected gradient strength.

Interest Vectors. Interest vectors are a generalization of the
data modulation method of the previous paragraph. When the
viewer is positioned at any point in a particular scene, the designer
may record both viewer information, such as gaze directiong, and a
direction of interestd in the scene appropriate to the current viewer
state. These typically provide sufficient information to specify a
context-based, weightable state change for the camera model. A
typical example would compute the plane containingg andd and
rotate about the direction normal to that plane,g � d, by an angle
that is either small, for passing interest, or sufficient to placeg ex-
actly in line withd, for very high interest. In other cases, the “up”
direction of the camera frame may be fixed or constrained, making
a rotation about theg � d forbidden; in such circumstances, we
projectd onto the plane perpendicular to the “up” direction and use
the projected vector as the interest direction instead, as in the data
modulation example.

Interest vectors can easily be designed using “interest fields”
related to the level-sets for implicit surfaces employed, e.g., by
Blinn [3]. By defining a 3D scalar function that is large near a
selected family of scene points, the designer can use the gradient
to specify where the user’s attention should be directed whenever

the user draws near; the corresponding level-set implicit surfaces
define manifolds of equal “attention importance” in the navigation
space, and could be displayed optionally as navigation cues. Note
that a separate interest field can in principle be supplied for each
parameter, allowing, e.g., the camera focal length, to be varied in-
dependently in complex ways throughout the navigation.

Sensitivity Fields. A number of applications have identifiable
areas where one wants to have very fine control, and others where
one wants coarse control for quickly traversing large, uninteresting
areas. We note two examples that fit cleanly into our framework:
(1) Velocity-based displacement. Several common mouse inter-
faces have long supported this feature: the velocity of the mouse
is measured, and as the speed increases, the overall displacement
is amplified accordingly, allowing quick navigation to all corners
of the screen. (2) Response field. Here, we just define a scalar
field over the guide manifold and use it to magnify or reduce the
bare controller displacement at each local point. Effects such as
those of Mackinlay [12], could be achieved without the use of scale
factors simply by refining the mesh near the critical points of the
guide manifold. However, it is awkward to make the changes oc-
cur smoothly in such a mesh, and the continuous scale change field
overcomes this. Figure 3 illustrates a field that causes very small
responses in the foreground depression where the scale is 0.1, and
very large responses at the background peak, where the scale ap-
proaches 3.

3 Designing Constrained Navigation Ap-
plications

3.1 Basic Components

Our constrained navigation paradigm in its basic form requires an
interactively renderable 3D scene plus the following:

� Constraint Surface. A surface data structure every point of
which can be reached in a predictable manner by incremental
motions of a 2D mouse. In practice, one would therefore al-
most always use as building blocks rectangular arrays of 3D
points corresponding to projections onto the 2D rectangular
mouse coordinates. These can be joined as in Figure 2b to
form a patchwork of polygons that can be traversed incremen-
tally. More complex surfaces (e.g, multiple coverings, multi-
branched soap-bubbles) may be used in a similar fashion for

particular applications. The most intuitive constraint surface
is a sidewalk-like mesh of 3D points, but nothing prevents us
from choosing, e.g., latitude and longitude of camera orienta-
tion.

Creating a constraint surface for a given problem can be facil-
itated in some cases by studying the features of the problem.
For example, the toroidal navigation surface chosen in Figure
10 is essentially a level set of the electron density. Complex
topological objects and terrain models can provide their own
initial navigation surfaces by creating parallel surfaces a fixed
distance away, or projected outward from the surface normals.
Many problems thus contain strong hints to guide the design
of an appropriate family of constraint surfaces.

� Camera Model Field.At each point of the constraint surface,
the designer must attach those values of the camera model
field complementary to the constraint surface (orientation if
the constraint surface is spatial, position if the constraint sur-
face is orientation, etc.). Thus at each point of the constraint
surface array we typically construct a data structure consist-
ing of the variablesG(u; v) = (x; y; z; q0; q1; q2; q3; f),
which describe the 3D position, the orientation in terms of a
quaternion frame, and the focal length (or perhaps the camera
frustum). In practice, these fields would normally be specified
at key vertices and interpolated to the intermediate points of
the constraint surface.

3.2 Interpolation

Given the normal situation where only a finite number of sam-
ple points appear in the array of camera model fields, we require
G(u; v) to be interpolated at intermediate points. This is typi-
cally accomplished for rectangular sample spaces by taking local
4 � 4 rectangular grids of anchor points and performing a bicubic
Catmull-Rom spline interpolation, thus ensuring that all grid field
values are actually on the interpolated surface. Quaternions must
be used to achieve smooth orientation interpolations as noted by
Shoemake [18, 19], and refined in subsequent work such as that of
Schlag [17], Nielson [13], and Kim, et al. [11]; 2D rectangular ex-
tensions of these methods are straightforward. Other variables such
as the focal length and controller response field can be interpolated
similarly in tandem.

However, experiments with our applications made it clear that
one cannot in general produce interpolations based on arbitrary an-
chor values that produce equivalent perceptions of smoothness in
bothcamera position and orientation (or focal length, or whatever).
If the knot points are equally spaced in spatial position, the orienta-
tion changes may not be uniformly spaced, and vice versa. Among
the solutions to this problem currently being investigated are: the
adoption of a combined metric in the full parameter space to de-
fine a hybrid variety of uniformly spaced knot points, the use of a
dynamical model resembling a moving gyroscope that is solved to
determine the camera motion, and a similar generalization of the
method of Barr, et al. [1] to include spatial parameters as well.

3.3 Methods for Determining the Camera Model
Field

We next present a selection of approaches that can be used to deter-
mine the camera model structure at any particular point of a navi-
gation path.

Constant key vertices. The simplest configuration utilizes a
designer-supplied grid of constant camera parameters, along with a
procedure for interpolation among the grid points. The predefined
key vertex method is well-adapted to many classic applications, and

-2
-1

0
1

2X

-2
-1

0
1

2
Y

0

1

2

3

Scale

-2
-1

0
1

2
-1

0
1Y

Figure 3: A scaling field that could be used, in regions of value
greater than unity, to magnify the screen distance traversed by a
unit mouse motion; similarly, in regions of value less than unity,
this field would slow the mouse response to provide fine-grained
control in those limited areas where it is required.

can easily be understood (and even defined) as a family of deforma-
tions of a single fixed camera-animation path.

Space-walk frames and constrained “up” fields. The ba-
sic manifold traversal method of Hanson and Ma [8] can be used
with 2D constraint manifolds of arbitrary complexity, and is ex-
tensible to 3D as well. Effective use of the method requires data
stored in a winged-edge format rather than the simpler 2D paramet-
ric rectangular grid format that we have implicitly assumed for most
of the discussion. The intrinsically defined transitions from poly-
gon to polygon allow one to navigate a complex surface keeping
the world “up” direction aligned with the surface normal through-
out the transversal. While it is natural to have the gaze direction
pointed in the direction of motion, this is not required; fixed cam-
era parameters can be prestored at each vertex and modulated either
by scene features or the default space-walk camera frame.

Another interesting variant is to specify only the “up” direction
of the camera frame at each point (manually or from the normal
to the constraint manifold); then the camera has a single rotational
degree of freedom at each point that can be determined from the
context, e.g., viewer velocity, or other data.

3.4 Designer Techniques

There are a variety of techniques that we have found useful in prac-
tice to enhance the utility, visual immediacy, and flexibility of the
constrained navigation framework. Among these we note espe-
cially the following:

Fog, Spotlights, etc. The actual scene appearance can equally
well be modulated to suit the designer’s needs. We suggest the
following methods: (1) Fog. As one passes through a scene, one
can limit the visibility to a handful of key regions by obscuring the
most distant objects. Other application-dependent depth cues can
be used if appropriate. (2) Spotlights. Whether or not the camera
model allows you to change its gaze, you can shine a spotlight on
any desired sector to emphasize it. This is very easy in OpenGL,
requiring only the definition of a few key-frame values of a direc-
tion. The spotlight need not be large, nor coincide with the gaze or
motion directions. See Figure 8 for an example.

Figure 4: An example of a navigation manifold that contains
more than one possible layer, hence more than one possible cam-
era model, depending on one’s route to the scene.

Vista Points. A fundamental context-defining technique avail-
able in such a navigation system is the “scenic overlook.” This is
very much like an overlook on a vacation highway, except that the
signposts and annotated vista points can be placed anywhere in 3D
space continuously connected to the sidewalk. As the viewer ap-
proaches the critical vista point itself, changes in the focal length,
camera orientation, and control response can be imposed by the de-
signer to exactly emulate features such as Mackinlay et al.’s [12]
controlled approach, or even “dynamic field glasses” that focus
in on distant scene features as though one had donned zoomable
binoculars to pan across the scene of interest, similar to one sce-
nario of Robinett and Holloway [16]. An example is given in Figure
9.

Multiple Coverings. Another fundamental technique is the
“multiple covering” navigation surface. (Readers with mathemat-
ical backgrounds will recognize this as a relative of Riemann sur-
faces in complex variable theory.) Here, one creates a surface that
may come back to the same point by many different routes; a simple
example is a double ribbon, as shown in Figure 4, which allows the
camera to point in one family of directions the first time around the
ribbon, in other directions the second time, and to return to the orig-
inal state the third time around. An explicit application is depicted
in Figure 11. The reader can imagine arbitrarily complex variants,
including instantaneous state transitions between entirely different
guide fields.

3.5 Dynamic Mapping Techniques

Several prospects for more complex control strategies appear
promising for future work.

Lead time. Sometimes we want to have the system react to
where wewill be, not where we are. This leads one to implement
virtual navigation avatars (we might call them “navatars”) sailing
in front of the viewer, and requires some predictive computation.
Once the hypothesized avatar position is determined by an appro-
priate algorithm, the designer can present varying options tying the
motion more or less closely to the avatar, or perhaps allowing di-
versions in the avatar’s path.

Viewer state procedures and rules. The user state in a nav-
igation problem contains a number of variables that can be tracked
and computed, particularly those involving velocity and heading
history (see, e.g., some of the techniques reviewed in Chen et

al. [5]). Arcade games often exploit such information, particularly
to add challenge to a control strategy by preventing direct manipu-
lation of the object to be controlled. In physical simulations, mo-
mentum, friction, and air resistance play a crucial role in making
driving and flight simulators realistic. Such factors can be incorpo-
rated into the procedures or rules determining the evolution of the
camera field on the constraint surface to accomplish a number of
intuitive physical effects.

Context-based rules. A variety of approaches have been pro-
posed in the literature to use context-based knowledge, expert sys-
tem domain rules, and artificial intelligence planning methods to
determine transitions among camera positions in animation or even
complete animation paths (see, e.g., [9, 10, 2]). It is clearly appro-
priate to apply such techniques to the more general philosophy of
constrained navigation proposed here; this is a fertile area for future
research.

4 Examples

In this section, we present a series of examples realized by imple-
mentations using the Open Inventor class libraries in the IRIS Ex-
plorer and Open Inventor environments; we note in particular that
many of the needed quaternion-based classes and methods are al-
ready supplied. We implemented our own Catmull-Rom interpola-
tor based on the Schlag algorithm [17].

Wandering Camera Path with Wandering View. In a tra-
ditional computer animation, the camera itself may follow many
different constraints such as looking at a single point on the ground
throughout the motion, tracking a moving object in the scene, or
staring in a fixed direction. Figure 5(a,b) shows a generalization
of the latter with the viewer’s trajectory confined to a plane. In
Figure 6a, the path is still constrained to the plane, but designer-
placed camera orientations are used as key vertices for a quaternion
spline interpolation; Figure 6b shows the scene viewed from the
same point as Figure 5b, but with the modified camera field.

Terrain Navigation: Conservative Flight Path. In Figure
7, we show a more realistic guide manifold for navigating a terrain
model; we employ a contoured 3D constraint surface and constrain
the camera “up” vector to be the surface normal. The camera orien-
tation at each point is determined by rotating relative to the constant
gaze direction to look slightly in the direction of the terrain gradient
below. We note that we need not require a global “up” direction;
if desired, we can transition smoothly from “right-side-up” in the
world to “upside-down” (see below).

Spotlight Attention Focus. An example of the spotlight tech-
nique, which can be used to focus the user’s attention on a point
that is not necessarily aligned with the direction of the camera gaze
or the direction of motion, is shown in Figure 8.

Terrain Navigation: Vista Point Ahead! A tour designer in
the paradigm presented here has not only the ability to keep wan-
dering users in a limited set of viewpoints and to keep their attention
focused only on what they are supposed to see, but also to prepare
special treats. In particular, the constraint surface itself may vary
dramatically, and the focal length can be controlled and interpolated
throughout the grid just like the other variables. In the scenario pre-
sented in Figure 9, the designer has placed two “vista points” in the
scene which the user may approach at will while roaming the con-
straint space. Figure 9a focuses on one particular point that causes
the user to rise rapidly above the world to a very high vantage point,

(a) (b)

Figure 5: Camera path constrained to plane with fixed camera orientation. (a) View of path and camera model control points on
constraint surface. (b) View using camera model field at selected point.

(a) (b)

Figure 6: Camera path constrained to plane with camera orientation modulated by terrain gradient. (a) View of path and camera
model control points on constraint surface. (b) View using camera model field at selected point.

while the camera is forced to look down below at the retreating
scene data, creating the view of Figure 9b. Figure 9c is rather like
a highway rest stop, where approaching a particular point on the
constraint surface swings your gaze direction around, points at a
landmark you might never have noticed otherwise, and puts a “tele-
photo lens” on the camera so that the view automatically zooms in
on the point in question.

Molecule Navigation. The most challenging applications for
constrained navigation involve the perusal of objects with no nat-
ural orientation. Here we have both the advantage of being per-
mitted great flexibility, and the drawback of having to decide on a
particular guiding strategy. Figure 10a shows how we have cho-
sen a toroidal navigation manifold that entirely envelops a helical

molecule. This constraint surface allows us to move quickly to ev-
ery conceivable viewpoint on the molecule with a series of very
simple mouse strokes. To keep the user in context, we make the
“up” direction inside the molecule the same direction as outside,
while tilting a bit at the top and the bottom to keep focused on the
structure and give a clear end-on view, as shown in Figure 10c.
Here the goal of the navigation was to give the viewer a fluid way
to see every conceivable surface, inside and outside, of the virtual
cylinder around which the helical molecule is wrapped.

Architectural Interior Navigation. More complex topologies
arise naturally when we examine detailed 3D structures such as
buildings and room interiors. Here it is natural to include new levels
of constraints and choices. In the example of Figure 11, we restrict

(a) (b)

Figure 7: Camera path constrained to complex surface with camera orientation keyed to constraint surface normal and modulated
by terrain gradient. (a) View of path and camera model control points on constraint surface. (b) View using camera model field
at selected point.

Figure 8: Spotlight focused on an area of interest that is slightly
displaced from camera gaze and motion directions. This allows
greater flexibility in keeping the context while redirecting atten-
tion.

user motion in a single room to encircle an object of interest, which
happens to be a model of a virtual reality environment. This sim-
ple example of a multiple-patch data structure is used to define a
double circuit of “carpeting” around the object of interest like that
noted also in Figure 4; this guide manifold serves both to prohibit
areas with physical obstructions, and to permit different things to
be emphasized on even and odd tours around the room. Thus, the

goal of the first circuit of the walkway is to focus on the display
screens, while the second time around we use an effective interest
field to focus instead on the placement of the projectors.

5 Preliminary Human Factors Observa-
tions

Substantive human factors studies of the comparative effectiveness
of particular scenarios are beyond the intended scope of this pa-
per. Nevertheless, an evaluation of alternative exploration modes
is currently being pursued for room-like worlds, using criteria in-
spired by those of Thorndyke et al. [24, 23, 22]. Preliminary results,
which will be extended and presented elsewhere, suggest that reten-
tion ratios of hard-to-notice objects in a room range from 55% to
75% for users of the constrained system, compared to 10% to 35%
for users given 6 degree-of-freedom navigation controls. Thus the
concept of using a constrained system to focus on a user goal seems
well-founded. Another, fairly obvious, experimental observation is
the fact that keeping the camera’s vertical axis relatively stable is
important to prevent users from developing motion discomfort.

6 Conclusion

In this paper, we have introduced an extension of the one-parameter
camera path of a traditional animation to a multiparameter space
appropriate for constrained navigation in both 3D desktop and im-
mersive virtual reality environments. Detailed examples have been
worked out and presented for the particular case of a 3D through-
the-screen display controlled by a 2D mouse. The basic strategy is
to supply a set of view-determining data at each sample point of a
“virtual sidewalk,” along with possibly state-dependent procedures
to create the actual view to be presented. Ultimately, it is up to
the designer to limit the viewer’s freedom of navigation enough to
focus attention and prevent loss of context, but not so much as to

disturb the feeling of exploration and discovery appropriate to the
viewer’s task.

Future plans include extensions to more complex virtual reality
environments and controllers, human factors testing, and additional
experimentation with “smart” controls that balance prestored con-
straints against user state. An ideal system would likely include a
history-sensitive expert system to recompute the camera model at
each step the viewer takes on the journey.

Acknowledgments

AJH gratefully acknowledges the cordial hospitality of Claude
Puech and the members of the iMAGIS laboratory, a joint project
of CNRS, INRIA, Institut National Polytechnique de Grenoble, and
Université Joseph Fourier, where this research was initiated. We
are grateful to Stephen Hughes for his essential contributions to the
preliminary user interface studies. Thanks are also due to the staff
of CICA, the Indiana University Center for Innovative Computer
Applications, for their support. This research was made possible in
part by NSF infrastructure grant CDA 93-03189.

References

[1] A. Barr, B. Currin, S. Gabriel, and J. Hughes. Smooth in-
terpolation of orientations with angular velocity constraints
using quaternions. InComputer Graphics Proceedings, An-
nual Conference Series, pages 313–320, 1992. Proceedings
of SIGGRAPH ’92.

[2] M. Billinghurst and J. Savage. Adding intelligence to the in-
terface. InProceedings of VRAIS ’96, pages 168–175, 1996.

[3] J. F. Blinn. A generalization of algebraic surfaces.ACM
Trans. on Graphics, 1:235–256, 1982.

[4] F. P. Brooks. Walkthrough — a dynamic graphics system for
simulating virtual buildings. InComputer Graphics, pages 9–
21, 1987. Proceedings of 1986 Workshop on Interactive 3D
Graphics.

[5] M. Chen, S. J. Mountford, and A. Sellen. A study in inter-
active 3-d rotation using 2-d control devices. InComputer
Graphics, volume 22, pages 121–130, 1988. Proceedings of
SIGGRAPH 1988.

[6] S. M. Drucker, T. A. Galyean, and D. Zeltzer. Cinema: A sys-
tem for procedural camera movements. InComputer Graph-
ics, pages 67–70, 1992. Proceedings of 1992 Symposium on
Interactive 3D Graphics.

[7] A. J. Hanson. The rolling ball. In David Kirk, editor,Graph-
ics Gems III, pages 51–60. Academic Press, Cambridge, MA,
1992.

[8] A. J. Hanson and H. Ma. Space walking. InProceedings
of Visualization ’95, pages 126–133. IEEE Computer Society
Press, 1995.

[9] P. Karp and S. Feiner. Issues in the automated generation of
animated presentations. InGraphics Interface 1990, pages
39–48, 1990.

[10] P. Karp and S. Feiner. Automated presentation planning of
animation using task decomposition with heuristic reasoning.
In Graphics Interface 1993, pages 118–127, 1993.

[11] M.-J. Kim, M.-S. Kim, and S. Y. Shin. A general construc-
tion scheme for unit quaternion curves with simple high order
derivatives. InComputer Graphics Proceedings, Annual Con-
ference Series, pages 369–376, 1995. Proceedings of SIG-
GRAPH ’95.

[12] J. D. Mackinlay, S. Card, and G. Robertson. Rapid con-
trolled movement through a virtual 3d workspace. InCom-
puter Graphics, volume 24, pages 171–176, 1990. Proceed-
ings of SIGGRAPH 1990.

[13] G. M. Nielson. Smooth interpolation of orientations. In N. M.
Thalman and D. Thalman, editors,Computer Animation ’93,
pages 75–93, Tokyo, June 1993. Springer-Verlag.

[14] G. M. Nielson and Dan R. Olson. Direct manipulation tech-
niques for 3d objects using 2d locator devices. InComputer
Graphics, pages 175–182, 1987. Proceedings of 1986 Work-
shop on Interactive 3D Graphics.

[15] C. B. Phillips, N. I. Badler, and J. Granieri. Automatic view-
ing control for 3d direct manipulation. InComputer Graphics,
pages 71–74, 1992. Proceedings of 1992 Symposium on In-
teractive 3D Graphics.

[16] W. Robinett and R. Holloway. Implementation of flying, scal-
ing, and grabbing in virtual worlds. InComputer Graphics,
pages 189–192, 1992. Proceedings of 1992 Symposium on
Interactive 3D Graphics.

[17] J. Schlag. Using geometric constructions to interpolate ori-
entation with quaternions. In James Arvo, editor,Graphics
Gems II, pages 377–380. Academic Press, 1991.

[18] K. Shoemake. Animating rotation with quaternion curves. In
Computer Graphics, volume 19, pages 245–254, 1985. Pro-
ceedings of SIGGRAPH 1985.

[19] K. Shoemake. Animation with quaternions. Siggraph Course
Lecture Notes, 1987.

[20] K. Shoemake. Arcball rotation control. In Paul Heckbert,
editor, Graphics Gems IV, pages 175–192. Academic Press,
1994.

[21] K. Shoemake. Fiber bundle twist reduction. In Paul Heckbert,
editor, Graphics Gems IV, pages 230–236. Academic Press,
1994.

[22] P. W. Thorndyke and S. E. Goldin. Spatial learning and rea-
soning skill. In H.L. Pick and L.P. Acredolo, editors,Spatial
Orientation: Theory, Research, and Application, pages 195–
217. Plenum Press, New York, 1983.

[23] P. W. Thorndyke and B. Hayes-Roth. Differences in spatial
knowledge acquired from maps and navigation.Cognitive
Psychology, 14:560–589, 1982.

[24] P. W. Thorndyke and C. Stasz. Individual differences in pro-
cedures for knowledge acquisition from maps.Cognitive Psy-
chology, 12:137–175, 1980.

[25] C. Ware and S. Osborne. Exploration and virtual camera con-
trol in virtual three-dimensional environments. InComputer
Graphics, volume 24, pages 175–184, 1990. Proceedings of
1990 Symposium on Interactive 3D Graphics.

(a) (b) (c)
Figure 9: (a) A constraint surface with an “overlook” and a “vista point” having a telephoto lens. (b) View of scene from overlook. (c)
Zoomed view of base of overlook from vista point.

(a) (b) (c)
Figure 10: (a) Toroidal constraint surface appropriate to the large cylindrical molecule shown. (b) Choice of camera parameters at the
midsection of the molecule. (c) Choice of camera parameters at the ends of the molecule provides a clear holistic view down the central core.

(a) (b) (c)
Figure 11: (a) Example of a multiple-valued constraint configuration. (b) View from marked point first time around the path. (c) View from
marked point second time around the path, showing a different detail to the viewer.

