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The  geometric  structures  of  proteins  are  vital  to  the understanding  of biochemical  interactions.  How-
ever, there  is  much  yet  to be understood  about  the  spatial  arrangements  of  the  chains  of  amino  acids
making  up  any  given  protein.  In particular,  while  conventional  analysis  tools  like  the Ramachandran  plot
supply  some  insight  into  the  local  relative  orientation  of  pairs  of  amino  acid residues,  they  provide  little
information  about  the  global  relative  orientations  of  large  groups  of  residues.  We  apply  quaternion  maps
to families  of  coordinate  frames  defined  naturally  by amino  acid  residue  structures  as  a  way  to expose
global  spatial  relationships  among  residues  within  proteins.  The  resulting  visualizations  enable  compar-
isons  of  absolute  orientations  as  well  as  relative  orientations,  and  thus  generalize  the framework  of  the
uaternions
uaternion maps

Ramachandran  plot.  There  are  a  variety  of possible  quaternion  frames  and  visual  representation  strategies
that can  be  chosen,  and  very  complex  quaternion  maps  can  result.  Just as Ramachandran  plots  are  useful
for addressing  particular  questions  and  not  others,  quaternion  tools  have  characteristic  domains  of  rele-
vance. In  particular,  quaternion  maps  show  great  potential  for  answering  specific  questions  about  global
residue  alignment  in  crystallographic  data  and  statistical  orientation  properties  in  Nuclear  Magnetic

at  are
Resonance  (NMR)  data  th

. Introduction

We explore a family of global visualization methods for explo-
ting quaternion maps of intrinsic protein orientation frames. The
dvantage of quaternion maps is that a single quaternion point
mbodies the full three degree-of-freedom transformation from
he identity frame triad in three dimensions (3D) to an arbi-
rary frame triad; therefore, a quaternion frame representation is

uch simpler than the usual frame representation using a triple
f orthogonal 3D vectors, and simultaneously it is much richer
han the Ramachandran plot, which in addition to having only two
egrees-of-freedom, can only represent the relative orientations of

mmediately neighboring residues. Quaternions naturally expose
lobal similarities among all residues in a protein complex, no
atter how near or how distant, and extending across component

roteins in multi-part structures.
Our canonical methods for visually representing quaternion val-

es as geometric points in space superficially resemble geographic
aps of the world globe, but the distinction is profound: while sim-
lar problems are addressed by the relation between a flat globe
ap such as a Mercator projection and the actual spherical sur-

ace of the Earth, the Mercator-to-Globe relationship is identical in

∗ Corresponding author. Tel.: +1 812 855 5855.
E-mail addresses: hansona@indiana.edu (A.J. Hanson),

thakur@renci.org (S. Thakur).

093-3263/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
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 very  difficult  to treat  by  other  methods.
© 2012  Elsevier  Inc.  All rights  reserved.

dimension and produces identical local representations in a suffi-
ciently small neighborhood (your town’s map  is flat for all practical
purposes). There is no local correspondence between a quater-
nion and a frame triad: a quaternion is a point in four Euclidean
dimensions, constrained to move inside a particular three-degree-
of-freedom spherical space, while a frame triad contains nine
separate components constrained to have the properties of a 3 × 3
orthogonal matrix, a completely distinct representation of the
three-degree-of-freedom 3D orientation system. The correspon-
dence also has a deep mathematical context: one of the greatest
geometric achievements of the 19th century was  the discovery of
the quadratic form, based on quaternions, that embodies an exact
map  from a quaternion point to the 9 elements of an arbitrary 3 × 3
orthogonal rotation matrix (an arbitrary 3D frame triad in our con-
text), together with the reverse two-fold ambiguous mapping from
any such frame matrix to a quaternion point.

Here we investigate the details of these mappings as they can
be applied to reveal properties of the spatial orientations of pro-
tein systems. Section 2 reviews previous work in this area. Section 3
outlines the mathematical and geometrical properties of quater-
nions that we  will be exploiting, with additional details provided
in the Appendices. Two  classes of quaternion visualization methods
are provided, one based on a visual geometric context (“geometric

view”), the other based on parallel coordinates and some innovative
quaternion-driven variants (“coordinate view”). Section 4 provides
numerous intuition-building examples of quaternion frame meth-
ods applied first to ideal mathematical curves, then to idealized

dx.doi.org/10.1016/j.jmgm.2012.06.004
http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
mailto:hansona@indiana.edu
mailto:sthakur@renci.org
dx.doi.org/10.1016/j.jmgm.2012.06.004
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pline curves used traditionally to represent a high-level protein
tructure. Finally, in Section 5, we illustrate applications to discrete
rames given by the atomic positions of residue components in a
rotein’s PDB file. Section 6 expands our scope to a variety of protein
ata domains and applications, including in particular a treatment
f the orientation variations present in the statistical distributions
f NMR  data. Section 7 summarizes the spectrum of tools that can
e applied to studies of quaternion maps, and a lengthy appendix is
evoted to a pedagogical study of the relation between Ramachan-
ran plots and our quaternion maps. In summary, quaternion maps
ave the potential to expose novel properties and features of pro-
ein geometry, with particular applicability to questions of global
verall structure.

. Related work

While quaternions have been employed extensively to encode
olecular orientations (see [1–5]), and have also been applied to

NA (see [6]), applications of quaternions to protein structures have
een limited in scope (see, for example, [7–14]). The most widely
sed approach to analyzing orientations of amino acid residues is
he classic work of Ramachandran [15,16],  which encodes only local
nformation about orientation angles, although alternative orien-
ation visualization methods have been proposed, e.g., by Bojovic
t al. [17].

A number of interesting approximations to the Ramachandran
nformation, along with techniques that exploit quaternion deriva-
ives, have been explored by R. Hanson et al. [18]. Part of the
atter work was in fact motivated by an unpublished version of
he current manuscript; the jmol molecular visualization system
ow includes the quaternion command implementing a number
f the basic quaternion mapping functions we describe here. Other
reatments, such as Morris et al. [19], use both local and global
tructures to ascertain the stereochemical nature of proteins, but
heir visualizations of protein stereochemistry are limited to two-
imensional plots and histograms. Our treatment here is somewhat
omplementary to these, focusing on visualizing global residue ori-
ntation properties directly in quaternion space (the “quaternion
auss map” [20–23]).

. Introduction to quaternion maps

This section introduces orientation frames in quaternion form,
he geometric view of quaternions, and the coordinate view of
uaternions, along with the extension of single quaternion point
isplays to the display of a series of quaternion points.

.1. Quaternion orientation frames

An Orientation Frame F can be specified as a triple of mutu-
lly orthogonal normalized three-vectors, where the identity frame
onsists of the three columns composed of the x-axis, the y-axis,
nd the z-axis. Any frame whatsoever can, by a theorem of Euler,
e expressed as a rotation R(�, n̂) that acts on the identity frame
nd rotates it about a fixed direction n̂ by some angle �, where

ˆ is the unique real eigenvector of R(�, n̂). The columns of the
atrix R are exactly the three vectors describing the corresponding

rame F.
Rotation matrices and the actions of rotations in three

imensions, and hence orientation frames, can alternatively be

epresented by unit-length quaternions (see, e.g., [23]). Just as a unit-
ength complex number cos � + i sin � = exp(i �) with i2 = −1 can be
epresented by a pair of real numbers (x, y) satisfying x2 + y2 = 1, a
nit-length quaternion (q0 + iqx + jqy + kqz) = exp(I · n̂(�/2)) with
phics and Modelling 38 (2012) 256–278 257

I  = (i, j, k) and i2 = j2 = k2 = ijk = −1 can be represented as a quadruple
of real numbers

q(�, n̂) = (q0, qx, qy, qz) = (w, x) =
(

cos

(
�

2

)
, n̂ sin

(
�

2

))
(1)

where it is sometimes convenient to define w = q0 and x = (x, y,
z) = (qx, qy, qz). Here the rotation axis n̂ and the angle � correspond
precisely to those introduced already in R(�, n̂); it is easy to ver-
ify that this parameterization has unit length, q · q = q2

0 + q2
x + q2

y +
q2
z = 1, and has only the obligatory three free rotation parame-

ters since n̂ · n̂ = 1 as well. The solutions of q · q = 1 (which define
the three-dimensional topological space of unit quaternions) are
known as S3, or the three-sphere.

Quaternions as represented in Eq. (1) have some additional
properties of particular interest to us here:

• There exists a quadratic formula that defines a two-to-one map-
ping from a quaternion q to a frame represented as a 3 × 3 rotation
matrix R, and, given a rotation matrix, one can find the two
unique corresponding diametrically opposed quaternions (see
Appendix A).

• The identity frame corresponds both to the quaternion q = (1, 0,
0, 0) and to q = (−1, 0, 0, 0).

• If we require two quaternions to multiply together using the
following order-dependent (non-commutative) rule originally
discovered by Hamilton,

Q = q1 � q2 = (w1w2 − x1 · x2, w1x2 + w2x1 + x1 × x2)

where � is quaternion multiplication, the resulting quaternion
Q remains embedded in S3 and generates the composite 3 × 3
rotation matrix R = R1 · R2. We  reiterate that the order mat-
ters: neither quaternions nor 3D rotation matrices commute in
general.

• The inverse of q = q(�, n̂) is just q−1 = q(�, −n̂) = q(−�, n̂), and
corresponds to the inverse 3D rotation matrix.

• There exists a quaternion distance formula,
d12 = �12 = 2 cos −1(q1 · q2), that gives a precise and rigorous
definition of the similarity between frames (see Appendix
B). This corresponds intuitively to a great circle or geodesic
minimal-length arc connecting two  points on an ordinary
sphere. Smooth spline-like curves, based on the properties of the
distance formula and embedded in the quaternion sphere S3, can
be constructed that smoothly connect sequences of quaternion
points [28].

3.2. Visualizing quaternions as geometry

A simple example of a frame F resulting from applying a rotation
about the ẑ direction to the identity frame is shown in Fig. 1(a). Our
next task is to relate this frame to its quaternion representation
and to convert the standard 3D display of this frame to a quaternion
display. In this subsection, we  will explore explicit geometric views
of the frame quaternion, and in the following subsection, we will
examine alternative coordinate views.

For a positive (counterclockwise) rotation about the z-axis, the
matrix F becomes
F = R(�, ẑ) =

⎡
⎣ cos � − sin � 0

sin � cos � 0

0 0 1

⎤
⎦
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Fig. 1. (a) A simple frame F obtained by rotating the identity frame by a 160◦ angle about the direction ẑ. The smaller white spheres in the schematic diagrams (b) and (c)
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how  the location of the identity frame and the larger black spheres show the qua
uaternion path starting at the identity, and the dashed lines show the path of a co
p  and down the z-axis. (c) The (w, y, z) projection, which produces a circle in the (

nd the columns are easily seen to be the components of F. Since
e know that the fixed rotation axis is n̂ = (0,  0, 1), we  can also
rite down the quaternion from Eq. (1) as

F(�, ẑ) =
(

cos

(
�

2

)
, 0, 0, sin

(
�

2

))
.

How do we use this information to make a geometric view of
F? We  have already remarked that any unit-length quaternion
our-vector q corresponds to a point on the three-manifold S3, a
hree-sphere embedded in four Euclidean dimensions. However,
here is a simple trick that allows us to make an accurate 3D pic-
ure of this complicated 4D object. Since our quaternions have
nit length, the fourth component w is redundant and is just the
olution of the equation w = ±

√
1 − x2 − y2 − z2. Hence, up to a

ign, all the orientation-frame information embodied in a quater-
ion can be represented by a point (x, y, z) in 3D Euclidean space.
e  can generally choose the positive sign without losing critical

nformation, and we can plot the three-vector component of any

uaternion as a point
n̂ sin(θ/2)

inside a unit-radius solid sphere;
his solid sphere is technically one of the two “hemispheres” of

3. We  rarely need to dwell on this because, in practice, we  study
equences of linked frames that do not frequently cross between
emispheres; nevertheless, it is important to be aware of the pos-
ibility when it happens, and to be prepared, e.g., to use different

ig. 2. (a) A classic parallel coordinate map  for a single quaternion point such as the fram
alues  placed side by side and connected by three line segments to denote a single point
f  F as a line from the x2 and y2 points at the origin to the z2-value on the vertical axis. W
n points representing the outcome of the rotation. The thick black lines show the
d z-axis rotation. (b) The canonical (x, y, z) projection, which produces a cyclic line
lane.

colors to encode in which hemisphere a point lies. Another variant
of the geometric view is to choose alternative projections, picking,
say, x = ±

√
1 − w2 − y2 − z2 instead of w as the “extra” variable,

and plotting the point (w, y, z) inside a distinct unit-radius solid
ball. These two choices are represented in quaternion coordinates
in Fig. 1(b,c) for rotations about the ẑ axis leading from the iden-
tity quaternion to qF, the quaternion representation of our sample
frame F.

3.3. Visualizing quaternions as coordinates

In our experience, most situations involving frame compar-
isons are most effectively represented using the geometric view of
quaternion coordinates. Nevertheless, in some cases one may  pre-
fer a very explicit (if less visually intuitive) representation showing
a list of quaternion coordinate values. The conventional represen-
tation of this type is the parallel coordinate representation [24]. This
representation in our case would consist of taking a 4D quaternion
vector representing an orientation frame (in some fixed, arbitrary
order in 4D such as (q0, qx, qy, qz)) and drawing three lines connect-
ing a graph of those four numbers, giving a display for one point

like that in Fig. 2(a) corresponding exactly to Fig. 1(b,c).

Another widely used coordinate view for multidimensional data
is the star plot (see, e.g., Chambers et al. [25] or Fanea et al. [26]). In
this approach, the real line in Fig. 2(a) is essentially deformed to a

e in Fig. 1. The four quaternion coordinates are represented in this case by the four
. (b) The quaternion star-squared map  (see Eq. (2)), showing the quaternion frame
hite dots denote zeroes or identity-frame values.
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ig. 3. (a) The PDB file geometry of 1AIE containing an alpha helix. (b) The quatern

oint and the graph connecting the four coordinate values becomes
 piecewise-linear circle bounded by a diamond-shaped polygon.
owever, because quaternions have the special property of unit

ength, we again can pick three independent coordinates instead
f four constrained coordinates and construct a three-axis star plot
nstead of a four-axis star plot.

There are several variants to the star plot. The four-axis quater-
ion star plot is sufficiently similar to the parallel coordinate plot
hat we will omit detailed discussion. The three-axis star plot is
ased on the 3 × 2 projection matrix

 =

⎡
⎢⎣−

√
3

2

√
3

2
0

−1
2

−1
2

1

⎤
⎥⎦ . (2)

rom this matrix we can construct several variants:

Plot the triangle formed by (� · (x, 0, 0)t, � · (0, y, 0)t, � · (0, 0, z)t).
This has the advantage of placing the identity frame uniquely at
the origin, but negative values of z appear in the same region as
positive values of x and y.
Modifying the above by displacing the xyz coordinates to be
always positive, i.e., (x + 1, 0, 0)t, etc., effectively makes the graph-
ing areas unique. However, the identity frame is now an odd finite
triangle.
A novel variation is to map  the identity frame uniquely to the ori-
gin by using the absolute values or the squares of the coordinates
in the map. Although we lose some specific information, we  pre-
fer the star plot of the squared values, that is (x2, 0, 0)t, etc., which
shows clearly how close the quaternion value is to the identity
frame (the center of the star plot).

In Fig. 2(b) we show the star-squared quaternion plot corre-
ponding to Fig. 1(b,c). For our simple z-axis rotation example,
ll one sees is a line to a point on the vertical axis. More general
rames would lie inside an equilateral triangle, with frames near
he identity frame converging on the center. Remark: one could
lso produce star-like plots with single 2D points for each frame
nstead of a triangle, such as � · (x2, y2, z2)t, but any equal-weighted
alue of (x, y, z) is confused with the identity.

.4. Collections of frames

A significant property of the quaternion views just described is
hat they provide a visual image of an orientation frame as a sin-

le point (or graph) in space, the quaternion map. We  now show
ow quaternion maps can be used to expose the absolute sim-

larity of two 3D orientation frames (arbitrarily separated in 3D
istance) using the proximity of the two quaternion points in the
eometric view of the 1AIE quaternion frame coordinates in the wyz projection.

plot (see Appendix B). Selected groups of dozens of orientation
frames occurring at widely different spatial positions may  corre-
spond to quaternion points falling close to one another or in a
revealing pattern in the quaternion map. Dissimilarities can simi-
larly be exposed. While the geometric view has the most powerful
tools for exposing global similarities, the parallel coordinate or star
plot approaches to representing frames with the coordinate view
can also suggest interesting relationships among frames.

For a collection of frames (in our case, a set of frames corre-
sponding to a sequence of residues in a protein), each frame is
then represented as a distinct point or graph of some sort, and the
ordered sequence of frames can be represented by a collection of
these. A special technique is typically used for sequences of quater-
nion frames to enforce continuity of the quaternion value: since
any frame can be represented by either q or −q, we must eventually
choose one. We  therefore compare the inner product qk · qk+1 for
each neighboring pair of frames (k, k + 1), and replace qk+1 → − qk+1
if the inner product is negative.

Our choices of representations that embody the intrinsic quater-
nion distances include the following:

• S3 Map. Using the projection directly from the 4D quaternion
value in S3 to a 3D subspace such as xyz produces a spherically
deformed map  of the actual quaternion distances (like looking at
a country on a globe of the Earth from an oblique angle). However,
the deformation is completely predictable, and distances for pairs
near the center, for example, are reliable. Interactive 4D rotations
(see [23,27]) can place pairs anywhere one would like in the pro-
jection. The metrically most accurate distance in the projection
is found by transforming the scene so one of the desired pair of
quaternion frames is at the origin in the xyz projection.

As a matter of practice, the curves connecting collections
of quaternion points in the spherical projection are typically
drawn as geodesics (shortest-distance paths constrained to the
three-sphere), though for simplicity one may  also draw them
as piecewise linear paths. The advantage of this representation
is that no matter how distant one object is from another in 3D
space or along the sequence, objects that have similar orientation
frames can always be forced to have nearby quaternion points.

• Parallel Coordinate Map. A typical parallel coordinate plot for a
collection has all the points superimposed on a single 2D plot. Our
case is different from the usual case because we  have the addi-
tional quaternion distance information available, which we  can
use to displace each set of plotted 4D coordinates from its neigh-
bors in a meaningful way. That is, we  take each individual parallel

coordinate plot and displace it in the perpendicular direction by
the value of the quaternion distance to its next neighbor. This
approach has the advantage that all absolute orientation differ-
ences from neighboring frames around the curve are represented
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as completely accurate Euclidean distances. It has the disadvan-
tage that it is hard to get an intuitive feeling of whether spatially
distant objects (far apart in space and/or the parallel coordinate
plot) have similar quaternion frame values or not.
Star Square Map. Sequences of the star maps that we have
defined using the projection Eq. (2) can also be displaced per-
pendicularly relative to each neighbor by the amount of the
quaternion distance. Again, this gives a metrically accurate
neighboring frame-distance representation for large numbers of
frames, and exposes patterns that have visual advantages similar
to the geometric projection, but relating distant frames to one
another is a challenge.

hese methods are illustrated for a generic sequence of frames
aken from the 1AIE PDB data in Figs. 3–6.

Summary. This completes our treatment of some of the ways
hat, once we have single instances of quaternion frames, we can
tart to keep track of sequences of quaternion frames in various
ontexts. Each method has specific domains of utility. Our own
reference is for representations with clear geometric properties
s opposed to coordinate-value properties, and thus we  will for the
ost part choose the geometric quaternion point projections in xyz

r wyz coordinates.

. Studies in quaternion frame maps
We now explore some specific examples of frame maps for ide-
lized mathematical objects that correspond closely to the behavior
f real protein data, providing additional intuitive grounding. The

Fig. 5. Parallel coordinate plot of the 1AIE standard quatern

Fig. 6. Star-squared parallel coordinate plot of the 1AIE quate
Fig. 4. Standard parallel coordinate plot of the 1AIE standard quaternion frame 4-
vectors, with no means of distinguishing neighboring residues.

following section will show a parallel sequence of examples taken
directly from PDB file data.

4.1. Alpha-helix model: quaternion frames of idealized curves

We now turn to an elementary application of quaternion
Frenet–Serret frames [21] to the study of helical curves, which

correspond to alpha-helices in proteins. Due to the double-valued
nature of the relation between quaternions and rotations, two full
turns of the helix correspond to exactly one closed circuit in quater-
nion space. The quaternion map  in this case is a circular closed loop

ion frame 4-vectors, spaced by quaternion distance.

rnion frame sequence, spaced by quaternion distance.
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ig. 7. (a) A helix defined by the parametric equation (r cos(t), r sin(t), pt).  (b) A set of
rames on the helical curve defined by the Frenet–Serret equation. Note the relation
f  the identity frame at bottom left to the first actual helix frame.

hat has an elliptical projection into the (x, y, z) coordinates, deter-
ined by the axis direction of the helix and its pitch. Fig. 7 shows
n ideal mathematical helix and a sampling of the continuous
renet–Serret frames determined by the local curve derivatives;
ig. 8 presents the corresponding xyz and wyz quaternion maps of
he orientation frames in Fig. 7. Note that the Frenet–Serret frame

ig. 8. The quaternion maps for a helix defined by the parametric equation (r cos(t), r sin(t
rames  attached to the helix. The red line is the path from the identity frame (at the red 

his  figure legend, the reader is referred to the web  version of the article.)
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may  not be suitable for certain classes of curves; if there is a straight
section or an inflection point (typical of cubic curves, for exam-
ple), the second derivative vanishes and the Frenet–Serret frame
becomes undefined.

A quick outline of how one actually does a quaternion calcula-
tion for a helix may  prove useful for understanding the quaternion
frames of an alpha helix structure. We  start with the equations
of a helix of radius r and pitch p, along with its first and second
derivatives:

x(t) = (a cos t, b sin t, pt)

x′(t) = (−a sin t, b cos t, p)

x′′(t) = (−a cos t, −b sin t, 0).

We  take a = b = r to produce a circular helix, and a � b to make
a flattened elliptical helix. We  use the value of the tangent (first
derivative) to determine the direction of the first frame axis, which
we label X. Typically, the next frame axis direction is computed
from the cross-product x′(t) × x′′(t), whose direction we  label Z;
then the remaining frame axis direction is Y = Z × X. Normalizing to
unit length, we  obtain the result for the frame triad of vectors for
any point t on the helix:

X(t) =
(

− r  sin(t)√
p2 + r2

,
r cos(t)√
p2 + r2

,
p√
p2 + r2

)

Y(t) = (− cos(t), − sin(t), 0)

Z(t) =
(

p sin(t)√
p2 + r2

, − p  cos(t)√
p2 + r2

,
r√
p2 + r2

)
.

(3)

Do not forget that these are the column vectors for the frame matrix,

not the row vectors.

The quaternion frame can then be computed as a rotation about
the z axis acting on the initial frame at t = 0, which reduces after a
bit of algebra to the form

), pt).  (a) The xyz quaternion map  and (b) the wyz quaternion map of the continuous
dot) to the first actual helix frame. (For interpretation of the references to color in
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Fig. 10. (a) A beta sheet modeled by the parametric equation (cos(t), 0.1 sin(t), 0.5t).
(b)  A set of Frenet–Serret frames at roughly the expected places on the equation of
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Fig. 9. Parallel xyz-squared star coordinates for the frames of a helix.

helix at 0 =

⎛
⎝1

2

√√
p2 + r2 + r√
p2 + r2

,
p

2
√
r
√
p2 + r2 + p2 + r2

,

−p

2
√
r
√
p2 + r2 + p2 + r2

,
1
2

√√
p2 + r2 + r√
p2 + r2

⎞
⎠ . (4)

ultiplying to the left by the quaternion qz rot(t) = (cos(t/2), 0, 0,
in(t/2)) rotating about the z-axis, the full quaternion frame for the
elix is then
helix(t) = qz rot(t) � q helix at 0. (5)

lugging these values into the quadratic form in Appendix A one
nds the matrix whose columns are the vectors in Eq. (3).

ig. 11. A beta sheet modeled by the parametric equation (cos(t), 0.1 sin(t), 0.5t). (a) The
he  red arrow is the path from the identity frame (the red dot) to the first actual helix fra
rames  is reflected in our choice of straight lines to connect neighboring frames here; in m
otation path from one frame to the next). (For interpretation of the references to color in
the  curve. Note the relation of the identity frame at foreground to the first actual
sampled frame.

Fig. 8 shows the explicit helical quaternion maps in spherical
geometric coordinates, in contrast to Fig. 9, which shows the star-
squared parallel coordinate representation. The geometric forms in
Fig. 8 are pure circles in the 4D geometry, and also in the wyz pro-
jection, but must be flattened ellipses in any other projection. The
periodic circular path of the quaternion frame in Fig. 8 is reflected
in the perfectly periodic pattern along the z-projection axis in the
star-squared plot in Fig. 9.

4.2. Beta-sheet model: extreme quaternion frames

A crude mathematical approximation to a beta-sheet can
be constructed by using a flattened helix such as Eq. (3) with
a � b. Sampling the Frenet–Serret frames at t = n� + � for a small
random � produces the alternating pairs of frame orientations
characteristic of beta sheets. In real data, the beta sheet also twists

systematically, which we  could include in the model by a slow
rotation in the xy plane. We  show in Figs. 10 and 11 the beta-sheet
analogs of the alpha helix model features shown in Figs. 7 and 8.

 corresponding xyz quaternion map of the continuous frames attached to the helix.
me. (b) The wyz quaternion map (Note: the discontinuous nature of the beta-sheet
ost cases, we will prefer to use smooth quaternion geodesics reflecting the shortest

 this figure legend, the reader is referred to the web version of the article.)
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ig. 12. Parallel xyz-squared star coordinates for the frames of an idealized beta-
heet model.

he parallel-coordinate-based star-squared map  of the beta sheet
odel shown in Fig. 12 corresponds to Fig. 9 for the helix.
For idealized beta sheets, we observe clusters at intervals of

oughly 90◦ in the quaternion plots, corresponding to the approxi-
ate 180◦ flips between neighboring residue orientations in a beta

heet. In practice, the real-world noisiness of the data will tend to
nterrupt the regular pattern of the mathematical model.

.3. Quaternion frames from spline curves of PDB backbones

We  next examine smooth frame sequences that can be asso-
iated directly with measured helical protein structures. Fig. 13(a)
hows the structure of a helix-containing subsequence of a protein,
he leucine zipper from the Protein Data Bank (PDB) file 1C94.pdb,
hose dominant element is a single helical structure consisting
f approximately seven loops. The idealized curve is defined by a
mooth B-spline approximation to the path of the C� atoms mak-
ng up the backbone. This curve is continuously differentiable and
s suitable for defining continuous moving frames along the curve

ig. 13. A simple protein section, the leucine zipper in the 1C94 data set. (a) The standard
his  curve passes near, but not through, each C� determined by this curve. (c) The xyz, q
hose  of the ideal helix in Figs. 7 and 8.
phics and Modelling 38 (2012) 256–278 263

such as the Frenet–Serret frames, samples of which are shown in
Fig. 13(b). Fig. 13(c) is the quaternion xyz map  of the Frenet–Serret
frames for 1C94, showing the quaternion form of the sequence of
orientations and their global relationship for the whole protein.
Comparison with the pure mathematical helix in Figs. 7 and 8
clearly shows the close resemblance.

5. Quaternion frames from discrete PDB data

We  turn our attention to quaternion descriptions of discrete 3D
frames determined by exact atomic positions, rather than ideal-
ized curves. This will allow us to explore applications involving
sequences of amino acid residue orientations.

There are many possible frame choices that can be assigned
to components of a protein. We  find it most natural to study
those defined within a residue.  Thus our prototypical frame will be
the one anchored at the C� carbon (C� frame), shown in Fig. 14.
Another useful but very distinct frame is the “P frame” (discussed
below), which includes the direction of the peptide bond connect-
ing a pair of residues, and thus utilizes atomic positions from both.
The geometry of these frames is defined in detail in Appendix
C.

There is one potential deficiency of the C� frame, as pointed out
in [18]: it is possible to fix both the absolute and relative orientation
of two  adjacent residues via their C� frames, and still have a poten-
tially significant ambiguity in the local geometric structure due to
the so-called “bicycle motion” (see Fig. 15).  The bond between the
Ci atom and the Ni+1 atom could possibly serve as the spinning
crank joining two  C�-frame “bicycle pedals”, though that action is
severely limited by the rigidity of the peptide bond. This is of course
true for any adjacent sets of three atoms in the protein backbone
used to define independent frames.

In order to construct the protein geometry completely (up to
whatever effect might arise from local distortions of the bond fea-
tures), we would need at least one more intermediate frame such as
the “P frame” relating two  adjacent residues. The P-frame is shown
schematically in Fig. 16 and defined in Appendix C. (Note that the
Ramachandran angles, described in Appendix D, do not actually
fully describe the transformation between adjacent frames.)
When we  pass to sequences of discrete frames, remember that
we must resolve the sign ambiguity between adjacent quaternion
frame values by choosing the minimum quaternion distance to the
preceding quaternion frame. For an ordered sequence of frames

 B-spline curve derived from the underlying C� backbone of the protein; note that
uaternion map  of the continuous Frenet–Serret frames. Compare these maps with
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ig. 14. Amino acid geometry showing the computation of our default discrete fram
 (red), Y (green), and Z (blue) are superimposed on the basic amino acid unit str

eferred  to the web  version of the article.)

uch as those produced by protein residues, the resulting map  is
 sequence of points in S3 that can be connected by piecewise-
ontinuous minimal-length quaternion curves [28] contained in
he three-sphere, embedded in 4D Euclidean space, and projected
ccording to the methods detailed above.

Our first example, the 1AIE structure, was introduced in Fig. 3

s a prototypical alpha helix. Applying the C� frame map  and the P
rame map  side by side, we find the results in Fig. 17,  showing sim-
lar but not identical helical structures as ellipses in the spherical
uaternion projection wyz.

ig. 15. Drop shadow representation of the geometry for two adjacent residues.
he  tinted C N′ bond is central to the peptide bond, and embodies the “bicycle”
mbiguity of the two neighboring C�-frames. The P frame incorporates this peptide
ond instead of being isolated in a single residue.
d on the direction from the C� to the neighboring C and N atoms. The frame vectors
e. (For interpretation of the references to color in this figure legend, the reader is

A more complicated configuration, the leucine zipper 1C94 dou-
bled helix, is shown in Fig. 18,  along with its C�-frame quaternion
maps. Each frame is represented by a single quaternion point in the
map, and the ordered sequence of amino acids produces an ordered
sequence of quaternion points. Any two points in this sequence,
whether adjacent or not, can be connected pairwise by quater-
nion curves that correspond to the smallest rotation transforming
one orientation frame to the other. The lengths of these minimal
curves provide a precise measure of the similarity of the orienta-
tion frames. Amino acid residue frames that are close in quaternion
space, whether nearby or distant in the ordered sequence, have
similar global orientations.

Beta sheet example. We  next examine the signature of beta
sheets, which form widely spaced clusters of similar orientations

in the quaternion maps, as shown in Fig. 19 for 2HC5, and later
in Fig. 25.  Our conventional coercion of neighboring quaternion
frames to have positive inner products is not always effective for
widely spaced frames such as those in beta sheets. In Fig. 20 we

Fig. 16. The coordinates of the P-frame definition; the frame is centered on the C
carbon, and extends to the nitrogen on the neighboring residue.
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Fig. 17. Protein structure of 1AIE with its C� frames and its P frames, an

how an alternative method, plotting both signs for frames sus-
ected to form beta sheets, and clearly exhibiting the theoretically
xpected four-fold clustering.

Another type of example is shown in Fig. 21,  which includes
 B-Spline model of the protein 1A05, based on the C� back-
one. Orientation frames for residues that correspond to a beta
heet are drawn over the model shown in Fig. 21(a). A quater-
ion map  in Fig. 21(b) shows quaternion points corresponding
o the orientation frames. The quaternion map  reveals that pairs
f alternating residues have similar orientations. Some of the
airs of similar orientations are highlighted (A–D in the fig-
re).

Observations. We  can see by examining Figs. 3 and 17 that alpha-
elices also produce clusters of similar orientations, and that every
eventh amino acid frame falls close to its predecessor. For the par-
icular case of 1AIE (see Fig. 3), the number of residues in the helix
s small enough that we can single out seven distinct groups of two
r three (marked by oval outlines in the figure) that are spaced
even apart in the sequence making up the helix. This is an exam-
le of the application of the quaternion map  to highlight global
rientation patterns that may  be difficult to extract by other meth-

ds. In contrast, beta sheets will produce isolated clusters for short
equences, and more highly spread patterns for longer sequences.

e can exploit the quaternion map  in general to extract similarities
n orientation patterns.
orresponding quaternion frames joined as a sequence of spherical arcs.

6. Example applications of discrete global quaternion
frames

Applications of quaternion maps to the analysis of orientation
frames fall into several categories:

• Single or Composite Rigid Protein Frame Groupings: The avail-
able data sets are dominated by explicit atomic locations for
one single protein or a few closely associated proteins. The most
useful information for such data sets is probably the set of dis-
crete global frames based on a single residue, such as the C�

frame. Incorporating information from neighboring residues to
form alternate sets of frames is possible, and can produce quater-
nion alternatives to the Ramachandran plot (see Appendix D). The
backbone atoms can also be exploited to generate approximate
polynomial curves representing protein structure; the analysis of
such curves is exhaustively detailed elsewhere [22,23].

We will focus on the residue-local C� frame in our examples.
Such discrete frames are particularly appropriate for identify-
ing clusters of globally similar frames, which may  be near one
another physically or farther away but belonging to a regular geo-

metric structure. Such clusters expose the natural relationships
among groups of frames with diverse spatial relationships.

• Patterns and Straightness: Proteins arrange themselves into sec-
ondary geometric groups such as alpha helices and beta sheets.
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ig. 18. (above) Geometry of the double-stranded protein structure 1C94 (the leuc
below) Discrete quaternion maps for C� frames of the two  strands of 1C94. (For in
eb  version of the article.)

Quaternions can be used for detailed analysis of the global ori-
entations into patterns identified with secondary structures, and
approaches have been found that use quaternion based “straight-
ness measures” to effectively identify structural patterns [18].

Nonrigid Class Groupings: The quaternion analysis does not
depend on the rigidity assumptions underlying the X-ray crys-
tallography data for atom locations in the PDB database. We
can examine instead the nonrigid groupings of NMR  data, which

Fig. 19. Protein structure of 2HC5 and a quaternion map of its beta sheet structu
pper). Segments that are part of helices in the two strands are depicted in yellow.
etation of the references to color in this figure legend, the reader is referred to the

produce clusters of similar geometries for the same sequence
of amino acid residues. These sheaf-like groupings of protein
strands that present themselves in the NMR  data provide an
entirely different opportunity: here each individual amino acid

appears multiple times, and quaternion measures provide essen-
tially the only rigorous metric for quantifying the similarities of
the orientations of the multiple instances of an amino acid in
each of the strands. We  employ both the spherical mean and the

re. Neighboring frames are given matching quaternion signs in this map.
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ig. 20. Beta sheet structure with each quaternion frame displayed twice, with both
wists  slowly, causing the four expected 90◦ spaced groups to spread out across qua

standard deviation [29] to evaluate overall qualitative features of
the cluster, and utilize outlier-excluding convex hulls for more
robust descriptions of the low-rank statistics of these clusters.
Examples are shown in Figs. 22–27.
Functional Activation Groupings: Current research on enzyme
functionality seeks to identify groups of active residues with
side-chains that arrange themselves geometrically to facilitate
biological functions. Given an hypothesis about, say, a triplet
of side-chains we can compute quaternion representations not
only for the basic C� frame, but also for the orientations of rele-
vant side-chains with respect to the C� frame. Quaternion frames
provide a relatively straightforward method for surveying pro-
posed activation groupings for matching orientation patterns (see
Figs. 28 and 29).
.1. Quaternion frames of rigid proteins

Example: 1C94 (PDB), the Leucine Zipper.  An elementary example
s provided by a protein fragment known as the “Leucine Zipper,”

ig. 21. (a) A model of protein 1A05 constructed using a B-Spline curve, which is based on
heet  structure. The frames are labeled by the sequence number of the amino acids they 

cids  making up the protein 1AIE. Numbered points represent the quaternions correspon
ible overall signs. One can see that the beta sheet does not lie exactly in a plane, but
on space.

which consists of two  � helices that align with one another in a
tertiary structure (i.e., two or more associated proteins). The top of
Fig. 18 shows the two  strands and C� C� backbones.

We compare the maps corresponding to the two different
strands making up the protein complex of 1C94. The bottom of
Fig. 18 shows quaternion maps for the two  strands. While the maps
for the two strands are expected to be similar because of the simi-
larity of two strands, the maps can be used along with other metrics
to uncover subtle differences, either within the same complex or
across protein complexes.

6.2. Statistical quaternion groupings of NMR  data

Example: NMR data for 1T50 (PDB): A Water-borne Pheromone
from the Mollusk Aplysia Attractin. A more complex protein, the

1T50 pheromone, is depicted in Fig. 22(a). The structures in the
figure correspond to a selection of twenty NMR  data sets for the
C� C� backbone of the protein complex 1T50. Fig. 22(b) singles
out one of these for reference. Fig. 22(c) shows the single model

 backbone C� atoms of the protein. The region with frames corresponds to the beta
belong to. (b) Quaternion map  of the select frames associated with discrete amino
ding to a single frame defined for each amino acid.
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ig. 22. Structure and quaternion map  of the protein 1T50 (PDB), a water-borne p
ackbone of a single model of the NMR  dataset showing C� frames, (c) the model sho
n  the backbone, and (d) quaternion map  of the frames shown in (b). (For interpr
ersion of the article.)

olor coded by quaternion distances between neighboring residues.
he quaternion map  for the reference segment (b) is displayed in
ig. 22(d).

Example: NMR  data for 2HC5 (PDB). Twenty different geomet-
ic configurations of protein YvyC from Bacillus subtilis, 2HC5, are
hown in Fig. 23.  In this data set, the variations in the orienta-
ion of each amino acid can be clearly seen in the quaternion map,
long with clusters of similar and dissimilar orientations. The spa-
ial displacements in the data have only minimal correlation with
he orientation displacements observed in the quaternion map;
owever, their cluster centers and statistical characteristics can be
learly identified, with very “floppy” arms of the protein generating
arge orientation variances, and relatively rigid branches keeping
lose to one another in quaternion space.

In Fig. 24,  we interactively select a particular helical region of the
rotein to study the orientation distribution of its elements. Small

uaternion regions correspond to fairly rigid configurations, and

arge regions have large quaternion-distance spreads around the
pherical mean, indicating non-rigid behavior. Since the NMR  data
re selected on a relatively qualitative basis by the contributors, the
one. (a) Twenty models of the protein 1T50 determined using NMR structure, (b)
 (b) color coded by quaternion distance of a residue relative to its preceding residue

n of the references to color in this figure legend, the reader is referred to the web

precise meaning of some components of the differences are elusive,
and it may  well be possible to perform further quaternion-based
analysis to further refine the apparent deviations in the data.

In Fig. 25,  we show quaternion maps for alternative geometries
of 1BVM and 2HC5. We note in particular the properties of the beta
sheets that are components of these two  structures.

Two particularly interesting examples of NMR  analysis with
quaternion visualization of the statistical distance distributions are
given in Fig. 26,  which shows a very “tight” distribution in the pro-
tein shape flexibility, and a contrasting situation in Fig. 27,  which
shows significant variation in the spatial structure, but retains rela-
tively close distributions in the orientation frames (quaternion dot
products within the 0.9 range).

6.3. Enzyme functional structures
Comparing HIS:TYR:ARG structures.  It is known that catalytic
residues can exhibit characteristic geometric structures [30].
Among the groups of structures that could have similar structure
and behavior, the proteins 1CB8 and 1QAZ form an interesting pair
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ig. 23. Quaternion maps for NMR  data describing 10 different observed geomet
eometries. (b) Quaternion maps showing the orientation space geometry spreads f

f examples, with similar physical locations of HIS, TYR, and ARG,
ith quaternion frames noted in the following table.

ID Residue (q0, qx , qy , qz)

1cb8 HIS 225 (0.861990, 0.491292, −0.124869, −0.003658)
TYR 234 (0.146887, 0.799738, 0.297092, 0.500579)
ARG 288 (−0.637504, 0.412136, −0.383576, 0.525929)

1qaz HIS 192 (0.385861, −0.419153, −0.585444, 0.576781)
ARG 239 (0.117073, 0.047674, 0.638640, 0.759052)
TYR 246 (−0.565738, 0.038947, 0.598576, −0.565801)

1fmi GLU 330 (0.443820, −0.519370, −0.290678, −0.669915)
ASP 463 (−0.200536, 0.850733, 0.058078, 0.482355)
GLU 599 (0.082620, −0.582741, −0.708285, 0.389768)

1rfn HIS 57 (−0.154496, 0.404741, −0.857509, 0.277477)
ASP 102 (−0.116981, 0.070199, −0.983358, −0.119979)
SER 195 (−0.699076, −0.128476, 0.354901, −0.607316)
In Fig. 28,  we show how these structures appear in 3D space. A
ifferent type of detail is shown in the quaternion plots: the objec-
ive in Fig. 29 is to successively align parts of the enzyme orientation
n sequence to single out similarities and differences in these very

ig. 24. Isolating a selected section of the protein YvyC from Bacillus subtilis, 2HC5. (a) 

preads for each individual amino acid in this region.
r the protein yvyC from Bacillus subtilis, 2HC5. (a) The collection of alternative
h individual amino acid.

distinct structures. Fig. 29(a) begins the process by showing the
identified active sites listed above for the 4 enzymes 1cb8, 1qaz,
1fmi, and 1rfn, with the quaternion plots of their orientations all
transformed to have the reference frame of the first residue as the
origin (the identity frame). Technically, that means that all orien-
tations have been multiplied by the inverse of the frame matrix
of the first residue. Fig. 29(b) is the result of identifying the axis
of rotation characterizing the rotation of the 2nd residue from the
identity frame, and applying a global rotation on the entire enzyme
to align that axis with the qx axis. At this point, there is still one more
degree of freedom, since the quaternion curve denoting the rota-
tion from the 2nd residue’s frame to the 3rd residue’s frame can
still be realigned.

7. Tools for exploring and comparing quaternion maps
Visual analysis of the quaternion maps can reveal interesting
global information about the protein structures. However, there
are several useful techniques at our disposal that can enhance the

The selected region. (b) Quaternion maps showing the orientation space geometry
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Fig. 25. NMR  data for 1BVM and 

isualizations or provide additional information, and can therefore
id in the exploration and comparison of the quaternion maps.
.1. Aids for exploring quaternion maps

Our standard method relies on the fact that if we  plot
ust the vector element q of the full unit quaternion q = (q0,

ig. 26. Quaternion maps for NMR  data describing 20 different geometries for the protein
lternative geometries. (b) Quaternion maps showing the orientation space geometry spre
lose  spatial similarity and quaternion frame similarity in the collection of alternative str
 containing beta sheet examples.

q) obeying q · q = 1, then we  have in principle a complete
picture, since the fourth component q0 = ±

√
1 − q · q is redun-

dant up to a sign. Curves, surfaces, and even volumes can be

plotted in this way  to show the global features of the quater-
nion orientation families and to represent available degrees
of freedom. Several specialized techniques can further aid the
visualizations:

 Bovine pancreatic phospholipase A2 derived from 1BVM.pdb. (a) The collection of
ads for secondary structures of each of the predicted chains. This example has very
uctures.
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Fig. 27. Quaternion maps for NMR  data describing 20 different geometries for the protein obtained from 1D1R.pdb; the protein is derived from genetic information in YciH
gene  of the E. Coli bacterium. (a) The collection of alternative geometries. (b) Quaternion maps showing the orientation space geometry spreads for secondary structures of
each  of the predicted chains. Note that even though the predicted structures in (a) are widely displaced in space, the error in orientations among corresponding residues is
relatively low. It would be very hard to see this using any method except the quaternion plot.

Fig. 28. The 3D locations of the active catalytic features of the proteins 1CB8, 1QAZ, 1FMI, and 1RFN.
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Fig. 29. (a) The quaternion maps of the listed active sites for 1IA6 (red), 1FMI (yellow), 1CB8 (green), 1QAZ (cyan), and 1RFN (blue), transformed to the same quaternion
origin  (first residue is the reference identity frame). (b) Result when the quaternion paths for all five enzymes from the first to the second residue are rotated to lie on the
s e align
( f the r
t

•

•

ame  axis. (c) Quaternion map  that results when we perform the maximum possibl
d)  Oblique view of the maximal quaternion space alignment. (For interpretation o
he  article.)

Double frames. The quaternion q(F) corresponding to a given 3D
frame F is ambiguous up to a sign. In principle, we should not
be able to distinguish anything about the same family of frames
if we assigned the sign at random. One approach to this feature
is simply to place each frame twice in the plot, with both signs
always present. For statistical clustering, and particularly for beta
sheets, this can have some advantages; for applications depend-
ent upon spatial sequencing of residues, this is less useful since
any piecewise linear connections become very cluttered.
Force close frames. One useful technique for studying sequences
of quaternion frames is to assume that neighboring pairs are

not wildly different in their orientations. Each pair of initially
assigned neighboring quaternion frames can be characterized by
the sign of their mutual dot product; the “force close frames”
algorithm makes a smallest-rotation assumption, and changes
ment, with the frames of the 3rd residue rotated to lie in a common (qx , qy) plane.
eferences to color in this figure legend, the reader is referred to the web version of

the sign of the next quaternion frame if its dot product with
its predecessor is initially negative. The result is a unique sin-
gle sequence of quaternion frames, with no sign ambiguity or
duplicated points, in which each neighboring pair of quaternion
frames has a non-negative dot product, i.e., q(i) · q(i+1) ≥ 0.

• Color coding. While the value of q0 is in principle superfluous,
it can be useful to supply redundant information about its value,
particularly in complicated long sequences, where q0 may  change
sign several times. A simple way  to do this is to color code the
value of the unseen q0 component at each plotted point of q.

• Cycle through displayed quaternion components. While our

default xyz quaternion projection displays q and omits q0, it may
be useful to display q0 as one of the three visible components and
omit one of the qk, e.g., the wyz projection. This is particularly
useful for exposing certain types of circular or cyclic structures.
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A.J. Hanson, S. Thakur / Journal of Molecu

Grouping by skipping. Many proteins have global orientation
patterns that are not exactly sequential, but that may  be exposed
by sampling the protein at intervals. Thus if we  group quaternion
points corresponding to interval samplings, we  can sometimes
see the global orientation structure more clearly.

.2. Metric for comparing quaternion maps

The quaternion maps for complex and large proteins can be
ense, and discerning the relevant structure visually may  become
ifficult. In such cases, we can use selection tools that rely on
uaternion space distances to pull out various subsequences or
imilar regions.

Similar protein frames are characterized by quaternions that
ave larger mutual dot-products (cosine of the angle between 4-
ectors closer to one) and so are closer in quaternion space. We
an select locations on the protein whose orientations are similar
o any given prototype point by thresholding the dot product.

Another measurement of the global properties of protein frames
s the total turning along the helices. This is incrementally measured
y the angle that takes one frame and rotates it into the other. This
urning angle is given as usual by the quaternion-based measure
omputed from the dot product.

. Conclusion

We have attacked the problem of defining global frames appro-
riate to the sequences of amino acids that make up proteins.
raditional methods for analyzing protein orientations such as
he Ramachandran plot are useful for local relationships but have
othing to say about global orientation patterns or statistical dis-
ributions of absolute orientations. Since quaternion maps are
recisely the right technology for revealing global orientation pat-
erns and similarities, we have built a set of tools and methods that
reate quaternion maps of both discrete and continuous orientation
equences derived directly from the PDB file structure for any given
rotein with crystallographic of NMR  based geometry. Quaternion
aps thus provide a unique bridge between sequence and struc-

ure, and establish a tool that enables the asking of questions that
ave not previously been posed.

Future goals are to develop further tools to expose compara-
ive global features, e.g., to see how different protein sequences

ay  exhibit parallel geometric structures, and to analyze protein
ynamics using quaternion tools.

Quaternion Tools. Demonstration tools for the investigation
of quaternion frames are supported by the standard jmol envi-
ronment, located at http://chemapps.stolaf.edu/jmol/.  The jmol
QUATERNION command can be used to generate and display
quaternion maps for any PDB data.
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Appendix A. Relating a quaternion to a frame

An orthogonal 3 × 3 matrix F can always be expressed as a
rotation by an angle � about a fixed direction n̂, F = R(�, n̂). The
corresponding quaternion, up to an overall sign, is just

q =
(

cos

(
�

2

)
, n̂ sin

(
�

2

))
. (A.1)

The matrix R can be expressed equivalently in terms of (�, n̂) or in
terms of the quaternion components q = (q0, qx, qy, qz): the (�, n̂)
description is⎡
⎣ c + (nx)

2(1 − c) nxny(1 − c) − snz nznx(1 − c) + sny
nxny(1 − c) + snz c + (ny)

2(1 − c) nzny(1 − c) − snx
nxnz(1 − c) − sny nynz(1 − c) + snx c + (nz)

2(1 − c)

⎤
⎦

where c = cos �, s = sin �, and n̂ · n̂ = 1; the alternative quaternion
expression is the quadratic form[
q2

0 + q2
x − q2

y − q2
z 2qxqy − 2q0qz 2qxqz + 2q0qy

2qxqy + 2q0qz q2
0 − q2

x + q2
y − q2

z 2qyqz − 2q0qx
2qxqz − 2q0qy 2qyqz + 2q0qx q2

0 − q2
x − q2

y + q2
z

]
.

These can be shown, with the help of Eq. (A.1), to be exactly the
same thing. If the starting frame F is the identity matrix, the frame
after transforming the coordinate system is given exactly by the
columns of R(�, n̂).

Since R(q) is quadratic in q, we  see that R(q) = R(− q), so q and
(− q) produce the same frame matrix. An equivalent statement is
that the map  is double valued, with q(�) and q(� + 2�) producing
distinct opposite-sign quaternions but the same frame. When we
multiply together two 3 × 3 rotation matrices (R1 composed with
R2), the new frame F = R1 · R2 is exactly the same as the frame result-
ing from applying the quadratic map  above to the quaternion

Q = q1 � q2 = (w1w2 − x1 · x2, w1x2 + w2x1 + x1 × x2)

where � is quaternion multiplication. The inverse q−1 of q(�, n̂) is
just q(−�, n̂).

All that is required to convert a frame F to a quaternion is to
find � and n̂ of the corresponding rotation matrix R(�, n̂) without
encountering unacceptable numerical errors. Given F, we  can find
� and n̂ as follows:

trF = 1 + 2 cos �

so

cos2

(
�

2

)
= 1

4
(trF + 1).

Since

F  − Ft =
[

0 −2nz sin � 2ny sin �
2nz sin � 0 −2nx sin �

−2ny sin � 2nx sin � 0

]

we can in principle search for the largest value and then solve for
n̂. When � is near zero, one returns to the matrix F itself to find the
largest off-diagonal term to use for a stable solution [23].

Appendix B. Quaternion distance

Distances between orientation frames are properly computed
as the shortest paths lying within the quaternion three-sphere S3.
This distance between two  frames in isolation can be computed

either from axis-angle rotation matrix methods or using quater-
nion methods. Placing these distances in a global context, however,
requires quaternions. We  can get a good estimate of the spherical
distance from our 3D quaternion visualization methods, but there is

http://chemapps.stolaf.edu/jmol/
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ypically some spherical distortion in the projections that requires
ompensation using additional interactive tools. (This is similar to
he problem of trying to make a distance-preserving projection of
he Earth onto a flat piece of paper; distances between cities on a
lobe are perfectly correct, but we cannot take a satellite picture
hat allows accurate measurement of these distances with a simple
uler.) The distance of the frame defined by R(�, n̂) from the identity
rame may  be understood in practice as the angle � itself. We  can
xpress this distance in invariant form by noting that the 4D inner
roduct (dot product) of the identity frame qID = (1, 0, 0, 0) with

 = (cos(�/2), n̂ sin(�/2)) is exactly q · qID = cos(�/2). The distance
etween any arbitrary pair of frames is thus seen to be

12 = �12 = 2cos−1(q1 · q2).

ince q1 · q2 = (q1 � q−1
2 ) · qID, some prefer to define this distance in

erms of the first element of q1 � q−1
2 .

A practical representation of this minimal distance between two
rbitrary quaternions q1 and q2 in S3 is the so-called SLERP [28].
his smooth minimal-length geodesic curve (which also projects
o a smooth curve in any of our geometric views), is given by

(q1, q2, t) = q1
sin((1 − t)�)

sin �
+ q2

sin(t�)
sin �

(B.1)

here cos � = q1 · q2.

ppendix C. Protein frame geometry

In order to apply quaternion maps to a protein, we must identify
ull 3D coordinate frames that can be constructed uniquely from the
tomic positions in a protein structure file, typically obtained from
he Protein Data Bank [31], and derived from crystallographic or
MR  data.

Each amino acid by itself defines a tetrahedral framework con-
aining five atoms centered on the alpha-Carbon atom. Ignoring the
ydrogen, we have the alpha-Carbon at the apex of a tetrahedron
hose triangular base is formed by the C carbon of the carboxyl

roup, the side-chain R, and the nitrogen from the original amino
roup, as shown in Fig. 30.  (Note that amino acids come in two
somers, D and L, and that most biological systems involve the L iso-
eric form shown in Fig. 30,  where the left-handed CORN sequence
oints the thumb in the direction of the C�.)

We can choose any three atoms to define a frame with one
tom at the origin, and vectors from that central atom to the other

ig. 30. Amino acid neighboring structure. Triples of atoms (i − 1), (i), and (i + 1)
orrespond to a single amino acid residue. The group of six atoms, C:N:C�:C:N:C� ,
tarting at label “1” in the figure for the first C, defines the Ramachandran angles as
hinge” angles of the three groups of four atoms in the sequence of six. The planes of
he peptide bonds connecting to adjacent amino acids define the   and � dihedral
ngles. The angle ω describes the normally negligible torsion of the peptide bond,
hich is relatively rigid. The central tetrahedron has the alpha-Carbon at its top cen-

er, and we  note that the orientation is the dominant L-form: the implicit hydrogen
oints upwards and the C R N triangle goes clockwise.
phics and Modelling 38 (2012) 256–278

two serving to define the rest of the frame. Although we  generally
choose the C� frame, with the triplet N:C�:C forming the basis, we
can choose any other local frame containing only atoms in a single
residue, and it will be related to the C� frame (or any other local
frame) by a body-frame rotation that is universal for all amino acids
(with the exception of a two-fold ambiguity for Glycine, for which
the side chain (R) = H). We  can also choose frames based on triples
of atoms that cross residue boundaries; such frames form the basis
of the Ramachandran angles.

Carbon alpha frame: For a local, single-residue frame, we there-
fore only need to define the C� frame. Starting from the position
vectors for each atom of the N:C�:C triplet, we define the canonical
C� frame as follows:

X = C C˛
|C C˛|

U = N C˛
|N C˛|

Z = X × U
|X × U|

Y = Z × X

as shown in Fig. 14.
Any such construction gives us a frame constructed from the

fixed atomic vertices of an amino acid residue in a protein. The
frame itself is representable as the 3 × 3 orthonormal matrix

F =
∣∣X Y Z

∣∣
and the corresponding quaternion q(F) can be constructed (up to a
sign) by the algorithm outlined above.

Peptide bond frame: The peptide bond frame, or “P frame,” uses
atomic positions from two neighboring residues sharing a peptide
bond. Starting from the position vectors for each atom of the N:C�:C
triplet along with its following neighbor, N′:C′

˛:C′, we  define the
canonical P frame as follows:

X = C˛ C
|C˛ C|

U = N′ C
|N′ C|

Z = X × U
|X × U|

Y = Z × X.

The schematic image corresponding to the P-frame construction is
shown in Fig. 16.

Side-chain frame: In addition to the main protein backbone
coordinates, the PDB data files contain information on the positions
of the atoms in the residue side-chains that can also be studied.
Since the side-chain geometry and composition varies consider-
ably, starting with the essentially structureless sidechain of glycine,
which contains only a single hydrogen, one might need to cus-
tomize the quaternion frame description on a case-by-case basis.
Typically one would start with a framework such as the C:C�:C�
triplet where C� is the carbon atom on the side-chain group con-
nected to C� (if it exists). A prototype side-chain frame might then
look something like

X = Cˇ C˛
|Cˇ C˛|

U = C C˛
|C C˛|

Z = X × U
|X × U|
Y = Z × X.

Among other options, one could interchange C and C�, or substitute
N for C in the triad.
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ppendix D. A quaternion context for traditional
amachandran plots

In this appendix, we complete the overall picture that may  be of
nterest to some readers, and describe in detail some relationships
etween the traditional 2D Ramachandran plot and our quaternion
aps.
The standard triple of Ramachandran angles is determined by a

liding set of six atom positions as defined in Fig. 30.  A convenient
abeling, including the neighboring residues, is the following:

Atom: N Cα C N Cα C N C C

ID nu mber: -1 0 1 2 3 4 5 6 7

stan dard f rame
The Ramachandran starting position is the carbonyl carbon

btained by dropping the first two atomic positions (N and C�)
f the residue to the left of the residue that is our central focus,
djoining the NC�C atoms of that residue, and appending the first
wo atoms (NC�) of the residue to the right. We  number this
NC�CNC� sequence as 123456, with 234 being the atoms of the
entral residue, the one we have already used to define our standard
uaternion frame parameters. The angle � is associated with the 23
xis,   with the 34 axis, and ω with the 45 axis; however, we need
o be careful about the signs, as described below.

In this group of six atoms, each set of three atomic positions
rom a PDB file defines a plane, and each pair of these triangles
orms something that may  be thought of as a bent hinge with the

iddle two atoms being the axis of the hinge (e.g., the vector (3 − 2)
s the hinge of 1234). We  may  then label the normals to each of
he triangles by the ordered triple of vertex indices (see Fig. 30),
here we define the corresponding normal to be the result of the

ross-product formed by the ordered vertices labeled as follows:

n̂(123) = (2 − 1) × (3 − 2)
|(2 − 1) × (3 − 2)|

n̂(234) = (3 − 2) × (4 − 3)
|(3 − 2) × (4 − 3)|

n̂(345) = (4 − 3) × (5 − 4)
|(4 − 3) × (5 − 4)|

n̂(456) = (5 − 4) × (6 − 5)
|(5 − 4) × (6 − 5)| .

emember that n̂(234) is the ẑ-axis in Fig. 14.  The cosine of each
amachandran angle is given by the inner product of the pair of
djacent normals n̂,  and the sign of the sine is given by the inner
roduct of the hinge axis Â = A/||A|| with the cross product of the
wo normals. Alternatively, writing a = 2 − 1, b = 3 − 2, and c = 4 − 3,
nd

x = (a × b) · (b × c) = (a · b)(b · c) − (a · c)(b · b)

y = (a × b) × (b × c) · b
||b|| = ||b||(a · (b × c)),

e can determine the correctly signed cosine and sine from

cos � = x√
x2 + y2

sin � = y√
x2 + y2

here we cycle from 1234 through 2345 and 3456 to get   and ω,
espectively.

While this basic geometry is well-known for the computation of

he Ramachandran angles, we need the notation in order to proceed
ith the quaternion definitions that will allow us to gain some addi-

ional insights. First, we define the base coordinate system (x̂, ŷ, ẑ)
s usual (from Fig. 14)  for the vertices 234, with atoms NC�C. Then
phics and Modelling 38 (2012) 256–278 275

there exist three special rotations relative to that frame that we  can
write in axis-angle form as the 3D rotations

R1 = R(�, Â1 = −Â23)
R2 = R( , Â2 = +Â34)
R3 = R(ω, Â3 = +Â45).

Here Âij is the normalized unit vector constructed from the atomic
coordinates j − i, and the angles are the Ramachandran angles,
the “hinge” angles of right-handed rotations leaving fixed the
Âij axes. We need these because next we  are going to define
the corresponding quaternions whose positions in S3 represent
the rotations that have to be applied to n̂(234) = ẑ,  the z-axis of
our standard NC�C frame, to change its direction to match the
other three normals generated by the triangles in the 1234567
sequence.
Q1 = (cos(�/2), Â1 sin(�/2)) Rotates ẑ to  align with the direction

of n̂(123), the inverse of the actual
Ramachandran � rotation.

Q2 = (cos( /2), Â2 sin( /2)) Rotates ẑ to align with the
direction of n̂(345), the
Ramachandran   rotation.

Q3 = (cos(ω/2), Â3 sin(ω/2)) Rotates R2 · ẑ to align with the
direction of n̂(456), the normally
ignored Ramachandran rotation
that precedes the final rotation
taking ẑ of  the current NC�C frame
to ẑ′ , the z-axis of the next NC�C
frame in the protein.

Q4 = (cos(�′/2), Â56[= −Â1′ ] sin(�′/2)) Rotates R3 · R2 · ẑ to align with the
direction of n̂(456) = ẑ′; this is the
positive actual Ramachandran �′

rotation.
We  can now choose an example protein representation, such as

the PDB file for the mostly helical 1AIE with 31 residues, or the more
complex 1A05 with 357 residues, and plot a variety of quantities
for comparison.

• Ramachandran angles. We  have � and  , and so we can show the
standard Ramachandran plots in Fig. 31,  with clusters of points
near � ≈ −60 and   ≈ −40 as is typical of the alpha helices con-
tained in 1AIE and 1A05.

• I: xy quaternion Cartesian sum map. First we take the 3-vector
parts of the quaternions Q1 and Q2 defined above and refer them
to our standard C� residue frame, so that the �-rotation axis and
the  -rotation axis lie in the same local reference frame, that is
the local xy plane (by definition, the  -rotation axis is the x axis).
The plot of these quantities in the 3D quaternion space as shown
in Fig. 32,  follows from simply adding the quaternion vectors, and
this gives a quaternion-scaled 2D plot that is for all practical pur-
poses indistinguishable from the Ramachandran plot. The most
natural way  to think of these 2D coordinates is as quaternion
lengths arising from a single-axis rotation, they are also closely
related (by replacing sin(�/2) with sin(�)) to the axis-angle coor-
dinates sometimes used in orientation analysis. The quaternions
embed a rigorous metricity, while axis-angle coordinates are ad
hoc.

• II. xy quaternion product map. The quaternion maps in Fig. 32
correspond essentially to the Ramachandran plot, and are con-
structed as a Cartesian sum of vectors that can be added in any
order. This is not the way rotations actually act, and the rules
of quaternion rotation representation are violated: while each
single 3-vector Q1 and Q2 in Fig. 32 is a part of a unit length
quaternion (remember that we can calculate the missing scalar
part from the visible 3-vector), the Euclidean sum is not. How-

ever, we  can correct that by performing a quaternion product,
Q2 � Q−1

1 , and the result will be a quaternion that rotates the nor-
mal  of the 123 triangle by the angle � to the normal of the Frame
234, and then rotates that normal by   to align with the normal of
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ig. 31. (a1,a2) Standard Ramachandran plots of 31-residue 1AIE, with disconnec
xtensive 357-residue 1A05 protein.

the 345 triangle; that is, the resulting quaternion represents the

total rotation carried out when rotating by both Ramachandran
angles to get approximately to the first “leaf” of the next � frame.

Fig. 33 shows the results of this action on 1AIE and a 200 residue
portion of 1A05, rotating the 123 normal until it aligns with the

ig. 32. Quaternion geometry corresponding to the standard Ramachandran plots for 1AI
n  the horizontal axis are the �-related quaternion points, green dots are the  -related
artesian (Euclidean) sum of this pair of coordinates for each residue. (For interpretatio
ersion  of the article.)
ints and with adjacency-ordered line segments. (b1,b2) Same plots for the more

345 normal. Reversing the order (distinct from using the inverse)

results in a quaternion that differs by a sign in the z-component
of the resulting quaternion.

• III. Quaternion action of the three Ramachandran angles, and
the missing twist. The Ramachandran angles provide sufficient

E (left) and 1A05 (right). Blue lines connect adjacent residues as in Fig. 31; red dots
 quaternion points relative to the quaternion coordinate frame. Blue dots are the
n of the references to color in this figure legend, the reader is referred to the web
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Fig. 33. Quaternion geometry with the action of the Ramachandran rotations represented as full quaternion products, with correct unit-length quaternion results, again for
1AIE  (top, two  viewpoints) and 1A05 (bottom, two viewpoints).

Fig. 34. Relationship between the rotations defined by the three Ramachandran angles taking one representative NC�C frame to the next, and the quaternion value repre-
senting the transformation between the same two frames. The axial rotation performing the final frame alignment shown at the end of the path in the left image (a), and as
a  quaternion path in the right image (b); this orientation gap cannot be represented using the Ramachandran angles, which therefore lack crucial information.
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information to define the transition from the plane of a given
NC�C frame to the next, provided we split them up so that the
  and ω quaternions of the given frame are composed with the
�′ frame of its successor. There are two steps needed to finally
compare the Ramachandran data to the quaternion data in a fully
quantitative fashion:
– We  can find the value of the new normal for the next NC�C

frame, which we call ẑ′, by applying the neighboring (split up)
Ramachandran rotations in ordinary 3D space, and we  can also
express that complete rotation in quaternion form as follows:
ẑ′ = R1′ · R3 · R2 · ẑ
Qz→z′ = Q1′ � Q3 � Q2.
However, all this tells us is the orientation of the perpendicular
to the plane of the next NC�C frame: it is powerless to tell us the
entire frame.  This is a deficiency of the Ramachandran approach.

– The final step necessary for complete understanding of the
protein geometry, and one of our fundamental points in this
treatment of protein orientation frames, is the addition of
one final spin about the ẑ′ axis! This is then the final rela-
tion between quaternion frames and Ramachandran angles: in
Fig. 34(a), we show the location of a typical given NC�C frame
and use it as the identity reference frame, i.e., as a point at the
origin of the xyz quaternion projection; then we  plot the three
quaternion arcs Q1′ � Q3 � Q2 in sequence taking that frame’s
normal ẑ to the next ẑ′. But now we also plot the quaternion
value of the next NC�C frame, and see that it differs from the
result of the Ramachandran transformation. The difference is
simply a rotation by an angle � about the ẑ′ axis that can be
computed in a number of ways, e.g.,
F1′ = q(�, ẑ′) � Qz→z′ .
where the quaternion frame F1′ or the NC�C atoms having ẑ′ as
the normal to their plane, is computed in the coordinate system
that has the original NC�C frame F as the identity frame.

To conclude, in Fig. 34,  we can lay out a plot of the global loca-
tions of all the quaternion frames for the entire protein in two
equivalent forms: as the single quaternion arcs from Fi to Fi+1,
or as the pair of quaternion arcs consisting of the Ramachandran
composite arc (from the total value of Qz→z′ , composed with the
ẑ′-axis spin q(�, ẑ′)). This last small “spin” arc is plotted in a thick
line to emphasize the distinction between the global frame ori-
entation and the information available from the Ramachandran
angles.
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